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The effect of doping in the drift layer and the thickness and extent of extension beyond
the cathode contact of a NiO bilayer in vertical NiO/B-Ga20Os rectifiers is reported.
Decreasing the drift layer doping from 8x10'° to 6.7x10'> ¢cm™ produced an increase in
reverse breakdown voltage (V) from 7.7kV to 8.9 kV, the highest reported to date for
small diameter devices (100um). Increasing the bottom NiO layer from 10 to 20 nm did
not affect the forward current-voltage characteristics but did reduce reverse leakage
current for wider guard rings and reduced the reverse recovery switching time. The NiO
extension beyond the cathode metal to form guard rings had only a slight effect (~5%) in
reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge
improvement in Vs compared to conventional Schottky rectifiers, where the breakdown
voltage was ~1kV. The on-state resistance (Ron) was increased from 7.1 mQ.cm? in
Schottky rectifiers fabricated on the same wafer to 7.9 mQ.cm? in heterojunctions. The
maximum power figure of merit (Vs)”/Roxnwas 10.2 GW.cm™ for the 100pm NiO/Ga203
devices. We also fabricated large area (1 mm?) devices on the same wafer, achieving Vs
of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW.cm™ for these devices.

These parameters are the highest reported for large area GaxOs rectifiers. Both the small
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area and large area devices have performance exceeding the unipolar power device

performance of both SiC and GaN.

. INTRODUCTION

The increasing electrification of automobiles and the need to switch renewable
energy sources in the existing power grid has increased demand for energy efficient
power electronica capable of higher voltage and currents than existing Si devices. This
has focused attention on the wide and ultra-wide bandgap semiconductors ¥, with the
latter including diamond, AIN and Ga20s. The ability to grow large diameter, high
quality crystals from melt-grown methods and the attendant low cost of production has
spurred interest in B-Ga203 1. One of the goals is to achieve a high -power figure of
merit for power electronic devices, defined as (Vs)?/Rox where Vs s the reverse
breakdown voltage and Ron. is the on-state resistance !, To achieve a high-power
figure of merit, a rectifier must have a low drift layer concentration, with high electron
mobility, as well as low Ron, and optimized edge termination to prevent current crowding
(1.521) The breakdown voltage is larger for thicker drift layers, but this degrades on-
resistance. To achieve a low Ron, a thin drift layer with high electron mobility is
required. In addition, vertical geometry devices are desirable, because of their higher
power conversion efficiency and absolute currents compared to lateral devices (-3,
Power rectifiers are also building blocks for many advanced power handling systems.

A drawback with Ga20s is the absence of facile p-type doping. All of the
potential acceptor dopants have large ionization energies and are not significantly ionized
at room temperature. This has led to the use of p-type oxides, principally polycrystalline
NiO, to form p-n heterojunctions with n-type Ga203 ¢'¥), The forward current transport

mechanism in such junctions is typically recombination at low biases and trap-assisted



tunneling at higher bias %2129 Promising rectifier performance has been reported with
this approach (1214213 ‘including Vs of 8.32 kV, with figure of merit 13.2 GW.cm™ (12,
Optimization of the heterojunction rectifier device structure is crucial to achieve
both high Vs and low Ron, as well as providing management of the maximum electric
fields within the structure to enhance further the device voltage blocking capability 4147,
The design variables include the thickness and doping of the layers, doping in the drift
layer and the use of the NiO as a guard ring by extending it beyond the metal cathode. In

this paper we report an investigation of the effect of these parameters on the performance

of Ni0/Ga20s vertical rectifiers. A new highest Vs for these devices is achieved.

Il. EXPERIMENTAL

We made both vertical geometry Schottky rectifiers and NiO/ Ga20s rectifiers on
the same wafers. The parameters investigated are shown in the schematic of the vertical
heterojunction rectifiers in Figure 1. We varied the thickness of the second layer in the
bilayer NiO (10 or 20 nm, with fixed thickness of the top layer held constant at 10 nm)
and the length of the NiO extension beyond the cathode contact (12-20 pm) to form
guard rings. The choice of these parameters was guided by TCAD simulations with the
Silvaco Atlas code of electric field distributions, as reported previously 4. Finally, we
had two different drift region doping levels at a fixed thickness of 10 um. The epitaxial
layers were grown by halide vapor phase epitaxy (HVPE) on a (001) Sn-doped (10" cm
3) B-Ga20s3 single crystal substrate. These samples were purchased from Novel Crystal

Technology, Japan.



