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K-homology and K-theory of pure braid groups
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Abstract. We produce an explicit description of the K-theory and K-homology of the pure
braid group on n strands. We describe the Baum–Connes correspondence between the genera-
tors of the left- and right-hand sides forn = 4. Using functoriality of the assemblymap anddirect
computations, we recover Oyono-Oyono’s result on the Baum–Connes conjecture for pure braid
groups [24]. We also discuss the case of the full braid group on 3-strands.
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1. Introduction
Given a locally compact groupG, the Baum–Connes conjecture predicts a way of computing

the K-theory of the reduced group C∗-algebra of G in terms of the equivariant K-homology of
EG, the classifying space for proper actions of G. More precisely, let KG

i (EG) denote the G-
equivariantK-homology of the spaceEG of order i andKi(C∗r (G)) is theK-theory of the reduced
C∗-algebra C∗r (G) of order i; the conjecture, as formulated by Baum, Connes and Higson in [3],
states that the assembly map

�i ∶ KG
i (EG)→ Ki(C∗r (G))

for i = 0, 1, is a group isomorphism for all locally compact groups.
The Baum–Connes conjecture has been proven for large classes of groups, including all

semi-simple Lie groups and all groups satisfying Haagerup’s property ([17], [14]). Many of the
proofs are based on methods that use heavy machinery, such as the Dirac-dual Dirac method,
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introduced by Kasparov in the case of connected Lie groups and further developed by Higson
and Kasparov in [14] to prove the conjecture for groups having Haagerup’s property.

In the case of semi-simple Lie groups, a �rst proof was established by Wassermann ([37])
following the work of Penington–Plymen ([25]) and Valette ([32, 33]). This proof was based
on the idea of giving a complete description of both sides of the assembly map and then prov-
ing explicitly that the correspondence was an isomorphism of groups. Indeed, the description
of the K-theory of the reduced C∗-algebra of a semi-simple group can be made using the ex-
haustive work of Harish-Chandra on the classi�cation of their tempered representations. For
discrete groups, as no such classi�cation exists, other approaches were needed and led to the
development of very powerful techniques. For an account of the history of the conjecture and
the recent developments, we refer to the survey [12] and the references therein, as well as to
the books [34, 20].

In this paper, we study the Baum–Connes correspondence for the pure braid group on n
strands. The conjecture for those groups is known to be true by the work of Oyono-Oyono
[24].

Our paper �ts into the context of thework of Isely [15] followed by theworks of Flores, Pooya
and Valette [11, 30, 29], in which explicit computations of the Baum–Connes correspondence
are given for certain discrete groups. We believe that these explicit computations contribute to
a deeper understanding of the Baum–Connes correspondence.

It is important to mention that the conjecture also holds for full braid groups by the work
of Schick ([31]) using permanence properties of the conjecture shown by Chabert–Echterho�
in [6] and the result of Oyono-Oyono for pure braid groups. The conjecture holds in its strong
form, with coe�cients, i.e. considering the action of the group on a C∗-algebra. Moreover,
full braid groups have property RD (see for example [7]). Explicit computations for full braid
groups are more di�cult, though, and other methods have to be used.

Therefore, the aim of this work is to compute the K-theory and K-homology arising in the
Baum–Connes assembly map explicitly for the pure braid group on n strands and then to un-
derstand the correspondence of the generators under this map. The case when n = 4 is worked
out explicitly as a typical example. In this case, the classifying space BP4 can be given a model
of the form S1 × X, where X is a 2-dimensional CW-complex. We can then apply Lemma 4.1
from [20], which relates the K-homology of X to its integer singular homology, leading us to
the following result:

Theorem 1.1. For the pure braid group P4 the P4-equivariant K-homology of EP4 is

KP4
0 (EP4) ≃ ℤ12 and KP4

1 (EP4) ≃ ℤ12.

Matthey proved that theK-homology of a CW-complex of dimension≤ 3 is isomorphic to its
integral homology [19]; however, for higher number of strands (n ≥ 5), the classifying space
of Pn admits a model of dimension n − 1, which is minimal because, by Arnold’s result [2],
the classifying space has non vanishing cohomology in degree n−1. Hence, one cannot apply
Matthey’s results to BPn when n ≥ 5 .
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In the general case, we proceed as follows. First we deduce the K-homology group up to
torsion bymeans of existing results on the group homology of Pn. After that, we use anAtiyah–
Hirzebruch spectral sequence to remove the torsion. We are then able to extend our �rst result
to pure braid groups on n strands:

Theorem 1.2. For the pure braid group Pn we have

KPn
0 (EPn) ≃ ℤ

n!
2 and KPn

1 (EPn) ≃ ℤ
n!
2 .

For the right-hand side of theBaum–Connes correspondence, weuse the Pimsner–Voiculescu
six-term exact sequence in [27] and [28] to show the following:

Theorem 1.3. For the pure braid group Pn we have

K0(C∗r (Pn)) ≃ ℤ
n!
2 and K1(C∗r (Pn)) ≃ ℤ

n!
2 .

Next, using functoriality of the Baum–Connes assembly map, together with explicit compu-
tations, we recover Oyono-Oyono’s results for pure braid groups:

Theorem 1.4. The Baum–Connes assembly map � ∶ Ki(BPn) → Ki(C∗r (Pn)) for the pure braid
group Pn is an isomorphism.

We explicitly describe the assembly map on each of the generators in the case of P4 (see
Theorem 5.2 and Theorem 5.5).

All our computations of K-theory groups can be carried out explicitly, thanks to the iterated
semidirect product structure of pure braid groups:

Pn = Fn−1 ⋊ Fn−1 ⋊⋯⋊ F1.
This also indicates that the rank of the K-groups grows as n increases.

The techniques we use for pure braid groups do not apply to full braid groups. Although
there is an extension

1→ Pn → Bn → Sn → 1
where we denote by Sn the symmetric group over the set of n-elements, that implies that the
braid group Bn contains the pure braid group Pn as a normal subgroup of �nite index, the K-
groups of Bn have fewer generators than the K-groups for Pn. In fact, using an existing result
on the group homology of Bn(see [2], [1] and section 3.3), one knows that, up to torsion, both
the even and odd K-homology groups for BBn are ℤ. Then the Baum–Connes conjecture says
that, up to torsion, the K-theory of the reduced C∗-algebra of Bn is ℤ as well. When n = 3, B3
has the special structure of a free amalgamated product, which allows us to perform a direct
calculation:

K0(C∗r (B3)) = K1(C∗r (B3)) ≃ ℤ.
For n = 4 theK-theory of C∗r (B4) is explicitly computed in the recent paper by Li, Omland, and
Spielberg ([18]). To our knowledge, the problem of directly computing K-theory for the full
braid group C∗-algebra remains open.

The paper is organized as follows. In Section 2.1 we recall the structure and properties of
braid and pure braid groups (in the appendix we give some of the corresponding diagrams that
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illustrate the structure of this groups). In Section 3 we describe the classifying space for P4
explicitly, compute its K-homology and generalize to the case of Pn. In Section 4 we apply the
Pimsner–Voiculescu six-term exact sequence to calculate the K-theory for the reduced group
C∗-algebras for Pn with n = 4 as a typical example. In Section 5 we describe the Baum–Connes
assembly map on each generator for P4 and show that the map is an isomorphism for all n. In
Section 6 we compute the example for B3 on both sides of the assembly map and show that the
map is an isomorphism.

Acknowledgments. We thank Alain Valette for the suggestion to examine K-theory and K-
homology of pure braid groups. We thank the organisers of the Women in Operator Alge-
bras Conference that took place at BIRS where this project started. HW acknowledges the
support from Science and Technology Commission of Shanghai Municipality (STCSM), grant
No.18dz2271000. MGA was partially supported by ANR project Singstar.

2. Braid and pure braid groups
2.1. Structure of braid and pure braid groups. Throughout the paper we will denote by
Fn(x1…xn) the free group generated by x1,… , xn. Let us recall the de�nition and some prop-
erties of braid groups. We refer to [5].

The Artin Braid Group on n letters, denoted by Bn, is a �nitely-generated group with gener-
ators �1, �2,… , �n−1 that satisfy the following relations:

�j�i = �i�j |i − j| > 1, i, j ∈ {1,… , n − 1}
�i�i+1�i = �i+1�i�i+1 i ∈ {1,… , n − 2}

It can also be described as the group of equivalence classes of all braids on n strands. The
generators are illustrated here for B4.

�1 �2 �3

In this framework, composition of two elements is visualized as the concatenation of the
corresponding braid pictures. The identity is represented visually by four straight lines.

As every n-braid determines a permutation of the set of n elements in an obvious way, it is
easy to see that there is a surjective map from Bn to Sn, the symmetric group consisting of all
permutations of n elements

p ∶ Bn → Sn.
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Thismap is compatible with the structures of the two groups so that it is amorphism of groups.
Notice that the image of the element �i is the permutation exchanging i and i+1, hencep(�i) =
(i, i + 1), a transposition.

By de�nition, the pure braid group on n-strands is the kernel of p (hence a subgroup of Bn
of index n!). It is usually denoted by Pn and it is easy to see that in the strand framework it
corresponds to the elements of Bn for which all strands start and end at the same point. Notice
that as (i, i + 1) is a transposition of Sn, the element �2i belongs to Pn for all i ∈ {1, ..., n}.

Starting from Pn we can construct a surjective morphism

f ∶ Pn → Pn−1
by forgetting the ntℎ strand whose kernel is known to be isomorphic to the free group on n−1
generators; this is easy to understand when viewing braids as con�guration spaces. In that
context, the kernel of f corresponds to the fundamental group of the space obtained by remov-
ing n − 1 points from the plane ℂ, which is isomorphic to the free group on n − 1 generators,
Fn−1. We have therefore a short exact sequence

1→ Fn−1 → Pn → Pn−1 → 1

that is split because it is always possible to add a strand to a braid in Pn−1 to obtain a braid in
Pn. Hence Pn is isomorphic to a semi-direct product Fn−1⋊ Pn−1, and hence isomorphic to an
iterated semi-direct product as follows :

Pn ≃ Fn−1 ⋊ Pn−1 ≃ Fn−1 ⋊ Fn−2 ⋊⋯⋊ F1.

