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ABSTRACT

Satellite imagery enables spatially-temporally continuous
monitoring and understanding of global environmental fac-
tors for a range of applications. This data, however, often
suffers from gaps in retrieval from sensor malfunction or at-
mospheric interference, particularly dense clouds that obscure
parts or all of an area. For dynamic datasets such as the
MCD19A2 Aerosol Optical Depth (AOD) dataset, gap fill-
ing is especially challenging. The difficulty lies in the often
large, continuous blocks of cloudy pixels with missing data
that limit the ability of spatial filling and the daily fluctuation
in features such as AOD that incur high difficulty in gap fill-
ing from temporal trends. In this study, we propose a spatio-
temporal long short-term memory (LSTM) convolutional au-
toencoder method that effectively reconstructs missing data
resulting from thick cloud interference for MODIS AOD data.
The proposed method outperforms previous methods of re-
constructing data lost to thick cloud interference in AOD re-
trievals with a generalized network achieving a weighted av-
erage PSNR, SSIM, and R2 0f 47.2,0.992, and 0.941, respec-
tively, between original, cloud-free days and those same days
masked with simulated thick cloud interference without the
need for additional covariates.

Index Terms— remote sensing, data reconstruction,
AOD, machine learning, cloud filling

1. INTRODUCTION

Satellite imagery is an efficient tool for retrieving a large num-
ber of environmental, biological, and ecological variables at
many different scales with temporal continuity [1], [2]; how-
ever, these benefits come with the challenge of collecting sur-
face or atmospheric variables through the interference of at-
mospheric contamination. Gaps in satellite retrieval occur due
to multiple factors including sensor malfunction, sensor limi-
tations, and the presence of thick clouds [3]. Since many tech-
niques including classification, environmental modeling, and
trend analysis rely on complete imagery to accurately arrive
at their respective solutions, filling these data gaps remains an
important topic for remote sensing applications.
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Many techniques have been proposed to address the miss-
ing data found in remote sensing products including spatial,
temporal, and spectral methods [4], [5]. The solutions that
integrate multiple methods of gap filling such as the spatial-
spectral-temporal model proposed in [4] have shown signif-
icant promise in approximating the missing data in satellite
imagery. While these methods perform well for some appli-
cations like gap filling evenly-spaced dead pixel lines found
in Landsat’s ETM+ data after its scan line corrector (SLC)
failed, they are less performant for large cloud removal. Un-
like dead lines, clouds can often remove large swaths of in-
formation from a region resulting in no neighboring details to
use in the filling process.

Prior methods were also optimized to work under select
product conditions. Spectral-based models assume there is
at least one other accompanying band correlated with that of
the missing data and that these correlated bands do not like-
wise have missing data. Similarly, the visible spectrums of
Landsat imagery frequently used in prior studies also assume
relatively consistent information between observations over
relatively large time frames, a feature non-characteristic of all
satellite imagery.

In this paper, we propose a spatio-temporal long short-
term memory (LSTM) convolutional autoencoder that works
for dynamic, single-band datasets. This study uses the NASA
MODIS Level 2 MCD19A2 data product and is conducted
over MODIS tile hO5v09 crossing a geographically heteroge-
neous area across portions of Texas, New Mexico, and Col-
orado, among other states in the United States, to create a
generalized model capable of reconstructing satellite imagery
over a diverse set of locations. As a product of various al-
gorithms, MCD19A2 is a single-band imagery that measures
the geophysical parameter of aerosols [6]. This particular
L2 product combines the data from the MODIS Terra and
Aqua satellites and uses the Multi-angle Implementation of
Atmospheric Correction (MAIAC) algorithm to derive Land
Aerosol Optical Depth (AOD) [7], a parameter that fluctu-
ates daily [5] causing gap-filling techniques relying on long-
term consistency to be ineffective. We further investigate the
model performance at varying levels of cloud cover to analyze
how the performance changes as less information is available
to the model.
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Fig. 1. Gap filling system architecture. D, is the satellite image on day n.

