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Climate change interacts with local processes to threaten biodiversity by
disrupting the complex network of ecological interactions. While changes in

network interactions drastically affect ecosystems, how ecological networks
respond to climate change, in particular warming and nutrient supply
fluctuations, is largely unknown. Here, using an equation-free modelling
approach on monthly plankton community data in ten Swiss lakes, we show
that the number and strength of plankton community interactions fluctuate
andrespond nonlinearly to water temperature and phosphorus. While

lakes show system-specific responses, warming generally reduces network
interactions, particularly under high phosphate levels. This network
reorganization shifts trophic control of food webs, leading to consumers
being controlled by resources. Small grazers and cyanobacteria emerge

as sensitive indicators of changes in plankton networks. By exposing the
outcomes of acomplex interplay between environmental drivers, our
results provide tools for studying and advancing our understanding of how
climate change impacts entire ecological communities.

Humanimpacts, such as climate change and pollution, are reorganizing
entire ecosystems by affecting the nature and strength of ecological
interactions and, thereby, the composition of natural communities'™.
Ecologicalinteractions between species are the engine of community
dynamics and ecosystem processes, although they remain perhaps
the most overlooked component of biodiversity change*®. Studying
the structure and dynamics of interactions inacommunity, which can
be conceptualized as information networks, has proved to be funda-
mental to understand how global change alters ecosystem structure
and function’. Although it is known that human activities affect eco-
logical networks, researchers and stakeholders urgently need tools to
understand and predict the contemporary and non-additive effects
of different stressors>*. The warming experienced by many lakes,
particularly in the past decade, has put ecological networks in a situ-
ation where slight increases in nutrient levels can trigger dramatic
ecosystem changes™ ",

Changes in network properties can portend the possibility of
rapid shifts in community structure and increase species extinction

risks">*. Networks vary over space and time in the number of interac-
tions between taxa (that is, addition or loss of connections) or the
strength of interactions (for example, rerouting of biomass flows
through existing connections)*'. Network connectance and the
strength of species interactions—particularly in trophic networks—
are structural properties that can signal large-scale changes in the
whole ecosystem, with potential implications for ecosystem stability
(in the sense of Lyapunov stability of equilibria) and the maintenance
of biodiversity>'*".

Knowledge about how entire interaction networks reorganize as
a consequence of global change is, however, limited owing to many
challenges, including the scarcity of long-term, well-curated time
series of complete ecological networks'®, which, when available, are
often characterized by complex nonlinear interactions and require
specificinference methods'?°. Most research also focuses on only one
type of interaction (for example, trophic, mutualistic or competitive).
Until recently, ecological theory and practice have often assumed that
interactions are fixed and constant over time'**'. Moreover, it has been

'Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Diibendorf, Switzerland. Scripps Institution of
Oceanography, University of California San Diego, La Jolla, CA, USA. ®Vermont Department of Environmental Conservation, Montpelier, VT, USA.

4Stadt Zuerich, Wasserversorgung, Qualitaetsueberwachung, Zuerich, Switzerland.

e-mail: ewa.merz@eawag.ch

Nature Climate Change | Volume 13 | April 2023 | 389-396

389


http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-023-01615-6
http://orcid.org/0000-0001-8699-9414
http://orcid.org/0000-0002-3493-1335
http://orcid.org/0000-0003-4446-6788
http://orcid.org/0000-0002-9746-3735
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-023-01615-6&domain=pdf
mailto:ewa.merz@eawag.ch

Article

https://doi.org/10.1038/s41558-023-01615-6

< HAL

< NEU

Q@ Brz

Warming

Water
temperature (°C)

_. 0201
N
g’ 0.15 |
©
£ 0104
<
o
8 0.05 1
N
o P
04 N
1980 1990 2000 2010 2020
Year

Fig. 1| Environmental change in ten Swiss lakes over the past five decades
and its implications for plankton networks. a, Study sites belong to the
same geographic region. Size and distance are to scale. b, Monthly phosphate
concentrations (PO,) and water temperature averaged over the water column.
Colours represent single lakes; black line is asmoothing average across lakes;
dashed vertical linesindicate periodsin the lakes’ histories (end of
re-oligotrophication—circayear 2000, and increase in net lake warming—circa
2010). ¢, Conceptual model of a plankton network in temperate lakes. s, small
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single cell; 1, large single cell; ¢, colonial (Methods). Non-trophic links encompass
facilitation and competition. Trophic links represent predator-prey interactions.
Hybrid links can be both trophic and non-trophic; for example, mixotrophic
protists can prey on and/or compete with other phytoplankton species. Hybrid
and trophic links go from the bottom to the top of the food web, that is, froma
primary producer to a grazer (bottom-up, BU) or from top to bottom, that is,
fromagrazer to a primary producer (top-down, TD).

difficult to assess how the properties of ecological networks respond
to interacting environmental stressors. This is because of the limited
available empirical data on large-scale ecosystems and the need for
quantitative data-analytic methods to address complex relationships
that vary with system state. Previous work on ecological networks,
mostly theoretical and based on many assumptions, offers only par-
tial expectations of how natural ecosystems may respond to multiple
anthropogenic stressors in reorganizing taxa interactions*?,

Here, we address these gaps by studying the effects of two major
anthropogenicstressors on plankton networks: warming and nutrient
pollution'**, Specifically, we examined re-oligotrophication, referring
to the process of controlled phosphorus reduction to revert lakes to
their original state before anthropogenic nutrient pollution. We meas-
ure the temporal changesin connectance and interaction strengths at
three levels: (1) the whole network; (2) top-down and bottom-up links
that control food-web dynamics; and (3) different interaction types. To
understand the interdependent effects of warming and oligotrophica-
tion on plankton networks, we examined 20-43 years of well-curated
monthly plankton community data across ten peri-alpine Swiss lakes
(Fig.1a, Supplementary Table 1and Extended Data Fig. 1a). Data from

five lakes cover more extensively the process of re-oligotrophication,
and eight the period of net warming (Methods). Thisis along-term and
consistent historical series of anentire ecological network along with
measurements of abiotic environmental variables, whichis very rarein
ecology. Thus, these data provide a timely opportunity to investigate
network-wide consequences of climate change and nutrient fluctua-
tions in natural lake ecosystems.

