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Disruption of ecological networks in lakes by 
climate change and nutrient fluctuations

Ewa Merz    1  , Erik Saberski2, Luis J. Gilarranz    1, Peter D. F. Isles    3, 
George Sugihara2, Christine Berger4 & Francesco Pomati    1

Climate change interacts with local processes to threaten biodiversity by 
disrupting the complex network of ecological interactions. While changes in 
network interactions drastically affect ecosystems, how ecological networks 
respond to climate change, in particular warming and nutrient supply 
fluctuations, is largely unknown. Here, using an equation-free modelling 
approach on monthly plankton community data in ten Swiss lakes, we show 
that the number and strength of plankton community interactions fluctuate 
and respond nonlinearly to water temperature and phosphorus. While 
lakes show system-specific responses, warming generally reduces network 
interactions, particularly under high phosphate levels. This network 
reorganization shifts trophic control of food webs, leading to consumers 
being controlled by resources. Small grazers and cyanobacteria emerge 
as sensitive indicators of changes in plankton networks. By exposing the 
outcomes of a complex interplay between environmental drivers, our 
results provide tools for studying and advancing our understanding of how 
climate change impacts entire ecological communities.

Human impacts, such as climate change and pollution, are reorganizing 
entire ecosystems by affecting the nature and strength of ecological 
interactions and, thereby, the composition of natural communities1–4. 
Ecological interactions between species are the engine of community 
dynamics and ecosystem processes, although they remain perhaps 
the most overlooked component of biodiversity change5,6. Studying 
the structure and dynamics of interactions in a community, which can 
be conceptualized as information networks, has proved to be funda-
mental to understand how global change alters ecosystem structure 
and function7. Although it is known that human activities affect eco-
logical networks, researchers and stakeholders urgently need tools to 
understand and predict the contemporary and non-additive effects 
of different stressors2,8–10. The warming experienced by many lakes, 
particularly in the past decade, has put ecological networks in a situ-
ation where slight increases in nutrient levels can trigger dramatic 
ecosystem changes11–13.

Changes in network properties can portend the possibility of 
rapid shifts in community structure and increase species extinction 

risks12–15. Networks vary over space and time in the number of interac-
tions between taxa (that is, addition or loss of connections) or the 
strength of interactions (for example, rerouting of biomass flows 
through existing connections)2,16. Network connectance and the 
strength of species interactions—particularly in trophic networks—
are structural properties that can signal large-scale changes in the 
whole ecosystem, with potential implications for ecosystem stability 
(in the sense of Lyapunov stability of equilibria) and the maintenance 
of biodiversity2,16,17.

Knowledge about how entire interaction networks reorganize as 
a consequence of global change is, however, limited owing to many 
challenges, including the scarcity of long-term, well-curated time 
series of complete ecological networks18, which, when available, are 
often characterized by complex nonlinear interactions and require 
specific inference methods19,20. Most research also focuses on only one 
type of interaction (for example, trophic, mutualistic or competitive). 
Until recently, ecological theory and practice have often assumed that 
interactions are fixed and constant over time19,21. Moreover, it has been 
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five lakes cover more extensively the process of re-oligotrophication, 
and eight the period of net warming (Methods). This is a long-term and 
consistent historical series of an entire ecological network along with 
measurements of abiotic environmental variables, which is very rare in 
ecology. Thus, these data provide a timely opportunity to investigate 
network-wide consequences of climate change and nutrient fluctua-
tions in natural lake ecosystems.

We first analyse the data collected from the ten Swiss lakes for 
the phosphate levels and temperature trends. Dissolved inorganic 
phosphorus (phosphate) is the main limiting factor for phytoplankton 
growth in temperate lakes and the principal driver of eutrophication24. 
Temperature is a fundamental driver of metabolic responses in plank-
ton, influencing competitive and trophic dynamics and, consequently, 
how biomass is partitioned and distributed within an ecosystem11,25. 
Starting in the 1970s, the lakes considered in this study underwent man-
aged re-oligotrophication to control the release of phosphorus into 
the ecosystems (Fig. 1b). At the same time, the average water-column 
temperature has steadily increased since the 1950s26.

Warming can also indirectly affect nutrient supply in deep and 
temperate lakes such as the ones studied here through changes in 

difficult to assess how the properties of ecological networks respond 
to interacting environmental stressors. This is because of the limited 
available empirical data on large-scale ecosystems and the need for 
quantitative data-analytic methods to address complex relationships 
that vary with system state. Previous work on ecological networks, 
mostly theoretical and based on many assumptions, offers only par-
tial expectations of how natural ecosystems may respond to multiple 
anthropogenic stressors in reorganizing taxa interactions22,23.

