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ABSTRACT. We produce an explicit description of the K-theory and K-homology of the pure
braid group on n strands. We describe the Baum-Connes correspondence between the genera-
tors of the left- and right-hand sides for n = 4. Using functoriality of the assembly map and direct
computations, we recover Oyono-Oyono’s result on the Baum-Connes conjecture for pure braid
groups [24]. We also discuss the case of the full braid group on 3-strands.
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1. Introduction

Given a locally compact group G, the Baum-Connes conjecture predicts a way of computing
the K-theory of the reduced group C*-algebra of G in terms of the equivariant K-homology of
EG, the classifying space for proper actions of G. More precisely, let Kl.G(EG) denote the G-
equivariant K-homology of the space EG of order i and K;(C;(G)) is the K-theory of the reduced
C*-algebra C;(G) of order i; the conjecture, as formulated by Baum, Connes and Higson in [3],
states that the assembly map

ui 2 KP(EG) — Ki(CH(G))
fori = 0,1, is a group isomorphism for all locally compact groups.

The Baum-Connes conjecture has been proven for large classes of groups, including all
semi-simple Lie groups and all groups satisfying Haagerup’s property ([17], [14]). Many of the
proofs are based on methods that use heavy machinery, such as the Dirac-dual Dirac method,
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introduced by Kasparov in the case of connected Lie groups and further developed by Higson
and Kasparov in [14] to prove the conjecture for groups having Haagerup’s property.

In the case of semi-simple Lie groups, a first proof was established by Wassermann ([37])
following the work of Penington-Plymen ([25]) and Valette ([32, 33]). This proof was based
on the idea of giving a complete description of both sides of the assembly map and then prov-
ing explicitly that the correspondence was an isomorphism of groups. Indeed, the description
of the K-theory of the reduced C*-algebra of a semi-simple group can be made using the ex-
haustive work of Harish-Chandra on the classification of their tempered representations. For
discrete groups, as no such classification exists, other approaches were needed and led to the
development of very powerful techniques. For an account of the history of the conjecture and
the recent developments, we refer to the survey [12] and the references therein, as well as to
the books [34, 20].

In this paper, we study the Baum-Connes correspondence for the pure braid group on n
strands. The conjecture for those groups is known to be true by the work of Oyono-Oyono
[24].

Our paper fits into the context of the work of Isely [15] followed by the works of Flores, Pooya
and Valette [11, 30, 29], in which explicit computations of the Baum-Connes correspondence
are given for certain discrete groups. We believe that these explicit computations contribute to
a deeper understanding of the Baum-Connes correspondence.

It is important to mention that the conjecture also holds for full braid groups by the work
of Schick ([31]) using permanence properties of the conjecture shown by Chabert-Echterhoff
in [6] and the result of Oyono-Oyono for pure braid groups. The conjecture holds in its strong
form, with coefficients, i.e. considering the action of the group on a C*-algebra. Moreover,
full braid groups have property RD (see for example [7]). Explicit computations for full braid
groups are more difficult, though, and other methods have to be used.

Therefore, the aim of this work is to compute the K-theory and K-homology arising in the
Baum-Connes assembly map explicitly for the pure braid group on n strands and then to un-
derstand the correspondence of the generators under this map. The case when n = 4 is worked
out explicitly as a typical example. In this case, the classifying space BP, can be given a model
of the form S* x X, where X is a 2-dimensional CW-complex. We can then apply Lemma 4.1
from [20], which relates the K-homology of X to its integer singular homology, leading us to
the following result:

Theorem 1.1. For the pure braid group P, the P,-equivariant K-homology of EP, is
K *(EP,) ~ 7' and K|*(EP)) ~Z".

Matthey proved that the K-homology of a CW-complex of dimension < 3 is isomorphic to its
integral homology [19]; however, for higher number of strands (n > 5), the classifying space
of P,, admits a model of dimension n — 1, which is minimal because, by Arnold’s result [2],
the classifying space has non vanishing cohomology in degree n — 1. Hence, one cannot apply
Matthey’s results to BP,, whenn > 5.
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In the general case, we proceed as follows. First we deduce the K-homology group up to
torsion by means of existing results on the group homology of P,,. After that, we use an Atiyah-
Hirzebruch spectral sequence to remove the torsion. We are then able to extend our first result
to pure braid groups on n strands:

Theorem 1.2. For the pure braid group P, we have
K;"(EP)~Z> and K,"(EP,)~Z>.

For the right-hand side of the Baum-Connes correspondence, we use the Pimsner-Voiculescu
six-term exact sequence in [27] and [28] to show the following:

Theorem 1.3. For the pure braid group P,, we have
Ko(Ci(P) = 2>  and K\(C}(P,)=~Z>.

Next, using functoriality of the Baum-Connes assembly map, together with explicit compu-
tations, we recover Oyono-Oyono’s results for pure braid groups:

Theorem 1.4. The Baum-Connes assembly map u : K;(BP,) — K;(C}(P,)) for the pure braid
group P, is an isomorphism.

We explicitly describe the assembly map on each of the generators in the case of P, (see
Theorem 5.2 and Theorem 5.5).

All our computations of K-theory groups can be carried out explicitly, thanks to the iterated
semidirect product structure of pure braid groups:

Py =Fp 1 XFp_1 X XFy.

This also indicates that the rank of the K-groups grows as n increases.

The techniques we use for pure braid groups do not apply to full braid groups. Although
there is an extension

1-P,—-B,—>S5,—~1
where we denote by S,, the symmetric group over the set of n-elements, that implies that the
braid group B,, contains the pure braid group P, as a normal subgroup of finite index, the K-
groups of B,, have fewer generators than the K-groups for P,. In fact, using an existing result
on the group homology of B,(see [2], [1] and section 3.3), one knows that, up to torsion, both
the even and odd K-homology groups for BB,, are Z. Then the Baum-Connes conjecture says
that, up to torsion, the K-theory of the reduced C*-algebra of B, is Z as well. When n = 3, B;
has the special structure of a free amalgamated product, which allows us to perform a direct
calculation:
Ko(C7(B3)) = Ky (C7(By)) = Z.

For n = 4 the K-theory of C;(B,) is explicitly computed in the recent paper by Li, Omland, and
Spielberg ([18]). To our knowledge, the problem of directly computing K-theory for the full
braid group C*-algebra remains open.

The paper is organized as follows. In Section 2.1 we recall the structure and properties of
braid and pure braid groups (in the appendix we give some of the corresponding diagrams that
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illustrate the structure of this groups). In Section 3 we describe the classifying space for P,
explicitly, compute its K-homology and generalize to the case of P,,. In Section 4 we apply the
Pimsner-Voiculescu six-term exact sequence to calculate the K-theory for the reduced group
C*-algebras for P,, with n = 4 as a typical example. In Section 5 we describe the Baum-Connes
assembly map on each generator for P, and show that the map is an isomorphism for all n. In
Section 6 we compute the example for B; on both sides of the assembly map and show that the
map is an isomorphism.

Acknowledgments. We thank Alain Valette for the suggestion to examine K-theory and K-
homology of pure braid groups. We thank the organisers of the Women in Operator Alge-
bras Conference that took place at BIRS where this project started. HW acknowledges the
support from Science and Technology Commission of Shanghai Municipality (STCSM), grant
No0.18dz2271000. MGA was partially supported by ANR project Singstar.