Throughout this paper we will use the following presentation of Pn which is due to Artin
(see [5] Lemma 1.8.2.). Notice that we are conjugating in the reverse order of [5], for the sake of
compatibility with the diagrams in the appendix, so our presentations appear slightly di�erent
from the presentation in [5].

The generators of Pn are given by the following formula :

Aij = �j−1�j−2⋯�i+1�2i �
−1
i+1⋯�−1j−1 for 1 ≤ i < j ≤ n

where the �i, for i = 1,… , n are the generators of Bn given above; they are subject to the
following relations

ArsAijA−1
rs =

⎧
⎪
⎨
⎪
⎩

Aij, if r < s < i < j and i < r < s < j
A−1
sj AijAsj, if r = i

(ArjAij)−1Aij(ArjAij), if s = i
(ArjAsj)−1(AsjArj)Aij(AsjArj)−1(A−1

rj Asj), if r < i < s < j.

Let �i = An−i,n for i = 1,… , n − 1. Then the subgroup of Pn isomorphic to Fn−1 appearing
in the decomposition Pn = Fn−1 ⋊ Pn−1 is generated by the elements �i, for i = 1,… , n − 1.
The semidirect product decomposition can be written as

Pn ≃ Fn−1 ⋊' Pn−1
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where the action ' of Pn−1 on Fn−1 is given by the map

' ∶ Pn−1 → Aut(Fn−1)

de�ned by

'(Ars)(Ain) =

⎧
⎪
⎨
⎪
⎩

Ain, if r < s < i < n, and i < r < s < n
A−1
sn AinAsn, if r = i

(ArnAin)−1Ain(ArnAin), if s = i
(ArnAsn)−1(AsnArn)Ain(AsnArn)−1(A−1

rnAsn), if r < i < s < n.

Following this notation, we have that Pn = Fn−1(�1, �2,…�n−1)⋊' Pn−1.
The center of Bn is generated by the element

(�1�2⋯�n−1)n

which can be expressed in terms of elements of Pn by

(A12)(A13A23)⋯ (A1nA2n⋯A(n−1)n).

(This is illustrated in the appendix in the case n = 4.)
For n = 3, the generators of P3 are

A13 = �2�21�
−1
2 , A23 = �22, A12 = �21.

Letting �2 = A13, �1 = A23 and �21 = A12, we get that P3 has the following presentation

P3 =
⟨
�1, �2, �21 | �−21 �1�21 = (�2�1)�1(�2�1)−1, �−21 �2�21 = �1�2�−11

⟩
,

whence

P3 ≃ F2(�1, �2)⋊ ⟨�21⟩,

that is P3 is isomorphic to the semi-direct product of the free group generated by �1 and �2 and
the group generated by �21, where the action of �21 on F(�1, �2) is given by conjugation.

Denoting by c the element �21�1�2, we can check that �1c = c�1 and �2c = c�2 so that

P3 = F(�1, �2) × ⟨c⟩.

For n = 4, to simplify notation in the rest of the paper, we will denote the generators of P4 as
follows.

�21 = A12

�1 = A23 = �22
�2 = A13 = �2�21�

−1
2

�1 = A34 = �23
�2 = A24 = �3�22�

−1
3

�3 = A14 = �3�2�21�
−1
2 �−13
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�21 �1 = �22 �2 = �2�21�
−1
2

�1 = �23 �2 = �3�22�
−1
3 �3 = �3�2�21�

−1
2 �−13

From the relations, and from the diagrams in the appendix, we have

P4 ≃ F3(�1, �2, �3)⋊
(
F2(�1, �2)⋊ F1(�21)

)
.

where the actions are given by the following relations :
(1) �1�1�−11 = (�2�1)−1�1(�2�1)
(2) �1�2�−11 = �−11 �2�1
(3) �1�3�−11 = �3
(4) �2�1�−12 = (�3�1)−1�1(�3�1)
(5) �2�2�−12 = (�3�1)−1�1�3�2(�1�3)−1(�3�1)
(6) �2�3�−12 = �−11 �3�1
(7) �21�1�

−2
1 = �1

(8) �21�2�
−2
1 = (�3�2)−1�2(�3�2)

(9) �21�3�
−2
1 = �−12 �3�2

(10) �21�1�
−2
2 = (�2�1)−1�1(�2�1)

(11) �21�2�
−2
1 = �−11 �2�1

Remark 2.1. In this paper, we will use a splitting o� the center of P4 in order to realize P4
as the direct product of its center and a semidirect product of free groups. The center of P4 is
generated by c = (�1�2�3)4 = �21�1�2�1�2�3, as illustrated in the appendix (see 7.4), and we
have

P4 ≃ (F(�1, �2, �3)⋊ F(�1, �2)) × ⟨c⟩.

2.2. The Baum–Connes conjecture for Pn and K-amenability. A property of Pn that we
will use in order to give explicit computations of its K-theory groups is its K-amenability. This
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property was introduced by Cuntz (see [9] for the de�nition) and implies that for every C∗-
algebra A endowed with an action of Pn, the K-theory of the maximal crossed product A⋊ Pn
is isomorphic to the K-theory of the reduced crossed product A⋊r Pn. In particular,

K∗(C∗(Pn)) ≃ K∗(C∗r (Pn)).
The K-amenability of Pn can be proven using the following result of Pimsner combined with
the following proposition that is an adaptation of a result appearing in the proof of the Baum–
Connes conjecture for Pn given by Oyono-Oyono (see Proposition 7.3 in [24]) :

Theorem 2.2 ([26]). A locally compact group acting on an oriented tree such that the stabilizer
group of any vertices is K-amenable is K-amenable.

Proposition 2.3. LetD0,… , Dn be a �nite sequence of groups such thatD0 = {e} and for 1 ≤ k ≤
n there exists nk in ℕ such that Dk = Fnk ⋊ Dk−1. Then Dn is K-amenable.

Proof. The proof is the same as the proof of Proposition 7.3 in [24] and it is held by induction
on n : if 0 ≤ k ≤ n − 1, let D′

k be the kernel of the morphism mapping Dk+1 to D1 = Fn1 .
Then, D′

0 = {e} and, if 1 ≤ k ≤ n − 1 then D′
k = Fnk−1 ⋊ D′

k−1. Hence, by induction, D′
n−1 is

K-amenable. But the group Dn acts on the Cayley graph of Fn1 (which is a tree) through the
morphism mapping Dn to D1 = Fn1 and the stabilizer group of the vertex corresponding to
the neutral element of Fn1 is exactly D

′
n−1; as the action is transitive, the stabilizer group of all

vertices is K-amenable and hence, by Pimsner’s theorem, Dn is K-amenable. �

Corollary 2.4. The pure braid group Pn is K-amenable.

In [24], Oyono-Oyono proved that a countable discrete group acting on an oriented tree
satis�es the Baum–Connes conjecture with coe�cients1 if and only if the groups stabilizing
the vertices of the tree satisfy Baum–Connes with coe�cients. This result allows him to prove
the stability of the conjecture under free and amalgamated products and HNN extensions. It
also allows him to prove the analogue of Proposition 2.3 in the context of Baum–Connes and
hence to give his �rst proof of the Baum–Connes conjecture for Pn. He then proved in [23] the
Baum–Connes conjecture for groups which are extensions of a group satisfying the Haagerup
property by a group satisfying Baum–Connes, which allowed him to give a second proof of
Baum-Connes for Pn (as the free group is known to have the Haagerup property).

3. Classifying space and K-homology for Pn
In this section, we deal with the compactly supported Γ-equivariant K-homology of EΓ, the

space classifying Γ-proper actions for Γ = Pn.
As Pn is a discrete torsion-free group, EPn coincides with EPn, the universal cover of the

classifying space BPn, and the Pn-equivariant K-homology of EPn is the K-homology of the
space BPn, that is K

Pn
∗ (EPn) ≃ K∗(BPn).

We start with the case n = 4. We will give a model for BP4 and compute its K-homology
explicitly.

1TheBaum-Connes conjecturewith coe�cients is a stronger version of the Baum–Connes that considers actions
of the group on a C∗-algebra.
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3.1. A model for BP4. Let us give a model for BP4. Recall that
P4 ≃ (F(�1, �2, �3)⋊ F(�1, �2)) × ⟨c⟩,

the center of P4 is generated by c = (�1�2�3)4, and the generators �1, �2, �3, �1, �2 are subject
to 6 relations:
R1. �1�1�−11 = (�2�1)−1�1(�2�1)
R2. �1�2�−11 = �−11 �2�1
R3. �1�3�−11 = �3

R4. �2�1�−12 = (�3�1)−1�1(�3�1)
R5. �2�2�−12 = (�3�1)−1(�1�3)�2(�1�3)−1(�3�1)
R6. �2�3�−12 = �−11 �3�1

Conjugating the relation R5 by the last relation R6 we obtain:

R5′. �2(�3�2�−13 )�−12 = �3�2�−13 .
Wemay replace relation R5 by R5’ without changing the presentation of the group. Notice that
the pairs of relations R1 & R4, R2 & R6, R3 & R5’ are of the same type.

Let X be the 2-CW complex associated to the group F3 ⋊ F2. That is, X consists of 1 0-cell
p, 5 1-cells attached as loops on p, and 6 2-cells whose boundaries are given by the relations
above. Then �1(X) = F3 ⋊ F2. Denote by X̃ the universal cover of X. We want to show

Proposition 3.1. The 2-CW complex X is a model for B(F3 ⋊ F2).

Proof. We �rst construct X̃ and then show it is contractible (Lemma 3.3).
Step 1: We start from the 1-skeleton ofX, denoted byX(1). This is a bouquet of 5 circles, and

its universal cover X̃(1) is a tree, the Cayley graph of the free product F2(�1, �2) ∗ F3(�1, �2, �3).
The group F3 ∗ F2 acts freely on X̃(1).

As the group F3 ⋊ F2 is the quotient of F2 ∗ F3 by the six relations stated above,

F3 ⋊ F2 ≃ (F3 ∗ F2)∕⟨R1, R2, R3, R4, R5′, R6⟩,

we shall modify X̃(1) so that the relations act trivially. This is done in Step 2 by gluing 2-cells
and by identi�cation of branches.