Here, we address these gaps by studying the effects of two major 
anthropogenic stressors on plankton networks: warming and nutrient 
pollution12,24. Specifically, we examined re-oligotrophication, referring 
to the process of controlled phosphorus reduction to revert lakes to 
their original state before anthropogenic nutrient pollution. We meas-
ure the temporal changes in connectance and interaction strengths at 
three levels: (1) the whole network; (2) top-down and bottom-up links 
that control food-web dynamics; and (3) different interaction types. To 
understand the interdependent effects of warming and oligotrophica-
tion on plankton networks, we examined 20–43 years of well-curated 
monthly plankton community data across ten peri-alpine Swiss lakes 
(Fig. 1a, Supplementary Table 1 and Extended Data Fig. 1a). Data from 
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Fig. 1 | Environmental change in ten Swiss lakes over the past five decades 
and its implications for plankton networks. a, Study sites belong to the 
same geographic region. Size and distance are to scale. b, Monthly phosphate 
concentrations (PO4) and water temperature averaged over the water column. 
Colours represent single lakes; black line is a smoothing average across lakes; 
dashed vertical lines indicate periods in the lakes’ histories (end of  
re-oligotrophication—circa year 2000, and increase in net lake warming—circa 
2010). c, Conceptual model of a plankton network in temperate lakes. s, small 

single cell; l, large single cell; c, colonial (Methods). Non-trophic links encompass 
facilitation and competition. Trophic links represent predator–prey interactions. 
Hybrid links can be both trophic and non-trophic; for example, mixotrophic 
protists can prey on and/or compete with other phytoplankton species. Hybrid 
and trophic links go from the bottom to the top of the food web, that is, from a 
primary producer to a grazer (bottom-up, BU) or from top to bottom, that is, 
from a grazer to a primary producer (top-down, TD).
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stratification25,27. A temperature rise reduces turbulence and deep 
mixing, decreasing the resuspension of phosphorus from the deep 
and nutrient-rich waters26,28,29. From 2010 to 2020, the average 
water-column temperature in the studied lakes rose by 0.4 °C to 1.7 °C 

(Fig. 1b and Supplementary Table 1), similar to the increase observed 
over the previous 60 years (1950–2010)26,30. To analyse the relation-
ship between phosphate levels and water temperature in our datasets, 
we use a nonlinear causality test (convergent cross-mapping, CCM) 
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Fig. 2 | Connectance and interaction strength between nodes of plankton 
networks are dynamic over space and time, and exhibit nonlinear 
relationships with water temperature and phosphorus. a,b, Connectance 
(percent realized links, a; Fig. 1c) and average strength between realized links 
(b); time series are based in the centre of a moving window of 60 months used 
for causality detection via CCM. c–f, S-map models’ inferred interactions 
between average water-column phosphate and temperature on realized network 
properties. c, Example three-dimensional plot depicting the interactive effects 
of water temperature and phosphate on all lakes, which emerge from predicting 
network properties (z axis) over varying levels of the chosen pair of explanatory 

variables while keeping lake depth and volume constant (Methods). d, Colour-
coded contour plots of predicted strength of network links in Lake ZHR. Dots 
represent the start/end of the re-oligotrophication and net-warming periods; 
trajectories show the direction of time, with an arrowhead pointing to the end of 
each period. The displayed years are the middle point of a five-year time window. 
Dashed lines show 95% ranges of empirical input values of temperature and 
phosphate. e, Colour-coded contour plots of predicted network connectance in 
Lake ZHR; lines and dots as in d. f, Standard deviation of predicted connectance, 
estimated over 100 model predictions using 50% of the data.
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from the empirical dynamic modelling (EDM) framework (Methods). 
From this, we find that water-column temperature causally influences 
changes in phosphate levels (a negative effect is expected25,28,29), but 
not vice versa (Extended Data Fig. 2). This unidirectional relationship 
suggests that warming, by regulating phosphate availability, may 
have a more pervasive influence on plankton networks than would be 
expected by the effects of water temperature alone.

To study ecological networks, which are expected to be affected 
by warming3,31, we group the plankton species present in the lakes into 
well-known trophic guilds32,46 based on species’ body size, nutrition 
requirements and foraging behaviour (Extended Data Fig. 1b). The 
resulting conceptual network consists of up to 15 nodes (Fig. 1c and 
Methods) comprising the following: invertebrate predators, omni-
vores, large and small herbivores, mixotrophic flagellates, and primary 
producers. Guilds of primary producers (phytoplankton) represent the 
base of aquatic food webs and, worldwide, they account for roughly 
half of the global primary production33. When possible, we divided 
each of their guilds into two nodes based on cell size and coloniality 
(Fig. 1c). Each node in the network contains a time series of monthly 
abundances that records how guilds wax and wane over time, while 
the number of nodes per lake remains constant (Extended Data Fig. 3, 
and Supplementary Figs. 1 and 2). These time series contain essential 
information about how guilds influence each other and themselves 
(that is, dynamic links). We consider direct (for example, predator–
prey) and indirect links (for example, competition for resources) as  
taxa interactions.

To employ this established network for studying how interactions 
change as a function of system state (as reasonably expected from 
nonlinear systems19,34), we use CCM to identify causal associations 
between network nodes and quantify their strength (that is, cross-map 
accuracy; Extended Data Fig. 1c)34. CCM quantifies how changes in 
one time series (the driven variable, predictor) can predict changes in 
another (the causal driver, predictee, that is, how much information 
about the driver is contained in the driven variable). To obtain the 
causal relationships between guilds, we minimize the intra-annual 
signal of the environmental drivers. Interactions are corrected for 
seasonality by assuming no interaction when the interaction strength 
given by CCM is lower than that of a seasonal surrogate null model35,36 
(Methods). By measuring cross-map accuracy (Pearson’s correlation 
between predictions and observations—rho) in a 60-month moving 
window, we track how causal associations between network nodes and 
their strength vary in each lake network. Thus, within each window, we 
measure the following: (1) connectance as the percentage of significant 
associations between nodes (causal links), C = 100 × (L/N(N−1)), where 
L is the number of interactions between nodes and N is the number 
of nodes in the system; and (2) interaction strengths among causal 
links (cross-map accuracy; Extended Data Fig. 1d). The window size 
was chosen to encompass more than a year and avoid strong seasonal 
signals, while not being too long to miss key trends30. The main trends 
in connectance and interaction strength reported below are robust to 
the choice of window size (Supplementary Fig. 3).