We first analyse the data collected from the ten Swiss lakes for
the phosphate levels and temperature trends. Dissolved inorganic
phosphorus (phosphate) is the main limiting factor for phytoplankton
growthintemperate lakes and the principal driver of eutrophication®.
Temperatureisafundamental driver of metabolic responsesin plank-
ton, influencing competitive and trophic dynamics and, consequently,
how biomass is partitioned and distributed within an ecosystem'*.
Startinginthe 1970s, the lakes consideredin this study underwent man-
aged re-oligotrophication to control the release of phosphorus into
the ecosystems (Fig. 1b). At the same time, the average water-column
temperature has steadily increased since the 1950s*.

Warming can also indirectly affect nutrient supply in deep and
temperate lakes such as the ones studied here through changes in
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Fig.2| Connectance and interaction strength between nodes of plankton
networks are dynamic over space and time, and exhibit nonlinear
relationships with water temperature and phosphorus. a,b, Connectance
(percentrealized links, a; Fig. 1c) and average strength between realized links
(b); time series are based in the centre of a moving window of 60 months used
for causality detection via CCM. c-f, S-map models’ inferred interactions
between average water-column phosphate and temperature on realized network
properties. ¢, Example three-dimensional plot depicting the interactive effects
of water temperature and phosphate on all lakes, which emerge from predicting
network properties (z axis) over varying levels of the chosen pair of explanatory
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variables while keeping lake depth and volume constant (Methods). d, Colour-
coded contour plots of predicted strength of network links in Lake ZHR. Dots
represent the start/end of the re-oligotrophication and net-warming periods;
trajectories show the direction of time, with an arrowhead pointing to the end of
each period. The displayed years are the middle point of a five-year time window.
Dashed lines show 95% ranges of empirical input values of temperature and
phosphate. e, Colour-coded contour plots of predicted network connectance in
Lake ZHR; lines and dots as ind. f, Standard deviation of predicted connectance,
estimated over 100 model predictions using 50% of the data.

stratification®?. A temperature rise reduces turbulence and deep
mixing, decreasing the resuspension of phosphorus from the deep
and nutrient-rich waters?***?*, From 2010 to 2020, the average
water-columntemperatureinthe studied lakesrose by 0.4 °Ct01.7 °C

(Fig. 1b and Supplementary Table 1), similar to the increase observed
over the previous 60 years (1950-2010)***°. To analyse the relation-
ship between phosphate levels and water temperature in our datasets,
we use a nonlinear causality test (convergent cross-mapping, CCM)
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from the empirical dynamic modelling (EDM) framework (Methods).
Fromthis, we find that water-column temperature causally influences
changes in phosphate levels (a negative effect is expected®**?°), but
notvice versa (Extended DataFig. 2). This unidirectional relationship
suggests that warming, by regulating phosphate availability, may
have amore pervasive influence on plankton networks than would be
expected by the effects of water temperature alone.

To study ecological networks, which are expected to be affected
by warming®>*', we group the plankton species present in the lakesinto
well-known trophic guilds***® based on species’ body size, nutrition
requirements and foraging behaviour (Extended Data Fig. 1b). The
resulting conceptual network consists of up to 15 nodes (Fig. 1c and
Methods) comprising the following: invertebrate predators, omni-
vores, large and small herbivores, mixotrophic flagellates, and primary
producers. Guilds of primary producers (phytoplankton) represent the
base of aquatic food webs and, worldwide, they account for roughly
half of the global primary production®. When possible, we divided
each of their guilds into two nodes based on cell size and coloniality
(Fig. 1c). Each node in the network contains a time series of monthly
abundances that records how guilds wax and wane over time, while
the number of nodes per lake remains constant (Extended Data Fig. 3,
and Supplementary Figs.1and 2). These time series contain essential
information about how guilds influence each other and themselves
(that is, dynamic links). We consider direct (for example, predator-
prey) and indirect links (for example, competition for resources) as
taxainteractions.

Toemploy this established network for studying how interactions
change as a function of system state (as reasonably expected from
nonlinear systems'>**), we use CCM to identify causal associations
between network nodes and quantify their strength (that is, cross-map
accuracy; Extended Data Fig. 1c)**. CCM quantifies how changes in
onetimeseries (thedrivenvariable, predictor) can predict changesin
another (the causal driver, predictee, that is, how much information
about the driver is contained in the driven variable). To obtain the
causal relationships between guilds, we minimize the intra-annual
signal of the environmental drivers. Interactions are corrected for
seasonality by assuming nointeraction when theinteraction strength
given by CCM is lower than that of a seasonal surrogate null model*>*
(Methods). By measuring cross-map accuracy (Pearson’s correlation
between predictions and observations—rho) in a 60-month moving
window, we track how causal associations between network nodes and
their strength varyin each lake network. Thus, within each window, we
measure the following: (1) connectance as the percentage of significant
associations between nodes (causallinks), C=100 x (L/N(N-1)), where
L is the number of interactions between nodes and N is the number
of nodes in the system; and (2) interaction strengths among causal
links (cross-map accuracy; Extended Data Fig. 1d). The window size
was chosen to encompass more than ayear and avoid strong seasonal
signals, while not being too long to miss key trends*®. The main trends
inconnectance and interaction strength reported below are robust to
the choice of window size (Supplementary Fig. 3).

