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Abstract—DNA short read alignment task has become a
major sequential bottleneck to humongous amounts of data
generated by next-generation sequencing platforms. In this paper,
an energy-efficient and high-throughput Processing-in-Memory
(PIM) accelerator based on DRAM (named Aligner-D) is pre-
sented to execute DNA short-read alignment with the state-of-the-
art BWT alignment algorithm. We first present the PIM design
that utilizes DRAM’s internal high parallelism and throughput.
It converts each DRAM array to a potent processing unit for
alignment tasks. The proposed Aligner-D can efficiently execute
the bulk bit-wise XNOR-based matching operation required by
the alignment task with only 3-transistor/col overhead. We then
introduce a highly parallel and customized read alignment
algorithm based on BWT that supports both exact and inexact
match tasks. Next, we present how to map the correlated data
of the alignment task to utilize the parallelism from both new
hardware and algorithm maximumly. The experimental results
demonstrate that Aligner-D obtains ~4x, ~2.45x, ~3.26x, and
~1.65x improvement, respectively, compared with other in-
memory computing platforms: Ambit (Seshadri et al., 2017),
DRISA-1T1C (Li et al., 2017), DRISA-3T1C (Li et al., 2017),
and ReDRAM (Angizi and Fan, 2019). As for DNA short read
alignment, Aligner-D boosts the alignment throughput per Watt
by ~20104 x, ~3522x, ~927x, ~88x, ~5.28 x, and ~2.34x, over
ReCAM, CPU, GPU, FPGA, Ambit, and DRISA, respectively.

Index Terms—DNA short read alignment, processing-in-
memory, DRAM, accelerator.

I. INTRODUCTION
HE novel DNA sequencing method, on top of the recent
high-throughput genomic technologies, is able to analyze
the accurate order of nucleotides (nf) along genomes and
measure cells’ molecular activities. Such advances improve
diagnostics of disease and different aspects of medical care,
such as prenatal testing and tailoring patient treatment [3], [4].
In general, the generated sequence data of one patient sample
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is composed of tens of millions of short DNA sequences (short
reads) ranging from 50-500 nucleotide-nt in length with no
position information. Thus, it is required to determine what
part of the chromosome/genome they are from before most
genomic analyses can start. This is achieved by aligning the
short reads to the reference genome. The reference genome
contains two paired twisting strands where each strand consists
of roughly 3.2 billion nt bases (A, T, C, G) in human
specifically paired as A-T and C-G [5], [6]. As a result,
for a single sample, the DNA short read alignment task is
to map the reads (tens of millions) to a reference genome
(3.2 billion base pair-bp) allowing 1-2 mismatches on each
short read. Various alignment algorithms have been developed
during the last decade. However, even the efficient algorithms
such as Bowtie [7] or BWA [8] based on Burrows-Wheeler
Transformation (BWT) seek hours or even days to align the
short reads generated by one run (Terabytes of DNA sequence
data) from DNA sequencing machine. Therefore, the genomic
information achieved from DNA sequencing data cannot be
applied for prognosis or disease diagnosis in clinics and
hospitals.

Today’s sequencing acceleration solutions including CPU,
GPU [9], ASIC [4], [10], [11], and FPGA [12] are mostly
based on the Von-Neumann architecture that unavoidably
consumes a large amount of energy in data movement due
to the so-called “memory wall” challenge, as it has sepa-
rate memory and processing components connecting through
buses. The data movement between memory and processor
consumes even more energy than the computation itself in
such data-intensive applications [13]. Meanwhile, Processing-
in-Memory (PIM) architecture has been actively investi-
gated for different data-intensive applications [1], [2], [14]
as a potential way to overcome the “memory wall” chal-
lenge. The main idea of PIM is to incorporate logic com-
putation within memory units such that memory is able
to process data internally. Such platforms are expected to
provide inherent parallel processing mechanisms exploiting
large internal memory bandwidth. PIM architecture could
be implemented with either non-volatile or volatile memo-
ries. Non-volatile memories(NVMs) are usually implemented
as Vector-Matrix Multiplication(VMM) engine through ana-
log computing [13], [14], [15], [16]. There are also attempts
to use NVMs to realize the logic computation [17], [18].
But these works need a lot of writing to NVMs, which
conflicts with NVM’s limited endurance and high writ-
ing energy properties [13], [19], [20]. In the meanwhile,
the processing-in-SRAM platforms have been developed in
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recent literature [21], [22] due to SRAM’s mature process
and universal application. Considering the larger memory
capacities of DRAM and off-chip data movement reduc-
tion as opposed to SRAM-based PIM, processing-in-DRAM
platforms [1], [2], [3], [23], [24], [25], [26]) have also gained
a lot of attention. Therefore, with significantly higher memory
capacity and throughput in performing bulk bit-wise operations
by either changing the sub-array’s sense amplifier and/or
DRAM cell, the processing-in-DRAM platform is becoming
a promising accelerator for different data-intensive applica-
tions. For example, Ambit [1] presents a triple-row activa-
tion technique to carry out a majority-based AND/OR logic,
excelling NVIDIA GeForce GPU, and even HMC [27], respec-
tively by 32.0x, and 2.4x. For accelerating convolutional
neural networks, DRISA [2] presents two alternative 3T1C-
and 1T1C-based PIM techniques and improves speedup and
energy-efficiency by 7.7x and 15x against GPUs. Neverthe-
less, when it comes to XNOR- and addition-based tasks, such
as data encryption and DNA alignment, there exist multiple
challenges that make these platforms inefficient acceleration
solutions. This comes from the intrinsic logic complexity of
XNOR2 operation. i.e., the Ambit, DRISA-3T1C, and DRISA-
ITIC need 7, 4, 2 cycles to complete the XNOR2 oper-
ation, respectively, with a significant area/power overhead.
Therefore, the existing processing-in-DRAM platforms are
not able to offer a high-throughput XNOR-based operation
despite leveraging the memory level parallelism and maximum
internal bandwidth.