At the network level, connectance and average interaction 
strengths vary over time in each lake (Fig. 2a,b). The observed time 
series shows how network connectance increases significantly in two 
out of five lakes during re-oligotrophication (for example, +4.2% in Lake 
Zurich, Spearman’s rank correlation R = 0.35, P < 0.001; Figs. 2c and 3b, 
and Methods). Connectance decreases significantly in six out of eight 
lakes when warming accelerates (for example, 14.8.% in Lake Zurich, 
R = −0.78, P < 0.001; Figs. 2a and 3a). Those trends agree with recent 
evidence from natural freshwater systems3 that warming reduces the 
connectance of ecological networks. The average interaction strength 
among plankton guilds is less variable over time than network con-
nectance and exhibits lake-specific trends during re-oligotrophication 
and warming (Figs. 2b and 3). The observed trends in connectance 
and interaction strength emerge from the interdependent effects of 

re-oligotrophication and warming (for example, Extended Data Fig. 2), 
and can depend on other internal lake factors; they therefore cannot 
be studied based on correlation alone.

To study the interdependent relationship between network prop-
erties and environmental factors, we model the effects of contrasting 
gradients of decreasing phosphorus and lake warming on the network 
structure in all the lakes in our dataset (Fig. 1b and Extended Data  
Fig. 1e). Using S-maps to account for time-varying relationships  
(Methods), we model network properties as a function of the interaction 
between temperature, phosphate, and the lake’s depth and volume24,25. 
These models allow us to disentangle the effect of warming, usually 
convolved with re-oligotrophication, across all lakes, while consider-
ing lake morphometric differences and idiosyncrasies (Fig. 2c). The  
different lakes can be used as independent case studies as they belong 
to the same geographic and climatic region, went through a similar  
history of re-oligotrophication and warming, and share the same 
plankton species pool. Moreover, within the observed temperature 
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Fig. 3 | Lake warming leads to a generalized decrease in network connectance 
and interaction strength. a,b, Spearman’s rank correlation between network 
properties and time, during the two focal periods of lakes’ history. To study 
correlations during warming (a), we used data points from 2000 up to the 
present (BIE, BRZ, GRE, HAL, MUR, NEU, THU and ZHR), while data from before 
the year 2000 (lakes BAL, GRE, HAL, SEM and ZHR) were used to study lake  
re-oligotrophication (b).
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and phosphate levels ranges, we can now make predictions for pre-
viously unobserved temperature and phosphate level combina-
tions across lakes. We averaged predictions over 100 models using 
50% of the data to get an uncertainty estimation around model  
predictions (Fig. 2f).

We found that network connectance and interaction strength show 
highly nonlinear and lake-specific responses to changes in phosphate 
concentration and water temperature (Fig. 2c, Supplementary Table 2  
and Supplementary Fig. 4). For most lakes, S-map models predict 
maximum connectance and interaction strength at intermediate water 
temperature and phosphorus (Supplementary Figs. 4 and 5). Raising 
water temperature is predicted to negatively affect connectance and 
interaction strength in most lakes, while increasing phosphorus levels 
result in lake-specific responses, which are strongly dependent on tem-
perature (Supplementary Figs. 4 and 5). Our models also show higher 
uncertainty in predicting network properties for the combination of 
high temperature and phosphorus (Supplementary Fig. 5). As an illus-
trative example of these ecosystem responses, we display and discuss 
the predictions for Lake Zurich (Fig. 2d–f; see other lakes in Supple-
mentary Fig. 5). In our dataset, Lake Zurich represents a median-sized, 
well-studied ecosystem and is economically important for fisheries 
and drinking water supply37. Moreover, this lake has the most consist-
ent record (longest time series), encompassing re-oligotrophication 
and warming.

In Lake Zurich, the S-map models predict high connectance at 
medium water temperature and low phosphate levels, and low con-
nectance at high temperature and medium phosphate levels (Fig. 2e). 
The historical trajectories indicate that Lake Zurich is now, after being 
warmed, in a state in which a slight increase in nutrients could drasti-
cally reduce network connectance. A further reduction in nutrients 
could highly promote connectance and increase interaction strength 
(Fig. 2d,e). This is expected because a reduction in nutrient levels can 
increase competition for resources and thus lead to stronger interac-
tions38,39. For a given number of taxa, many strong interactions can 
negatively affect Lyapunov ecosystem stability, similar to a decrease 
in network connectance16,17. In a warming world, an ecosystem like Lake 
Zurich is now in a situation where a slight change in nutrient levels 
could have dramatic consequences for the whole network and thus 
ecosystem stability.

We next examined the directionality of trophic control. By using 
CCM, we calculate the relative frequency of causal effects descend-
ing (top-down links, for example, predator controls prey abundance) 
and ascending (bottom-up links, for example, prey controls predator 
abundance) through the network (Methods). It is known that warming 
can alter the metabolic rates of producers and consumers differently, 
influencing the strength of trophic interactions and the direction of 
trophic controls (for example, consumers controlling the population 
of their resource or vice versa), especially under reduced nutrient 
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levels3,11,40. Experimental evidence suggests that warming strongly 
impacts aquatic food-web interactions by reducing trophic transfer 
efficiency40–42, and may also affect trophic controls in lakes, particularly 
when co-occurring with changes in nutrient availability4,27,43. If warming 
shifts control to bottom-up, where resources control consumers, the 
system dynamics become sensitive to nutrient inputs11,44. If top-down 
forces control a system, managing the lake’s productivity would require 
food-web manipulations (for example, stocking of piscivorous fish)45.