2. Braid and pure braid groups

2.1. Structure of braid and pure braid groups. Throughout the paper we will denote by
F,(x; ... x,) the free group generated by x, ..., x,,. Let us recall the definition and some prop-
erties of braid groups. We refer to [5].

The Artin Braid Group on n letters, denoted by B, is a finitely-generated group with gener-
ators 0y, 0,, ..., 0,_; that satisfy the following relations:

0j0; =00} li—jl>1, i,jefl,..,n—1}
0i0i+10i = 0i4+10i0i11 iefl,..,n—2}

It can also be described as the group of equivalence classes of all braids on n strands. The
generators are illustrated here for B,.

op] g} 03

In this framework, composition of two elements is visualized as the concatenation of the
corresponding braid pictures. The identity is represented visually by four straight lines.

As every n-braid determines a permutation of the set of n elements in an obvious way, it is
easy to see that there is a surjective map from B,, to S,;, the symmetric group consisting of all
permutations of n elements

p:B,—S,.
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This map is compatible with the structures of the two groups so that it is a morphism of groups.
Notice that the image of the element o; is the permutation exchanging i and i+1, hence p(o;) =
(i,i+ 1), a transposition.

By definition, the pure braid group on n-strands is the kernel of p (hence a subgroup of B,
of index n!). It is usually denoted by P,, and it is easy to see that in the strand framework it
corresponds to the elements of B,, for which all strands start and end at the same point. Notice
that as (i,i + 1) is a transposition of S,, the element al.z belongs to P, for alli € {1, ..., n}.

Starting from P,, we can construct a surjective morphism

f:Pn_)Pn—l

by forgetting the n'" strand whose kernel is known to be isomorphic to the free group on n — 1
generators; this is easy to understand when viewing braids as configuration spaces. In that
context, the kernel of f corresponds to the fundamental group of the space obtained by remov-
ing n — 1 points from the plane C, which is isomorphic to the free group on n — 1 generators,
F,_,. We have therefore a short exact sequence

1_)Fn—1_>Pn_)Pn—1_>1

that is split because it is always possible to add a strand to a braid in P,_; to obtain a braid in
P,. Hence P,, is isomorphic to a semi-direct product F,,_; X P,_;, and hence isomorphic to an
iterated semi-direct product as follows :

Py ~F, 1 X Py 1 ~F, 1 XFy, ;X XFy.

Throughout this paper we will use the following presentation of P, which is due to Artin
(see [5] Lemma 1.8.2.). Notice that we are conjugating in the reverse order of [ 5], for the sake of
compatibility with the diagrams in the appendix, so our presentations appear slightly different
from the presentation in [5].

The generators of P, are given by the following formula :

-1 -1

190 for 1<i<j<n

— 2
Ajj =010 0i410;0

where the o;, for i = 1,...,n are the generators of B,, given above; they are subject to the
following relations

Ajj, if r<s<i<j and i<r<s<j
-1 . .
Asj AijASj’ if r=i
(Ar]Al])_lAl](Ar]Al])’ lf S = l
-1 —1/7 2—1 . . .
(ArJAsJ) (ASJAFJ)AU(ASJA}’]) (Ar] Asj)’ if r<i<s< J-

ArsAijAr =

Leta; = A,_;, fori =1,..,n — 1. Then the subgroup of P, isomorphic to F,,_; appearing
in the decomposition P,, = F,,_; X P,_; is generated by the elements «;, fori = 1,...,n — 1.
The semidirect product decomposition can be written as

Py~ F,_ ><](an—l
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where the action ¢ of P,,_; on F,,_; is given by the map

¢ Py — Aut(F, )
defined by

Ay, if r<s<i<n, and i<r<s<n

A AipAgy, I 7=

(ArnAin)_lAin(AmAm), if s=i

(ArnA)  (AgnArn)Ain(AnArn) " (Arg Agn),  if T <i<s<n.

@(Ars)(Ain) =

Following this notation, we have that P, = F,,_;(a;, %y, ... ap_1) Xg Py_1-
The center of B, is generated by the element
(0103 0p1)"

which can be expressed in terms of elements of P,, by

(Alz)(A13A23) e (AlnAZn ot A(n—l)n)-

(This is illustrated in the appendix in the case n = 4.)
For n = 3, the generators of P; are

- 2 -1 — 2 )
Az =0,010,°, Ap =05 Ap=o07.
Letting o, = A3, a3 = Az and af = Aj,, we get that P; has the following presentation
— 2 -2 2 _ -1 -2, 2 _ -1
Py = <051,052,01 | ol a0y = (ma)ay(ope)™, o] @07 = a1oa] >,

whence
P3 = FZ((xla a2) >4 <G%>’

that is P; is isomorphic to the semi-direct product of the free group generated by «; and a, and
the group generated by af, where the action of of on F(a,, a,) is given by conjugation.

Denoting by c the element afocl a,, we can check that a; ¢ = ca; and a,c = ca, so that
P3 = F(ay,a,) X{c).

For n = 4, to simplify notation in the rest of the paper, we will denote the generators of P, as
follows.

2 _ _ _ 2
oy =An B = A3y =0;
= Ay, = g2 By = Ay = 2 -1
ap = Axz =0, 2 = Apg = 03050,
= = 2 51 — _ 2 —1_-1
o, = Az = 0,070, B3 = A4 = 030,070, 05
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— — —|—
C\ C_\ <—\
2 ) _ 2 —1
01 a —UZ a —0'20'102
— | —
<\ <_\ ~
— ~2 — 2 -1 _ 2 _—1_-1
By =03 By = 03050; B3 = 030,070, 0}

From the relations, and from the diagrams in the appendix, we have

P4 = F3(ﬁ11 ;82’ ﬁ3) X (Fz(“p 052) X Fl(O'f))
where the actions are given by the following relations :

(D) ayBra;t = (BB1) " B1(B2B1)
(2) ayBrat = B Bapy
(3) ayBsa;t = B;
(4) axfryt = (BB B1(B3B1)
(5 05252042_1 = (B351) ' B1B3B2(B183) " (B31)
(6) 05253042_1 = 51_15351
(7) 01Bro7> = By
(8) 0%,6201_2 = (B3B2) "' B2(B382)
(9) 03072 = B3B3,
(10) o310, = (1) oy (@)
(11) ojay072 = a] ey

Remark 2.1. In this paper, we will use a splitting off the center of P, in order to realize P,
as the direct product of its center and a semidirect product of free groups. The center of P, is
generated by ¢ = (0,0,03)* = crfoaloczﬁﬁz&, as illustrated in the appendix (see 7.4), and we
have

Py = (F(B1, B2, B3) X Flay, az)) x {c).

2.2. The Baum-Connes conjecture for P, and K-amenability. A property of P, that we
will use in order to give explicit computations of its K-theory groups is its K-amenability. This
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property was introduced by Cuntz (see [9] for the definition) and implies that for every C*-
algebra A endowed with an action of P,, the K-theory of the maximal crossed product A X P,
is isomorphic to the K-theory of the reduced crossed product A X, P,. In particular,

K (C*(Py)) = K.(C/(Py)).