Step 2: Note that every point in the Cayley graph X̃(1) is generic. Choose an arbitrary vertex

P ∈ X̃(1) and de�ne Q ∶= �1(P) and R ∶= �2(P) in X̃(1). The six relations R1, R2, R3, R4, R5’,
R6 require that the pair of points on both sides of the following equations have to be identi�ed:

a) �1(�2P) = �−11 �2�1Q
b) �1(�1Q) = �−11 �−12 �1�2�1Q
c) �1(�3P) = �3Q

d) �2(�1P) = �−11 �−13 �1�3�1R
e) �2(�3�2�−13 P) = �3�2�−13 R
f) �2(�3P) = �−11 �3�1R

Attach 2-cells given by the six relations and identify the branches at the vertices being glued
in the 2-cells. Performing this process for each vertex in X̃(1), we then obtain a 2-dimensional
CW-complex, we denoted by X̃0.

Lemma 3.2. The space X̃0 constructed in Step 1 and Step 2 is the universal cover X̃ of X.
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P β2P

β−1
1 β2β1Q = α1β2PQ

β1Q β2β1Q

α1

β2

β2

α1

β1 β1

Figure 1. 2 cell associated to R1

.. . . ...
...

.. . . ...
...

.. . . ...
...

β−1
1 β2β1Q = α1β2Pβ−1

1 β2β1Q α1β2P

Figure 2. Identify branches over two identi�ed points

P P

α1α1 α1 α1

Q Q

β2P

β2

β1

β1P

β3

Figure 3. 2-cells for Relations 1 and 2

Proof. Let us go through the process for R1, as an example. Starting from P and following the
expression �1(�2P), we obtain the vertices P, �2P, and �1(�2P); and starting from Q = �1(P)
and following the expression �−11 �2�1Q, we obtain vertices Q, �1Q, �2�1Q and �−11 �2�1Q. So,
by tracing out each letter in R1, one obtains a hexagon with 6 vertices. Fill in the interior of
the hexagon with a 2-cell. See Figure 1.

Because the two points �1(�2P) and �−11 �2�1Q are identi�ed in the hexagon, the branches
rooted over the two points will be identi�ed under the group action. See Figure 2 for an illus-
tration.

In the left hand side of the Figure 3, the hexagon associated to R1 is the green hexagon
relative to other relevant vertices in the space. See Figures 3, 4 and 5 for the typical 2-cell
associated to each of the relations.
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β2

β1

β3

α1 α1

β3P

P

Q R

P

α2 α2

Figure 4. 2-cells for Relations 3 and 4

β2

β1

β3

P

α2 α2

R

β3β2β
−1
3 P

P

R

α2

α2

Figure 5. 2-cells for Relations 5 and 6

After the gluing of 2-cells on X̃(1) and identi�cations of branches, one can check that F3⋊F2
acts freely on X̃0 with quotient X. In fact, let g ∈ F3 ⋊ F2 and suppose gx = x for some vertex
x in X̃0. Assume g ≠ e. Then there exists g̃ ∈ F3 ∗ F2 such that �(g̃) = g, where � is the
morphism � ∶ F3 ∗ F2 → F3 ⋊ F2. Let x̃ ∈ X̃(1) such that �(x̃) = x. Because g̃ is not the
identity in F3 ∗ F2 and F3 ∗ F2 acts freely on X̃(1), we have g̃x̃ ≠ x̃. By de�nition, g̃x̃ and
x̃ are identi�ed with the same point x in X̃0. So g̃x̃ and x̃ can be connected by relations R1,
R2, R3, R4, R5’, R6. So g̃ can be expressed as Ri1⋯Rik , and then g = e in F3 ⋊ F2, which is a
contradiction. This shows that F3 ⋊ F2 acts freely on X̃0.

By construction, the quotient of X̃0 by F3 ⋊ F2 is X. Therefore the lemma is proved. �

Proposition 3.1 then follows from the lemma below.

Lemma 3.3. The universal cover X̃ is contractible.

Proof. We shall de�ne a uniform deformation of every 2-cell in X̃ so that the resulting de-
formed 2-complex X̃′ is contractible.

LetP0 = P be a 0-cell in X̃, and setPi = �i1(P) andQi = �1(Pi).Here �i1(P)means applying �1
toP i times. Let ci be the 2-cell containingPi andQi associated toRelation 1. De�ne ahomotopy
of ci by moving Qi continuously to �2�1(Qi) through the path Qi → �1(Qi) → �2�1(Qi). See
Figure 6. Then ci is continuously deformed to a rectangle c′i , where ∪ic

′
i ≃ ℝ × [0, 1]. This
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P−1

P2

P−2
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P−4
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Q1

Q−1

Q2

Q−2

Q−3

Q−4

P1

Figure 6. Homotopy for cells ci

P ′
0 P ′

1P ′
−1 P ′

2P ′
−2 P ′

3P ′
−3

α1

Q′
0

Q′
1

Q′
−1

Q′
2Q′

−2

Q′
3

Q′
−3

Figure 7. Homotopy for cells di

homotopy is uniform with respect to i. Similarly, one can de�ne a homotopy for the 2-cells
associated to Relation 6. (In this case, �2(Pi) should be moved to �3�1(�2(Pi))).

Let P′0 = P, P′i = �i2(P), and Q
′
i = �1(Pi). Let di be the 2-cell containing P′i and Q

′
i associated

to Relation 2. De�ne a homotopy of di by moving each Q′i continuously to �2�1Q
′
i though the

path Q′i → �1Q′i → �2�1Q′i ; see Figure 7. Then di deforms continuously to a rectangle d′i ,
uniformly with respect to i, with ∪i∈ℤd′i ≃ ℝ × [0, 1].
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P

Q

l

Figure 8. Homotopy for cells e

Similarly, one can de�ne a homotopy for the 2-cells associated to Relation 4. (In this case,
�2(P′i ) should be moved to �3�1(�2(Pi))).

Relation 3 gives rise to 2-cells in the shape of a rectangle. Let a be a rectangle containing P
and �1Q. Deform a by a homotopy carrying the edge lwith verticesQ and �3Q to �2�1l through
the path l → �1l → �2�1l.

For Relation 5, letQ = �2(P). In the cell e containing P andQ and corresponding to Relation
5, move the edge l with vertices �3�2�−13 (P) and �3�2�−13 (Q) through the path l → �−13 l →
�−12 �−13 l; see Figure 8. Then e is deformed to a 2-cell e′ in the shape of a rectangle. Deform e′
again by a homotopy carrying the edge l with vertices Q and �−13 Q to �3�1l through the path
l → �1l → �3�1l.

After this process, we obtain a 2-CW complex X̃′. All the 2-cells in X̃ are turned into rect-
angular shaped 2-cells in X̃′. Algebraically, this process corresponds to the abelianization of
all relations. Note that here we are using the special structure of the pure braid group: Indeed,
the deformations can be done uniformly, because all relations in P4 have the form

�i�j�−1i = C�jC−1 (3.1)

where C is a word depending on i, j, having �nite letters chosen from �1, �2, �3. The defor-
mation from X̃ to X̃′ corresponds to replacing (3.1) by �i�j�−1i = �j. Indeed, the relations
determine the group

F2 × F3 = ⟨�1, �2, �1, �2, �3|�i�j = �j�i,∀i, j⟩.
Therefore we have shown that X̃ is homotopic to

X̃′ = E(F2 × F3) = EF2 × EF3
which is a contractible space. The lemma is then proved. �
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This completes the proof of the proposition. �

3.2. K-homology of BP4. We are ready to compute the K-homology of P4.

Theorem 3.4. We have that
K0(BP4) ≃ K1(BP4) ≃ ℤ12 .

Hence, as P4 is torsion-free, K
P4
0 (EP4) ≃ KP4

1 (EP4) ≃ ℤ12.

To prove this theorem, we �rst observe the following two easy well-known facts:

Lemma 3.5. For any �nite CW complex X, we have

Ki(X × S1) ≃ K0(X)⊕K1(X) for i = 0, 1.

Proof. Let i be 0 or 1. Note that Ki(X × S1) ≃ Ki(C(X × S1)) ≃ Ki(C(X)⊗C(S1)). As C(S1) ≃
C0(ℝ)⊕ ℂ, we have that

Ki(C(X)⊗C(S1)) ≃ Ki(C(X)⊗C0(ℝ))⊕Ki(C(X)).

Noting that Ki(C(X)⊗C0(ℝ)) = Ki+1(C(X)), the lemma is proved. �

Lemma 3.6. We have
BP4 ≃ B(F3 ⋊ F2) × S1.

Proof. We use the isomorphism P4 ≃ F3 ⋊ F2 ⋊ F1. By changing the representative of the
generator of F1 ≃ ℤ in P4 ≃ F3 ⋊ F2 ⋊ F1, we can obtain the trivial action of F1; see Remark
2.1. Hence P4 ≃ (F3 ⋊ F2) ×ℤ. Thus

BP4 ≃ B(F3 ⋊ F2) × Bℤ ≃ B(F3 ⋊ F2) × S1;

which proves the lemma. �

Recall that amodel ofB(F3⋊F2) is given (Proposition 3.1) by the 2-dimensional CWcomplex
X constructed in Lemma 3.2 (and associated to the group presentation of F3 ⋊ F2).

Lemma 3.7. We have K0(X) ≃ ℤ7 and K1(X) ≃ ℤ5.

Proof. By Lemma 4.1 in [20], because X is a 2-dimensional CW complex, we have

K0(X) ≃ H0(X,ℤ)⊕H2(X,ℤ) K1(X) ≃ H1(X,ℤ) .

Note thatH0(X,ℤ) = ℤ, since X is connected; and

H1(X,ℤ) ≃ (F3 ⋊ F2)∕[F3 ⋊ F2, F3 ⋊ F2] ≃ ℤ5.

To calculate H2(X,ℤ), one notes that all 6 relations are cycles (nontrivial and distinct), and
there are at most 6 2-cells, soH2(X,ℤ) ≃ ℤ6. The lemma is thus proved. �

Proof of Theorem 3.4. Making use of the Lemmas, we have for i = 0 or 1:

KP4
i (EP4) ≃ Ki(BP4) ≃ K0(B(F3 ⋊ F2))⊕K1(B(F3 ⋊ F2)),
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where the �rst isomorphism is due to P4 being torsion-free, and the second isomorphism fol-
lows from Lemma 3.5. Then by Proposition 3.1 and Lemma 3.7, we have

Ki(B(F3 ⋊ F2)) ≃ Ki(X) ≃ {ℤ
7 i = 0

ℤ5 i = 1
.