To tackle the memory bandwidth bottleneck and address
the existing challenges, in this work, we present an
energy-efficient and high throughput processing-in-DRAM
accelerator, named Aligner-D. Aligner-D uses a novel
processing-in-memory circuit that only needs three transistors
to execute bulk bit-wise XNOR2 operations between one
stored operand from the memory array and one feed input.
With no change in the sense amplifier circuit and DRAM
cell, this new technique is designed on top of the tradi-
tional DRAM. The XNOR2 operation is realized efficiently
on every vertical memory bit-line. In addition, such a design
addresses the multi-cycle operations of the prior methods
discussed earlier and the reliability concerns regarding the
bit-line voltage deviation. We assess and compare Aligner-
D’s performance with different computing systems includ-
ing Core-i7 Intel CPU [28], NVIDIA GTX 1080Ti Pascal
GPU [29], HMC 2.0 [27], Ambit [1], DRISA [2], etc.,
to perform bit-wise tasks. We observe that Aligner-D achieves
a considerably higher throughput as opposed to Von-Neumann
computing systems, CPU/GPU. Besides, Aligner-D outper-
forms other PIMs in performing XNOR-based operations by
~4x, ~2.45x%, ~3.26x, and ~1.65x, respectively, compared
with Ambit [1], DRISA-1TIC [2], DRISA-3T1C [2], and
ReDRAM [3]. From the energy consumption perspective,
Aligner-D reduces the DRAM energy by ~ 23%, 16%,
33.8%, and 22.7%, respectively, compared with Ambit [1],
DRISA-1TIC [2], DRISA-3T1C [2], and ReDRAM [3] and
~51x compared to data transfer via the DDR4 interface.
We further assess Aligner-D’s efficacy by executing a new
DNA alignment algorithm to accelerate intensive matching
and addition operations in both exact and inexact matches.
We observe that Aligner-D increases the read alignment

throughput per Watt by ~3522x, ~927x, ~88x, ~5.28x,
and ~2.34x, over CPU, GPU, FPGA, Ambit, and DRISA,
respectively. The main contributions of this work are listed as
follows:

e We propose an energy-efficient, high-throughput, and
XNOR-friendly PIM architecture Aligner-D with a set of
new circuit-level and microarchitectural methods to imple-
ment a data-parallel computational core for data-intensive
applications;

e We investigate the optimization of an FM-index-based
DNA short sequence alignment algorithm with BWT to fully
leverage Aligner-D’s parallelism and boost alignment task
speed. We develop a new data partitioning and mapping
technique for locally handling the indices supporting different
lengths of DNA reads;

e We extensively assess and compare Aligner-D’s perfor-
mance with current DNA short read alignment acceleration
solutions such as CPU, GPU, ASIC, FPGA, etc.

The remainder of the paper is presented as follows.
Section II discusses the state-of-the-art processing-in-DRAM
designs, BWT read mapping, and DRAM-based read mapping
challenges. Section III delineates our proposed accelerator
design, i.e., Aligner-D, and the supported in-memory opera-
tions with performance analysis. Section IV presents our cus-
tomized Aligner-D sequencing algorithm for exact and inexact
DNA matching. Section V shows the correlated hardware
mapping method and computation in Aligner-D. Section VI
gives the simulation results. Section VII proposes the potential
challenges and the future work. Finally, Section VIII concludes
this work.

II. BACKGROUND AND MOTIVATION
A. Processing-in-DRAM Designs

At the top architectural level, a DRAM hierarchy includes
channels, modules, and ranks. With a typically 64-bits wide
data bus, each memory rank consists of multiple memory
chips. The memory chips are designed with various con-
figurations and operate simultaneously [1], [30], [31]. The
memory chip is spilt into several memory banks. Each bank
is composed of 2D sub-arrays of memory bit-cells that are
virtually-ordered in memory matrices (mats). Banks located in
the same chip typically share buffer and I/O and banks located
in different chips work in a lock-step manner. As depicted in
Fig. la, the memory sub-array consists of 1) Memory rows
(normally 2° or 2!9) connected to DRAM cells, 2) A Sense
Amplifiers’ (SA) row, and 3) A memory Row Decoder (RD)
connected to the word-lines. Structurally, a DRAM cell is
composed of two modules, a storage module (capacitor) and
an access module (Access Transistor-AT) as shown in Fig. 1b.
The gate and drain of DRAM’s AT are connected to the Word-
line (WL) and Bit-line (BL), respectively. DRAM cell stores
the binary data by the charge of the capacitor. It encodes
a fully-charged (V,44) capacitor as logic ‘1’ and no-charge
capacitor as logic ‘0’.

1) Read/Write Operation: For read/write operation, both
BL and BL are initially pulled to % Technically, access-
ing data from a DRAM’s sub-array after the initial state is
accomplished with three commands [1], [32] by the memory
controller: 1) With the activation command (i.e. ACTIVATE),
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Fig. 1. (a) The organization of a DRAM sub-array, (b) DRAM cell structure
and Sense Amplifier.
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Fig. 2. (a) TRA mechanism in Ambit [1], (b) 3T1C mechanism in DRISA [2],
(c) 1T1C-logic mechanism in DRISA [2]. Glossary- D;/D ;: input rows data,
Dy initialized row data, D, result row data.

a target row is activated and stored row data is transferred
from the DRAM row cells to the SA row. Fig. 1b depicts
the connection between a cell and the SA via a BL. The
selected cell typically shares its charge value (0/V,,) with the
B L which slightly changes the initial BL’s voltage (% +4).
Then, the memory controller activates the enable signal that
makes the SA amplify the § towards the original value of the
data through voltage amplification leveraging the switching
threshold of SA’s inverter [32]. 2) By a WRITE/READ com-
mand, the data can be then moved to/from SA from/to DRAM
bus. It is noteworthy that several READ/WRITE commands can
be issued to one row. 3) With a PRECHARGE command, both
BL and BL precharge again to the initial state and get ready
for the next access cycle.

2) Initialization and Copy Operation: For a very fast in-
memory copy operation (< 100ns) within DRAM sub-arrays,
instead of ~ 1us copy operation in Von-Neumann computing
architecture, RowClone-Fast Parallel Mode (FPM) [33] offers
a new method that does not require sending the data to the
processing units. In this method, issuing two back-to-back
ACTIVATE commands (without PRECHARGE command in
between) to the source and destination rows can realize a 90ns
and multi-kilo byte in-memory copy operation. This technique
has been further exploited for row initialization to effectively
copy a preset DRAM row (‘1’ or ‘0’) to a single or multiple
destination row(s) incurring a 0.01% overhead to memory chip
area [33].

3) Other Logic Functions: To implement the logic opera-
tion in processing-in-DRAM architecture, the RowClone idea
was extended in the Ambit [1] to realize three-input majority-
based operations (Ma j3) in memory through simultaneously