The K-amenability of P,, can be proven using the following result of Pimsner combined with
the following proposition that is an adaptation of a result appearing in the proof of the Baum-
Connes conjecture for P, given by Oyono-Oyono (see Proposition 7.3 in [24]) :

Theorem 2.2 ([26]). A locally compact group acting on an oriented tree such that the stabilizer
group of any vertices is K-amenable is K-amenable.

Proposition 2.3. Let D, ..., D,, be a finite sequence of groups such that D, = {e}and for1 < k <
n there exists ny in N such that Dy = F, X Dy_,. Then D, is K-amenable.

Proof. The proof is the same as the proof of Proposition 7.3 in [24] and it is held by induction
onn:if0 <k <n-1,let DI’( be the kernel of the morphism mapping Dy, to D; = F,,.
Then, D(’) ={e}and,if1 < k < n—1then Dl’c =F,_ X Dl’c_l. Hence, by induction, D;_l is
K-amenable. But the group D, acts on the Cayley graph of F,, (which is a tree) through the
morphism mapping D, to D; = F, and the stabilizer group of the vertex corresponding to
the neutral element of F,, is exactly D; _,» as the action is transitive, the stabilizer group of all
vertices is K-amenable and hence, by Pimsner’s theorem, D,, is K-amenable. U

Corollary 2.4. The pure braid group P,, is K-amenable.

In [24], Oyono-Oyono proved that a countable discrete group acting on an oriented tree
satisfies the Baum-Connes conjecture with coefficients' if and only if the groups stabilizing
the vertices of the tree satisfy Baum-Connes with coefficients. This result allows him to prove
the stability of the conjecture under free and amalgamated products and HNN extensions. It
also allows him to prove the analogue of Proposition 2.3 in the context of Baum-Connes and
hence to give his first proof of the Baum-Connes conjecture for P,,. He then proved in [23] the
Baum-Connes conjecture for groups which are extensions of a group satisfying the Haagerup
property by a group satisfying Baum-Connes, which allowed him to give a second proof of
Baum-Connes for P, (as the free group is known to have the Haagerup property).

3. Classifying space and K-homology for P,

In this section, we deal with the compactly supported I'-equivariant K-homology of ET’, the
space classifying I'-proper actions for I = P,,.

As P, is a discrete torsion-free group, EP,, coincides with EP,, the universal cover of the
classifying space BP,, and the P,-equivariant K-homology of EP,, is the K-homology of the
space BP,,, that is Kf” (EP,) ~ K (BP,).

We start with the case n = 4. We will give a model for BP, and compute its K-homology
explicitly.

The Baum-Connes conjecture with coefficients is a stronger version of the Baum-Connes that considers actions
of the group on a C*-algebra.
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3.1. A model for BP,. Let us give a model for BP,. Recall that
Py = (F(B1, B2, B3) X F(ay, a3)) X {c),

the center of P, is generated by ¢ = (0,0,03)*, and the generators By, 35, B3, &, &, are subject
to 6 relations:

RL. oy Bra;t = (B2B81) ' B1(B2r) R4. ayfia,t = (B3B1) 7 B1(B3B1)
R2. a1 Bra;! = BBy RS. ayB05 " = (B3B1) " (B1B3)B2(B183) " (B31)
R3. a1 Bsa;" = Bs R6. o305 = B B3y

Conjugating the relation R5 by the last relation R6 we obtain:

R5'. 0‘2(535253_1)“2_1 = 535253_1~

We may replace relation R5 by R5’ without changing the presentation of the group. Notice that
the pairs of relations R1 & R4, R2 & R6, R3 & R5’ are of the same type.

Let X be the 2-CW complex associated to the group F3 X F,. That is, X consists of 1 0-cell
D, 5 1-cells attached as loops on p, and 6 2-cells whose boundaries are given by the relations
above. Then 7,(X) = F; X F,. Denote by X the universal cover of X. We want to show

Proposition 3.1. The 2-CW complex X is a model for B(F; X F5).

Proof. We first construct X and then show it is contractible (Lemma 3.3).

Step 1: We start from the 1-skeleton of X, denoted by X(. This is a bouquet of 5 circles, and
its universal cover X( is a tree, the Cayley graph of the free product F,(a;, ) * F5(B1, 2, 53)-
The group F3 * F, acts freely on X,

As the group F3 X F, is the quotient of F, % F3 by the six relations stated above,

F3 X F, ~ (F; = F,)/(R1,R2,R3,R4,R5', R6),

we shall modify X® so that the relations act trivially. This is done in Step 2 by gluing 2-cells
and by identification of branches.
Step 2: Note that every point in the Cayley graph XM is generic. Choose an arbitrary vertex

Pe )f(?f) and define Q := a;(P) and R := a,(P) in)fﬁ. The six relations R1, R2, R3, R4, R5/,
R6 require that the pair of points on both sides of the following equations have to be identified:

a) a;(B,P) = B;'B.B1Q d) ay(B1P) = B B3 B1BsB1R
b) a1(81Q) = BB, B1B251Q e) ax(B38.8;'P) = B3B:8; 'R
) a(BsP) = 33Q f) a,(B3P) = B B3R

Attach 2-cells given by the six relations and identify the branches at the vertices being glued

in the 2-cells. Performing this process for each vertex in X®, we then obtain a 2-dimensional
CW-complex, we denoted by X,.

Lemma 3.2. The space X, constructed in Step 1 and Step 2 is the universal cover X of X.
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B Bah1Q = a1 5P

B1

51Q B261Q
Ba

FIGURE 1. 2 cell associated to R1

BT B251Q a1faP B B251Q = a1 foP
FIGURE 2. Identify branches over two identified points

P
P P BiP
Bo '
. |
B
ay o] P1 o \\/01
QI‘/‘B

FIGURE 3. 2-cells for Relations 1 and 2

Proof. Let us go through the process for R1, as an example. Starting from P and following the
expression «; (3,P), we obtain the vertices P, 3,P, and a;(B,P); and starting from Q = «;(P)
and following the expression 8, 8,8;Q, we obtain vertices Q, ;Q, 8,5,Q and 5, ,5,Q. So,
by tracing out each letter in R1, one obtains a hexagon with 6 vertices. Fill in the interior of
the hexagon with a 2-cell. See Figure 1.

Because the two points o (8,P) and 8 18,61Q are identified in the hexagon, the branches
rooted over the two points will be identified under the group action. See Figure 2 for an illus-
tration.

In the left hand side of the Figure 3, the hexagon associated to R1 is the green hexagon
relative to other relevant vertices in the space. See Figures 3, 4 and 5 for the typical 2-cell
associated to each of the relations.
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B3P

AL
N

o ¢}

=

Q R

2

FIGURE 4. 2-cells for Relations 3 and 4

FIGURE 5. 2-cells for Relations 5 and 6

After the gluing of 2-cells on X(1) and identifications of branches, one can check that F; X F,
acts freely on X, with quotient X. In fact, let g € F; X F, and suppose gx = x for some vertex
x in X,. Assume g # e. Then there exists § € F; * F, such that 7(§) = g, where 7 is the
morphism 7 : F3 %« F, — F3 X F,. Let X € nguch that 7(X) = x. Because g is not the
identity in F5 * F, and F; * F, acts freely on X(1), we have gx # X. By definition, g% and
% are identified with the same point x in X,. So g% and % can be connected by relations R1,
R2, R3, R4, RS, R6. So g can be expressed as R; --- R; , and then g = e in F3 X F,, which is a
contradiction. This shows that F3 X F, acts freely on X,,.