At the network level, connectance and average interaction
strengths vary over time in each lake (Fig. 2a,b). The observed time
series shows how network connectance increases significantly in two
out of five lakes during re-oligotrophication (for example, +4.2%in Lake
Zurich, Spearman’srank correlation R = 0.35, P < 0.001; Figs. 2c and 3b,
and Methods). Connectance decreases significantly in six out of eight
lakes when warming accelerates (for example, 14.8.% in Lake Zurich,
R=-0.78, P<0.001; Figs. 2a and 3a). Those trends agree with recent
evidence from natural freshwater systems® that warming reduces the
connectance of ecological networks. The average interaction strength
among plankton guilds is less variable over time than network con-
nectance and exhibits lake-specific trends during re-oligotrophication
and warming (Figs. 2b and 3). The observed trends in connectance
and interaction strength emerge from the interdependent effects of
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Fig.3|Lake warming leads to ageneralized decrease in network connectance
andinteraction strength. a,b, Spearman’s rank correlation between network
properties and time, during the two focal periods of lakes” history. To study
correlations during warming (a), we used data points from 2000 up to the
present (BIE, BRZ, GRE, HAL, MUR, NEU, THU and ZHR), while data from before
the year 2000 (lakes BAL, GRE, HAL, SEM and ZHR) were used to study lake
re-oligotrophication (b).

re-oligotrophication and warming (for example, Extended DataFig. 2),
and can depend on other internal lake factors; they therefore cannot
be studied based on correlation alone.

To study theinterdependent relationship between network prop-
erties and environmental factors, we model the effects of contrasting
gradients of decreasing phosphorus and lake warming on the network
structure in all the lakes in our dataset (Fig. 1b and Extended Data
Fig. 1e). Using S-maps to account for time-varying relationships
(Methods), wemodel network properties asafunction of theinteraction
between temperature, phosphate, and the lake’s depth and volume®*,
These models allow us to disentangle the effect of warming, usually
convolved with re-oligotrophication, across all lakes, while consider-
ing lake morphometric differences and idiosyncrasies (Fig. 2c). The
differentlakes canbe used asindependent case studies as they belong
to the same geographic and climatic region, went through a similar
history of re-oligotrophication and warming, and share the same
plankton species pool. Moreover, within the observed temperature
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versus bottom-up links based in the centre of a moving window of 60 months,
used for CCM. ¢,d, Interactive effects of average water-column phosphate and
temperature on realized top-down relative to bottom-up links (c), and their
relative strength (d) in Lake ZHR. Colour-coded contour plots depict the S-map
modelinferred relationships as in Fig. 2 (Methods).

and phosphate levels ranges, we can now make predictions for pre-
viously unobserved temperature and phosphate level combina-
tions across lakes. We averaged predictions over 100 models using
50% of the data to get an uncertainty estimation around model
predictions (Fig. 2f).

Wefound that network connectance and interaction strength show
highly nonlinear and lake-specific responses to changes in phosphate
concentrationand water temperature (Fig. 2c, Supplementary Table 2
and Supplementary Fig. 4). For most lakes, S-map models predict
maximum connectance and interaction strength atintermediate water
temperature and phosphorus (Supplementary Figs. 4 and 5). Raising
water temperature is predicted to negatively affect connectance and
interactionstrength in most lakes, whileincreasing phosphorus levels
resultinlake-specific responses, which are strongly dependent on tem-
perature (Supplementary Figs. 4 and 5). Our models also show higher
uncertainty in predicting network properties for the combination of
high temperature and phosphorus (Supplementary Fig. 5). As anillus-
trative example of these ecosystem responses, we display and discuss
the predictions for Lake Zurich (Fig. 2d-f; see other lakes in Supple-
mentary Fig.5).In our dataset, Lake Zurich represents amedian-sized,
well-studied ecosystem and is economically important for fisheries
and drinking water supply”. Moreover, this lake has the most consist-
ent record (longest time series), encompassing re-oligotrophication
and warming.

In Lake Zurich, the S-map models predict high connectance at
medium water temperature and low phosphate levels, and low con-
nectance at high temperature and medium phosphate levels (Fig. 2e).
The historical trajectories indicate that Lake Zurichis now, after being
warmed, in a state in which a slight increase in nutrients could drasti-
cally reduce network connectance. A further reduction in nutrients
could highly promote connectance and increase interaction strength
(Fig.2d,e). Thisis expected because a reduction in nutrient levels can
increase competition for resources and thus lead to stronger interac-
tions®***, For a given number of taxa, many strong interactions can
negatively affect Lyapunov ecosystem stability, similar to a decrease
innetwork connectance'®”.Inawarmingworld, an ecosystem like Lake
Zurich is now in a situation where a slight change in nutrient levels
could have dramatic consequences for the whole network and thus
ecosystem stability.