Ohmic contacts were made to the rear surface using a Ti/Au metal stack deposited
by e-beam evaporation. This was annealed at 550 C for 180s under Na. The front surface
was exposed to UV/Ozone exposure for 15 mins to remove contamination. The NiO
bilayer was deposited by rf (13.56 MHz) magnetron sputtering at a working pressure of
3mTorr 1**D, The hole concentration in these films was adjusted using the Ar/O: ratio.
The structure was then annealed at 300°C under Oz. Finally, a cathode contact of 20/80
nm Ni/Au (100 um diameter) was deposited onto the NiO layer. The NiO was extended
from 12-20 um beyond the contact metal to form a guard ring. Figure 2 shows the C2-V
plots for the two different drift layer doping levels. These show the carrier concentrations

were 6.7x10"° cm™ and 8x10'°> cm™, respectively.
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Fig 1. Schematic of NiO/Ga20s3 heterojunction rectifier. The extension of the NiO beyond
the Ni/Au contact to act as a guard ring was investigated for different extension lengths,

as well as the thickness of the bottom NiO layer and the drift layer doping.



The current density-voltage (J-V) characteristics were measured on a

Tektronix 370-A curve tracer, 371-B curve and Agilent 4156C. For the highest reverse

voltages, a Glassman power supply was employed. The reverse breakdown voltage was

defined as the bias for a reverse current reaching 0.1 A.cm?. The high bias measurements

were performed in Fluorinert atmosphere at 25°C. The devices did not suffer permanent

damage at this condition but increasing the voltage a further 50-200 V led to permanent

failure through breakdown at the contact periphery. The on-resistance values were

calculated assuming the current spreading length is 10 um and a 45° spreading angle. We

also subtracted the resistance of the cable, probe and chuck, which was around 10 Ohm.
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Fig. 2. C-V characteristics for determining carrier density in drift region for the two

different types of wafers investigated. The drift layer thickness was ~10 um in both cases.

lll. RESULTS AND DISCUSSION



A. Small Area Rectifiers to Achieve High Breakdown Voltage

Figure 3 shows the forward current densities and Ron values for rectifiers with
different guard ring dimensions fabricated with (a) 10/10 nm NiO bilayer or (b) 10/20 nm
NiO bilayer. These were fabricated on the drift region with the lower carrier density.
There is very little difference in these forward current density characteristics for either

the NO bilayer thickness or the guard ring diameter.
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Fig. 3. Forward current densities and Ron values for rectifiers with different guard rings

dimensions fabricated with (a) 10/10 nm NiO bilayer or (b) 10/20 nm NiO bilayer.

Figure 4 shows a comparison of the results from the NiO/Ga20O3 heterojunction

rectifiers with the Schottky rectifier fabricated on the same wafer. The on-resistance for



the former was 7.9 mQ. cm™ For the Schottky rectifiers, this parameter was slightly
lower, as expected, at 7.1 mQ.cm?. Both types of devices had forward current densities >

100 A.cm™ at 5 V. The turn-on voltage was 1.9-2.1 V for the heterojunction rectifiers.
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Fig. 4 Comparison of forward current density characteristics for Schottky and NiO/Ga203

rectifiers.

Figure 5 shows the reverse I-V characteristics out to -100V for (a) NiO/Ga20s3
rectifiers with 10/10 nm NiO bilayers or (b) 10/20 nm NiO bilayers. While the guard ring
diameter makes little difference to devices with the 10/10 nm NiO bilayer, there is a
reduction in reverse current density for the smaller guard rings. A comparison of the
heterojunction results with those from the Schottky rectifiers all fabricated on the lower
drift layer doping structure is shown in Figure 6 for a fixed guard ring diameter of 12 pm
in the latter type of device. As expected, the leakage current from the heterojunction
rectifiers is lower than that of the Schottky rectifier and reducing the doping in the drift

layer also lowers the reverse current density ?%2148-5D_ Similar trends were observed for



the two types of devices fabricated on the higher drift layer doping. The p-n junction has

a larger effective barrier for current transport than the metal gate Schottky rectifiers.
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Fig. 5. Reverse I-V characteristics out to -100V for (a) N1O/Ga2Os rectifiers with 10/10
nm NiO bilayers or (b) 10/20 nm NiO bilayers.
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Fig. 6. Comparison of low bias reverse current characteristics between Schottky rectifiers
and NiO/Ga20s rectifiers with either 10/10 nm or 10/20 nm bilayers. All these were
fabricated on the sample with drift layer doping 6.7 x10'° cm?.