By construction, the quotient of X, by F5 X F, is X. Therefore the lemma is proved. O

Proposition 3.1 then follows from the lemma below.
Lemma 3.3. The universal cover X is contractible.

Proof. We shall define a uniform deformation of every 2-cell in X so that the resulting de-
formed 2-complex X' is contractible.

Let Py = Pbea0-cellinX, and set P; = B.(P) and Q; = a;(P;). Here B.(P) means applying
to Pitimes. Let ¢; be the 2-cell containing P; and Q; associated to Relation 1. Define a homotopy
of ¢; by moving Q; continuously to 5,5;(Q;) through the path Q; — £,(Q;) — B,51(Q;). See
Figure 6. Then c; is continuously deformed to a rectangle c;, where U;c] ~ R x [0, 1]. This
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Q-

FIGURE 6. Homotopy for cells ¢;

Q/.;L%L/ L/ e

o

FIGURE 7. Homotopy for cells d;

homotopy is uniform with respect to i. Similarly, one can define a homotopy for the 2-cells
associated to Relation 6. (In this case, a,(P;) should be moved to 553, (ct,(P;))).

Let P, =P, P = BL(P), and Q] = a;(P;). Let d; be the 2-cell containing P; and Q] associated
to Relation 2. Define a homotopy of d; by moving each Qlf continuously to 3,4, Qlf though the
path Qlf - BlQlf - ,6’2,81Qlf ; see Figure 7. Then d; deforms continuously to a rectangle dlf ,
uniformly with respect to i, with Ujezd; ~ R x [0,1].
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{inis

FIGURE 8. Homotopy for cells e

Similarly, one can define a homotopy for the 2-cells associated to Relation 4. (In this case,
a,(P}) should be moved to 381 (ct2(P;))).

Relation 3 gives rise to 2-cells in the shape of a rectangle. Let a be a rectangle containing P
and a; Q. Deform a by a homotopy carrying the edge | with vertices Q and 5;Q to 5,8;1 through
the path I — ;1 — 5,611

For Relation 5, let Q = a,(P). In the cell e containing P and Q and corresponding to Relation
5, move the edge I with vertices 38,8;'(P) and 38,685 (Q) through the path | — ;' —
By 1,83‘ 11; see Figure 8. Then e is deformed to a 2-cell ¢’ in the shape of a rectangle. Deform e’
again by a homotopy carrying the edge [ with vertices Q and g7 1Q to B3I through the path
Il - Bl = B354l

After this process, we obtain a 2-CW complex X’. All the 2-cells in X are turned into rect-
angular shaped 2-cells in X’. Algebraically, this process corresponds to the abelianization of
all relations. Note that here we are using the special structure of the pure braid group: Indeed,
the deformations can be done uniformly, because all relations in P, have the form

aiﬁjoci_l = C,Bjc_l (31)

where C is a word depending on i, j, having finite letters chosen from f;, 8,, 55. The defor-
mation from X to X’ corresponds to replacing (3.1) by a;f3 joci_1 = f;. Indeed, the relations
determine the group

Fy X F3 = {ay,a,, 1, B2 Bslaifj = Bjai, Vi, j)-
Therefore we have shown that X is homotopic to
X' = E(F, x F;) = EF, X EF,4

which is a contractible space. The lemma is then proved. U
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This completes the proof of the proposition. O

3.2. K-homology of BP,. We are ready to compute the K-homology of P,.

Theorem 3.4. We have that
Ko(BP,) ~ K,(BP,) ~ 72 .

Hence, as P, is torsion-free, K§4(§P4) ~ Kf4(§P4) ~ 712,
To prove this theorem, we first observe the following two easy well-known facts:
Lemma 3.5. For any finite CW complex X, we have
KX xSHY~KyX)®K,(X) for i=0,1.

Proof. Letibe 0 or 1. Note that K;(X X S1) ~ K{(C(X x 1)) ~ K}(C(X) ® C(S1)). As C(S!) ~
Co(R) & C, we have that

K'(C(X) ® C(Sh) ~ K'(C(X) ® Cy(R)) ® K'(C(X)).
Noting that K{(C(X) ® Cy(R)) = K*+1(C(X)), the lemma is proved. O

Lemma 3.6. We have
BP, ~ B(F; X F,) x S'.

Proof. We use the isomorphism P, ~ F5 X F, X F;. By changing the representative of the
generator of F; ~ Z in P, ~ F3; X F, X F;, we can obtain the trivial action of F;; see Remark
2.1. Hence P, ~ (F3 X F,) X Z. Thus

BP, ~ B(F3; X F,) X BZ ~ B(F3 X F,) x S;
which proves the lemma. 0

Recall that a model of B(F3; X F,) is given (Proposition 3.1) by the 2-dimensional CW complex
X constructed in Lemma 3.2 (and associated to the group presentation of F3 X F,).

Lemma 3.7. We have Ky(X) ~ Z7 and K,(X) ~ Z°.
Proof. By Lemma 4.1 in [20], because X is a 2-dimensional CW complex, we have
Ko(X) =~ Hy(X, Z) ® Hy(X, Z) Ki(X)~H(X,2Z).
Note that Hy(X, Z) = Z, since X is connected; and
H (X, Z) ~ (F3 X F)/[F3 X Fp, F3 X F]| ~ 7°.

To calculate H,(X, Z), one notes that all 6 relations are cycles (nontrivial and distinct), and
there are at most 6 2-cells, so H,(X, Z) ~ Z°. The lemma is thus proved. OJ

Proof of Theorem 3.4. Making use of the Lemmas, we have fori = 0 or 1:

K;*(EPy) = Ki(BP4) = Ko(B(F; X Fy)) @ Ky (B(F3 X Fy)),
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where the first isomorphism is due to P, being torsion-free, and the second isomorphism fol-
lows from Lemma 3.5. Then by Proposition 3.1 and Lemma 3.7, we have
7" i=0
Ki(B(F3 X Fp)) = Ki(X) ~ 75 -1

The theorem then follows. O

3.3. K-homology of BP,,. In this section, we show that fori =0 or 1,

K(BP,) ~ K/(Y) = Z7, (32)

where Y = BF,,_; X BF,_, X --- X BFj.
Recall that rationally, the Chern character on K-homology for any finite CW complex X is
an isomorphism:

Ko(X) ® Q = @Hzl-(x, Q KXQx EBHzl-_l(X, Q). (3.3)

Thus the second isomorphism in (3.2) holds up to torsion.

Lemma 3.8. LetY = BF,_; X BF,,_, X --- X BF,. Then modulo torsion, we have
Ko(Y)~Z> and K(Y)~Z>.