We next examined the directionality of trophic control. By using
CCM, we calculate the relative frequency of causal effects descend-
ing (top-down links, for example, predator controls prey abundance)
and ascending (bottom-up links, for example, prey controls predator
abundance) through the network (Methods). It is known that warming
canalter the metabolicrates of producers and consumers differently,
influencing the strength of trophic interactions and the direction of
trophic controls (for example, consumers controlling the population
of their resource or vice versa), especially under reduced nutrient
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Fig. 5| Hybrid links are the most common, whereas non-trophicinteractions
are the strongest. a,b, Prevalence (a) and strength (b) of trophic, non-trophic
and hybrid links. Diamonds represent averages over time within lakes; boxes’
lower and upper hinges (bounds) correspond to the first and third quantiles (the
25th and 75th percentiles) across all lakes; and black bars represent the median
(50th percentile). The upper whisker (maximum) extends from the hinge to
thelargest value no further than 1.5x the distance between the first and third
quartile. The lower whisker (minimum) extends from the hinge to the smallest
value at most 1.5x the distance between the first and third quartile of the hinge;
databeyond the end of the whiskers are outliers. P-values are shown above the
brackets and were calculated using pairwise comparisons and a Wilcoxon test
(non-parametric).

levels**°, Experimental evidence suggests that warming strongly
impacts aquatic food-web interactions by reducing trophic transfer
efficiency**~*?, and may also affect trophic controls in lakes, particularly
when co-occurring with changes in nutrient availability***. If warming
shifts control to bottom-up, where resources control consumers, the
system dynamics become sensitive to nutrient inputs™**. If top-down
forces controlasystem, managing the lake’s productivity would require
food-web manipulations (for example, stocking of piscivorous fish)*.

We find that top-down causal links are more frequent than
bottom-up links in nine out of ten lakes (Fig. 4a and Extended Data
Fig.4), although, in half of the lakes, the bottom-up links are stronger
on average (Fig. 4b and Extended Data Fig. 4). Trophic controls can
covary, yet they may not do so with the same magnitude, and the dif-
ference between their number and strength fluctuates (Supplementary

Fig. 6 and Fig. 4 a,b). Bottom-up and top-down controls are expected
to change over time and across environmental gradients®. We find that
in three lakes, re-oligotrophication slightly increased the number of
top-down links relative to bottom-up (Figs. 4a and 3d). Warming in
lakes, however, generally decreased the number of top-down links
relative to bottom-up links (Figs. 4a and 3a).

To reveal the responses of bottom-up and top-down controls to
phosphate concentration and warming, we use S-map models analo-
gous to those used to predict connectance and interaction strength.
S-map models predict that most lakes display a high prevalence and
strength of top-down controls, relative to bottom-up, under low or
intermediate water temperatures. At the same time, the effects of
phosphorus depend on the specific lake (Supplementary Figs. 4 and 5).
Models generally predict that under high water temperatures and
high phosphatelevels, plankton networksin lakes are bottom-up con-
trolled (Supplementary Fig. 5). Taking Lake Zurich as an example,
an increase in nutrient levels under the current climatic conditions
would lead to plankton networks being strongly bottom-up controlled.
Although combined warming and nutrient levels have system-specific
and idiosyncratic shifts in bottom-up and top-down controls™**
(Supplementary Fig. 4), our results suggest that under warming con-
ditions, resourcesincreasingly control consumers in planktonic food
webs, and this could occur particularly when phosphorus levels are
high. Moreover, S-map models display higher uncertainty for predict-
ingthedirection of trophic controls when phosphorusis high, reducing
our ability to forecast future ecosystem states (Supplementary Fig. 5).

So far, our results have shown how community-level responses—
conceptualized by an ecological network—vary with temperature and
phosphate concentration. To better understand the mechanisms lead-
ing to the observed network reorganization, we examine how different
interactiontypes and guilds contribute to the temporal changes in con-
nectance, interaction strength and trophic controls. We obtain, across
all lakes, the frequency and average strength of trophic, non-trophic
and hybrid links, the last of which canbe both trophic and non-trophic
depending on the conditions (for example, mixotrophic flagellates that
change nutrition mode, or network associations involving large zoo-
planktonthatboth prey onand compete with microzooplanktonsuchas
rotifersandciliates). The temporal dynamics show that hybrid links are
significantly more common in the causal network than non-trophicand
trophiclinks (+-4.5% realized links; Fig. 5a and Supplementary Fig. 7).
Non-trophic links were strongest on average in all lakes, while hybrid
links were weakest (Fig. 5b and Supplementary Fig. 7). These results,
showingthat hybrid links account for the most connections while dis-
playing weak interactions, support the hypothesis that intermediate
consumers and generalists are important indicators of key structural
changes in ecological networks?, underlying ecosystem stability'".

By shifting our focus from interactions to the constituent
nodes, we find that trophic controls are dominated, both in terms
of realized links and interaction strengths, by small grazers (that is,
rotifers, ciliates and mixotrophic flagellates; guilds Ro, Ci and Mi,
respectively) and colonial cyanobacteria (Cy; Extended Data Fig. 5),
and these guilds are broadly connected in the network (Extended
Data Fig. 6). The abundances of ciliates and cyanobacteria are also
strongly influenced by long-term changes in temperature (Extended
DataFig. 6). These findings agree with previous knowledge of small
grazers being more resilient to environmental change due to their
plastic nutrition strategies and foraging behaviour. As a central regula-
tor of plankton food webs***¢, they influence community structure®
and food-web dynamics?, and it would be essential to include them
in future monitoring programmes. Colonial, bloom-forming (and
often toxic) cyanobacteria, which are an important issue for water
quality, are, as expected, strongly driven by changes in phosphate
levels and temperature”, but also broadly connected in the network,
suggesting pervasive effects of this guild on plankton taxainteractions
(Extended DataFig. 6).
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Our results provide much-needed information about how lake
plankton interaction networks, paramount for the functioning of
aquatic ecosystems, respond to climate change and nutrient pollu-
tion. We show that, while a reduction in phosphorus levels in most
lakes increases network connectance, lake warming overall leads
to a decrease in connectance and interaction strength (Fig. 3). We
acknowledge that changesin the abundance or behaviour ofimportant
keystone taxa like fish or bivalves could have influenced the observed
network dynamics. While we are missing continuous, reliable and
unbiased estimates for both guilds in our study lakes, our approach
carries information on all the interacting taxa and abiotic drivers in
the system, sampled or not*®. Estimates of network properties are
robust to the inclusion/exclusion of network nodes (Supplementary
Fig. 8). Moreover, our data show that the warming experienced by
many lakes in this dataset, particularly in the past decade, has shifted
network properties and trophic controls to anarea of parameter space
where slight increasesintemperature or phosphoruslevels cantrigger
dramatic changes in the network (Figs. 2 and 4, and Supplementary
Fig. 5). Given the stakes for biodiversity and water security, it is cur-
rently urgent to forecast future lake ecosystem states, to allow con-
servation and management by exploring outcomes under different
climate scenarios. While the tools used here will enable researchers
and stakeholders to measure and predict the complex relationships
between network properties, climate change and nutrient supply, our
detected trendsin decreasing network connectance may have implica-
tions for the accuracy of future ecological forecasting*.
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Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41558-023-01615-6.
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Methods