issuing the ACTIVATE command to three rows with a
PRECHARGE command afterwards, named Triple Row Acti-
vation (TRA) mechanism. Ambit incurs just 1% area overhead
to DRAM chip [1]. Having one row as the control (Dg),
as illustrated in Fig. 2a, initialized by ‘0’/‘1°, TRA implements
in-memory AND2/OR2 based on Maj3 function via charge
sharing among connected DRAM cells (D, D; and Dj)
and writes the result back on D, cell. In addition, Ambit
employs the TRA method along with Dual-Contact Cell(DCC)
to implement the complementary operations. Nevertheless,
Ambit deals with multi-cycle PIM operations to realize other
logic functions like XOR2/XNOR2. [34] further extends the
idea of using charge sharing to realize the majority function
among the data connected in the same bit-line. Eventually,
the majority state ‘1°/°0” will pull up/down the bit-line volt-
age. By simply detecting the difference between BL and
BL, the SA can give the majority gate result without any
other additional computational circuit. With the help of the
Maj5 function, [34] also realizes the full adder in the same
memory sub-array. The DRISA-3T1C mechanism [2] alterna-
tively leverages the 3-transistor DRAM design [35]. As shown
in Fig. 2b, such cell design is composed of two separated
write/read ATs, and one additional transistor for decoupling the
capacitor from the read BL (r BL). This additional transistor
links the two input DRAM cells in a NOR style on the r BL to
perform the Boolean-complete NOR2 function. DRISA-3T1C
incurs a large area overhead and needs multi-cycle operations
to realize different logic functions. As depicted in Fig. 2c,
DRISA-1T1C mechanism [2] performs in-memory operations
via an upgraded SA consisting of a CMOS logic gate and a
latch. This mechanism performs in-memory operations in two
consecutive cycles: 1) reading out D; and storing it in the latch
as the first input of CMOS logic, and 2) reading out D; as the
second input to perform the computation. This method requires
excessive cycles to realize other logic functions and imposes a
minimum of 12 transistors to each SA. The Dracc [36] recently
designs a carry look-ahead adder by improving Ambit [1] to
accelerate convolutional neural networks.

B. BWT-Based DNA Short Read Alignment

Sequence alignment algorithms (e.g., BWA [8] and
Bowtie [7]) take all the advantages of BWT and index the
large reference genome S to implement the read alignment effi-
ciently. The BWT is a reversible rearrangement of a character
string. Exact alignment finds all occurrences of the short read
R (m bp) in the reference genome S (n bp). Fig. 3 shows an
intuitive example of the exact alignment of a sample read-R =
CTA to a sample reference S = TGCT A$ extracted from a
gene, in which $ denotes the end of a sequence. BW matrix
(constructed by lexicographically sorting the strings originated
from circulating string §) makes the Suffix Array (S4) of a
reference genome S a lexicographically-sorted array of the
suffixes of S, where each suffix is represented by its position
in S. In this way, the last column in the BW matrix is the
BWT of reference S, here, BWT(S) = ATGTCS$. The FM-
Index is then built on top of BWT providing the occurrence
information of each symbol in it. The S4 interval (low, high)
covers a range of indices where the suffixes share the same
prefix. A backward search of the matched positions in the
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Fig. 3. Short read alignment concept.

reference genome S is then executed for each short read-R
starting from the rightmost nucleotide (A in Fig. 3). The
matched lower bound (low) and upper bound (high) in a
S4 of the S for each nucleotide in R are determined based
on FM-Index and count function [8]. Thus, the S4 interval
can represent all the occurrences of the query string. At the
end of the search, if low < high, R has found a match in
S. Otherwise, it has failed to find a match. The complexity
of this alignment algorithm is linearly proportional to the
number of nucleotides in a read (O(m)) in contrast to dynamic
programming algorithms such as Smith-Waterman (SW) with
O(nm) complexity [37]. Backtracking can simply extend the
exact alignment algorithm to allow mismatches to support
inexact alignment. In this approach, the DNA short read is
permuted using edit operations (substitutions, insertions or
deletions) [6], [7], [38], [39], [40], [41].

C. DRAM-Based Computing Challenges and Our Solutions
Summary

In this work, we investigate the optimization of a fast
FM-index-based DNA short read alignment algorithm and
focus to leverage Aligner-D’s parallelism to accelerate it from
a hardware perspective, as fully discussed in the next sec-
tions. To achieve this goal, two primary in-memory functions
need to be designed and accelerated in the DRAM platform:
1) Matching based on XNOR2 logic and 2) Addition. In this
way, there are four main challenges that this work aims to
resolve:

e Limited throughput (Challenge-I): Offering an area-
efficient and high-throughput in-memory XNOR2 /addition
operation in PIM context is challenging due to the inherent
complexity of XNOR-based logic implementations as dis-
cussed in recent PIM platforms (DRISA [2], Ambit [1], and
Dracc [36]). Nevertheless, these platforms can utilize max-
imum memory-level parallelism and internal memory band-
width to implement NOT, (N)OR, (N)AND, and MAJ/MIN
functions. While the DRISA-1T1C mechanism is able to
realize XNORZ2, it still needs two consecutive cycles to handle
the in-memory operation which in turn hinders other logic
implementation’s efficiency. We address this challenge by
proposing the 3T XNOR and 12T full adder mechanism in
Section III-A.

o Row initialization (Challenge-II): Considering R=AopB
function (op € OR2/AND2), TRA mechanism [1], [32]
requires at least four consecutive cycles to compute the output
highly relying on the row initialization: 1-RowClone row
A to row D; (to avoid data-overwritten, first operand is
copied to a computation row), 2-RowClone row B to Dj,
3-RowClone ctrl row to Dy (initialized row is copied to a
computation row), 4-TRA and RowClone data of row D; to

R row (computation and writing-back the result). Therefore,
the TRA mechanism requires an average of 360ns to execute.
When it comes to XOR2 /XNOR2 operation, Ambit requires at
least three row-initialization steps to process two input rows.
Obviously, this row-initialization load could adversely impact
the PIM’s energy-efficiency, especially dealing with such big
data problems. This challenge is addressed in Section III-A
through the proposed 3T XNOR gate, which totally eliminates
the need for initialization in performing XNOR-based logics.

e Reliability concerns (Challenge-III): By simultaneously
activating 3 DRAM cells in the TRA mechanism, the voltage
deviation on the BL could be less than the normal read
operation. This will make the sense amplification stage longer
or even adversely affect the reliability of the operation [1],
[32]. For XNOR-based computations, the issue can even get
worse since multiple TRAs are required. To address this
challenge, we discard the charge-sharing scheme on the same
bit-line. Inspired by the DRISA-1T1C, we add the highly
optimized 3T XNOR logic circuit after the sense amplifier.
Thus, the DRAM cells’ operation is no different from the
normal read.

e Data partitioning (Challenge-IV): Due to the large
memory space requirement of the short read alignment algo-
rithm and non-localized computation [40], [42], even having
solutions to alleviate the hardware issues as mentioned above,
data partitioning will remain a challenge that must be over-
come. To address this challenge, we propose a customized
alignment-in-memory algorithm, discussed in Section IV, and
a new correlated data partitioning method in Section V.

III. ALIGNER-D DESIGN

In this section, we present Aligner-D as an efficient accel-
erator on top of typical DRAM architecture to execute the
DNA short read alignment task. The Aligner-D’s memory
organization is depicted in Fig. 4 based on the DRAM hier-
archy. Each memory matrix (mat) has multiple computational
memory sub-arrays linked to two shared modules i.e. a Global
Row Decoder (GRD) and a Row Buffer (GRB). The Aligner-
D’s Controller (Ctrl) is designed to manage the sub-arrays
for fully data-parallel in-sub-array operation based on the
input data. The row space of Aligner-D’s sub-array is split
into two distinct regions to support the alignment algorithm:
1- Ref rows that store the nucleotides (NTs) from the reference
genome sequence. 2- Marker rows that store the marker table
generated by the BWT. The details of such mapping will be
introduced in Section V. As shown in Fig. 4(E), the Aligner-
D’s sub-array is motivated by DRISA [2] where the computing
logic gates are following SA, but Aligner-D is enhanced and
optimized to perform both parallel XNOR-based matching and
addition with the novel 3T XNOR gate and the 12T full adder,
respectively, as discussed below.