Proof. We need to show that Y, dim Hy(Y) = n?' = ), dim Hy;_;(Y). Observe that H;(Y, Q)

is generated by i-cells in Y. Denote by a; the number of k-cells in the CW-complex Y. It is

enough to show that
!

n
ZaZi = Za2i—1 =5
i i

Because BF} has one 0-cell and k 1-cells, we have that for Y = BF,,_; X BF,,_, X --- X BF,

n—1
a=1  a=D,i, a= D i, ., G =1-2-(n-1).
i=1 1<i<j<n—1

That s, a,, is equal to the coefficient of t™ in the series (1+¢)(1+2t) --- (1+[n—1]t). Therefore

we have
n—1 n—1 n
Zak=H(1+l)=Hl=n!
k=1 1=1 =1
and
n—-1 n—1
D (-Dkg=JJa-D=0.
k=1 I=1
The lemma is then proved. 0

The first isomorphism in (3.2) also holds up to torsion. In other words, the K-homology for
BP,, can be computed rationally.
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Proposition 3.9. Up fto torsion,

Ko(BP,) ~ K (BP,) ~Z>.

Proof. The integer cohomology of BP,, of degree m is torsion-free, with the power over Z being
equal to the coefficient of ¢ in the series (1+¢)(1+2t) --- (1+[n—1]¢t). This was first computed
by Arnol’d [2]; see also Example 2.3 of [1]. Applying the proof of Lemma 3.8, we find that up
to torsion,

K°(BP,) ~ H®*"(BP,,Z) ~ Z: K'(BP,) ~ H(BP,,Z)~Z>.

Together with (3.3) and Poincaré duality, this gives the result. Note that BP,, is a Poincaré
complex in the sense of Wall [36] and hence satisfies the Poincaré duality theorem. To see that
BP,, is a Poincaré complex, notice that BP,, is composed of iterated extensions of the BF;s, and
it is easy to verify that the BF;s are Poincaré complexes. 0

Finally, the torsion in Proposition 3.9 can be removed using Atiyah-Hirzebruch spectral se-
quences, analogous to Arnold’s calculation of the cohomology groups H*(BP,,), using Serre
spectral sequences, as there is a fibration for BP,,. Then using Poincaré duality as in Proposi-
tion 3.9, we get the result at the level of the homology groups. Let us review some key steps
and properties of pure braid groups in computing H*(BP,,). For more details, see [39].

It is well known that the ordered configuration space of n points in C is a model for the
classifying space of P,:

BP, ={(z1,...,2,) € C""|z; # z; if i # j}.
Note that for n = 4, this model is homotopic to the model of BP, that we constructed explicitly
earlier. Consider the map
Pfn - BP, - BP,_; (215 520) = (215 000 5 Zp_1)-
This is a fibration whose fiber is homeomorphic to the (n — 1)-times punctured plane, which
is homotopic to a wedge of n — 1 circles, so that the filtration can be written as
BF, — BP, — BP,_,.

This can also be induced by the short exact sequence 1 —» F,,_; —» P,, - P,,_; — 1. The map

i, : BP,_, —» BP, (z15 5 Zp_1) P (215 e » 21, max|z;| + 1)

gives rise to a splitting of the fibration p,,. Associated to a fibration, there is a monodromy
action of 77, (B) on the (co)homology of the fiber F. In our setting, it can be checked that P,,_; =
7,(BP,_;) acts on the homology of BF,,_; trivially. Then the E, page of the Atiyah-Hirzebruch
spectral sequence
E}(BP,) = HP(BP,_,, HI(BF,,))

is a cohomology with untwisted coefficients in H4(BF,,_;) and is calculated by

HP(BP,_,) q=0

EY(BP,) = {HP(BP,_))® Z"! gq=1
0 q>1.
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See Exercise 39 of [39]. Though not obvious from the definition, following the outline in Exer-
cise 40 of [39] one can then show that the spectral sequences collapse on the E; page. This is
because on E, page all differentials vanishes:

0 0 0 0

T

H°(BP,_1) ® Z"! H'(BP,1) ® Z"! H*(BP,_) ® 2" H3(BP,_) ® 2"

\\x\\
H(BP,_) H'(BP,_1) H*(BP,_1) H*(BP,_1)

Therefore we obtain
H*BP,) = @ EU(BP,) = Ey°(BP,) ® E; "'(BP,).
p+q=k
The group can then be calculated using induction.

Theorem 3.10. We have .
Ky(BP,) ~K,(BP,) ~Z>.
Proof. We shall use Atiyah-Hirzebruch spectral sequence (see for example [13, 20]
Elzj,q(BPn) = Hp(BPn’Kq(pt)) = Kp+q(BPn)-

Because
H,(BP,) qeven

0 q odd.

Identify the homology and cohomology via Poincaré duality and one has that Ef,,q(BPn) is tor-

sion free. Note that the differential d, : E?J,q - EIZJ_2 41 vanishes for all integers p, g, so that

EIZJ,q(BPn) = Hp(BPnﬂKq(pt)) = z

spectral sequence collapses on the E* page,

0 0 0
x dy=0 dy=0

H,y(BP,) H,(BP,) H,(BP,) H,(BP,)

\\dz - x
0 0 0 0
\ dy=0

HO(BPVL—I) HI(BPH—I) HZ(BPn—I H3(BPVL—1

/

dy=0

/

and also
KoBP)~ P EZ,BP) K(BP)~ @ E,BP,).
p+9=0(2) p+q=1(2)
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Therefore

Ko(BP,) =~ H,pen(BP,) (34)
Ky(BPy,) = Hogq(BPy). (3.5)

Because H,.(BP,,)) is torsion-free for all n, from the above we obtain that K,.(BP,,) is torsion-free
as well. Together with Proposition 3.9, the theorem then follows. O

Note that the calculation of the K-homology of Y = BF,,_; X --- X BF; is not used in the
proof of the theorem, but the comparison to the K-homology of BP,, provides intuition for
the cycles of BP,, that form a set of generators for K,.(BP,,) in light of (3.4) and (3.5). By the
fibration structure BF,_; — BP,, - BP,_;, and by induction, BP, has a model of dimension
n — 1, and every k-simplex of BP, is labelled by A; ; ,...,A4; ; ,where 1 < i} < - < i, < n,
1 < j; <ij,and Fi(Ay 41, ..., A 41) is the free subgroup of P,,. They are cycles because of the
pure braid group relations, and they correspond bijectively to cycles of Y. There is a canonical
map BP,, — Y inducing an isomorphism on K-homology; see Section 5.4 for more details.