Data collection

Plankton abundance time series. Plankton samples were collected
between1977 and 2020 monthly across ten Swiss lakes (Fig.1and Sup-
plementary Table 1). Lake code names are as follows: BAL, Baldegg;
BIE, Biel; BRZ, Brienz; GRE, Greifen; HAL, Hallwil; MUR, Murten;
NEU, Neuenburg; SEM, Sempach; THU, Thun; and ZHR, Zurich. Inlakes
Baldegg and Sempach, data from 2010 onwards were excluded from
analyses due to irregular plankton sampling after phosphate levels
stabilized (that is, bi- or tri-monthly). Samples in all lakes have been
collected atidentical locations over the years and counted by the same
taxonomists for each lake.

Phytoplankton and smallzooplankton grazers (thatis, rotifers and
ciliates) were sampled integrated over the water column in the photo-
synthetic zone using a Schroder sampler*® or at discrete depths, where
thelowest depth varied across lakes (Supplementary Table1). Sampling
depthchangedinBRZ from 0-20 mto 0-40 min2012,in BIEfrom 0-10 m
to0-15min1999 and to 0-20 min2012,in MUR from 0-10 mto 0-15m
in2012,in NEU from 0-20 mto 0-40 min2012,andin THU from 0-20 m
to 0-40 min2012. Taxa abundances were converted to cells per litre to
compareacross lakes. In Lake Zurich, the sampling method was changed
in2012 fromdiscrete depthsampling (0,1,2.5,5,7.5,10,12.5,15,20, 30, 40,
60,80,100,120,130,135 m) tointegrated sampling (<20 m,20-40 mand
>40 m of the water column). To compare discrete with integrated sam-
ples, wemultiplied each discrete sample by aconversion factor (obtained
fromayear of sampling where both methods were used simultaneously
and biomass estimates between samplings were comparable) and aggre-
gated themtomatchthe correspondingintegrated samples, forexample,
multiplied discrete samples within 0-20 mby their corresponding factor
and summed them up to match the integrated samples of <20 m. Lake
Biel, Baldegg, Murten, Neuenburg, Thun and Zurich sampling did not
consider small grazers (ciliates and rotifers).

Large zooplankton was sampled using net-tows going from the
bottom of the lake to the surface. Specific details about the lake sam-
pling protocols can be found elsewhere”*°. Zooplankton densities were
converted to individuals per square metre to compare across lakes. A
fulltaxonomic list of species considered within this study canbe found
in an open-access data repository linked to this article (https://doi.
org/10.25678/0007VX). Plankton abundance data were winsorized,
where values lying outside the 99% quantile were replaced by the high-
est values within the 99% quantile using the function Winsorize from
the R package DescTools (v.0.99.43). This was done to reduce the power
oflarge outliers without deleting data, because small typos canlead to
large outliersin plankton counts. The maintrendsin connectance and
interactionstrength were robust to winsorizing (Supplementary Fig. 9).

Water temperature and nutrient availability as environmental
drivers. Chemical and physical parameters were measured monthly
(occasionally bi- or tri-monthly) in the same locations where plankton
samples were collected. Samples were taken from the surface to the
lake’s bottom at discrete depths. We focused on two main drivers of
anthropogenic change in Swiss lakes, water temperature and freely
available dissolved phosphate (PO,)***. We used mean water tempera-
ture and phosphate concentration over the whole water column. Miss-
ing values were estimated using linear interpolation with na_approx
from the R package zoo (v.1.8-9). The approximated values ranged
betweenland 268 (Supplementary Table1). After re-oligotrophication,
PO, levels remained constant and often below the detection limit in
lakes Biel, Brienz, Hallwil, Murten, Neuchatel and Thun. Sampling for
nutrientsinthose lakes was changed to bi- or tri-monthly early, result-
ingin120-268 approximated values.

Conceptual planktonic network
Tounderstand processes at the network level and control for potential
biasesintaxaclassificationacross lakes and over time, we aggregated

plankton taxa abundances into a conceptual network based on taxo-
nomic classification, body size and feeding behaviour*. This allowed
us to overcome the limitations of a monitoring frequency lower than
the generation time of the organisms, and account for the intrinsic
variability of speciesinteractions while reducing the potential effects
of taxonomic misclassification®. The dynamics of trophic guilds occur
atthescale of months, as opposed to the dynamics of taxa, which occur
at the scale of days, and thus well represent seasonal and interannual
network transitions®>*¢,

Our conceptual network consisted of up to15nodes (guilds) across
three trophiclevels of the food web, containing large invertebrate pre-
dators, omnivores, large herbivore grazers, small grazers, mixotrophs
and primary producers. In lakes Biel, Brienz, Murten, Neuenburg,
Thun and Zurich, we only had 13 guilds because of missing counts
for rotifers and ciliates. We conducted a sensitivity analysis where we
excluded rotifers (Ro) and ciliates (Ci) from Lake Baldegg, Greifen,
Hallwil and Sempach data. Connectance and interaction strength were
similar with and without rotifers and ciliates (Supplementary Fig. 8).
Because we could not differentiate between calanoid and cyclopoid
nauplii nor their juvenile stage, and thus had insufficient information
ontheir feeding behaviour, nauplii were excluded fromour study. Small
single-cell cyanobacteria were excluded as well, as most taxaare below
the size-detection limits of traditional microscopy.