A. Aligner-D Circuits

Our key objective here is to develop the peripheral circuits
to execute all the required computations in the alignment-in-
memory algorithm that will be introduced in the next section.
To achieve this goal, we propose the Aligner-D hardware,
as shown in Fig. 4, developed on top of the existing DRAM
circuitry with a minor area overhead. It mainly consists of
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a regular DRAM SA followed by add-on circuits including
3T XNOR and one 3T XNOR based 12T full adder. For the
target genome alignment task, both the necessary BW matrix
and sampled occurrence table are stored in the same sub-array
but at different rows. There are two primary operations during
the alignment-in-memory task: XNOR2 and addition. The
XNOR?2 is performed among reference nucleotides stored at
the local buffer and BW matrix from the sub-array. The
addition is performed between the XNOR2 result and
marker from sampled occurrence table. Parallel computing
comes from multi-bitlines. The rows are activated one by one.
When one row is activated, the XNOR2 is performed at every
bitline by our novel 3T XNOR gate, while the addition is
completed by our 3T XNOR gate based 12T adder.

B. 3T XNOR Logic Circuit

Traditional DRAM-based computing platform has a com-
plex mechanism to realize the bit-wise operation or/and has
a potential reliability issue due to the slight sense margin.
To overcome these shortages, we proposed the novel XNOR2
logic circuit with only three transistors for the essential bit-
wise operation of the genome alignment task. Inspired by the
area and power efficient gate diffusion input (GDI) design [43],
where the input may feed through the source or drain side
instead of the gate. As shown in Fig. 5, the GDI approach
allows the implementation of many complex logic functions
with only two transistors. However, some functions may not
deliver strong ‘1’ and ‘0’ to the Out terminal. For example, the
AND2 operation needs the source side of PMOS connected to
the ground. When A is ‘0’ and B is ‘1°, the Out is driven by
the ground at the P terminal through PMOS. Conventionally,
we use PMOS to deliver a strong ‘1’ and NMOS to deliver a
strong ‘0’. Using PMOS to deliver ‘0’ or NMOS to deliver ‘1’
will cause the output slightly higher than GND or lower than
VDD and lead to weak ‘1’ and ‘0’ signals. Especially, if we
combine such GDI gates together for more complex logic,
a such weak signal may propagate along the path and result
in malfunction. To avoid the above issue and minimize the
area/power overhead, we adopt the novel 3T XNOR design to
realize the matching operation. Unlike the GDI design where
input can come from either PMOS source, NMOS source,
or the gate. Our 3T XNOR design, as shown in Fig. 6(A),
connects the gate and source of NMOS. The input is associated
with the combined port. The source of PMOS is connected
with the power supply and the gate is connected with a bias
voltage source. When the Out is ‘0’, NMOS delivers the strong
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Fig. 5. Gate diffusion input(GDI) design.
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3T XNOR.

‘0’ to the output. When the Out is ‘1°, NMOS cannot provide
the strong ‘1’ to output. The bias PMOS hereby compensates
the output to the strong ‘1’. The circuit work condition can
be summarized as the following 3 cases:

eCase I: If only one of the inputs, A or B, is ‘1’ and another
is ‘0’, there is only one NMOS fully turned on and another
NMOS is turned off. The turned-on NMOS will pull down the
output to ‘0’.

eCase II: If both A and B inputs are ‘1’, both NMOS will
be turned on. Such NMOS will deliver the weak ‘1’ to the
Out terminal. With the help of the biased PMOS, the output
is compensated to a strong ‘1’.

eCase III: If both A and B inputs are ‘0’, both NMOS will
be turned off. The output terminal will be driven by the PMOS.

Fig. 6(B) shows the transient simulation waveform. Note
that the output delivers strong ‘1’ and ‘0’ in all different
combination inputs.

C. 12T Full Adder Circuit

Another important operation in the alignment-in-memory
algorithm is the addition. To implement it in Aligner-D,
we design a 12T full adder with two aforementioned 3T
XNOR gates and one 2-1 MUX. The corresponding Boolean
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Fig. 7. 12T Adder.
equation is given in Eq. 1.
SUM = A0 BOC,
Cour = (A(A@B))+(Cin(A®B)) (1)

Comparing with the traditional 34T full adder design [44],
the 12T full adder design saves ~65% area. Additionally,
in the genome alignment task, the matching operation is prior
to the addition. Thus the 3T XNOR for matching can be reused
as part of the addition circuit to save another ~10% area.
Simulation with NCSU 45nm PDK shows that the proposed
12T full adder only consumes 4.55uW power and the latency
is only 0.128ns when running at 800MHz with 1V supply
voltage. More importantly, the output is strong ‘1’ and ‘0’.
Thus avoid the reliability issue in those GDI-based full adder
designs.

In the alignment task, one of the XNOR2 operands is the
reference sequence which needs to be stored in the memory.
Another operand is a single nucleotide either ‘A’, ‘C’, ‘G’,
or ‘T’ from the short read. Unlike previous works that store
both operands into memory [1], [2], [3]. In this work, we only
store the reference sequence in the DRAM memory array. The
second operand is stored in the buffer and fed into the 3T
XNOR gate which is located after the SA. For the memory
array, during the operation, its only need to do the normal
read to get the reference genome sequence with the traditional
SA. Since there is no multiple-row activation, the charge on
BL is not shared with any other rows. The BL voltage is
just the same as the commercial DRAM product. Therefore,
the reliability of BL sensing is not a concern. Also, the
row initialization problem associated with the multiple row
activation does not exist in our design. For the normal read
operation, the data will be recovered after the sensing stage.
We don’t need to copy/clone the entire row to a dedicated row
for computing. The elimination of row initialization is helpful
to reduce the latency and the area overhead.

Finally, the 3T XNOR and 12T full adder design is more
energy and area efficient than the multiple row activation
designs. For a 128 cols array where marker is stored in
32-bit length integer, assuming other circuit are the same i.e.
counters, our proposed design overhead is only 3+(12-3)x32/
128 = 5 Transistors/col where the multiple row activation
scheme designs require 2(Computing rows) + 4(Extra SA) +
34 x 32/128(Adder) = 14.5 Transistors/col.