The theorem then follows. �

3.3. K-homology of BPn. In this section, we show that for i = 0 or 1,

Ki(BPn) ≃ Ki(Y) ≃ ℤ
n!
2 , (3.2)

where Y = BFn−1 × BFn−2 ×⋯ × BF1.
Recall that rationally, the Chern character on K-homology for any �nite CW complex X is

an isomorphism:

K0(X)⊗ℚ ≃
⨁

i
H2i(X,ℚ) K1(X)⊗ℚ ≃

⨁

i
H2i−1(X,ℚ). (3.3)

Thus the second isomorphism in (3.2) holds up to torsion.

Lemma 3.8. Let Y = BFn−1 × BFn−2 ×⋯ × BF1. Then modulo torsion, we have

K0(Y) ≃ ℤ
n!
2 and K1(Y) ≃ ℤ

n!
2 .

Proof. We need to show that
∑

i dimH2i(Y) =
n!
2
= ∑

i dimH2i−1(Y). Observe that Hi(Y,ℚ)
is generated by i-cells in Y. Denote by ak the number of k-cells in the CW-complex Y. It is
enough to show that

∑

i
a2i =

∑

i
a2i−1 =

n!
2 .

Because BFk has one 0-cell and k 1-cells, we have that for Y = BFn−1 × BFn−2 ×⋯ × BF1,

a0 = 1, a1 =
n−1∑

i=1
i, a2 =

∑

1≤i<j≤n−1
ij, … , an−1 = 1 ⋅ 2⋯ (n − 1).

That is, am is equal to the coe�cient of tm in the series (1+ t)(1+2t)⋯ (1+[n−1]t). Therefore
we have

n−1∑

k=1
ak =

n−1∏

l=1
(1 + l) =

n∏

l=1
l = n!

and
n−1∑

k=1
(−1)kak =

n−1∏

l=1
(1 − l) = 0.

The lemma is then proved. �

The �rst isomorphism in (3.2) also holds up to torsion. In other words, the K-homology for
BPn can be computed rationally.
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Proposition 3.9. Up to torsion,

K0(BPn) ≃ K1(BPn) ≃ ℤ
n!
2 .

Proof. The integer cohomology ofBPn of degreem is torsion-free, with the power overℤ being
equal to the coe�cient of tm in the series (1+t)(1+2t)⋯ (1+[n−1]t). This was �rst computed
by Arnol’d [2]; see also Example 2.3 of [1]. Applying the proof of Lemma 3.8, we �nd that up
to torsion,

K0(BPn) ≃ Heven(BPn,ℤ) ≃ ℤ
n!
2 K1(BPn) ≃ Hodd(BPn,ℤ) ≃ ℤ

n!
2 .

Together with (3.3) and Poincaré duality, this gives the result. Note that BPn is a Poincaré
complex in the sense of Wall [36] and hence satis�es the Poincaré duality theorem. To see that
BPn is a Poincaré complex, notice that BPn is composed of iterated extensions of the BFis, and
it is easy to verify that the BFis are Poincaré complexes. �

Finally, the torsion in Proposition 3.9 can be removed using Atiyah-Hirzebruch spectral se-
quences, analogous to Arnold’s calculation of the cohomology groups H∗(BPn), using Serre
spectral sequences, as there is a �bration for BPn. Then using Poincaré duality as in Proposi-
tion 3.9, we get the result at the level of the homology groups. Let us review some key steps
and properties of pure braid groups in computingH∗(BPn). For more details, see [39].

It is well known that the ordered con�guration space of n points in ℂ is a model for the
classifying space of Pn:

BPn = {(z1,… , zn) ∈ ℂn|zi ≠ zj if i ≠ j}.
Note that for n = 4, this model is homotopic to the model of BP4 that we constructed explicitly
earlier. Consider the map

�n ∶ BPn → BPn−1 (z1,… , zn)↦ (z1,… , zn−1).
This is a �bration whose �ber is homeomorphic to the (n − 1)-times punctured plane, which
is homotopic to a wedge of n − 1 circles, so that the �ltration can be written as

BFn → BPn → BPn−1.
This can also be induced by the short exact sequence 1→ Fn−1 → Pn → Pn−1 → 1. The map

in ∶ BPn−1 → BPn (z1,… , zn−1)↦ (z1,… , zn−1,max|zi| + 1)
gives rise to a splitting of the �bration �n. Associated to a �bration, there is a monodromy
action of �1(B) on the (co)homology of the �ber F. In our setting, it can be checked that Pn−1 =
�1(BPn−1) acts on the homology of BFn−1 trivially. Then the E2 page of the Atiyah-Hirzebruch
spectral sequence

Ep,q2 (BPn) = Hp(BPn−1, Hq(BFn−1))
is a cohomology with untwisted coe�cients inHq(BFn−1) and is calculated by

Ep,q2 (BPn) =
⎧

⎨
⎩

Hp(BPn−1) q = 0
Hp(BPn−1)⊗ℤn−1 q = 1
0 q > 1.
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See Exercise 39 of [39]. Though not obvious from the de�nition, following the outline in Exer-
cise 40 of [39] one can then show that the spectral sequences collapse on the E3 page. This is
because on E2 page all di�erentials vanishes:

0

,,

0

,,

0

++

0

0

,,

0

,,

0

++

0

H0(BPn−1)⊗ℤn−1

d2=0

++

H1(BPn−1)⊗ℤn−1

d2=0

++

H2(BPn−1)⊗ℤn−1

d2=0

++

H3(BPn−1)⊗ℤn−1

H0(BPn−1) H1(BPn−1) H2(BPn−1) H3(BPn−1)

.

Therefore we obtain
Hk(BPn) =

⨁

p+q=k
Ep,q2 (BPn) = Ek,02 (BPn)⊕Ek−1,12 (BPn).

The group can then be calculated using induction.

Theorem 3.10. We have
K0(BPn) ≃ K1(BPn) ≃ ℤ

n!
2 .

Proof. We shall use Atiyah–Hirzebruch spectral sequence (see for example [13, 20]
E2p,q(BPn) = Hp(BPn, Kq(pt)) ⇒ Kp+q(BPn).

Because

E2p,q(BPn) = Hp(BPn, Kq(pt)) = {Hp(BPn) q even
0 q odd.

Identify the homology and cohomology via Poincaré duality and one has that E2p,q(BPn) is tor-
sion free. Note that the di�erential d2 ∶ E2p,q → E2p−2,q+1 vanishes for all integers p, q, so that
spectral sequence collapses on the E3 page,

0 0 0 0

H0(BPn) H1(BPn) H2(BPn)

d2=0

jj

H3(BPn)

d2=0

jj

d2=0

jj

0 0 0

d2=0

jj

0

d2=0

jj

d2=0

jj

H0(BPn−1) H1(BPn−1) H2(BPn−1)

d2=0

jj

H3(BPn−1)

d2=0

jj

d2=0

jj

.

and also
K0(BPn) ≃

⨁

p+q≡0(2)
E2p,q(BPn) K1(BPn) ≃

⨁

p+q≡1(2)
E2p,q(BPn).
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Therefore

K0(BPn) ≃ Heven(BPn) (3.4)
K1(BPn) ≃ Hodd(BPn). (3.5)

BecauseH∗(BPn) is torsion-free for all n, from the above we obtain thatK∗(BPn) is torsion-free
as well. Together with Proposition 3.9, the theorem then follows. �

Note that the calculation of the K-homology of Y = BFn−1 ×⋯ × BF1 is not used in the
proof of the theorem, but the comparison to the K-homology of BPn provides intuition for
the cycles of BPn that form a set of generators for K∗(BPn) in light of (3.4) and (3.5). By the
�bration structure BFn−1 → BPn → BPn−1, and by induction, BPn has a model of dimension
n − 1, and every k-simplex of BPn is labelled by Aj1,i1 ,… , Ajk ,ik , where 1 ≤ i1 < ⋯ < ir ≤ n,
1 ≤ jl < il, and Fl(A1,l+1,… , Al,l+1) is the free subgroup of Pn. They are cycles because of the
pure braid group relations, and they correspond bijectively to cycles of Y. There is a canonical
map BPn → Y inducing an isomorphism on K-homology; see Section 5.4 for more details.

4. K-theory of the reduced group C∗-algebra of Pn
In this section, we compute the right-hand side of the Baum–Connes morphism for Pn. We

shall use the Pimsner–Voiculescu six-term exact sequence, as it allows us to compute the K-
theory of the reduced crossed product of a C∗-algebra with a free group [28]. Let A be a C∗-
algebra endowed with an action of the free group on n generators Fn = Fn(x1,…xn) by au-
tomorphisms � ∶ Fn → Aut(A). Following Pimsner and Voiculescu (see [28, Theorem 3.1,
Theorem 3.5]), we have two six-term exact sequences

K0(A)
wn // K0(A⋊�′,r Fn−1)

k∗ // K0(A⋊�,r Fn)

��
K1(A⋊�,r Fn)

OO

K1(A⋊�′,r Fn−1)
k∗oo K1(A)

wnoo

(4.1)

where �′ is the restriction of the action to Fn−1, k ∶ A ⋊�′,r Fn−1 → A ⋊�,r Fn is the natural
inclusion, i ∶ A → A ⋊�′,r Fn−1 is the canonical inclusion, wn = i∗◦(id∗ − �(x−1n )∗), and
the vertical arrows correspond to the connecting homomorphisms of a sequence induced by a
Toeplitz extension; and

(K0(A))n
� // K0(A)

�∗ // K0(A⋊r Fn)

��
K1(A⋊r Fn)

OO

K1(A)�∗
oo (K1(A))n

�oo

(4.2)

where � is the map

�(
1 ⊕⋯⊕ 
n) =
n∑

i=1
(
i − �(x−1i )∗(
j)) .
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and the vertical arrows come from connecting homomorphisms of a Toeplitz extension.
Moreover, we recall that in [28], Pimsner andVoiculescuused these six-termexact sequences

to give the following computation of the K-theory of the C∗-algebra of a free group:

K0(C∗r (Fn(�1,… , �n))) ≃ ℤ[1] (4.3)

and
K1(C∗r (Fn(�1,… , �n))) ≃ ℤn[u�1 ,… , u�n] (4.4)

where for g ∈ Fn(�1,… , �n), we denote by ug the element in C∗r (Fn(�1,… , �n)) such that
ug(ℎ) = 1 if ℎ = g, and ug(ℎ) = 0 if ℎ ≠ g.