The relationships (links) between nodes can be trophic (classic
predator-prey relationship), non-trophic (that is, mutualisms and
competition) or hybrid, where guilds can have trophic or non-trophic
relationships (that is, mixotrophic flagellates; Fig. 1c). All links are
bi-directional (in both directions), which means trophic and hybrid
links can go up the network (bottom-up), that is, from a primary pro-
ducerto agrazer, as well as down the network (top-down), that is, from
agrazertoaprimary producer (Fig. 1c).

Data analysis

Chaos and nonlinear dynamics are ubiquitous in plankton communi-
ties, making linear statistical approaches unfit to study long-term
changesintheir network properties®. In particular, nonlinear dynamics
canobscure correlations between variables, making causal links unde-
tectable with classical statistical methods. Equation-free approaches,
such as EDM, which can recover dynamics from empirical data, over-
come this limitation and offer a promising non-parametric way to
study nonlinear systems (see http://tinyurl.com/EDM-intro for abrief
video introduction). EDM, which is rooted in state-space reconstruc-
tion, can be used to determine the number of dimensions required
to describe a system (best embedding)**°, quantify the nonlinearity
of time series® ™, forecast future system states>>°°"®?, infer causal-
ity between two variables®* and quantify how relationships (inter-
actions) between variables change with changing system state'. A
morein-depth description of EDM canbe found inthe Supplementary
Methods (extended). We expanded the classical EDM framework by
adding a temporal component to CCM (studying local correlations
among observations and predictions within a moving window)** and
using the predictive skill rho (corrected for seasonality) as a proxy for
how strongly anetwork node is affected and/or affects another node.
Moreover, we used S-maps to explore the interactive effects of water
temperature and nutrient levels on network properties”.

Reconstructing a time-varying causal network using CCM

CCM s a ‘nonlinear causality test’ that estimates the extent to which
changes in one variable affect changes in another by measuring
cross-prediction (as explained herewith). Consider two variables, V1
(for example, phytoplankton) and V2 (for example, large herbivores
or temperature). We want to know whether and how strongly V1is
impacted by V2; thatis, V1 < V2. Thisis determined by measuring how
much V2 has impacted the dynamics (time series) of VI-how much
informationabout V2 hasbeenimprinted in the time series of V1. This
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information allows one to use V1to estimate the states of the driver V2,
aprocess known as cross-mapping between variables. The stronger
the signature (causal impact in the affected variable), the better the
cross-map estimate. To do thisin the R package rEDM, we would call V1
xmap V2, where again the direction of effect we are testing is V1 « V2.
Note that the time series require added placeholders for missing values
to ensure having evenly spaced monthly data. As the time series used
are on different scales (for example, temperature measurements and
abundance data), we rescale them using the function scale in the R
package base (v.4.1.0).

Embedding dimension. We use simplex from the R package rEDM
(v.0.7.5) to define the best embedding dimension for V1 using simplex
projection (Supplementary Information). The embedding dimen-
sionwas runover F=2:15. Time lag and prediction horizon were set to
1 month. The number of nearest neighbours used to make predic-
tions are set to £ + 1. Forecasting was done using leave-one-out
cross-validation and the best embedding was selected based on
maximizing the forecasting skill rho (Supplementary Table 3).

Convergence test. We tested the convergence of V1 xmap V2 by com-
paring the predictive power of using 20% and 50% of the data, respec-
tively. This was done with 100 consecutive random subsets of the time
series. The ideal embedding dimension was defined for V1 based on
forecasting with simplex projection (see above and Supplementary
Table 3), while the time lag tp was kept at 0. CCM was run with the
function ccm from the R package rEDM (v.0.7.5). Convergence was
considered true if rhosyy, > rho,g, for the 100 subsets, determined by a
one-sided t-test (95% quantile).

Local cross-mapping-skill (rho). If the convergence test was sig-
nificant, we performed CCM between V1 and V2 this time using the
maximum library (whole time series) and tp = -1. Using the predictions
fromthe CCM output, we calculated local rhos, that s, the correlation
between observationof V2 and predictions of V2 (using V1's attractor)
within moving windows (n = 60 months, sliding 1 month forward at a
time). This resulted in a time series of rhos (forecast skills).

Seasonal surrogates. The local rhos (rhog..irs) Were then compared
withrhosfrom100 random seasonal surrogate time series (rhog,rogers)
for each time window (time point¢,). We considered thelink V1 < V2 at
time point ¢, as significant if 95% of the times rho,iginairs > rhOgyrrogaters-
If the link was significant, we estimate the strength of V1 <« V2 at ¢, by
removing the seasonal component from the local rhoign,irs, that s,
rhOriginairs — Mean(rhog, ogaers), the average local rho of the 100 surro-
gate time series. Negative rhos were always set to O.

Network links. To calculate network connectance, we summed all
causal links (passed the surrogate test) per lake and date (month) and
divided them by the total possible links for this network (based on
the conceptual networkin Fig. 1c and convergence test). We obtained
connectance (%), the number of connected nodes, for this time point
and atime series of connectance per lake (Fig. 2a).