We find that top-down causal links are more frequent than 
bottom-up links in nine out of ten lakes (Fig. 4a and Extended Data 
Fig. 4), although, in half of the lakes, the bottom-up links are stronger 
on average (Fig. 4b and Extended Data Fig. 4). Trophic controls can 
covary, yet they may not do so with the same magnitude, and the dif-
ference between their number and strength fluctuates (Supplementary 

Fig. 6 and Fig. 4 a,b). Bottom-up and top-down controls are expected 
to change over time and across environmental gradients4. We find that 
in three lakes, re-oligotrophication slightly increased the number of 
top-down links relative to bottom-up (Figs. 4a and 3d). Warming in 
lakes, however, generally decreased the number of top-down links 
relative to bottom-up links (Figs. 4a and 3a).

To reveal the responses of bottom-up and top-down controls to 
phosphate concentration and warming, we use S-map models analo-
gous to those used to predict connectance and interaction strength. 
S-map models predict that most lakes display a high prevalence and 
strength of top-down controls, relative to bottom-up, under low or 
intermediate water temperatures. At the same time, the effects of 
phosphorus depend on the specific lake (Supplementary Figs. 4 and 5).  
Models generally predict that under high water temperatures and 
high phosphate levels, plankton networks in lakes are bottom-up con-
trolled (Supplementary Fig. 5). Taking Lake Zurich as an example, 
an increase in nutrient levels under the current climatic conditions 
would lead to plankton networks being strongly bottom-up controlled. 
Although combined warming and nutrient levels have system-specific 
and idiosyncratic shifts in bottom-up and top-down controls11,44  
(Supplementary Fig. 4), our results suggest that under warming con-
ditions, resources increasingly control consumers in planktonic food 
webs, and this could occur particularly when phosphorus levels are 
high. Moreover, S-map models display higher uncertainty for predict-
ing the direction of trophic controls when phosphorus is high, reducing 
our ability to forecast future ecosystem states (Supplementary Fig. 5).

So far, our results have shown how community-level responses—
conceptualized by an ecological network—vary with temperature and 
phosphate concentration. To better understand the mechanisms lead-
ing to the observed network reorganization, we examine how different 
interaction types and guilds contribute to the temporal changes in con-
nectance, interaction strength and trophic controls. We obtain, across 
all lakes, the frequency and average strength of trophic, non-trophic 
and hybrid links, the last of which can be both trophic and non-trophic 
depending on the conditions (for example, mixotrophic flagellates that 
change nutrition mode, or network associations involving large zoo-
plankton that both prey on and compete with microzooplankton such as 
rotifers and ciliates). The temporal dynamics show that hybrid links are 
significantly more common in the causal network than non-trophic and 
trophic links (+~4.5% realized links; Fig. 5a and Supplementary Fig. 7).  
Non-trophic links were strongest on average in all lakes, while hybrid 
links were weakest (Fig. 5b and Supplementary Fig. 7). These results, 
showing that hybrid links account for the most connections while dis-
playing weak interactions, support the hypothesis that intermediate 
consumers and generalists are important indicators of key structural 
changes in ecological networks2, underlying ecosystem stability16,17.