As the group Fn is K-amenable (see [9] and [8]),

K0(C∗(Fn(�1,… , �n))) ≃ ℤ[1] (4.5)

and
K1(C∗(Fn(�1,… , �n))) ≃ ℤn[u�1 ,… , u�n] . (4.6)

4.1. K-theory of C∗r (P4). We will start with the case of n = 4. To compute the K-theory of
C∗r (P4), we will use the decomposition P4 = (F3⋊' F2) ×ℤ, where the action ' is given by the
relations in Remark 2.1. Its reduced C∗-algebra C∗r (P4) is then isomorphic to C∗r (F3 ⋊ F2) ⊗
C∗r (ℤ), and by the Künneth formula we have the following decompositions:

K0(C∗r (P4)) ≃ K0(C∗r (F3 ⋊ F2))⊗ℤ K0(C∗r (ℤ))⊕K1(C∗r (F3 ⋊ F2))⊗ℤ K1(C∗r (ℤ)),

K1(C∗r (P4)) ≃ K0(C∗r (F3 ⋊ F2))⊗ℤ K1(C∗r (ℤ))⊕K1(C∗r (F3 ⋊ F2))⊗ℤ K0(C∗r (ℤ)) .
We then compute theK-theory ofC∗r (F3⋊F2). By the followingwell-known lemma, the former
C∗-algebra is the reduced crossed product C∗r (F3)⋊r F2 (see [10, Example 2.3.6], [38, §3.3]).

Lemma 4.1. Let H and N be discrete groups, and let � ∶ H → Aut(N) be an action by group
automorphisms. Then � gives actions ofH on the full and reduced group C∗-algebras C∗(N) and
C∗r (N) that are given by the formula �ℎ(f)(n) = f(ℎ−1nℎ), for f ∈ Cc(N), ℎ ∈ H and n ∈ N,
and one has

C∗r (N ⋊� H) ≃ C∗r (N)⋊�,r H,
C∗(N ⋊� H) ≃ C∗(N)⋊� H.

Applying Pimsner–Voiculescu’s �rst sequence to compute the K-theory of C∗r (F3) ⋊r F2,
where F3 = F3(�1, �2, �3) and F2 = F2(�1, �2), we get the following result.

Proposition 4.2. The K-theory of C∗r (F3 ⋊ F2) is as follows:

K0(C∗r (F3 ⋊ F2)) ≃ ℤ7, K1(C∗r (F3 ⋊ F2)) ≃ ℤ5.

Proof. Denote by ' ∶ F2 → Aut(F2) the action of F3 on F2 given by the relations which
determine the structure of P4. Set B ∶= C∗r (F3)⋊r F2 = C∗r (F3(�1, �2, �3))⋊r F2(�1, �2). From
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(4.1), we have the exact sequence:

K0(C∗r (F3(�1, �2, �3)))
w2 // K0(C∗r (F3(�1, �2, �3))⋊r F(�1))

k∗ // K0(B)

��
K1(B)

OO

K1(C∗r (F3(�1, �2, �3))⋊r F(�1))k∗
oo K1(C∗r (F3(�1, �2, �3)))w2

oo

(4.7)
We claim that the maps w2 = i∗◦(id∗ − '(�−12 )∗) are equal to zero. On K0, we have

'(�−12 )∗([1]) = [1] = id∗([1]),

so w2([1]) = 0; and on K1, for every j ∈ {1, 2, 3} we have

'(�−12 )∗([u�j ]) = [u'(�−12 )(�j)] = [u�−12 �j�2].

By the braid group relations 4, 5, and 6 in Remark 2.1, we have �−12 �j�2 = f��jf−1� , where f�
is a product of elements in {�1, �2, �3}. Hence

[u�−12 �j�2] = [uf��jf−1� ] = [u�j ] in K1(C∗(F(�1, �2, �3))⋊r F(�1)),

so w2([u�j ]) = 0 for all j, and the claim is proved.
From (4.7), we get two short exact sequences:

0→ K0(C∗r (F3(�1, �2, �3))⋊r F(�1))→ K0(B)→ K1(C∗r (F3(�1, �2, �3))→ 0 (4.8)
0→ K1(C∗r (F3(�1, �2, �3))⋊r F(�1))→ K1(B)→ K0(C∗r (F3(�1, �2, �3))→ 0 (4.9)

We now use another PV sequence to compute Ki(C∗r (F3(�1, �2, �3))⋊r F(�1)) for i = 0, 1. Set
B1 ∶= C∗r (F3(�1, �2, �3))⋊r F(�1). We have from (4.2) that

K0(C∗r (F3(�1, �2, �3)))
� // K0(C∗r (F3(�1, �2, �3))) // K0(B1)

��
K1(B1)

OO

K1(C∗r (F3(�1, �2, �3)))oo K1(C∗r (F3(�1, �2, �3)))�
oo

(4.10)

where � = id∗ − '(�−11 )∗ is again the trivial map in K-theory, because by relations 1., 2. and
3. in Remark 2.1, we have that �−11 �j�1 = f��jf−1� , where f� is a product of elements in
{�1, �2, �3}, as above.

We get the short exact sequences

0 // ℤ // K0(B1) // ℤ3 // 0,

0 // ℤ3 // K1(B1) // ℤ // 0,
from which we deduce

K0(B1) ≃ K1(B1) ≃ ℤ4 .
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By inserting this in (4.8), we get

0 // ℤ4 // K0(B) // ℤ3 // 0,

0 // ℤ4 // K1(B) // ℤ // 0,
so we deduce

K0(B) ≃ ℤ7, K1(B) ≃ ℤ5, (4.11)
which proves the proposition. �

By applying the Künneth formula to P4 = B ×ℤ, we obtain the following corollary.

Corollary 4.3. The K-theory of C∗r (P4) is given by

K0(C∗r (P4)) ≃ ℤ12, K1(C∗r (P4)) ≃ ℤ12.

4.2. Going fromPn−1 toPn. Before computing theK-theory ofC∗r (Pn) for all n, let us explain
how to compute the K-theory of C∗r (P5). Recall that Pn = Fn−1⋊ Pn−1, so that P5 = F4⋊ P4 =
F4⋊F3⋊F2 ×ℤ. We �rst compute the K-theory of C∗r (F4⋊F3⋊F2). By Lemma 4.1, we have

C∗r (F4 ⋊ F3 ⋊ F2) ≃ (C∗r (F4 ⋊ F3))⋊r F2,
so the K-theory of C∗r (P5) can be computed via a Pimsner–Voiculescu sequence once we know
the K-theory of C∗r (F4 ⋊ F3), which is isomorphic to C∗r (F4) ⋊ F3. Notice that, as Fn is K-
amenable for all n, we have Ki(C∗r (F4)⋊ F3) ≃ Ki(C∗r (F4)⋊r F3), for i = 0, 1.

We compute the K-theory groups Ki(C∗r (F4)⋊r F3) via Pimsner–Voiculescu sequences.
Letting n = 3 in (4.2), and using (4.6) and (4.5), we get the sequence below.

ℤ3 � // ℤ // K0(C∗r (F4)⋊r F3)

��
K1(C∗r (F4)⋊r F3)

OO

ℤ4oo (ℤ4)3
�

oo

.

Since again � = 0 on both K0 and K1, we have
K0(C∗r (F4)⋊r F3) ≃ ℤ13, K1(C∗r (F4)⋊r F3) ≃ ℤ7.

To compute the K-theory of (C∗r (F4)⋊r F3)⋊r F2, we apply (4.2)

(ℤ13)2 � // ℤ13 // K0(C∗r (F4)⋊r F3)⋊r F2)

��
K1(C∗r (F4)⋊r F3)⋊r F2

OO

ℤ7oo (ℤ7)2
�

oo

and we get

K0(C∗r (F4)⋊r F3)⋊r F2) ≃ ℤ27, K1(C∗r (F4)⋊r F3)⋊r F2) ≃ ℤ33 .
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By the Künneth formula, we �nally obtain

K0(C∗r (F4)⋊r F3)⋊r F2 ×ℤ) ≃ K1(C∗r (F4)⋊r F3)⋊r F2 ×ℤ) ≃ ℤ33 ⊕ℤ27 ≃ ℤ60 .
Let us now generalise this procedure to compute the K-theory of C∗r (Fn)⋊r Fn−1 in the follow-
ing lemma.

Lemma 4.4. The K-theory of C∗r (Fn)⋊r Fn−1 is given by

K0(C∗r (Fn)⋊r Fn−1) ≃ ℤ1+n(n−1), K1(C∗r (Fn)⋊r Fn−1) ≃ ℤ2n−1.

Proof. We apply (4.2)

(K0(C∗r (Fn)))n−1
� // K0(C∗r (Fn)) // K0(C∗r (Fn)⋊r Fn−1))

��
K1(C∗r (Fn)⋊r Fn−1))

OO

K1(C∗r (Fn))oo (K1(C∗r (Fn)))n−1
�oo

(4.12)

the maps � are trivial in K-theory, so for i = 0, 1 this gives
K0(C∗r (Fn)⋊r Fn−1) ≃ K0(C∗r (Fn))⊕ (K1(C∗r (Fn)))n−1, (4.13)
K1(C∗r (Fn)⋊r Fn−1) ≃ K1(C∗r (Fn))⊕ (K0(C∗r (Fn)))n−1 . (4.14)

By the relations (4.6), we obtain the result. �

4.3. K-theoryofC∗r (Pn). Wearenow ready to compute theK-theory ofC∗r (Pn)usingPimsner–
Voiculescu sequences. We use the following remark.

Remark 4.5. LetA be aC∗-algebra whoseK-theory is torsion-free and �nitely generated. This
means that there exist two integers a0 and a1 such that K0(A) ≃ ℤa0 and K1(A) ≃ ℤa1 . If
� ∶ Fk → Aut(A) is an action of the free group Fk by automorphisms on A such that the
induced map � in the PV sequence is zero, then we obtain

K0(A⋊r Fk) ≃ ℤa0+ka1 , K1(A⋊r Fk) ≃ ℤa1+ka0 .
In particular, the K-theory groups of A⋊r Fk are also torsion-free.