D. Performance

1) Throughput: We assess and compare the Aligner-D’s
throughput with conventional computing platforms such as a

[ cPU [ GPU [CTIHMC [ Proposed [ Ambit [T DRISA

I DRISA-3T1C [ ReDRAM -1T1C
4096 4096
@ 2048 2048
81024 1024
o 512 512
O 256 256
= 128 128
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@) Vector Size (MB) ()  “Vector size (MB)

Fig. 8.  Throughput results of (a) XNOR2 operation and (b) Addition
operation for various computing platforms corresponding to three vector sizes.

Core-i7 Intel CPU [28] and an NVIDIA 1080Ti GPU [29].
There is a great number of reconfigurable or application-
specific PIM platforms implemented in or close to the memory
die [6], [45], [46]. Due to the lack of space, our comparison is
limited to 5 new processing-in-DRAM accelerators, DRISA-
IT1C [2], DRISA-3T1C [2], Ambit [1], ReDRAM [3] and
HMC 2.0 [27], to run two main bulk bit-wise operations, i.e.,
XNOR2, and add, required for DNA short read alignment.
For an objective comparison, we simulate the platform’s
throughput with the same memory configuration of 8 banks
including 512 x 256 computational sub-arrays. The Inte]l CPU
platform with 4/8 cores/threads works with two 64-bit chan-
nels (DDR4-1866/2133). The GPU platform has 3584 CUDA
cores working at 1.5GHz [29] and 352-bit GDDR5X. The
HMC consists of 32 vaults each with 10 GB/s bandwidth.
We then run the two operations repeatedly for different length
vectors (227/228/2%). As shown in Fig. 8, the throughput
results of each platform is reported, separately.

Based on our observation 1) the external bandwidth of the
main memory restricts the throughput of the Von-Neumann
computing platforms, i.e., CPU and GPU. Besides, the internal
bandwidth limits the throughput of the HMC platform. In com-
parison, HMC achieves ~25x and 6.5x higher throughput
compared with the CPU and GPU, respectively, for different
bit-wise operations. On the other side, PIM architectures
unblock the bottleneck of data transfer and obtain a sig-
nificantly higher throughput compared with von-Neumann
computing systems. We can see that the proposed design
achieves on average 71x and 8.2x higher throughput respec-
tively compared with CPU and GPU. 2) For bulk bit-wise
XNOR2-based operations, Aligner-D easily outperforms other
platforms on average by 4x, 2.45x, 3.26x, and 1.65x,
respectively, compared with Ambit [1], DRISA-ITIC [2],
DRISA-3T1C [2], and ReDRAM [3]. As a result, the Aligner-
D’s mechanism can be a potential and alternative solution
to address Challenge-I by offering a high-throughput bit-wise
XNOR-based operation.

2) Energy Consumption: The energy consumption of the
processing-in-DRAM platforms and CPU! to run three bulk
bit-wise operations is estimated per Kilo-Byte. Fig. 9 depicts
the energy saving of Aligner-D and other platforms normalized
to the baseline CPU. For XNOR2 operation, Aligner-D reduces
the energy consumption by ~ 23%, 16%, 33.8%, and 22.7%,
respectively, compared with Ambit [1], DRISA-ITIC [2],
DRISA-3T1C [2], and ReDRAM [3]. We observe that for

IThe CPU data doesn’t consider the processor energy to perform the
operation.

Authorized licensed use limited to: ASU Library. Downloaded on June 06,2023 at 22:17:24 UTC from IEEE Xplore. Restrictions apply.



338 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 13, NO. 1, MARCH 2023

T 60
N
©> 50+
En -
2 % 40 + || I Ambit
>.C [ DRISA-1T1C
=gt J DRISA-3T1C
£9 30 |
g c(g I ReDRAM
3‘9 20+ || Proposed
=2
¢ 10r
1T}

0

XNOR

Addition

Fig. 9. Energy saving of various in-DRAM computing platforms normalized
to CPU baseline.

addition operation, the proposed design shows ~51x higher
energy saving over copying data via the DDR4 interface. How-
ever, the most energy-efficient in-DRAM platform, i.e., dual-
row ReDRAM shows ~33x energy-efficiency. The energy
consumption number per KB for all platforms is also reported
for the addition operation.

3) Area: We estimate Aligner-D and other PIM platforms’
footprint on top of the typical DRAM chip. Despite the
standard modules, i.e., the traditional SA, decoder, pre-charge
circuit, for a 256 x 128 sized DRAM sub-array, the Ambit
requires additional 24 transistors per BL for the DCC rows
and 24 transistors per BL for the second SA, that equivalent
to ~ 18.75% of the chip area. For each BL, the DRISA-3T1C
requires another 256 x 2 = 512 transistors for the 3T DRAM
cells and 12 transistors for the second SA like Ambit. The
overall area overhead is ~ 2.05 x of the traditional DRAM die.
The DRISA-1T1C demands eight transistors for the XNOR
gate, 16 transistors for a latch, and 12 transistors for the second
SA on every BL. The total area overhead is ~ 14.06%. The
ReDRAM needs 22 transistors per BL for modified SAs, and
two more transistors in the decoder buffer chain, equivalent to
~ 9.3% of the chip area. In contrast, as we analyzed above, our
Aligner-D only requires five transistors per BL. Only ~ 1.95%
area overhead makes it the most area-efficient design.

IV. ALIGNMENT-IN-MEMORY ALGORITHM

The DNA alignment-in-memory algorithm consists of two
stages: exact alignment and inexact alignment [6], [41], [47].
For most sequencing data, up to ~70% of short reads should
be exactly aligned to the reference genome after stage one. The
remaining reads are then processed through stage two. Most
genome variations are relatively small, involving only one or
two nucleotides. If we only allow an exact match between
short reads and the reference genome, the reads containing
the genome variations from the sample cannot map to the
reference genome. In addition, the genome variations (e.g.,
single nucleotide mutations) cannot be identified based on
the exact alignment algorithm. Thus, such potential molecular
signatures cannot be applied for disease phenotype prediction.
In the following, we elaborate on these two stages respectively.