Taxa interaction strength. We calculate the mean strength of links
across nodes per date and lake. This resulted in average link strength
for this time point and a time series of average link strength per lake
(Fig.2b). Taxainteraction strength over time and across lakes (Extended
DataFig. 6) was calculated by estimating the average strength of each
link and multiplying it by its prevalence over time (per lake), that is,
corrected the strength for how oftenit occurredinthe time series, and
then averaged across lakes.

Environment effect on guilds. To get at the strength of water tem-
perature and phosphate effects over time on each guild’s abundance

(Extended DataFig. 6), we calculated the local cross-mapping-skill rho
and compared it with a value obtained by a seasonal null model. We
averaged the strength of water temperature and phosphate effects
for each node and multiplied by its prevalence over time, and then
averaged across lakes (analogous to calculating interaction strengths
between guilds over time across lakes).

Feedback between temperature and nutrients. To test for a causal
relationship (feedback) between water temperature and phosphate
concentration (Extended DataFig.2), we used CCM on the whole time
series and performed a convergence test (n=100) and seasonal sur-
rogate test (n =100). If both the convergence test (rhosoy, > rho,)
and seasonal surrogate test (>95% of times rhoiginairs > ThOgyrrogatets)
passed, we considered an effect as significant (lake displayed as points
inExtended DataFig.2). Toget arobust estimation of the effect’s mag-
nitude (that s, filter out single episodic events and diminish the power
of outliers), we multiplied the strength of the effect at each time point
byits prevalence over time (per lake), that is, we corrected the strength
of the causal effect by how often a significant effect occurred in the
time series. The resulting value was plotted on the y axis in Extended
DataFig. 2.

Trophic controls. We summed up all causal links going up (bottom-up)
and down (top-down) the food web (that is, trophic and hybrid links)
per time point and lake, and divided them by all the total possible
bottom-up or top-down links for this network (Fig. 1c). Moreover, we
averaged the strength of all significant bottom-up and top-down links
per time point and lake. Then we calculated the difference between
realized top-down and bottom-up links (that is, top-down connectance
-bottom-up connectance) and top-down and bottom-up strength (that
is, top-down link strength —bottom-up link strength). Thisresulted in
atimeseries of changesin trophic controls over time, whereas avalue
>0 indicated top-down and <0 bottom-up control (Fig. 4a,b). If there
were no significant bottom-up and/or top-down links at a given time
point, connectance was set to 0 and strength to NA (unknown).

Interaction types. We summed up all trophic, non-trophic and hybrid
links (according to Fig. 1c) per time point and lake, and divided them
by all total possible links per interaction type. Then we averaged con-
nectance andinteraction strength for trophic, non-trophic and hybrid
links per time point across lakes. This resulted in a time series of con-
nectance (%) and strength of trophic, non-trophic and hybrid links
(Supplementary Fig. 7). We compared connectance (%) and strength
of interaction types using a Wilcoxon test, a non-parametric method
for testing if samples originate from the same distribution (Fig. 5).

Scenario exploration using multivariate S-maps

We used multivariate S-maps to model network properties and extract
their relationship with phosphate levels and water temperature. S-maps
compute aunique locally weighted linear regression to make aforecast
at each point in time when closer points on the attractor are given a
higher weight. The strength of weighting is controlled by the parameter
theta and indicates the degree of nonlinearity and state dependency.
Eachregression provides aset of coefficients that define relationships
(dynamics) betweenvariables at each unique state. These coefficients
were used to estimate (predict) each network property at varying levels
of temperature and phosphate (Figs. 2 and 4¢,d, and Supplementary
Figs. 4 and 5). To account for important differences in the morphom-
etry of lakes, which influence these ecosystems’ responses to changes
in nutrient inputs and warming, we included depth at the sampling
site and lake total water volume in the S-map models®. Confidence in
the predictions can be influenced by the parameter space covered by
the lake time series, for example, less confidence in the predictions
for combinations of high water temperature and phosphate levels
(Supplementary Fig.10).
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We ran the S-map models using rEDM (v.0.7.5) and the function
block_Inlp for100 random subsets, using 50% of the dataand averaged
(mean) the predictions. The variance was calculated by estimating the
standard deviation among the 100 predictions. Environmental drivers
were smoothed within 60-month moving windows to match the tem-
poral scale of modelled network properties. We chose 100 values for
temperature and phosphate levels (each), ranging from the minimum
to the maximum values observed across all lakes. This resulted inagrid
0f10,000 model predictions (Figs.2 and 4c,d, and Supplementary Figs.
4 and 5). Methods within the function were set to ‘s-map’and the exclu-
sionradiusto12to avoid the high temporal autocorrelation caused by
the moving windows. Theta was selected to maximize predictive skill
rhowhenvaried overalist of values (0, 0.0001,0.0003, 0.001, 0.003,
0.01,0.03,0.1,0.3,0.5,0.75,1.0,1.5,2,3,4,6 and 8) and tp set to O.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Anoverview of the taxonomic list and guild classification and the guild
abundances for each lake (Supplementary Fig. 1), including environ-
mental drivers, canbe foundin an open-access datarepository linked
to this article (https://doi.org/10.25678/0007VX)®.