Proposition 4.6. The K-theory of C∗r (Pn) is given by

K0(C∗r (Pn)) ≃ K1(C∗r (Pn)) ≃ ℤ
n!
2 .

Proof. We set Qj ∶= Fn−1 ⋊ Fn−2 ⋊⋯⋊ Fn−j, for j = 1,… , n − 2.
We�rst show inductively that all the groupsK∗(C∗r (Qj)) are torsion free. For j = 1, this holds

true; at each subsequent step, theK-theory ofC∗r (Qj) ≃ C∗r (Fn−1⋊Fn−2⋊⋯⋊Fn−j+1)⋊rFn−j
is computed as in Remark 4.5 via a Pimsner-Voiculescu sequence involving theK-theory of the
reduced C∗-algebra C∗r (Fn−1⋊Fn−2⋊⋯⋊Fn−j+1). We repeatedly apply Pimsner–Voiculescu
sequences (4.2) and we have

K0(C∗r (Qi)) ≃ K0(C∗r (Fn−i))⊕ (K1(C∗r (Qi−1)))n−i (4.15)
K1(C∗r (Qi)) ≃ K1(C∗r (Fn−i))⊕ (K0(C∗r (Qi−1)))n−i . (4.16)
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To determine the rank, set

xi ∶= rankK0(C∗r (Qi)), yi ∶= rankK1(C∗r (Qi)).

From (4.15), we have for i = 2,… , n − 2

xi = rankK0(C∗r (Qi−1)⋊r Fn−i) = xi−1 + yi−1(n − i),
yi = rankK1(C∗r (Qi−1)⋊r Fn−i) = yi−1 + xi−1 ⋅ (n − i).

with x1 = 1 and y1 = n − 1. This implies

xi + yi = xi−1 + yi−1 + (xi−1 + yi−1)(n − i) .

Note that Pn = Qn−2×ℤ; and by the Künneth formula, we have rankK∗(C∗r (Pn)) = xn−2+yn−2.
The sum si ∶= xi + yi satis�es

si = si−1(n − i + 1)
hence we deduce

sn−2 =sn−3(n − n + 2 + 1)
= s2 ⋅ (n − 2)(n − 3) ⋅ …4 ⋅ 3
= n(n − 1) ⋅ …4 ⋅ 3

= n!
2 .

�

As the group Pn is K-amenable (see section 2.3), the K-theory of the maximal C∗-algebra of
Pn coincides with the reduced one, see for instance, [16, Corollary 3.6]: If G is K-amenable,
then for every C∗-dynamical system (A, �, G) one has

Ki(A⋊�,r G) ≃ Ki(A⋊� G), i = 0, 1 . (4.17)

Since free groups are K-amenable, by Lemma 4.1 one has immediately:
(1) Ki(C∗(Pn)) ≃ Ki(C∗r (Pn))
(2) For the iterated semidirect products

Q1 ∶= Fn−1
Q2 ∶= Fn−1 ⋊ Fn−2
⋮
Qn−2 ∶= Fn−1 ⋊ Fn−2 ⋊⋯⋊ F2

the K-theory of the maximal C∗-algebra is the same as the reduced one.
Therefore

K0(C∗(Pn)) ≃ K1(C∗(Pn)) ≃ ℤ
n!
2 .
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5. Isomorphism of the Baum–Connes assembly map
Let us denote by Γ = F(�1, �2, �3)⋊ F(�1, �2) the group generated by �1, �2, �1, �2, �3 satis-

fying the six relations described in section 3.1. In this section, we use the structure of P4 given
by P4 ≃ Γ ×ℤ, where Γ = F3 ⋊ F2, and the Künneth theorem in K-theory, to reduce the proof
of the Baum–Connes isomorphism for P4 to that of Γ. We will use the explicit computations
given in [34] of the Baum–Connes assembly map in small homological degree to write down
the explicit image for Γ under the Baum–Connes assembly map. We will prove the following
theorem.

Theorem 5.1. The assembly map

�r ∶ Ki(BΓ)→ Ki(C∗r (Γ))
is an isomorphism for i = 0 (even-degree case) and i = 1 (odd-degree case).

5.1. Odd-degree Baum–Connes isomorphism for �. Wewill start with the case i = 1. Re-
call thatH1(Γ,ℤ) = Γ∕[Γ,Γ] so thatH1(Γ,ℤ) is the abelian group generated by �1, �2, �3, �1, �2.
There is a classical isomorphismH1(Γ,ℤ) ≃ H1(BΓ), where every generator ofH1(Γ,ℤ) corre-
sponds to a unique 1-cycle coming from the 1-skeleton of the space BΓ. The correspondence
is determined by the fact that Γ = �1(BΓ): Every element 
 ∈ Γ can be viewed as a pointed
continuousmap 
 ∶ S1 → BΓ, thus inducing amap inK-homology 
∗ ∶ K1(S1)→ K1(BΓ). Let
D be the Dirac operator on S1 and � the representation of C(S1) on L2(S1) given by pointwise
multiplication. Then the class of the cycle (�,D) is the generator of K1(S1) ≃ ℤ; we denote it
by [D]. Every element 
 ∈ Γ can then be mapped to the class of the cycle 
∗(�,D) = 
∗([D]) in
K1(BΓ) (see [34, Chapter 7]). Moreover, every element 
 ∈ Γ can be mapped to the invertible
element [
] ∈ K1(C∗r (Γ)), which is determined by the class of the Dirac element �
 in Cc(Γ).

We are going to prove the following theorem.

Theorem 5.2. Let Γ be the group F(�1, �2, �3)⋊ F(�1, �2) generated by the elements �1, �2, �1,
�2, �3 that satisfy the 6 relations described in Section 3.1. The Baum–Connes assembly map

�r ∶ K1(BΓ)→ K1(C∗r (Γ))
is an isomorphism with

�r((�i)∗[D]) = [�i], i = 1, 2;
�r((�i)∗[D]) = [�i], i = 1, 2, 3,

where [D] is the K-homology cycle given by the Dirac operator on the unit circle S1.

Following [34] (see Chapter 7), de�ne a morphism �̃a ∶ Γ→ K1(C∗r (Γ)) by sending 
 ∈ Γ to
the invertible element [
] in K1(C∗r (Γ)). The map �̃a gives rise to a well-de�ned morphism

�a ∶ H1(Γ,ℤ)→ K1(C∗r (Γ)), 
[Γ,Γ]↦ [
],
because K1(C∗r (Γ)) is an abelian group. The Dirac operator D on S1 gives rise to a class which
generates K1(S1). For every group element 
 ∈ Γ, denote by 
 ∶ S1 → BΓ a 1-cycle representa-
tive for [
] ∈ H1(BΓ).
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De�ne a morphism �̃t ∶ Γ → K1(BΓ) by sending 
 to 
∗[D]. By [34, Proposition 7.1], �̃t
descends to

�t ∶ H1(Γ,ℤ)→ K1(BΓ), [
]↦ 
∗[D],
and we have the following lemma due to Natsume, which we will use to prove Theorem 5.2.

Lemma 5.3 ([22], [34] Proposition 7.2). The following diagram commutes.

H1(Γ,ℤ)
�t

yy

�a

&&
K1(BΓ)

�r // K1(C∗r (Γ))
That is, �a = �r◦�t.
Proof of Theorem 5.2. We are going to use the fact that there is an assembly map

� ∶ Ki(BΓ)→ K(C∗(Γ))
such that �r = �Γ,∗◦� where the morphism �Γ,∗ ∶ Ki(C∗(Γ)) → K(C∗r (Γ)) is induced by the
regular representation �Γ of Γ. Wewill then use theK-amenability ofPn which implies that �Γ,∗
is an isomorphism. The advantage of �with respect to �r is that � is functorial in Γ and wewill
make use of its functoriality. Consider the group homomorphism  ∶ Γ → Γab, where Γab =
Γ∕[Γ,Γ] ≃ ℤ5 is generated by the cosets of �1, �2, �1, �2, �3. This map induces a continuous
map  ∶ BΓ → Bℤ5 and a morphism of group C∗-algebras  ∶ C∗(Γ) → C∗(ℤ5). By the
functoriality of the Baum–Connes assembly map at the level of the maximal C∗-algebra, we
have the following commutative diagram

K1(BΓ)
� //

 ∗
��

K1(C∗(Γ))

 ∗
��

K1(Bℤ5) �′ // K1(C∗(ℤ5))

where � and �′ are the Baum-Connes assembly map de�ned at the level of the full C∗-algebra
for Γ and ℤ5. From our calculation of K1(BΓ) (see Lemma 3.7), we see that  ∗ ∶ K1(BΓ) →
K1(Bℤ5) is an isomorphism. In fact, the following diagram is commutative by de�nition

H1(Γ,ℤ) //

≃
��

K1(BΓ)

 ∗
��

H1(ℤ5,ℤ) ≃ // K1(Bℤ5)
and the left and bottom arrows are isomorphisms. This shows that ∗ is a surjectivemorphism.
But  ∗ is a surjective morphism from ℤ5 to itself. So  ∗ is an isomorphism on K-homology.

As the Baum–Connes conjecture is known to be true for abelian groups, themap �′ is an iso-
morphism; so using the commutativity of the diagram, we get that the map  ∗ ∶ K1(C∗(Γ))→
K1(C∗(ℤ5)) is surjective. On the other hand, we have computed that

K1(C∗(Γ)) ≃ K1(C∗(ℤ5)) ≃ ℤ5;
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therefore, as a surjective homomorphism fromℤ5 to itself is an isomorphism, the map  ∗ is an
isomorphism on K-theory as well, and hence � is an isomorphism.

By commutativity of the diagram in Lemma 5.3, the map �a is surjective; and, being a sur-
jectivemorphism fromℤ5 to itself, it is an isomorphism. Thus, �a is an isomorphism, mapping
�i[Γ,Γ] to [�i] and �j[Γ,Γ] to [�j]. Because � is an isomorphism, we have that �t is an isomor-
phism, mapping [�i ∶ S1 → BΓ] ∈ H1(BΓ) ≃ H1(Γ,ℤ) to (�i)∗[D] ∈ K1(BΓ). Therefore we
know that the generators of K1(BΓ) are of the form (�i)∗[D], i = 1, 2; or (�j)∗[D], j = 1, 2, 3.
The commutativity of the diagram of Lemma 5.3 then implies that

�((�i)∗[D]) = [�i], i = 1, 2;
�((�i)∗[D]) = [�i], i = 1, 2, 3.