A. Exact Alignment Algorithm

The alignment algorithm is developed based on BWT and
FM-Index [8], and optimized using Aligner-D’s functions.
As depicted in Fig. 10, the first step is to store some important
pre-computed tables based on reference genome S. This is
only a single-time computation for BWT, S4, and Marker
Table (M) to be saved in the Aligner-D consuming ~12GB of

BW matrix Marker Suffix

Occ. table
First Column Last Column Sampled Table  Array
(Sorted BWT)  (BWT) GT Occ. table (M) (Sa)
Cm:nr{,;ﬁI L] - fo_AcGT ACGT
=1 A
Count(c) i qucuc:" ;'
C -+ OTm=l]: ]
Count(G) it HHHE
G
Count(T) — Id
7]y fo
Table Size 3B (X2bits) 38 (X2bits) ~3Bx4 int. (3Bx4 int.)/d (3Bx4 int.)/d  3Bint.
Mem. Size 750MB  750MB 45GB 100MB (d=128) 100MB (d=128) 11GB
Stored? no yes no no yes yes

Fig. 10. The required pre-computation in Aligner-D’s alignment-in-memory
algorithm.

memory space. We need to reconstruct and store the table data
into different memory sub-arrays, banks, and chips to provide
high-speed memory access and parallel PIM operations, as dis-
cussed in Section V. In Fig. 10, the number of nucleotides in
the BW matrix’s first column that are lexicographically smaller
than the nucleotide-nt is represented by Count(nt). So there
are four elements for sequence alignment. The FM-index table
so-called Occurrence (Occ.) table, is then made based on
BWT. In Occ. table, each element-Occl[i, nt] represents the
number of occurrences in the position range 0 to i — 1 for
nucleotide-nt in the BWT. We sampled such large Occ. table
every d position (i.e., bucket width) and reconstructed a
Sampled Occ. table. Therefore, we are able to diminish the
table size by a factor of d. Besides, we developed a M7 by
element-wise addition between Count(nt) and sampled Occ.
table. Such a marker table has the same size as Sampled Occ-
Table. Mt basically consists of the matched position of nt in
the first column of BWT. Accordingly, Aligner-D is able to
effectively retrieve low and high values in each iteration.

In Algorithm 1, the backward search process can
be reconstructed with the presented hardware-friendly
Bound(Mrt, nt,id) procedure (line-12) executed on BWT.
This procedure calculates the updated low or high interval’s
value from Mt with an input index-id considering a bucket
width of d. As can be observed, such Bound procedure itera-
tively performs in every step of the ‘for’ loop. The Aligner-D
is particularly developed to run such intensive computation
via computing two operations i.e. matching and addition
between the occurrence counting data and ‘marker’ value for
the required nts located between checkpoint positions and
remaining positions in BWT. As indicated in Algorithm 1,
we leverage 3 Aligner-D’s in-memory functions, named,
MEM (memory read operation), XN OR_Match (XNOR2),
and IM_ADD (add) to implement the Bound procedure
completely within memory. M EM function is used to access
data in the stored S4 or M7 having the index. XN OR_Match
conducts an in-memory XNOR2 operation to check if there
is a match between the BWT elements saved in the entire
word-line and the current input-nf in a single computational
cycle. IM_ADD conducts 32-bit integer in-memory addition
operation (index range) and computes ‘marker+count_match’
results without sending it to CPU or other computing units.
We identify two main features in the modified alignment
algorithm that make it a potential candidate for in-memory
implementation: 1) it matches Aligner-D’s logic operations
(e.g. matching and addition) very well and 2) it is memory-
bound and parallelizable, not needing any memory access to
perform entire read alignment.
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Algorithm 1 DNA Exact Alignment-in-Memory

Algorithm 2 DNA Inexact Alignment-in-Memory

Require: : Pre-Compute and Data Mapping to Aligner-D: Partition pre-computed BWT,
Marker Table (M7) and Suffix Array (S4) into Aligner-D chip.
input: DNA Short Read-R
output: positions of short read-R in reference genome-S§
Step-1. Initialization:
s low <0, high < |S|—1
Step-2. Backward Search:

2: for i := |R| —1 to 0 do

3 low < Bound(Mr[|low/d]], R[i], low)

4 high < Bound(Mr[lhigh/d|]. R[], high)

5: if low > high then

6 break & return 0 © there is no exact alignment
7: end if

8: end for

Step-3. Get matched positions from stored suffix array based on a search result:
for j :=low to high — 1 do
10: positions < MEM(Sa[j])
11: end for

Define procedure Bound:
12: Procedure: Bound(My, nt,id)
13: count_match < 0
14: for j :=0to j < (id mod d) do

©

> Read positions from Suffix Array memory

> compute matched interval

> count number of nt within the BWT region

15: if XNOR_Match(nt, BWT[id — (id mod d) + j]) == 1 then
16: count_match = count_match + 1

17: end if

18: end for

19: marker <~ MEM(Mr||id/d]], nt])
20: return IM-ADD (marker, count_match)
21: end Procedure

> Read Marker Table value

Throughout the alignment process, the XNOR2 operation
mainly involves two vectors: the reference genome and the
short read from the patient’s DNA. The size of both vectors
may vary. The vector size affects the computation and stor-
age efficiency but does not affect the computation accuracy.
As shown in Fig. 10, the larger interval d helps to reduce the
table size for the storage, but it also requires up to d times
XNOR operation for every input nucleotide which may slow
down the performance and cause extra energy consumption.
For the short read, the size of the vector determines how many
nucleotides we need to process by repeating the XNOR2 and
add operations. Therefore, the size of the vector does not
affect the accuracy of either add or XNOR2 operation but the
computation/energy efficiency.

B. Inexact Match

Here we extend the exact alignment algorithm to handle
inexact match (mismatch, insertion, and deletion) as shown
in Algorithm-2. With recursively computing the intervals
that match R[0, i], the presented inexact alignment algorithm
allows mismatches between read R and reference genome
S within a tolerance (no more than z differences) with the
condition that R[i 4 1] matches {low, high}. While updating
the intervals /, we consider all possible alignments as long
as there exists tolerance for differences up to the current
position i. For the intervals I of position i, we perform
union for all match (line 21) and mismatch (line 23) intervals.
Accordingly, the algorithm reports the target positions (line 4)
in the reference genome, with no more than z mismatches,
to which the read can be mapped to. We observe that since
Algorithm-2 again iteratively exploits the presented Bound
function, it can be also accelerated by Aligner-D platform.

V. ALIGNER-D HARDWARE MAPPING
A. Correlated Data Partitioning

Since the alignment-in-memory algorithm requires a large
memory space to store pre-computed tables namely BWT and
marker table(M7), we partition these tables to fully employ
Aligner-D’s parallelism and to maximize the throughput of

Require: : Pre-Compute and Data Mapping to Aligner-D: Partition pre-computed BWT,
Marker Table (M7) and Suffix Array (S4) into Aligner-D chip.
input: DNA Short Read-R, z mismatches allowed in the alignment.
output: positions of short read-R in reference genome-S with up to z mismatches.
Step-1. Initialization:
low <0, high < |S| — 1
return I= InexactRecursive(R, |R|, low, high, z):
fori:=|I|—1to0do
positions < MEM(Sa[I[i]])
end for
Define procedure InexactRecursive :
Procedure: InexactRecursive(R, i, low, high, z)
allowed
7: if z < 0 then
8: break & return 0
9: end if
10: if i <0 then
11: return [low,high]
12: end if
13: 1 <0
14: [ < I U InexactRecursive(R,i — 1,low, high,z — 1)
15: for each b € {A,C,G, T} do
16: low < Bound(Mr[[low/d]], R[i], low)
17: high < Bound(Mr[|high/d]], R[i], high)
18: if low < high then

ahwNe

> z is the number of mismatches

2

> Insertion

19: I < I U InexactRecursive(R, i, low, high,z — 1) > Deletion
20: if b = R[i] then

21: I U InexactRecursive(R, i — 1,low, high, z) > Exact Match
22: else

23: 1 U InexactRecursive(R,i — 1, low, high,z — 1) & Inexact Match
24: end if

25: end if

26: end for

27: return /

28: end Procedure

alignment computation. The memory region accessed for Mt
and BWT, within a BWT index range, can be readily antici-
pated and computation can be localized by using one common
memory sub-array to store such correlated data. Therefore,
a new data partitioning method and mapping technique is
presented, as depicted in Fig. 11. Such partition technique first
saves the correlated regions of BWT and M7 vectors locally
in a similar sub-array and then makes local computation
possible. As a result, without inter-bank/chip data transfer,
XNOR_Match and IM_AD D operations can be completely
implemented within the same memory sub-array. This can
potentially address Challenge-IV discussed in Section II-C.