By shifting our focus from interactions to the constituent 
nodes, we find that trophic controls are dominated, both in terms 
of realized links and interaction strengths, by small grazers (that is, 
rotifers, ciliates and mixotrophic flagellates; guilds Ro, Ci and Mi, 
respectively) and colonial cyanobacteria (Cy; Extended Data Fig. 5), 
and these guilds are broadly connected in the network (Extended 
Data Fig. 6). The abundances of ciliates and cyanobacteria are also 
strongly influenced by long-term changes in temperature (Extended 
Data Fig. 6). These findings agree with previous knowledge of small 
grazers being more resilient to environmental change due to their 
plastic nutrition strategies and foraging behaviour. As a central regula-
tor of plankton food webs32,46, they influence community structure25 
and food-web dynamics2, and it would be essential to include them 
in future monitoring programmes. Colonial, bloom-forming (and 
often toxic) cyanobacteria, which are an important issue for water 
quality, are, as expected, strongly driven by changes in phosphate 
levels and temperature47, but also broadly connected in the network, 
suggesting pervasive effects of this guild on plankton taxa interactions  
(Extended Data Fig. 6).
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Fig. 5 | Hybrid links are the most common, whereas non-trophic interactions 
are the strongest. a,b, Prevalence (a) and strength (b) of trophic, non-trophic 
and hybrid links. Diamonds represent averages over time within lakes; boxes’ 
lower and upper hinges (bounds) correspond to the first and third quantiles (the 
25th and 75th percentiles) across all lakes; and black bars represent the median 
(50th percentile). The upper whisker (maximum) extends from the hinge to 
the largest value no further than 1.5× the distance between the first and third 
quartile. The lower whisker (minimum) extends from the hinge to the smallest 
value at most 1.5× the distance between the first and third quartile of the hinge; 
data beyond the end of the whiskers are outliers. P-values are shown above the 
brackets and were calculated using pairwise comparisons and a Wilcoxon test 
(non-parametric).
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Our results provide much-needed information about how lake 
plankton interaction networks, paramount for the functioning of 
aquatic ecosystems, respond to climate change and nutrient pollu-
tion. We show that, while a reduction in phosphorus levels in most 
lakes increases network connectance, lake warming overall leads 
to a decrease in connectance and interaction strength (Fig. 3). We 
acknowledge that changes in the abundance or behaviour of important 
keystone taxa like fish or bivalves could have influenced the observed 
network dynamics. While we are missing continuous, reliable and 
unbiased estimates for both guilds in our study lakes, our approach 
carries information on all the interacting taxa and abiotic drivers in 
the system, sampled or not48. Estimates of network properties are 
robust to the inclusion/exclusion of network nodes (Supplementary 
Fig. 8). Moreover, our data show that the warming experienced by 
many lakes in this dataset, particularly in the past decade, has shifted 
network properties and trophic controls to an area of parameter space 
where slight increases in temperature or phosphorus levels can trigger 
dramatic changes in the network (Figs. 2 and 4, and Supplementary  
Fig. 5). Given the stakes for biodiversity and water security, it is cur-
rently urgent to forecast future lake ecosystem states, to allow con-
servation and management by exploring outcomes under different 
climate scenarios. While the tools used here will enable researchers 
and stakeholders to measure and predict the complex relationships 
between network properties, climate change and nutrient supply, our 
detected trends in decreasing network connectance may have implica-
tions for the accuracy of future ecological forecasting49.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Data collection
Plankton abundance time series. Plankton samples were collected 
between 1977 and 2020 monthly across ten Swiss lakes (Fig. 1 and Sup-
plementary Table 1). Lake code names are as follows: BAL, Baldegg; 
BIE, Biel; BRZ, Brienz; GRE, Greifen; HAL, Hallwil; MUR, Murten; 
NEU, Neuenburg; SEM, Sempach; THU, Thun; and ZHR, Zurich. In lakes 
Baldegg and Sempach, data from 2010 onwards were excluded from 
analyses due to irregular plankton sampling after phosphate levels 
stabilized (that is, bi- or tri-monthly). Samples in all lakes have been 
collected at identical locations over the years and counted by the same 
taxonomists for each lake.

Phytoplankton and small zooplankton grazers (that is, rotifers and 
ciliates) were sampled integrated over the water column in the photo-
synthetic zone using a Schröder sampler50 or at discrete depths, where 
the lowest depth varied across lakes (Supplementary Table 1). Sampling 
depth changed in BRZ from 0–20 m to 0–40 m in 2012, in BIE from 0–10 m 
to 0–15 m in 1999 and to 0–20 m in 2012, in MUR from 0–10 m to 0–15 m 
in 2012, in NEU from 0–20 m to 0–40 m in 2012, and in THU from 0–20 m 
to 0–40 m in 2012. Taxa abundances were converted to cells per litre to 
compare across lakes. In Lake Zurich, the sampling method was changed 
in 2012 from discrete depth sampling (0, 1, 2.5, 5, 7.5, 10, 12.5, 15, 20, 30, 40, 
60, 80, 100, 120, 130, 135 m) to integrated sampling (<20 m, 20–40 m and 
>40 m of the water column). To compare discrete with integrated sam-
ples, we multiplied each discrete sample by a conversion factor (obtained 
from a year of sampling where both methods were used simultaneously 
and biomass estimates between samplings were comparable) and aggre-
gated them to match the corresponding integrated samples, for example, 
multiplied discrete samples within 0–20 m by their corresponding factor 
and summed them up to match the integrated samples of <20 m. Lake 
Biel, Baldegg, Murten, Neuenburg, Thun and Zurich sampling did not 
consider small grazers (ciliates and rotifers).

Large zooplankton was sampled using net-tows going from the 
bottom of the lake to the surface. Specific details about the lake sam-
pling protocols can be found elsewhere25,30. Zooplankton densities were 
converted to individuals per square metre to compare across lakes. A 
full taxonomic list of species considered within this study can be found 
in an open-access data repository linked to this article (https://doi.
org/10.25678/0007VX). Plankton abundance data were winsorized, 
where values lying outside the 99% quantile were replaced by the high-
est values within the 99% quantile using the function Winsorize from 
the R package DescTools (v.0.99.43). This was done to reduce the power 
of large outliers without deleting data, because small typos can lead to 
large outliers in plankton counts. The main trends in connectance and 
interaction strength were robust to winsorizing (Supplementary Fig. 9).

Water temperature and nutrient availability as environmental 
drivers. Chemical and physical parameters were measured monthly 
(occasionally bi- or tri-monthly) in the same locations where plankton 
samples were collected. Samples were taken from the surface to the 
lake’s bottom at discrete depths. We focused on two main drivers of 
anthropogenic change in Swiss lakes, water temperature and freely 
available dissolved phosphate (PO4)51,52. We used mean water tempera-
ture and phosphate concentration over the whole water column. Miss-
ing values were estimated using linear interpolation with na_approx 
from the R package zoo (v.1.8-9). The approximated values ranged 
between 1 and 268 (Supplementary Table 1). After re-oligotrophication, 
PO4 levels remained constant and often below the detection limit in 
lakes Biel, Brienz, Hallwil, Murten, Neuchatel and Thun. Sampling for 
nutrients in those lakes was changed to bi- or tri-monthly early, result-
ing in 120–268 approximated values.