The reverse J-V characteristics over the full bias range are shown in Figure 7
(a) for the devices fabricated on the 6.7 x10'> cm™ drift layers with different NiO
thicknesses as well as different guard ring diameters. Once again, for comparison, we
show the result for the Schottky rectifier and for a heterojunction device fabricated ion
the wafer with larger drift layer concentration of 8x10'° cm™. The key points from this
data are firstly, that the lower doping produces a higher reverse breakdown voltage, with
a maximum of 8.9 kV. This is the highest reported to data for Ga:0s rectifiers of any type
(12) The second point is that the heterojunction really increases reverse breakdown

voltage compared to the Schottky rectifier. The Vb of the latter was 750V, while the

10



device reached 1218 V before permanent burn out. The final point is that the NiO

thickness and guard ring extension length made only a relatively small difference in Vs.
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Fig. 7. (a). Reverse current characteristics from Schottky rectifier and NiO/Ga203

heterojunction rectifiers with different guard ring extensions and NiO layer thicknesses.
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(b) comparison between Schottky and NiO/Ga203 heterojunction rectifiers fabricated on

the lowest drift layer doping wafer.

Figure 7(b) shows a comparison of the breakdown voltages for the devices
fabricated on the lower drift layer doped layers, as a function of the NiO thickness. The
power figure of merit was 10.2 GW.cm™ for the optimized heterojunction rectifier,
compared to 0.08 GW/cm™ for the Schottky rectifier. The theoretical maximum is ~34
GW.cm™ showing that further improvement should be possible as the edge termination
and epi layer quality continue to evolve 2. The average electric field strength is 8.7
MV/cm. For biases >100 V, the reverse leakage current follows a In(/) o< V relation. This
indicates the dominant leakage mechanism is electron variable-range-hopping via defect-
related states in the drift region %!?. This has been reported in detail by numerous

groups (9,10,12,14).

Figure 8 shows the on-off ratio of N10/Ga203 heterojunction rectifiers in which the
bias was switched from 5V forward to the reverse voltage shown on the x-axis. For
comparison, the results for s Schottky rectifier fabricated on the same wafer are included.
The values are still >10'" when switching to 100V and approximately two orders of
magnitude higher than that of the Schottky rectifier over this bias range. This again
emphasizes an advantage of the p-n heterojunction in achieving excellent rectification
characteristics.

Figure 9 shows the reverse recovery switching waveform when switching from 50
mA forward current to -10V for heterojunction rectifiers with (a) 10/10 nm or (b) 10/20
nm bilayers as a function of guard ring extension. The reverse recovery times are~ 21ns

and are tabulated in Table 1. These measurements were made with a custom switching
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circuit, as described previously “*). We used di/dt values around 2.9 A/us. Others have
reported use of values in the range 100-400 A/us “¥6%, Figure 10 shows a comparison of
switching waveforms of Schottky and NiO/Ga203 heterojunction rectifiers. The relative
indifference to device structure demonstrates that charge storage in the p-n junction is not
a significant factor compared to the Schottky device 3%, The Schottky diode had higher

forward current due to lower effective barrier height.
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Fig. 8. On-off ratio of 100 um diameter NiO/Ga203 heterojunction rectifiers in which the
bias was switched from 5V forward to the voltage shown on the x-axis. For comparison,

the results for a Schottky rectifier fabricated on the same wafer are included.
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Fig. 10. Comparison of switching waveforms of Schottky and NiO/Ga2O3 heterojunction

rectifiers.

Table 1. Summary of reverse recovery parameters for heterojunction and Schottky
rectifiers

Te  In dl/dT Ir
(ns) (mA) (A/ps) (mA)

10+10nm 19.6 27.5 2.9 50
20+10nm 13.8 21.6 2.9 50
Schottky 14.6 21.4 2.5 65

Figure 11 shows a literature compilation of Ron versus Vs results for all the
common types of rectifiers fabricated in the Ga203 materials system. These include metal

gate Schottky barrier or junction barrier Schottky rectifiers, along with NiO/Ga203
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heterojunction rectifiers. This is a standard chart for showing the improvement in Ga203

rectifier performance and contains the theoretical lines for SiC, GaN and Ga203 devices.