2. METHODOLOGY

2.1. Data Preparation

Before training the model to fill the missing cloud gaps, the
raw AOD imagery was filtered and masked to provide an op-
timal training set. The imagery first must be filtered using
the provided quality assurance (QA) masks to remove pix-
els corresponding to those with cloud interference; for this
step, any pixels with clouds detected by the MAIAC cloud
detection algorithms are labeled as missing. Those labeled
as possibly suffering from cloud interference are retained as
this filter is known to erroneously erase non-degraded data
over urban areas [7]. Following QA masking, any pixels over
bodies of water not removed prior to the publication of the
MCD19A2 dataset were removed and flagged as water body
pixels as AOD over water is often unreliable or missing [7].

2.2. Dataset Creation

For each satellite AOD image, the quantity of cloudy pix-
els was computed for later use in evaluating the model at
varying data availability. Using this statistic for each im-
age, two groups were formed: those with no missing infor-
mation and those with cloud interference present, obscuring
AQOD retrieval. Those images that are complete and clear of
clouds were utilized in training and testing the model as the
target images. From the incomplete images, the empty pixel
positions are extracted to create cloud masks for simulating
cloudy conditions over the clear inputs for training and test-
ing; since these cloud masks are extracted from actual satel-

lite retrievals, they are more representative and accurate than
artificially simulated cloud blobs.

After labeling, grouping, and extracting cloud masks from
the images based on the quantity of missing data, the dataset
used for training and testing the model is created. This dataset
uses each of the complete images as the base for the training
samples, and, by stacking the previous four days of imagery
with the current day’s complete AOD retrieval, a time series
of AOD retrievals was created. The span of previous imagery
was determined experimentally to optimize performance. Af-
ter each time series is constructed, the current day’s AOD map
is corrupted using the previously extracted cloud masks by ze-
roing the corresponding cloud pixel positions in the complete
image to simulate cloudy conditions.

2.3. Model Architecture and Implementation

The architecture of the proposed spatial-temporal LSTM con-
volutional autoencoder model is shown in Fig. 1, with the ma-
jor components being the mask-based attention, LSTM gap
prediction, and the convolutional autoencoder. The network
input is a time series of five days of satellite AOD imagery,
with the final day in the series being the current day, D,,, to be
filled. From this time series, the 5-day masks are extracted,
and these and the raw 5-day AOD are fed through identical
autoencoders. The novel mask autoencoder structure extracts
a dynamic attention map based on the location of corrupted
pixels while the AOD autoencoder mirrors this functionality
to match the new attention map, and these are multiplied to
focus the model on the non-corrupted data.
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The attention-based representation of the previous four
days’ images, D;.4-Dy., are then fed into the convolutional
LSTM layers. These are similar to normal LSTM layers, but
the input transformations and recurrent transformations are
convolutional allowing further feature extraction characteris-
tic of convolutional layers. The first layer returns the full se-
quence of the output while the second convolutional LSTM
layer returns only the final predicted output for D,. Using
this predicted AOD, the missing-data pixels of the raw cor-
rupted D, image are filled with the corresponding values in
the predicted AOD image, completing the preliminary tem-
poral gap-filling procedure.

Before the convolutional autoencoder, the filled D, AOD
is multiplied once again by the mask-based attention map to
reinforce the attention toward the known pixels and give less
weight to those previously predicted. The convolutional au-
toencoder, comprised of the encoder and decoder systems,
takes this weighted AOD image and is trained to approxi-
mate the corresponding non-corrupted image. The encoder
attempts to downsample the image into an optimized feature
set, keeping the features most representative of the target im-
age. It is comprised of all layers prior to the first upsampling
layer with the max pooling layers downsampling the data and
the convolutional layers being used for feature extraction.

The decoder performs the inverse operations of the en-
coder, upsampling the image representation at the bottleneck,
or the output of the encoder. The upsampling layers mirror the
downsampling of the max pool layers while the convolutional
layers learn to extract relevant information from the com-
pressed feature set. During the decoding of the compressed
feature set, residual information from the encoding layers are
passed through to the decoder to provide fine-resolution in-
formation about the original image. Finally, this is followed
by a 2D convolution layer with a single output filter to trans-
form the previous layer’s representation into the dimensions
of the input image. The final post-processing step replaces
non-corrupted pixels from the original D, image in the convo-
lutional autoencoder’s output to create the final reconstructed
AOD.