Code availability

The R code to reproduce the analysis and figures is available in an
open-access data repository linked to this article (https://doi.org/
10.25678/0007VX)®. Current software versions of EDM tools are avail-
ableinPythonat https://pepy.tech/project/pyEDM andin R on CRAN.
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Extended Data Fig.1| Methods summary. [a] We used zoo- and phytoplankton
abundance data (at the genus or species level) from 10 Swiss lakes in the
peri-alpine region, along with environmental data (phosphate concentration
and water temperature). [b] Phyto- and zooplankton abundance data were
sorted into a conceptual network, representative for planktonic ecosystems
intemperate lakes. [c] We used a non-parametric approach called empirical
dynamic modeling (EDM), in particular, anon-linear causality test referred to as
convergent cross mapping (CCM), [d] to estimate changes in network properties
(number of realized links and strength of those links) over time (within a

Moving time windows
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60-month moving window). [e] To study how network properties respond to
warming and re-oligotrophication, we modeled the time series of network
properties with S-maps (also part of the EDM framework) using temperature
(T), phosphate concentration (P) and a lake’s depth (L) and volume (L,). These
models predict network properties over a gradient of phosphate (x-axis) and
water temperature (y-axis), ranging from the minimum to the maximum values
observed across all lakes. This allowed us to explore the non-additive effect of
water temperature and phosphate availability on network properties.
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Extended Data Fig. 2| Water temperature influences phosphate levels but 75th percentiles) across all lakes; while black bars represent the median (50th
notvice versa. The magnitude of the effect was calculated by multiplying the percentile). The upper whisker (max) extends from the hinge to the largest
predictive skill (rho) by the prevalence of the focal causal link over time and was value no further than 1.5 the distance between the first and third quartile. The
corrected for seasonality (Methods). Diamonds represent averages over time lower whisker (min) extends from the hinge to the smallest value at most1.5the
within lakes (only lakes with significant effects are displayed.); boxes’ lower and distance between the first and third quartile of the hinge. Databeyond the end of
upper hinges (bounds) correspond to the first and third quantiles (the 25th and the whiskers are outliers.
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Extended Data Fig. 3| Time series of plankton guilds (nodes in the network)
inLake Zurich. Abundances of He-Pr are in indv./m2 while Ro-Mi and Cy-Cr2 are
inindv./L.He-Prhasbeen collected over the whole water column, whereas Ro-Mi
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and Cy-Cr2 were sampled in the photosynthetic zone (Supplementary Table S1).
Lake ZHR did not consider small grazers (Ro, Ci) during the sampling. Other lakes
aredisplayed in Supplementary Fig. S1.
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controlled (predators control prey), and negative values mean the lake is mostly while black bars represent the median.
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Extended Data Fig. 5| Relative contribution of plankton guilds to bottom-

up and top-down network connectance (%) and strength. The direction
of controls across lakes, where positive values mean the system is mostly
top-down controlled (predators control prey), and negative values mean the
lake is mostly bottom-up controlled (predators are controlled by their prey).
Diamonds represent averages over time within lakes; boxes’ lower and upper
hinges (bounds) correspond to the first and third quantiles (the 25th and

Top-down

Pr

Ro

75th percentiles) across all lakes; while black bars represent the median (50th
percentile). The upper whisker (max) extends from the hinge to the largest

value no further than 1.5 the distance between the first and third quartile. The
lower whisker (min) extends from the hinge to the smallest value at most 1.5 the
distance between the first and third quartile of the hinge. Databeyond the end of
the whiskers are outliers.
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Study description We study how climate change (rise in water temperature) and nutrient fluctuations (decrease in phosphate levels) interact to affect
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Research sample zo0o- and phytoplankton abundances

Sampling strategy Samples were taken with a Schroder sampler (phytoplankton, small zooplankton) and net-tows (zooplankton). Two very well
established methods for plankton sampling.

Data collection Samples in all lakes have been collected at identical locations over the years and were counted by the same group of taxonomists.
Phytoplankton and small zooplankton grazers (i.e., rotifers and ciliates) were sampled integrated over the water column using a
Schréder sampler or at discrete depths, where the lowest depth varied across lakes. Taxa abundances were converted to cells/L to
compare across lakes. In Zurichsee, the sampling method was changed in 2012 from discrete depth sampling (0, 1, 2.5, 5, 7.5, 10,
12.5, 15, 20, 30, 40, 60, 80, 100, 120, 130, 135 m) to integrated sampling (<20 m, 20-40 m and >40 m of the water column). To
compare discrete with integrated samples, we multiplied each discrete sample by a conversion factor and aggregated them to match
the corresponding integrated samples, e.g. multiplied discrete samples within 0 to 20 m by their corresponding factor and summed
them up to match the integrated samples of < 20 m. Large zooplankton was sampled using net-tows going from the bottom of the
lake to the surface. Details about the lake sampling protocols can be found elsewhere. Densities were converted to individuals/m2 to
compare across lakes. Chemical and physical parameters were measured monthly (occasionally bi-monthly) in the same locations
where plankton samples were collected. Samples were done from the surface to the lake’s bottom at discrete depths. We focused on
two main drivers of anthropogenic change in Swiss lakes, water temperature and freely available dissolved phosphate (PO4)

Timing and spatial scale  Plankton samples were collected between 1977 and 2020 monthly (occasionally bi-monthly) across 10 Swiss lakes

Data exclusions If guilds (= network nodes) do not meet a 50% abundance criteria, i.e., present (values greater than 0) at least half of the time during
the studied period, they were excluded from the analysis. All nodes were always present, so none of the guilds had to be excluded.

Reproducibility no experiment was done
Randomization no experiment was done
Blinding no experiment was done

Did the study involve field work? [ Yes [Ino

Field work, collection and transport

Field conditions
Location
Access & import/export

Disturbance

field conditions varied
sampling was done in the middle of the lake, close to it's deepest part
access by motorboat

no major disturbance was caused by the study
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals no laboratory animals were used
Wild animals plankton samples fixed in ethanol and/or lugol for identification purposes
Field-collected samples  no field collected samples were used in experiments

Ethics oversight no ethical approval or guidance was required

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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