Aligner-D platform has multiple memory chips, each con-
sisting of memory banks, mats, and sub-arrays in a hierar-
chical fashion. We divide each sub-array (with the size of
256 rowsx 128 columns) into two particular regions to save
two various data types, BWT, and M7y. We assign the first
128 rows to the corresponding BWT. Each row contains up
to 64 bps, encoded by two bits. Such BWT rows are mainly
developed to perform the parallel matching operation based
on XNOR_Match. We store the marker’s values M7 next to
the BWT region. The M7 is pre-computed with checkpointed
d positions (=64) for every row. To hold the size in check for
Aligner-D, we save Mt horizontally in 128 rows, each row
storing 128-bit (4-byte value for bps). We use identical colors
in Fig. 11 to indicate the BWT region and the corresponding
M7t region. After data partitioning and mapping the data,
Aligner-D’s ctrl starts from the rightmost symbol in R and
takes two steps to carry out the Bound function and return
high and low for the next symbol as detailed below.

B. Parallel Search

Given an input nucleotide A and input index as id in
Fig. 11, the Aligner-D’s controller easily transforms the
BWT index to the corresponding addresses for WL and BL
saving data BWT[id — (id mod d)] to BWTIid]. These
bits are read out simultaneously by the SAs and given to
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Fig. 11. The memory sub-array partitioning in Aligner-D platform to perform
Parallel search and Rank computation.

the 3T XNOR part along with the input nucleotide A for
the parallel search operation named XN OR_Match. When
XNOR2 output equals ‘l1’, meaning a match is detected,
then count_match operation needs to be performed. This is
accomplished through the embedded counter in the ctrl unit
that counts up. The XNOR_Match function is shown in
Fig. 11 counting stage to locate As in a single memory sub-
array. By finishing the counting, the memory sub-array the
count_match and marker_add (marker address) are returned.
It is noteworthy that such a correlated partitioning technique
offers local memory access for the read operation (M EM) of
marker in the same memory array.

C. Parallel Rank Calculation

The Aligner-D buffers the count_match and marker,
respectively, in the counter and Mr regions, as depicted in
Fig. 11, to carry out IM_ADD function. To maximize
the throughput, with n active sub-arrays, each sub-array can
readily compute the parallel add of 32-bit. Fig. 11 adding
stage delineates the organization of sub-array for such parallel
operation. In total, 32 aforementioned 12T adders are chained
up to build a carry ripple adder(CRA). The operands of the
CRA are from the counter and Marker table stored in the M7
region respectively. To handle the add operation, as shown in
the example provided in Fig. 11 adding a stage, a MUX is
placed on the top of CRA. In the example, four 32-bit data
are read from the Mt region. The MUX chooses one of the
four 32-bit data based on the input nucleotide and feeds it to
the 32-bit CRA. Another operand of CRA is coming from the
previous counting stage as the counting result. The bit-by-bit
addition begins with the LSBs of two operands and goes on
towards MSBs.

VI. EXPERIMENTS ON ALIGNMENT TASK
A. Setup

1) Evaluation Framework: We evaluate the performance
of Aligner-D as a novel PIM architecture with an extensive
cross-layer framework by developing two in-house simulators.
1- At the circuit level, Aligner-D’s memory sub-array and the
peripheral circuits (3T XNOR, SA, etc.) were first developed
using Cadence Spectre with 45nm technology process of
NCSU product development kit library [48]. We used this to
evaluate the design and obtain different performance parame-
ters. We then used Verilog-HDL and the Design Compiler [49]
with a 45nm industry library to assess the memory ctrl
circuits. 2- An architecture-level simulator is designed based
on NVmain [50], as a cycle-accurate main memory simulator.
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Fig. 12. (a) Log scaled power consumption and (b) throughput of different
accelerators compared to Aligner-D.

We feed the circuit-level performance data into the devel-
oped simulator. It is designed to alter the configuration files
with respect to different memory organizations and outputs
performance results for Aligner-D’s PIM operations. 3- We
then used Matlab to develop a behavioral-level simulator.
The simulator takes the architecture results to compute the
energy and latency parameters for Aligner-D. To increase the
performance corresponding to the available resources, we also
integrated a mapping optimization technique into the platform.

2) Different Accelerators: Recently processing-in-memory-
based accelerator designs have been proposed to accelerate
the DNA alignment task. Such as, PARC [51] and BioSEAL
[52] presented CAM-based accelerator designs. PIM-Align
[53] proposed an accelerator for standard FM-Index search
with 3D-stacked DRAM technology. Reference [54] proposed
PIM accelerator for the BWT-based short read alignment with
spintronic computational RAM (MRAM). Considering the ver-
satility and the mass of data in the alignment task, we conduct
a comprehensive comparison with ReCAM [39], a dynamic
programming based acceleration solution along with FM-Index
acceleration solutions including: Soap2 [9]/Soap3-dp [9] on
CPU/GPU, FPGA [12], and two counterpart processing-in-
DRAM accelerators, i.e., Ambit [1] and DRISA-1TIC [2].

For the sake of space, we refer the readership to the
aforementioned works for more details on each accelerator’s
implementation. For short read alignment task on CPU/GPU
with reads of <2 mismatches, we used Soap2/Soap3 [9]. For
solid comparison amongst Aligner-D and other computing
platforms, the human genome Hgl19> was taken into account.
Accordingly, 10 million 100-bp read queries were generated
via ART simulator [55] and aligned to the human genome to
report the performance.