3. RESULTS AND DISCUSSION

Similar studies have attempted to fill AOD satellite imagery
but achieved non-continuous reconstruction with varying
completeness levels of 67.7% [5] and 90% [8], respectively.
Studies achieving complete reconstruction, however, can be
seen in Table 1 and are more comparable to this work. We
use R? here for comparison as this metric measures error with
respect to the variance around the mean of each dataset’s
samples and, therefore, measures a model’s ability to explain
the variance in the target variable (AOD, in this case); this
eliminates problems that arise from cross-dataset comparison
with non-relative error metrics like RMSE or MAE. As can
be seen in this table, the model proposed here outperforms

Original Original

Corrupt (13%) Corrupt (44%)

o

Original

Reconstructed Reconstructed

Fig. 2. Gap filled AOD at varying cloud covers. Percentage
is amount of corrupted data.

Model Timescale | R> | Ref
Full Residual Network Weekly 0.94 | [10]
Non-Full Residual Network Weekly 0.86 | [10]
Non-Linear GAM Weekly 0.81 | [10]
Multiple Imputation Daily 0.77 | 9]
LSTM CNN-Autoencoder Daily 0.94 *

Table 1. Performance comparison across similar studies.
*=This Study

the similar daily model seen in [9] with a 22% increase in
R2. The other models detailed in Table 1 reconstruct cor-
rupted images on a weekly timescale as opposed to the daily
timescale of our model; since there is larger variation on the
daily timescale, we expect poorer performance from daily
models. Even with the increased complexity of creating a
daily model, when comparing our performance to that re-
ported in [10], our model outperforms both the Non-Full
Residual Network and Non-Linear GAM and performs com-
parably to the Full Residual Network. Other than the ability
to reconstruct daily images, one major advantage of our
model is the lack of required covariates. All three networks
described in [10] require 13 covariates in addition to AOD.
The model with the highest performance of the three, the Full
Residual Network, also requires that all AOD pixels contain
>60% valid retrievals during the study month to perform
reconstruction and consequently allows only intermittent re-
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Corruption Level | PSNR | SSIM | RMSE | R?
0.01-0.1 67.22 | 1.000 | 0.002 | 0.999
0.11-0.2 59.45 | 1.000 | 0.005 | 0.997
0.21-03 57.36 | 0.999 | 0.007 | 0.994
0.31-0.4 5547 | 0.999 | 0.008 | 0.989
0.41-05 54.00 | 0.999 | 0.010 | 0.987
0.51-0.6 51.79 | 0.992 | 0.013 | 0.980
0.61-0.7 50.12 | 0.992 | 0.016 | 0.972
0.71-0.8 48.53 [ 0.998 | 0.019 | 0.957
0.81-0.9 4398 [ 0.992 | 0.032 | 0.905
091-1.0 39.57 | 0.907 | 0.053 | 0.555

Table 2. Results of gap filling method. The table is organized
by proportion of corruption.

construction. In contrast, this work requires only the retrieved
AOD and, therefore, operates continuously, regardless of the
presence of other retrievals.

The results of the trained model with varying levels of cor-
ruption are shown in Table 2 as well as samples of test images,
their cloud-masked counterparts, and the reconstructed output
from our model in Fig. 2 for varying levels of cloud cover.
The proposed model is able to achieve a weighted average
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and R? of 47.2, 0.992, and 0.941, respectively. As
can be seen in both the table and the reconstruction samples,
as the level of cloud interference increases, the performance
degrades as expected due to a higher reliability on prior days’
retrievals, but the trends in areas with higher and lower lev-
els of AOD are still reliably reconstructed with a maximum
RMSE of 0.053. The sharp drop in performance when the
corruption nears 100% is likely due to the need of the model
to rely heavily on the regularly fluctuating temporal AOD data
to fill cloud gaps.

4. CONCLUSION

As satellite imagery continues to be an integral component
of fields including biological conservation, urban planning,
disaster mitigation, and many others, the need for techniques
that fill information gaps in retrieval with high accuracy per-
sists. In this paper, we propose a spatio-temporal LSTM con-
volutional autoencoder that is able to restore data in remotely
sensed images resulting from dense cloud interference with
an average PSNR, SSIM, and R? of 47.2, 0.992, and 0.941,
respectively, using the ability of LSTM-based models to learn
temporal characteristics and convolutional autoencoders’ ap-
titude for optimizing relevant spatial feature extraction and
suppressing noise. The technique is able to outperform past
methods for this task, allowing higher quality reproduction of
lost data in single-band satellite products with high levels of
temporal inconsistency.
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