Conceptual planktonic network
To understand processes at the network level and control for potential 
biases in taxa classification across lakes and over time, we aggregated 

plankton taxa abundances into a conceptual network based on taxo-
nomic classification, body size and feeding behaviour46. This allowed 
us to overcome the limitations of a monitoring frequency lower than 
the generation time of the organisms, and account for the intrinsic 
variability of species interactions while reducing the potential effects 
of taxonomic misclassification53. The dynamics of trophic guilds occur 
at the scale of months, as opposed to the dynamics of taxa, which occur 
at the scale of days, and thus well represent seasonal and interannual 
network transitions32,46.

Our conceptual network consisted of up to 15 nodes (guilds) across 
three trophic levels of the food web, containing large invertebrate pre
dators, omnivores, large herbivore grazers, small grazers, mixotrophs 
and primary producers. In lakes Biel, Brienz, Murten, Neuenburg,  
Thun and Zurich, we only had 13 guilds because of missing counts  
for rotifers and ciliates. We conducted a sensitivity analysis where we 
excluded rotifers (Ro) and ciliates (Ci) from Lake Baldegg, Greifen, 
Hallwil and Sempach data. Connectance and interaction strength were 
similar with and without rotifers and ciliates (Supplementary Fig. 8). 
Because we could not differentiate between calanoid and cyclopoid 
nauplii nor their juvenile stage, and thus had insufficient information 
on their feeding behaviour, nauplii were excluded from our study. Small 
single-cell cyanobacteria were excluded as well, as most taxa are below 
the size-detection limits of traditional microscopy.

The relationships (links) between nodes can be trophic (classic 
predator–prey relationship), non-trophic (that is, mutualisms and 
competition) or hybrid, where guilds can have trophic or non-trophic 
relationships (that is, mixotrophic flagellates; Fig. 1c). All links are 
bi-directional (in both directions), which means trophic and hybrid 
links can go up the network (bottom-up), that is, from a primary pro-
ducer to a grazer, as well as down the network (top-down), that is, from 
a grazer to a primary producer (Fig. 1c).

Data analysis
Chaos and nonlinear dynamics are ubiquitous in plankton communi-
ties, making linear statistical approaches unfit to study long-term 
changes in their network properties54. In particular, nonlinear dynamics 
can obscure correlations between variables, making causal links unde-
tectable with classical statistical methods. Equation-free approaches, 
such as EDM, which can recover dynamics from empirical data, over-
come this limitation and offer a promising non-parametric way to 
study nonlinear systems (see http://tinyurl.com/EDM-intro for a brief 
video introduction). EDM, which is rooted in state-space reconstruc-
tion, can be used to determine the number of dimensions required 
to describe a system (best embedding)55,56, quantify the nonlinearity 
of time series57–59, forecast future system states55,60–62, infer causal-
ity between two variables34 and quantify how relationships (inter-
actions) between variables change with changing system state19. A 
more in-depth description of EDM can be found in the Supplementary 
Methods (extended). We expanded the classical EDM framework by 
adding a temporal component to CCM (studying local correlations 
among observations and predictions within a moving window)34 and 
using the predictive skill rho (corrected for seasonality) as a proxy for 
how strongly a network node is affected and/or affects another node. 
Moreover, we used S-maps to explore the interactive effects of water 
temperature and nutrient levels on network properties57.

Reconstructing a time-varying causal network using CCM
CCM is a ‘nonlinear causality test’ that estimates the extent to which 
changes in one variable affect changes in another by measuring 
cross-prediction (as explained herewith). Consider two variables, V1 
(for example, phytoplankton) and V2 (for example, large herbivores 
or temperature). We want to know whether and how strongly V1 is 
impacted by V2; that is, V1 ← V2. This is determined by measuring how 
much V2 has impacted the dynamics (time series) of V1—how much 
information about V2 has been imprinted in the time series of V1. This 
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information allows one to use V1 to estimate the states of the driver V2, 
a process known as cross-mapping between variables34. The stronger 
the signature (causal impact in the affected variable), the better the 
cross-map estimate. To do this in the R package rEDM, we would call V1 
xmap V2, where again the direction of effect we are testing is V1 ← V2. 
Note that the time series require added placeholders for missing values 
to ensure having evenly spaced monthly data. As the time series used 
are on different scales (for example, temperature measurements and 
abundance data), we rescale them using the function scale in the R 
package base (v.4.1.0).

Embedding dimension. We use simplex from the R package rEDM 
(v.0.7.5) to define the best embedding dimension for V1 using simplex 
projection (Supplementary Information). The embedding dimen-
sion was run over E = 2:15. Time lag and prediction horizon were set to  
1 month. The number of nearest neighbours used to make predic-
tions are set to E + 1. Forecasting was done using leave-one-out 
cross-validation and the best embedding was selected based on  
maximizing the forecasting skill rho (Supplementary Table 3).

Convergence test. We tested the convergence of V1 xmap V2 by com-
paring the predictive power of using 20% and 50% of the data, respec-
tively. This was done with 100 consecutive random subsets of the time 
series. The ideal embedding dimension was defined for V1 based on 
forecasting with simplex projection (see above and Supplementary 
Table 3), while the time lag tp was kept at 0. CCM was run with the 
function ccm from the R package rEDM (v.0.7.5). Convergence was 
considered true if rho50% > rho20% for the 100 subsets, determined by a 
one-sided t-test (95% quantile).