4. K-theory of the reduced group C*-algebra of P,

In this section, we compute the right-hand side of the Baum-Connes morphism for P,. We
shall use the Pimsner-Voiculescu six-term exact sequence, as it allows us to compute the K-
theory of the reduced crossed product of a C*-algebra with a free group [28]. Let A be a C*-
algebra endowed with an action of the free group on n generators F,, = F,(xy, ... X,) by au-
tomorphisms ¢ : F, — Aut(A). Following Pimsner and Voiculescu (see [28, Theorem 3.1,
Theorem 3.5]), we have two six-term exact sequences

wy, k.,
Ko(A) ——— Ko(A Xy Fr_1) — Ko(A X, Fy) (4.1)

| |

k. Wy,
Ki(A Xop.r F,)=—K (A Nt r Fy_1) K, (A)

where ¢’ is the restriction of the action to F,_;, k : A X' r Fno1 = A Mg, Fy is the natural
inclusion, i : A — A X, F,,_ is the canonical inclusion, w, = i,o(id, — ¢(x; 1,), and
the vertical arrows correspond to the connecting homomorphisms of a sequence induced by a
Toeplitz extension; and

(Ko(A))" ——= Ko(A) —=> Ko(A X, F,) (4.2)

| |

K1(A X, Fy) <— Ky (A) —— (K1 (A)"

where 6 is the map

6(1® - ®¥n) = D,(ri — $0O.¥))) -

i=1
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and the vertical arrows come from connecting homomorphisms of a Toeplitz extension.
Moreover, we recall that in [28], Pimsner and Voiculescu used these six-term exact sequences
to give the following computation of the K-theory of the C*-algebra of a free group:

Ko(Cr(Fn(ay, ..., an))) = Z[1] (4.3)
and
Ky (CE(Fp(oty, or s o)) = ZMUgyy s e s U ] (4.4)

where for g € F,(,...,a,), we denote by u, the element in C;(F,(ay,...,a,)) such that
ug(h) =1ifh = g,and uy(h) =0ifh # g.
As the group F,, is K-amenable (see [9] and [8]),

Ko(C*(Fp(aq, ..., ) = Z[1] (4.5)

and
Ki(C*(Fp(ag, -, ap))) = Z"[ug,, - s Ug, | - (4.6)

4.1. K-theory of C;(P,). We will start with the case of n = 4. To compute the K-theory of
C;(P4), we will use the decomposition P, = (F3 X, F,) X Z, where the action ¢ is given by the
relations in Remark 2.1. Its reduced C*-algebra C;(P,) is then isomorphic to C;(F3 X F,) ®
Cf(Z), and by the Kiinneth formula we have the following decompositions:

Ko(C(Py)) = Ko(C)(F3 X Fy)) ®z Ko(Cr(2)) @ K1(Cy(F3 X Fy)) ®z K1(Cr(2)),

K1 (C(Py) = Ko(Cr(F3 X F)) ®7 Kq(C(2)) ® K1 (C7(F3 X F»)) ®z Ko(Cr(2)) .

We then compute the K-theory of C;(F3 X F,). By the following well-known lemma, the former
C*-algebra is the reduced crossed product C; (F3) X, F, (see [10, Example 2.3.6], [38, §3.3]).

Lemma 4.1. Let H and N be discrete groups, and let ¢ : H — Aut(N) be an action by group
automorphisms. Then ¢ gives actions of H on the full and reduced group C*-algebras C*(N) and
C}(N) that are given by the formula ¢, (f)(n) = f(h~'nh), for f € C.(N), h € Handn € N,
and one has

C;‘(N >4¢ H) =~ C:(N) >4¢>,r H,

C*(N Xg H) =~ C*(N) Xy H.

Applying Pimsner-Voiculescu’s first sequence to compute the K-theory of C;(F3) X, F»,

where F3 = F3(B1, 8,5, f3) and F, = Fy(ay, a,), we get the following result.

Proposition 4.2. The K-theory of C;(F3 X F») is as follows:
Ko(Cr(F3 X Fy) = 77, Ky (C(F3 X Fy)) ~ Z°.

Proof. Denote by ¢ : F, — Aut(F,) the action of F; on F, given by the relations which
determine the structure of P,. Set B := C;(F3) X, F, = C}(F3(81, B2, B3)) X, F»(ay, ay). From
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(4.1), we have the exact sequence:

Ko(CE(F3(Bys Bar ) —2 Ko(C(F (B Ban ) Xy Flat1)) — = Ko(B)

| |

Ky (B) Kq(Cr (F3(B1: B2, B3)) Xy F(a1)) =— Ki(Cr (F3(B1, B2, 83)))
(4.7)

k,

We claim that the maps w, = i,o(id, — @(a; 1),) are equal to zero. On K, we have
p(ayD.((1]) = [1] = id.([1D),
so w,([1]) = 0; and on K, for every j € {1, 2, 3} we have
-1 _ _
P(a; )*([uﬁj]) = [u(p(az_l)(ﬁj)] = [uaz‘lﬁjaz]-
By the braid group relations 4, 5, and 6 in Remark 2.1, we have o g oty = faBj fgl, where fg
is a product of elements in {8;, 3,, 35}. Hence
[uaz_lﬁjaz] = [ufﬁﬁjfgl] = [uﬁj] in Ky (C*(F(B1, B2, B3)) Xy Fary)),

SO wz([uﬁj]) = 0 for all j, and the claim is proved.
From (4.7), we get two short exact sequences:

0 — Ko(Cr(F3(B1 B2, B3)) X, F(ety)) = Ko(B) — Ky (Cr(F3(B1,2,83)) = 0 (4.8)

0 — Ky (Ci(F3(Br, B2, B3)) Xy F(ay)) = K1 (B) = Ko(Cr(F3(B1,B2:83)) = 0 (4.9)
We now use another PV sequence to compute K;(C; (F3(81, 82, B3)) X, F(a)) fori = 0,1. Set
B, := Cj(F3(B1, B2, B3)) X, F(a;). We have from (4.2) that

Ko(Cr(F5(B1,B2,83)) 2 Ko(Cr(F3(B1, B2, B3))) — K((By) (4.10)

| |

K1(31) K1(C;k(F3(51s Ba, 53))) <e— Kl(cj(F3(Bl’ Bas 53)))

where 6 = id, — p(ay 1), is again the trivial map in K-theory, because by relations 1., 2. and
3. in Remark 2.1, we have that a'B;a; = fgB; fgl, where f; is a product of elements in

{B1, B2, B3}, as above.
We get the short exact sequences

0 — Z — Ky(B;) — Z°> — 0,

0 — 273 ——K;(B)) —= Z ——0,

from which we deduce
Ko(By) = Ky(By) = Z* .
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By inserting this in (4.8), we get

0——7* ——=KyB) —= 7> ——=0,

0—27*——K/(B)—=Z—0,

so we deduce
Ko(B) = 7, Ky(B) =~ Z°,
which proves the proposition.

By applying the Kiinneth formula to P, = B X Z, we obtain the following corollary.

Corollary 4.3. The K-theory of C;(P,) is given by
Ko(CF(Py) = 772, Ki(Cr(Py) = 772,

(4.11)

4.2. Going from P,_, to P,,. Before computing the K-theory of C;(P,) for all n, let us explain
how to compute the K-theory of C;(Ps). Recall that P, = F,_; X P,_;,so that Py = F4 X P, =
F, X F3 X F, X Z. We first compute the K-theory of C;(F, X F3 X F,). By Lemma 4.1, we have

Cr(Fy X F3 X Fy) = (Cr(F4 X F3)) X, Fy,

so the K-theory of C;(Ps) can be computed via a Pimsner-Voiculescu sequence once we know
the K-theory of C;(F, X F3), which is isomorphic to C;(F,) X F;. Notice that, as F, is K-

amenable for all n, we have K;(C;(F,) X F3) ~ K;(C}(F4) X, F3),fori =0, 1.