The theorem is then proved by noting the K-amenability of Γ and applying �Γ,r to get the ele-
ments of C∗r (Γ). �

5.2. Even-degree Baum–Connes isomorphism for �. Recall that Γ is the group

F(�1, �2, �3)⋊ F(�1, �2),
whose generators �1, �2, �1, �2, �3 satisfy the six relations of Section 3.1. Each relation Ri cor-
responds to a surface Σi whose fundamental group is canonically related to Ri as follows.

�1(Σ1) = ⟨a1, a2, a3, a4 | a1a2a−11 = (a3a4)−1a4(a3a2)⟩,
�1(Σ2) = ⟨b1, b2, b3, b4 | b1b2b−11 = b−13 b4b3b−14 b2⟩,
�1(Σ3) = ⟨c1, c2 | c1c2c−11 = c2⟩,
�1(Σ4) = ⟨d1, d2, d3, d4 | d1d2d−11 = (d3d4)−1d4(d3d2)⟩,
�1(Σ5) = ⟨e1, e2, e3, e4, e5, e6 | e1e2e−11 = (e6e5)−1e5e6e2(e3e4)−1(e4e3)⟩,
�1(Σ6) = ⟨f1, f2, f3, f4 | f1f2f−11 = f−13 f4f3f−14 f2⟩.

Let Γi = �1(Σi), and set Γ̃ ∶= Γ1 ∗ Γ2 ∗⋯ ∗ Γ6, the free product of the Γi. By the van Kampen
Theorem, the group Γ̃ is the fundamental group of

Σ ∶= Σ1 ∨ Σ2 ∨⋯ ∨ Σ6
obtained by joining together a base point from each of the Σi. Then the mapping de�ned by

a1, b1, c1 ↦ �1
d1, e1, f1 ↦ �2

a2, a4, b3, d2, d4, e3, e5, f3 ↦ �1

a3, b2, b4, e2 ↦ �2
c2, d3, e4, e6, f2, f4 ↦ �3

sends relations of Γ̃ to relations of Γ, and it determines a surjective morphism

f ∶ Γ̃→ Γ. (5.1)

The map f also leads to the morphism of full group C∗-algebras below.
f ∶ C∗(Γ̃)→ C∗(Γ).
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Let X = BΓ, and denote by X1,… , X6 the 2-simplices of X corresponding to each Ri. The
union of the Xi is the 2-skeleton X(2); and since X is a space of dimension 2,we have X(2) = X.
The map f in (5.1) induces a map at the level of the classifying spaces f ∶ BΓ̃ → BΓ = X.
Taking the 2-skeleton, we obtain a continuous map

f ∶ Σ→ X (5.2)
such that f(Σi) = Xi. Applying the fundamental group functor for (5.2) recovers

f ∶ �1(Σ)→ �1(X)
in (5.1). By the functoriality of the Baum–Connes assembly map, we have the following com-
mutative diagram,

K0(Σ)
� //

f∗
��

K0(C∗(Γ̃))

f∗
��

K0(BΓ)
� // K0(C∗(Γ)).

Note that the map in (5.2) gives rise to the two isomorphisms
H0(Σ) ≃ H0(BΓ) ≃ ℤ

and
f∗ ∶ H2(Σ)→ H2(BΓ), [Σi]↦ [Xi].

The existence of an inverse Chern character map
Heven(Σ) = H0(Σ)⊕H2(Σ)→ K0(Σ)

sending the generator [Σi] ∈ H2(Σ) to [DΣi ] ∈ K0(Σ), where DΣi is the Dirac operator on Σi,
which induces an isomorphism at the level of K-homology classes, allows one to construct a
morphism

�t ∶ Heven(BΓ) ≃ Heven(Σ)→ K0(Σ)
f∗,,→ K0(BΓ),

taking the composition with f∗ on K-homology,
By construction,

�t([Xi]) = f∗[DΣi ]. (5.3)
The map �t is part of the lower-left of diagram

Heven(BΓ)

�a

44

�t **

Heven(Σ)
≃ //

≃
oo K0(Σ)

� //

f∗
��

K0(C∗(Γ̃))

f∗
��

K0(BΓ)
�r // K0(C∗r (Γ)).

The upper-right of this diagram is de�ned to be �a; by de�nition, (see [34])
�a([Xi]) = f∗(�([DΣi ])).

The commutativity of this diagram is implied by the following lemma.
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Lemma 5.4 ([34] Prop. 7.3). The diagram commutes with �t rationally injective:

Heven(Γ,ℤ)
�t

xx

�a

''
K0(BΓ)

�r // K0(C∗r (Γ))

That is, �a = �r◦�t.

Now, from our calculations (see Lemma 3.7), we have,

Heven(BΓ) ≃ K0(BΓ) ≃ ℤ7.
Knowing that �t maps generators to generators from (5.3), and in view of the fact that �t is
rationally injective (see [34, Proposition 7.3], �t is an isomorphism. The commutativity �a =
�r◦�t hence implies that �a is an isomorphism if and only if �r is an isomorphism.

Since �a = �r◦�t, we can also describe the map �r explicitly:
�r ∶ K0(BΓ)→ K0(C∗r (Γ))

f∗[DΣi ]↦ f∗�([DΣi ])
We are ready to prove the following theorem.

Theorem 5.5. The assembly map

�r ∶ K0(BΓ)→ K0(C∗r (Γ))
is an isomorphism, with

�r(f∗[DΣi ]) = f∗(�[DΣi ]), 1 ≤ i ≤ 6
�r(1) = [1].

Proof. Consider the trivial homomorphism 1∶ Γ → {e}. It induces a map BΓ → {pt} and
a map C∗(Γ) → ℂ such that the K-homology and K-theory functor lead to two morphisms
1∗ ∶ K0(BΓ) → K0(pt) and 1∗ ∶ K0(C∗(Γ)) → K0(ℂ). The �rst morphism in K-homology is a
surjectivemap capturing the 0-simplex of BΓ. The functoriality of the Baum–Connes assembly
map gives rise to the commutative diagram

K0(BΓ)
� //

1∗
��

K0(C∗(Γ))
1∗

��
K0(pt)

�0 // K0(ℂ)

where �0 is the identity map from ℤ to itself. Let i = 1 or 2, and let j = 1, 2, or 3. Denote by
�ij the surjective morphism given by

�ij ∶ Γ→ ℤ2 �p ↦ �pi�i, �p ↦ �pj�j,
where �ij is the Kronecker delta. As above, it induces two maps

�ij ∶ BΓ→ Bℤ2 ≃ T2, �ij ∶ C∗(Γ)→ C∗(ℤ2),
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wherewe denote by T2 the torus. Note that themap on the classifying space is given by collaps-
ing all 1-cells which do not represent �i or �j to a point, and collapsing all 2-cells that do not
represent the group relation involving �i�j�−1i (denoted Rij) to a point. Thus, the inducedmap
on K-homology �ij,∗ ∶ K0(BΓ) → K0(T2) is a surjective map that maps the 2-cell represented
by Rij to the Bott generator of K0(T2). As above, we also have the induced map on K-theory
�ij,∗ ∶ K0(C∗(Γ))→ K0(C∗(ℤ2)) the commutative diagram

K0(BΓ)
� //

�ij,∗
��

K0(C∗(Γ))
�ij,∗

��
K0(T2)

�ij // K0(C∗(ℤ2)).

Here �ij is the assembly map for ℤ2. Putting 7 diagrams (involving 1∗ and �ij,∗ where i = 1, 2
and j = 1, 2, 3) together, we have a commutative diagram

K0(BΓ)
� //

�∗
��

K0(C∗(Γ))

�∗
��

K0(pt)
⨁[⨁

i,j K̃0(T
2)
] �′

≃
// K0(ℂ)

⨁[⨁
i,j K̃0(C

∗(ℤ2))
]
.

Here, K̃0(T2) is the reduced K-homology, excluding elements generated by the trivial cycle
from K0(T2), and K̃0(C∗(ℤ2)) is the reduced K-theory, eliminating elements generated by the
trivial projection from K0(C∗(ℤ2)). By construction, �∗ on K-homology (the left arrow) is an
isomorphism. It is well known that �′ is an isomorphism for abelian groups ℤ2 and for the
trivial group {e}. Together with the commutativity of the diagram, the map �∗ on K-theory
(the right arrow) is surjective. Because �∗ is a surjective group homomorphism from ℤ7 to
itself, we conclude that �∗ on K-theory is an isomorphism. Therefore the commutativity of
the diagram implies that � for Γ is an isomorphism. As the group Γ is K-amenable, we have
K∗(C∗(Γ)) ≃ K∗(C∗r (Γ)), hence we �nd that the assembly map �r is an isomorphism. �

5.3. Isomorphism forP4. Let us now recover Oyono-Oyono’s theorem for P4 using the Kün-
neth formula.

Theorem 5.6. The assembly map

�r ∶ Ki(BP4)→ Ki(C∗r (P4))
is an isomorphism for i = 0 or 1.

Proof. Note that the isomorphism P4 ≃ Γ ×ℤ implies that

Ki(BP4) ≃ K0(BΓ)⊗Ki(Bℤ)⊕K1(BΓ)⊗Ki+1(Bℤ),
Ki(C∗r (P4)) ≃ K0(C∗r (Γ))⊗Ki(C∗r (ℤ))⊕K1(C∗r (Γ))⊗Ki+1(C∗r (ℤ)).

Following the de�nition of the assembly map in [34] by twisting Mishchenko line bundles, we
have �P4r (x ⊗ y) = �Γr (x) ⊗ �ℤr (y) for x ∈ Ki(BΓ) and y ∈ Kj(Bℤ), which are represented
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by Dirac-type operators. Then the assembly map for P4 is an isomorphism if �r ∶ Ki(BΓ) →
Ki(C∗r (Γ)) for i = 0,1 is an isomorphism. The theorem thus follows from Theorems 5.2 and
5.5. �

5.4. Baum–Connes isomorphism for Pn. Let us now prove the following theorem, which
is originally due to Oyono-Oyono.

Theorem 5.7 ([24] Proposition 7.2). The Baum–Connes assembly map for the pure braid group
Pn

�r ∶ Ki(BPn)→ Ki(C∗r (Pn))
is an isomorphism.