Local cross-mapping-skill (rho). If the convergence test was sig-
nificant, we performed CCM between V1 and V2 this time using the 
maximum library (whole time series) and tp = −1. Using the predictions 
from the CCM output, we calculated local rhos, that is, the correlation 
between observation of V2 and predictions of V2 (using V1’s attractor) 
within moving windows (n = 60 months, sliding 1 month forward at a 
time). This resulted in a time series of rhos (forecast skills).

Seasonal surrogates. The local rhos (rhooriginalTS) were then compared 
with rhos from 100 random seasonal surrogate time series (rhosurrogateTS) 
for each time window (time point tx). We considered the link V1 ← V2 at 
time point tx as significant if 95% of the times rhooriginalTS > rhosurrogateTS. 
If the link was significant, we estimate the strength of V1 ← V2 at tx by 
removing the seasonal component from the local rhooriginalTS, that is, 
rhooriginalTS − mean(rhosurrogateTS), the average local rho of the 100 surro
gate time series. Negative rhos were always set to 0.

Network links. To calculate network connectance, we summed all 
causal links (passed the surrogate test) per lake and date (month) and 
divided them by the total possible links for this network (based on 
the conceptual network in Fig. 1c and convergence test). We obtained 
connectance (%), the number of connected nodes, for this time point 
and a time series of connectance per lake (Fig. 2a).

Taxa interaction strength. We calculate the mean strength of links 
across nodes per date and lake. This resulted in average link strength 
for this time point and a time series of average link strength per lake  
(Fig. 2b). Taxa interaction strength over time and across lakes (Extended 
Data Fig. 6) was calculated by estimating the average strength of each 
link and multiplying it by its prevalence over time (per lake), that is, 
corrected the strength for how often it occurred in the time series, and 
then averaged across lakes.

Environment effect on guilds. To get at the strength of water tem-
perature and phosphate effects over time on each guild’s abundance 

(Extended Data Fig. 6), we calculated the local cross-mapping-skill rho 
and compared it with a value obtained by a seasonal null model. We 
averaged the strength of water temperature and phosphate effects 
for each node and multiplied by its prevalence over time, and then 
averaged across lakes (analogous to calculating interaction strengths 
between guilds over time across lakes).

Feedback between temperature and nutrients. To test for a causal 
relationship (feedback) between water temperature and phosphate 
concentration (Extended Data Fig. 2), we used CCM on the whole time 
series and performed a convergence test (n = 100) and seasonal sur-
rogate test (n = 100). If both the convergence test (rho50% > rho20%) 
and seasonal surrogate test (>95% of times rhooriginalTS > rhosurrogateTS) 
passed, we considered an effect as significant (lake displayed as points 
in Extended Data Fig. 2). To get a robust estimation of the effect’s mag-
nitude (that is, filter out single episodic events and diminish the power 
of outliers), we multiplied the strength of the effect at each time point 
by its prevalence over time (per lake), that is, we corrected the strength 
of the causal effect by how often a significant effect occurred in the 
time series. The resulting value was plotted on the y axis in Extended 
Data Fig. 2.

Trophic controls. We summed up all causal links going up (bottom-up) 
and down (top-down) the food web (that is, trophic and hybrid links) 
per time point and lake, and divided them by all the total possible 
bottom-up or top-down links for this network (Fig. 1c). Moreover, we 
averaged the strength of all significant bottom-up and top-down links 
per time point and lake. Then we calculated the difference between 
realized top-down and bottom-up links (that is, top-down connectance 
− bottom-up connectance) and top-down and bottom-up strength (that 
is, top-down link strength − bottom-up link strength). This resulted in 
a time series of changes in trophic controls over time, whereas a value 
>0 indicated top-down and <0 bottom-up control (Fig. 4a,b). If there 
were no significant bottom-up and/or top-down links at a given time 
point, connectance was set to 0 and strength to NA (unknown).

Interaction types. We summed up all trophic, non-trophic and hybrid 
links (according to Fig. 1c) per time point and lake, and divided them 
by all total possible links per interaction type. Then we averaged con-
nectance and interaction strength for trophic, non-trophic and hybrid 
links per time point across lakes. This resulted in a time series of con-
nectance (%) and strength of trophic, non-trophic and hybrid links 
(Supplementary Fig. 7). We compared connectance (%) and strength 
of interaction types using a Wilcoxon test, a non-parametric method 
for testing if samples originate from the same distribution (Fig. 5).