We compute the K-theory groups K;(C;(F,4) X, F3) via Pimsner-Voiculescu sequences.

Letting n = 3 in (4.2), and using (4.6) and (4.5), we get the sequence below.

0

z? Z Ko(CE(Fy) X F3) .
Ky (CE(Fy) X, F) 74 (z*y?

Since again 6 = 0 on both K, and K;, we have

Ko(C(Fy) X, F3) = 7, K, (CX(F)) X, F3) =~ 7.
To compute the K-theory of (C;(F,) X, F3) X, F,, we apply (4.2)
]

(Z13) 713 Ko(C}(Fy) X, F3) X, Fy)
Ky (Cr(Fy) X, F3) X, Fy 77 . (Z7)?

and we get

Ko(C(Fy) X, F3) X, Fy) = 7%, K (CE(F4) X, F3) X, Fp) = 773
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By the Kiinneth formula, we finally obtain
Ko(C(Fy) X, F3) X, F3 X Z) = K1(C(F4) X, F3) X, F; X 2) ~ 7 @ 7% ~ 7%

Let us now generalise this procedure to compute the K-theory of C;(F,) X, F,,_; in the follow-
ing lemma.

Lemma 4.4. The K-theory of C;(F,) X, F,_, is given by
KO(C:(Fn) Ay Fn—l) = Zl+n(n—1), Kl(c;k(Fn) Xy Fn—l) = ZZn—l'
Proof. We apply (4.2)

Ko(CrEN Ko(Cr (Fn)) — Ko(C7 (Fy) Xy Fp1)) (4.12)

T |

Ky(C}(Fp) Xy Fp_1)) < K (C}(Fp)) ——— (K1 (C;(F, )™

0

the maps 6 are trivial in K-theory, so for i = 0, 1 this gives

Ko(CF(Fp) Xy Fp_y) = Ko(Cr (Fp)) ® (K1 (Cr(F))" Y, (4.13)
KI(C;T(Fn) >qr Fn—l) = KI(C:(Fn)) @ (KO(C;T(Fn)))n_l . (4~14)
By the relations (4.6), we obtain the result. O

4.3. K-theoryofC; (P,). We are now ready to compute the K-theory of C;:(P,) using Pimsner—
Voiculescu sequences. We use the following remark.

Remark 4.5. Let A be a C*-algebra whose K-theory is torsion-free and finitely generated. This
means that there exist two integers a, and a; such that Ky(A) ~ Z% and K;(A) ~ Z%. If
¢ : Fr — Aut(A) is an action of the free group F) by automorphisms on A such that the
induced map 6 in the PV sequence is zero, then we obtain

Ko(A X, Fi) = Z%+, K\(A X, Fi) = 24+,
In particular, the K-theory groups of A X, F), are also torsion-free.

Proposition 4.6. The K-theory of Cy(P,,) is given by
KO(C:(Pn)) = Kl(c;k(Pn)) ~ 72,

Proof. WesetQ; :=F, 1 X F, ;X XF,_jforj=1,..,n—2.

We first show inductively that all the groups K,.(C;(Q;)) are torsion free. For j = 1, thisholds
true; at each subsequent step, the K-theory of C;(Q;) =~ Cy(Fp_y X Fp_y X+ X F,_j 1) X, Fp_;
is computed as in Remark 4.5 via a Pimsner-Voiculescu sequence involving the K-theory of the
reduced C*-algebra C;(F,,_; X F,_, X -+ X F,_j,;). We repeatedly apply Pimsner-Voiculescu
sequences (4.2) and we have

Ko(CH(Qp) = Ko(Cif(Fp—p) @ (K1 (CF(Q_p))" ™ (4.15)
K1 (CH(Qy) = Ky (CF(Fp—p)) @ (Ko(CF Qi)™ (4.16)
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To determine the rank, set
x; = rank K,(C7(Qy), yi 1= rank K, (C¥(Qy)
From (4.15), we have fori = 2,...,n — 2
x; = rank Ko(Cr(Qi—1) Xy Fy) = X, + ¥ (n — i),
yi = 1ank Ky (Cr(Qi—1) Xy Froy) = Yiy + X1 - (n — ).
with x; = 1 and y; = n — 1. This implies

Xityi=Xia+t Y+ +yio)n—i).
Note that P,, = Q,,_, X Z; and by the Kiinneth formula, we have rank K,.(C;(P,,)) = X,_2+Y_-
The sum s; := x; + y; satisfies
§;=8_1n—i+1)
hence we deduce

Sp_g =Sp_z(n—n+2+1)
S5-(n—=2)(n—-3)-..4-3
=nn—-1)-..4-3

n!

>

0

As the group P, is K-amenable (see section 2.3), the K-theory of the maximal C*-algebra of
P, coincides with the reduced one, see for instance, [16, Corollary 3.6]: If G is K-amenable,
then for every C*-dynamical system (A4, «, G) one has

Ki(A Xg, G) = Ki(A Xy G), i=0,1. (4.17)

Since free groups are K-amenable, by Lemma 4.1 one has immediately:

(1) Ki(C*(Pp)) = Ki(C7(Py))
(2) For the iterated semidirect products

Q1 :=Fp
Qy :=Fy_1 XFy_,

Qu i=F 1 XF,, X XF,
the K-theory of the maximal C*-algebra is the same as the reduced one.
Therefore

Ko(CH(P,) = Ky (CH(P,)) = Z5.
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5. Isomorphism of the Baum-Connes assembly map

Let us denote by I' = F(f4, 82, B3) X F(ay, a,) the group generated by o, a5, 51, 52, B3 satis-
fying the six relations described in section 3.1. In this section, we use the structure of P, given
by P, ~ T X Z,where I' = F; X F,, and the Kiinneth theorem in K-theory, to reduce the proof
of the Baum-Connes isomorphism for P, to that of I'. We will use the explicit computations
given in [34] of the Baum-Connes assembly map in small homological degree to write down
the explicit image for I' under the Baum-Connes assembly map. We will prove the following
theorem.

Theorem 5.1. The assembly map
K+ Ki(BT) — K;(Cr (D))
is an isomorphism for i = 0 (even-degree case) and i = 1 (odd-degree case).

5.1. Odd-degree Baum-Connes isomorphism for I'. We will start with the casei = 1. Re-
call that H,(T, Z) = T /[T, '] so that H, (T, Z) is the abelian group generated by 3;, 35, 83, &1, A5.
There is a classical isomorphism H,(T', Z) ~ H,(BT"), where every generator of H,(T', Z) corre-
sponds to a unique 1-cycle coming from the 1-skeleton of the space BI'. The correspondence
is determined by the fact that I' = 7;(BI'): Every element y € I can be viewed as a pointed
continuous mapy : S' — BT, thus inducing a map in K-homology y,. : K;(S') — K;(BI'). Let
D be the Dirac operator on S' and 7 the representation of C(S') on L?(S') given by pointwise
multiplication. Then the class of the cycle (i, D) is the generator of K;(S') ~ Z; we denote it
by [D]. Every element y € T can then be mapped to the class of the cycle y..(7, D) = y.([D]) in
K, (BT) (see [34, Chapter 7]). Moreover, every element y € T’ can be mapped to the invertible
element [y] € K;(C;(I"), which is determined by the class of the Dirac element &, in C,(T).
We are going to prove the following theorem.