Note that there are now at least five instances of Ga203 rectifiers with performance

beyond the 1D unipolar limits of GaN and SiC. It is expected that continued optimization

of the edge termination techniques and reductions in both drift layer doping and defect

density should advance the ability to make large area rectifiers with high conduction

currents using the NiO/ Ga203 structures. The reliability of such structures will also need

to be investigated >3,
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Fig. 11. Compilation of Ron versus Vs of conventional and NiO/Ga203 heterojunction

small area rectifiers reported in the literature.

B. Large Area Devices to Achieve High Forward Current
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There has been much less reported on large area Ga20s3 rectifiers, which are needed
to achieve large absolute forward conduction currents 7364 These are typically
referred to as Ampere-class power devices. A recent review has discussed switching
performance, packaging and approaches to thermal management 7).

We fabricated 1 mm? devices with the same structure as shown in Figure 1. Figure
12 shows the forward J-V characteristics of two such devices with different NiO
thicknesses, with a maximum forward current of 4.1A at 10V forward bias. The Ron
values are 1.8-1.9 mQ.cm™. While rectifier arrays have achieved currents in the range 33-
100A, the 4A for for an individual device is still behind those of Gong et al. “® and Zhou

et al. ¥, where 12A was achieved. Large area packaged Ga203 SBDs with an anode size

of 3x3 mm? have been reported with forward current of over 15 A ¢,
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Fig. 12. Forward current characteristics for 1mm? heterojunction rectifiers for two

different NiO thicknesses.
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The reverse J-V characteristics are shown in Figure 13 for two different types of
structure with varying NiO thickness. Figure 13 (a) shows the low voltage ( -100V)
range, while (b) shows the Vs values are around 4kV. These are the highest reported for
Ampere-class Ga203 rectifiers. Once again, the NiO thickness does not have a significant

impact on the magnitude of the breakdown voltage.
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Fig. 13. Reverse J-V characteristics out to (a) -100V for NiO/Ga2Os rectifiers with 10/10
nm 10/20 nm NiO bilayers. (b) over full bias range to show Vs.

Figure 14 shows the on-off ratio of 1 mm? NiO/Ga203 heterojunction rectifiers in

which the bias was switched from 5V forward to the voltage shown on the x-axis. The
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on-off ratio is >10'? over the whole bias range investigated and is slightly better for the
thicker NiO layers. For switching from 10V to 0V, the ratio is ~10'* in both cases and
these large area devices retain excellent rectification, showing that the increased
likelihood of having defects within the active area have not degraded this property.
Sdoeung et al. ¢ reported that threading dislocations in HVPE layers of the type we are
using are responsible for significant contributions to reverse leakage current in rectifiers.
Figure 15 shows a compilation of on-off ratio versus power figure of merit of

conventional and NiO/Ga203 heterojunction rectifiers reported in the literature.
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Fig. 14. On-off ratio of 1 mm? NiO/Ga203 heterojunction rectifiers in which the bias was

switched from 5V forward to the voltage shown on the x-axis.
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Fig. 15. Compilation of on-off ratio versus power figure of merit of conventional and

NiO/Ga20s3 heterojunction rectifiers reported in the literature.

Figure 16 shows a compilation of Ron versus Vs of large area conventional and
NiO/Ga20s3 heterojunction rectifiers reported in the literature. Our results represent the
best combination of breakdown voltage and on-state resistance reported to date and show
the impressive advances in material quality in terms of reducing both background carrier

density and extended defect density.
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Fig.16. Compilation of Ron versus Vs of large area conventional and Ni0O/Ga203

heterojunction rectifiers reported in the literature.

IV.SUMMARY AND CONCLUSIONS

In summary, we optimized the NiO bilayer thickness and extension of these

layers beyond the cathode contact on NiO/B-Ga203 p-n heterojunction rectifiers to

achieve Vg 8.9 kV with Ron 0of 7.9 mQ-cm? and a resultant figure-of-merit (Vv*/Ron) of

10.2 GW.cm™. The heterojunction produces breakdown voltages far more than Schottky

rectifiers fabricated on the same wafer and confirms that the NiO can act as both p-layer

and guard ring material. This approach now consistently produces power figure of merits
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that exceed the unipolar power device performance of both GaN and SiC. It will still be
necessary to establish the long-term reliability of devices fabricated by this approach. For
large area devices, the low thermal conductivity limitations of Ga203 remain as a primary
issue. In addition, more work is needed to understand the surge current capability of
Gax0s-based rectifiers and the packaging approaches needed to achieve practical
operating characteristics, along with establishing the junction-to-ambient thermal

resistance of junction side cooling approaches ¢,
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