For k ∈ {1,… , n − 1}, let
Fk ∶= Fk(A1,k+1, A2,k+1,… , Ak,k+1)

be the free subgroup in Pn (see section 2.1). There is a canonical homomorphism

� ∶ Pn → F1 × F2 ×⋯ × Fn−1, As,t ↦ (e,… , e, As,t, e,… , e)
where e is the identity element; here,As,t ∈ Ft−1. In particular, all relations in the presentation
for Pn reduce to the form

�(Ar,s)�(Ai,j) = �(Ai,j)�(Ar,s), i < j, r < s, s < j
in the image. The map � induces maps between the classifying spaces and the C∗-algebras:

B� ∶ BPn → BF1 ×⋯ × BFn−1, � ∶ C∗(Pn)→ C∗(F1)⊗⋯⊗C∗(Fn−1).
Consider the induced maps on K-homology and K-theory. By the functoriality of the Baum–
Connes assembly map at the level of the maximal C∗-algebra, one has the following commu-
tative diagram,

Ki(BPn)
� //

B�∗
��

Ki(C∗(Pn))
�∗

��
Ki(BF1 ×⋯ × BFn−1)

�′

≃
// Ki(C∗(F1)⊗⋯⊗C∗(Fn−1))

(5.4)

where �′ is an isomorphism because the groups Fk and their direct products have Haagerup’s
property (see [23]). Let us describe the map B� as a morphism between CW-complexes. For
1 ≤ r ≤ n, choose pairs of numbers (ik, jk), where k ∈ {1, 2,… , r}, satisfying

1 ≤ i1 < i2 <⋯ < ir ≤ n, 1 ≤ jk < ik. (5.5)

It can be checked that every r-simplex of BPn depends uniquely on the pairs (ik, jk), where
1 ≤ k ≤ r. Denote the r-simplex by [Aj1,i1 ,… , Ajr ,ir ]. Note that for a �xed r, the number of
distinct r-simplices in BPn is equal to

∑

1≤i1<⋯<ir≤n
(i1 − 1)⋯ (ir − 1) = ar,
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which is the rank of the free part ofHr(BPn). Set a0 = 1 and recall that a0+⋯ an = n!, so that
BPn has n! simplices in total.

Example 5.8. TheCWcomplexBP4 has 1 0-simplex; 6 1-simplices�1, �2, �1, �2, �3; 11 2-simplices
R1, R2, R3, R4, R5, R6, c×�1, c×�2, c×�1, c×�2, c×�3; and 6 3-simplices Ri×c for i ∈ {1,⋯ , 6}.

The map B� ∶ BPn → BF1×⋯×BFn−1 is de�ned by sending the r-simplex [Aj1,i1 ,… , Ajr ,ir ]
in BPn to the r-simplex

([Aj1,i1],… , [Ajr ,ir ]) ∈ BFi1−1 ×⋯ × BFir−1 ⊂ BF1 ×⋯ × BFn−1.
Observe that B� gives rise to an isomorphism

B�∗ ∶ Hi(BPn)→ Hi(BF1 ×⋯ × BFn−1).
Because the Chern character maps

Ch ∶ K0∕1(BPn)→ Heven∕odd(BPn)
Ch ∶ K0∕1(BFir−1 ⊂ BF1 ×⋯BFn−1)→ Heven∕odd(BF1 ×⋯ × BFn−1)

are isomorphisms, and by the functoriality of the Chern character, we obtain an isomorphism
on K-homology

B�∗ ∶ Ki(BPn)→ Ki(BF1 ×⋯ × BFn−1), i = 0, 1.
Because the Baum–Connes conjecture holds for free groups, we obtain that �′ in (5.4) is an
isomorphism. By the commutativity of (5.4), the map on K-theory

�∗ ∶ Ki(C∗(Pn))→ Ki(C∗(F1)⊗⋯⊗C∗(Fn−1))

is surjective. It is an easy exercise to compute that Ki(C∗(F1)⊗⋯⊗ C∗(Fn−1)) ≃ ℤ
n!
2 . Thus

�∗ is a surjective morphism from ℤ
n!
2 to itself. So �∗ is in fact an isomorphism. Therefore � is

an isomorphism, by the commutativity of the diagram (5.4). As Pn is K-amenable (see section
2.3), Theorem 5.7 is then proved.

6. The full braid group on three stands B3
In this section we consider full braid groups. The Baum–Connes correspondence for Bn is

known to be an isomorphisms by the work of Schick ([31]). We provide the explicit description
in the case n = 3, modulo torsion. Note that in the paper [4], the authors had computed the
K-theory of C∗r (B3).

6.1. K-homology ofBBn. Modulo torsion, theK-homology ofBBn is easier to compute using
the rational isomorphism of the Chern character:

Ch ∶ K0(BBn)→
⨁

i
H2i(Bn,ℤ), Ch ∶ K1(BBn)→

⨁

i
H2i−1(Bn,ℤ).

Arnold computed the integral cohomology ring of the braid groups:

H0(Bn,ℤ) ≃ ℤ, H1(Bn,ℤ) ≃ ℤ,
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and Hi(Bn,ℤ) is �nite for i > 1; see [2] and [35]. By Poincaré duality, we obtain the following
result.

Proposition 6.1. Up to torsion,

K0(BBn) ≃ K1(BBn) ≃ ℤ.

Remark 6.2. As the referee pointed out, B3 is a one relator group, its presentation complex
has dimension 2 and can be taken as a model for its classifying space. So the K-homology can
be computed in this case. See [4].

Remark 6.3. Calculating K∗(BBn) is a challenging task, since K∗(BBn) may contain torsion.
For example, in Example 5.10 in [18], the K-theory of the reduced group C∗-algebra of B4 is
computed to be

K0(C∗r (B4)) ≃ ℤ⊕ (ℤ∕2ℤ), K1(C∗r (B4)) ≃ ℤ.
By the Baum-Connes isomorphism for the braid group, one knows that K0(BB4) has torsion.

6.2. K-theory of C∗r (B3). Let B3 = ⟨�1, �2|�1�2�1 = �2�1�2⟩ be the braid group on three
strands. The center of this group is generated by (�1�2)3 = (�1�2�1)2. Let x = �1�2�1 and
y = �1�2. Then B3 can be presented alternatively as

B3 ≃ ⟨x, y | x2 = y3⟩,
where ⟨x2⟩ = ⟨y3⟩ = Z(B3). Setting G = ⟨x⟩, H = ⟨y⟩ and K = ⟨x2⟩ = ⟨y3⟩, then

B3 = ⟨x⟩ ∗Z(B3) ⟨y⟩ = G ∗K H.
For an amalgamated free product, one has the following six-term exact sequence (See [21]
Theorem A1).

K0(C∗r (K))
a // K0(C∗r (G))⊕K0(C∗r (H))

d // K0(C∗(B3))

��
K1(C∗r (B3))

OO

K1(C∗r (G))⊕K1(C∗r (H))
coo K1(C∗r (K))

boo

Note that Ki(C∗r (K)) = Ki(C∗r (G)) = Ki(C∗r (H)) ≃ ℤ. By de�nition,
a ∶ ℤ→ ℤ⊕ℤ, a(x) = (x, x);
b ∶ ℤ→ ℤ⊕ℤ, b(x) = (2x, 3x).

Thus a and b are injective, and then c and d are surjective. Therefore we have

K1(C∗r (B3)) ≃ ℤ⊕ℤ∕im(b) ≃ ℤ,
where the last isomorphism is due to the linear transformation

ℤ⊕ℤ→ ℤ⊕ℤ, (x, y)↦ (3x − 2y,−x + y)
in SL(2,ℤ). Similarly,

K0(C∗r (B3)) ≃ ℤ⊕ℤ∕im(a) ≃ ℤ.
Thus the following proposition is proved.
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Proposition 6.4. We have that

(1) K0(C∗r (B3)) ≃ ℤ is generated by the unit of C∗r (B3), and
(2) K1(C∗r (B3)) ≃ ℤ is generated by [�1] = [�2].

Remark 6.5. The K-theory of C∗r (B4) is computed in [18], Example 5.10. At present, we are
not aware of any direct method of computing K∗(C∗r (Bn)) when n ≥ 5.

The proof of the Baum–Connes isomorphism (rationally) for B3 can be carried out analo-
gously to Theorem 5.2 by considering the trivial morphism B3 → {e}, the quotient morphism
B3 → B3∕[B3, B3] ≃ ℤ, and these commutative diagrams:

K0(BB3)
� //

��

K0(C∗r (B3))

��
K0(B{e})

�′ // K0(C∗r ({e}))

K1(BB3)
� //

��

K1(C∗r (Γ))

��
K1(Bℤ)

�′ // K1(C∗r (ℤ))

Theorem 6.6. The Baum–Connes assembly map

Ki(BB3)→ Ki(C∗r (B3)), i = 0, 1

is an isomorphism rationally.

7. Appendix
In this appendix, we give some of diagrams that illustrate the structure of pure braid groups.

7.1. Generators of P4.

�21 �1 = �22 �2 = �2�21�
−1
2
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�1 = �23 �2 = �3�22�
−1
3 �3 = �3�2�21�

−1
2 �−13

7.2. Relations for F(�1, �2)⋊ F(�21).

�21�1�
−2
1 = (�2�1)−1�1(�2�1) �21�2�

−2
1 = �−11 �2�1

7.3. Relations for F(�1, �2, �3)⋊
(
F(�1, �2)⋊ F(�21)

)
.

�21�1�
−2
1 = �1 �21�2�

−2
1 = (�3�2)−1�2(�3�2)
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�21�3�
−2
1 = �−12 �3�2 �1�1�−11 = (�2�1)−1�1(�2�1)

�1�2�−11 = �−11 �2�1 �1�3�−11 = �3

�2�1�−12 = (�3�1)−1�1(�3�1) �2�3�−12 = �−11 �3�1
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�2�2�−12 = (�3�1)−1(�1�3)�2(�1�3)−1(�3�1)

7.4. The center of P4.

(�1�2�3)
4 = �21�2�1�3�2�1

These diagrams show that the center splits o� and gives us the direct product decomposition:

F(�1, �2, �3)⋊
(
F(�1, �2)⋊ ⟨�21⟩

)
= (F(�1, �2, �3)⋊ F(�1, �2)) × ⟨�21�2�1�3�2�1⟩.
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