Scenario exploration using multivariate S-maps
We used multivariate S-maps to model network properties and extract 
their relationship with phosphate levels and water temperature. S-maps 
compute a unique locally weighted linear regression to make a forecast 
at each point in time when closer points on the attractor are given a 
higher weight. The strength of weighting is controlled by the parameter 
theta and indicates the degree of nonlinearity and state dependency. 
Each regression provides a set of coefficients that define relationships 
(dynamics) between variables at each unique state. These coefficients 
were used to estimate (predict) each network property at varying levels 
of temperature and phosphate (Figs. 2 and 4c,d, and Supplementary 
Figs. 4 and 5). To account for important differences in the morphom-
etry of lakes, which influence these ecosystems’ responses to changes 
in nutrient inputs and warming, we included depth at the sampling 
site and lake total water volume in the S-map models25. Confidence in 
the predictions can be influenced by the parameter space covered by 
the lake time series, for example, less confidence in the predictions 
for combinations of high water temperature and phosphate levels  
(Supplementary Fig. 10).
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We ran the S-map models using rEDM (v.0.7.5) and the function 
block_lnlp for 100 random subsets, using 50% of the data and averaged 
(mean) the predictions. The variance was calculated by estimating the 
standard deviation among the 100 predictions. Environmental drivers 
were smoothed within 60-month moving windows to match the tem-
poral scale of modelled network properties. We chose 100 values for 
temperature and phosphate levels (each), ranging from the minimum 
to the maximum values observed across all lakes. This resulted in a grid 
of 10,000 model predictions (Figs. 2 and 4c,d, and Supplementary Figs. 
4 and 5). Methods within the function were set to ‘s-map’ and the exclu-
sion radius to 12 to avoid the high temporal autocorrelation caused by 
the moving windows. Theta was selected to maximize predictive skill 
rho when varied over a list of values (0, 0.0001, 0.0003, 0.001, 0.003, 
0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1.0, 1.5, 2, 3, 4, 6 and 8) and tp set to 0.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
An overview of the taxonomic list and guild classification and the guild 
abundances for each lake (Supplementary Fig. 1), including environ-
mental drivers, can be found in an open-access data repository linked 
to this article (https://doi.org/10.25678/0007VX)63.

Code availability
The R code to reproduce the analysis and figures is available in an 
open-access data repository linked to this article (https://doi.org/ 
10.25678/0007VX)63. Current software versions of EDM tools are avail-
able in Python at https://pepy.tech/project/pyEDM and in R on CRAN.
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Extended Data Fig. 1 | Methods summary. [a] We used zoo- and phytoplankton 
abundance data (at the genus or species level) from 10 Swiss lakes in the 
peri-alpine region, along with environmental data (phosphate concentration 
and water temperature). [b] Phyto- and zooplankton abundance data were 
sorted into a conceptual network, representative for planktonic ecosystems 
in temperate lakes. [c] We used a non-parametric approach called empirical 
dynamic modeling (EDM), in particular, a non-linear causality test referred to as 
convergent cross mapping (CCM), [d] to estimate changes in network properties 
(number of realized links and strength of those links) over time (within a 

60-month moving window). [e] To study how network properties respond to 
warming and re-oligotrophication, we modeled the time series of network 
properties with S-maps (also part of the EDM framework) using temperature 
(T), phosphate concentration (P) and a lake’s depth (LD) and volume (Lv). These 
models predict network properties over a gradient of phosphate (x-axis) and 
water temperature (y-axis), ranging from the minimum to the maximum values 
observed across all lakes. This allowed us to explore the non-additive effect of 
water temperature and phosphate availability on network properties.
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Extended Data Fig. 2 | Water temperature influences phosphate levels but 
not vice versa. The magnitude of the effect was calculated by multiplying the 
predictive skill (rho) by the prevalence of the focal causal link over time and was 
corrected for seasonality (Methods). Diamonds represent averages over time 
within lakes (only lakes with significant effects are displayed.); boxes’ lower and 
upper hinges (bounds) correspond to the first and third quantiles (the 25th and 

75th percentiles) across all lakes; while black bars represent the median (50th 
percentile). The upper whisker (max) extends from the hinge to the largest 
value no further than 1.5 the distance between the first and third quartile. The 
lower whisker (min) extends from the hinge to the smallest value at most 1.5 the 
distance between the first and third quartile of the hinge. Data beyond the end of 
the whiskers are outliers.
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Extended Data Fig. 3 | Time series of plankton guilds (nodes in the network) 
in Lake Zurich. Abundances of He-Pr are in indv./m2 while Ro-Mi and Cy-Cr2 are 
in indv./L. He-Pr has been collected over the whole water column, whereas Ro-Mi 

and Cy-Cr2 were sampled in the photosynthetic zone (Supplementary Table S1). 
Lake ZHR did not consider small grazers (Ro, Ci) during the sampling. Other lakes 
are displayed in Supplementary Fig. S1.
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Extended Data Fig. 4 | Trophic controls across lakes. The direction of controls 
across lakes, where positive values mean the system is mostly top-down 
controlled (predators control prey), and negative values mean the lake is mostly 
bottom-up controlled (predators are controlled by their prey). Points represent 

averages over time within lakes; boxes’ lower and upper hinges correspond to the 
first and third quantiles (the 25th and 75th percentiles) across all lakes;  
while black bars represent the median.
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of controls across lakes, where positive values mean the system is mostly 
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lake is mostly bottom-up controlled (predators are controlled by their prey). 
Diamonds represent averages over time within lakes; boxes’ lower and upper 
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75th percentiles) across all lakes; while black bars represent the median (50th 
percentile). The upper whisker (max) extends from the hinge to the largest 
value no further than 1.5 the distance between the first and third quartile. The 
lower whisker (min) extends from the hinge to the smallest value at most 1.5 the 
distance between the first and third quartile of the hinge. Data beyond the end of 
the whiskers are outliers.
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Extended Data Fig. 6 | Interaction matrix between plankton guilds: ciliates 
are the most strongly connected guilds in the network. Interaction strengths 
were calculated by multiplying the average strength (rho, corrected for 
seasonality) by its prevalence (that is if a link were significant within 50% of time 
windows, prevalence would be 0.5). The direction of the interaction is Variable 

2 → Variable 1. Ave. is the average interaction strength for each guild. T is water 
temperature and P is phosphate levels. White tiles are interactions not occurring 
based on the conceptual network (Fig. 1c) and grey tiles are interactions that were 
not significant in none of the lakes based on a convergence test in CCM.
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