B. Results

1) Power-Throughput-Area Trade-Offs: Figure 12a and b
respectively show the throughput and power consumption of
different computing platforms. Aligner-D shows the high-
est throughput (3560K query/sec) compared to CPU [9],
GPU [9], FPGA [12], Ambit [1] and DRISA-1TI1C [2]

2Population Variation = 0.1% and Genome Error Rate = 0.2%.
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TABLE I
PERFORMANCE OF READ ALIGNMENT ACCELERATORS

FM-Index Dynamic programming
FPGA  Ambit DRISA  Aligner-D ReCAM
Throughput/Watt 153 5813 61K 102K 230K 539K 26.81
Throughput/Watt/mm? _ 0.011 039 0.42 28.66 65.63 219.26 0.24

metrics CPU GPU

platforms due to its massively-parallel and local compu-
tational scheme. We observe that Ambit and the FPGA
implementations achieve almost the same throughput as a
result of the multi-cycle in-DRAM XOR operation. However,
DRISA-1T1C stands as the second high-performance platform.
Besides, thanks to the simple structure that Aligner-D needs
less transistor per column than DRISA-1T1C. We observe
that Aligner-D consumes significantly lower power (~6.6W)
along with other PIM designs compared to other von-Neumann
computing platforms. Taking the chip area into consideration,
the existing trade-offs among power, throughput, and area for
different accelerators can be understood by correlated param-
eters, as tabulated in Table I. A 16GB Aligner-D required
for DNA short read alignment takes ~4160 mm? area, where
the GPU [9] and CPU [9] occupies 14300 and 1600 mm?2,
respectively. Note that, based on our experiment, Ambit [1]
imposes the least area-overhead by ~3200mm? among FM-
Index based methods.

Based on Table I, we observe that Aligner-D outper-
forms different accelerators w.r.t. throughput/Watt. Aligner-
D can improve the read alignment’s throughput per Watt by
~20104x, ~3522x, ~927x, ~88x, ~5.28 %, and ~2.34x,
over ReCAM [39], CPU, GPU, FPGA, Ambit, and DRISA-
1T1C, respectively. Moreover, Table I reports throughput per
Watt per mm? for different accelerators. Considering the area
parameter, we see that Aligner-D can remarkably boost the
alignment performance compared with all the other designs.
Aligner-D achieves ~3.34x higher throughput per Watt per
mm? compared to the DRISA-1T1C. To sum it up, Aligner-
D offers a parallel processing-in-memory scheme and ultra-
high internal bandwidth features that can accelerate short
read alignment task. It is noteworthy that Aligner-D is more
hardware-friendly. Since we did not directly modify the stan-
dard DRAM subarray design and the add-on circuit only needs
a few transistors per column. Aligner-D incurs less than ~2%
area overhead on top of the typical DRAM chip. Such a small
area overhead doesn’t necessarily force DRAM manufactur-
ers to reduce the DRAM capacity to maintain the current
dimensions in the DIMM form factors. To have a quantitative
comparison, in our evaluation, a 32 Mbit single-bank DRAM
with 512-bit data width shows 4.53 mm? area and 321 mW
leakage power, while Aligner-D imposes 4.62 mm? (~ 2% 1)
area and 334 mW (~ 4% 1) leakage power.

2) Memory Wall: The off-chip memory access needed for
different computing platforms is reported in Fig. 13a. Based
on our evaluation, all the FM-Index-based platforms, i.e.,
CPU/GPU [9] and FPGA [12], excluding in-memory accel-
erators, i.e., Ambit, DRISA-1T1C, and Aligner-D are highly
dependent on off-chip memory access. It means such platforms
consume a huge amount of energy just for fetching data
queries and tables in the memory.

The Memory Bottleneck Ratio (MBR) is reported in
Fig. 13b. We define MBR as the time fraction needed for data
transfer from/to on-chip or off-chip, when the computation has
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Fig. 13. (a) The off-chip memory access, (b) Memory Bottleneck Ratio, and

(c) Resource Utilization Ratio of different computing platforms.

to wait for data, i.e., memory wall happens. The peak through-
put for each design is taken into account for performing the
assessment. This evaluation mainly considers the number of
memory access. We can see that PIM-based Aligner-D, Ambit,
and DRISA-ITIC consume less than ~35% time for data
transfer and memory access. The Resource Utilization Ratio
(RUR) is also reported in Fig. 13c. The less MBR can be
understood as a higher RUR. We can see that with up to
~75%, DRISA-1T1C and Aligner-D achieve the highest RUR.
Taking everything into account, PIM acceleration schemes
offer a high ratio (>60%) confirming the conclusion drawn in
Fig. 13b. The memory wall evaluation shows the efficiency of
the Aligner-D platform for solving the memory wall challenge.

VII. POTENTIAL CHALLENGE & APPLICATION

There are still many unsolved issues for using processing-in-
memory technology to accelerate Next-Generation Sequencing
(NGS). We leave these possible challenges as the future works.
e.g., Aligner-D is highly optimized for the BWT-based DNA
short-read alignment task. Thus, it is not suitable for long-
read alignment or genome assembly tasks. Those are also data-
intensive processes in genome sequencing. Since the Aligner-D
is a DRAM-based accelerator, the notorious “Row Hammer”
[56] attack may still distort the reference genome data stored in
the DRAM array. The reference genome data is pre-processed
and used for every input nucleotide. The attack will lead to
the malfunction of all the short-read inputs which feed after
the data distortion.

On the other hand, although Aligner-D was proposed for
the specific alignment task, other applications could easily
leverage this architecture as well. Since the Aligner-D could
efficiently perform the parallel XNOR2 operation where one of
the operands is from the outside of the array. With the help of
counter and adder, Aligner-D could achieve the multiplication
and addition (MAC) operation in the purely digital domain.
This is a natural fit for the popular Deep Neural Network
application [57] where weights are stored inside the DRAM
array and the activations are fed from buffer/IO. Other popular
algorithms such as Advanced Encryption Standard (AES)
[58] and Min/Max Searching [59] algorithms can also benefit
from the Aligner-D by the high-parallel and efficient XNOR2
operation.

VIII. CONCLUSION

In this work, we presented Aligner-D, as a high-throughput
and energy-efficient PIM architecture to address some of the
existing issues in state-of-the-art DRAM-based acceleration
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solutions for performing bulk bit-wise XNOR-based oper-
ations i.e. limited throughput, row initialization, reliability
concerns, etc. incurring less than 2% area overhead on top
of the typical DRAM chip. Here, we design a highly paral-
lel and customized read alignment algorithm for Aligner-D
that only requires the presented in-memory logic operations.
To accelerate and support both exact and inexact match tasks,
Aligner-D is then configured with a novel data partition-
ing and mapping technique that provides local storage and
processing of DNA sequence to fully utilize the algorithm-
level’s parallelism. Aligner-D improves the short read align-
ment throughput per Watt by ~20104x, ~3522x, ~927x,
~88x, ~5.28x, and ~2.34x, over ReCAM, CPU, GPU,
FPGA, Ambit, and DRISA-1TI1C, respectively. To the best
of our knowledge, this is the first work that proposes an
XNOR-friendly processing-in-DRAM accelerator that can be
applied to a variety of applications including DNA alignment,
assembly, data encryption, etc.
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