Theorem 5.2. Let T be the group F(f3;, 35, 83) X F(ay, a,) generated by the elements oy, ay, 31,
B, B3 that satisfy the 6 relations described in Section 3.1. The Baum-Connes assembly map

K * Ky(BD) = K (Cr ()
is an isomorphism with
ur((@)«[D]) =[], =12
/’tr((ﬂl)*[D]) = [;Bi]’ i= 1, 2, 3,
where [D] is the K-homology cycle given by the Dirac operator on the unit circle S*.

Following [34] (see Chapter 7), define a morphism B, : T = K;(C#(I") by sendingy € T to
the invertible element [y] in K;(C;(T')). The map /3, gives rise to a well-defined morphism

Boa : Hi(T, Z) —» Ky (CE(D)),  yIL T+ [y,

because K;(C}(I')) is an abelian group. The Dirac operator D on S! gives rise to a class which
generates K;(S?). For every group element y € T, denote by y : S' — BT a 1-cycle representa-
tive for [y] € H;(BT).
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Define a morphism 3, : T — K;(BI) by sending y to y,[D]. By [34, Proposition 7.1], 3,
descends to

B: . Hi(T,Z) - K, (BT), [y]+~ 7.ID],
and we have the following lemma due to Natsume, which we will use to prove Theorem 5.2.

Lemma 5.3 ([22], [34] Proposition 7.2). The following diagram commutes.
Hl(rs Z)

K;(BT) al K (CH(D))

Thatis, 8, = Uy0f;.
Proof of Theorem 5.2. We are going to use the fact that there is an assembly map

p : Ki(BT) — K(C*(ID)
such that u, = Ap,ou where the morphism Ar, : K;(C*(I')) — K(C,(I")) is induced by the
regular representation Ar of I'. We will then use the K-amenability of P, which implies that A,
is an isomorphism. The advantage of u with respect to y, is that u is functorial in I and we will
make use of its functoriality. Consider the group homomorphism ¢ : I' — Ty, where 'y, =
['/[T,T] ~ Z° is generated by the cosets of a;, &y, 1, B2, B3. This map induces a continuous
map ¥ : BI' —» BZ> and a morphism of group C*-algebras ¢y : C*(I') — C*(Z°). By the
functoriality of the Baum-Connes assembly map at the level of the maximal C*-algebra, we
have the following commutative diagram

K, (BT) —5 K1 (C*(T))

o

K1(BZ%) — Ky (C*(Z%)

where y and u’ are the Baum-Connes assembly map defined at the level of the full C*-algebra
for I and Z°. From our calculation of K;(BT) (see Lemma 3.7), we see that 3, : K;(BI') —
K,(BZ?) is an isomorphism. In fact, the following diagram is commutative by definition

H\(T, 2) K,(BI)

|

H\(Z°,Z) —K,(BZ°)

and the left and bottom arrows are isomorphisms. This shows that 1, is a surjective morphism.
But 1, is a surjective morphism from Z° to itself. So ., is an isomorphism on K-homology.

As the Baum-Connes conjecture is known to be true for abelian groups, the map ¢’ is an iso-
morphism; so using the commutativity of the diagram, we get that the map ¥,, : K;(C*(I")) —
K,(C*(Z)) is surjective. On the other hand, we have computed that

K\ (C*(D) = Ky (CH(2°)) = 2%
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therefore, as a surjective homomorphism from Z> to itself is an isomorphism, the map ¥, is an
isomorphism on K-theory as well, and hence u is an isomorphism.

By commutativity of the diagram in Lemma 5.3, the map f3, is surjective; and, being a sur-
jective morphism from Z° to itself, it is an isomorphism. Thus, j3, is an isomorphism, mapping
o[, T] to [or;] and [T, T'] to [B;]. Because u is an isomorphism, we have that §; is an isomor-
phism, mapping [o; : S! — BT'] € H{(BT) ~ Hy(T, Z) to («;).[D] € K;(BT). Therefore we
know that the generators of K;(BT) are of the form («;).[D], i = 1,2; or (8;),[D], j = 1,2,3.
The commutativity of the diagram of Lemma 5.3 then implies that

p((@)«[DD) = [e],  i=1,2
#((ﬁl)*[D]) = [Bi]a i= 1321 3.

The theorem is then proved by noting the K-amenability of I" and applying Ar, to get the ele-
ments of C;(T). O

5.2. Even-degree Baum-Connes isomorphism for I'. Recall that I' is the group

F(B1, B2, B3) X F(aq, ay),

whose generators ay, o, B1, 85, B3 satisfy the six relations of Section 3.1. Each relation R; cor-
responds to a surface X; whose fundamental group is canonically related to R; as follows.

m1(Z1) = (a1, a3, a3, 04 | 10507 = (a304) " ay(aza,)),

m1(2,) = (by, by, bs, by | bybybT! = by bybsb 'by),

m1(Z3) = (1, ¢, | er626; = ¢p),

m(Z4) =(dy, dy,d3,d4 | dldzdl_l = (d3d4)_1d4(d3d2)>,

m1(Zs5) = (e1, €3, €3, €4, 5,66 | ereze; = (eses)"eseser(eses) ' (eges)),
m1(Z6) = (f1: fo f3o fa | frfaf T8 = F3 faf3 05 fa)-

LetT; = m,(%;), and set T' : =Ty # T, * --- * T, the free product of the I';. By the van Kampen
Theorem, the group T is the fundamental group of

Z :=Zl V22V"'VZ6
obtained by joining together a base point from each of the X;. Then the mapping defined by

a;,b;,ci
az, by, by, e; = B,

di,ep, f1 2 o
a C2,ds3, 4,66, f2, fa = B3

ay,a4,b3,d5,dy, €365, f3 > )
sends relations of I" to relations of T, and it determines a surjective morphism
f:I'>T. (5.1)
The map f also leads to the morphism of full group C*-algebras below.
f:cxI) - cx(D).
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Let X = BT, and denote by X1, ..., X the 2-simplices of X corresponding to each R;. The
union of the X; is the 2-skeleton X(¥; and since X is a space of dimension 2, we have X® = X.
The map f in (5.1) induces a map at the level of the classifying spaces f : B[' —» BI' = X.
Taking the 2-skeleton, we obtain a continuous map

f:Z-X (5.2)
such that f(Z;) = X;. Applying the fundamental group functor for (5.2) recovers
fimE) - mX)

in (5.1). By the functoriality of the Baum-Connes assembly map, we have the following com-
mutative diagram,

u -
Ko(Z) — Ko(C*(I)
o
Ko(BD) — K,(C*(D).
Note that the map in (5.2) gives rise to the two isomorphisms
Hy(X) ~Hy(BIN)~Z
and
The existence of an inverse Chern character map
Heven(z) = HO(Z) @ HZ(Z) - KO(Z)
sending the generator [Z;] € H,(Z) to [Dy,] € K((Z), where Dy, is the Dirac operator on %;,
which induces an isomorphism at the level of K-homology classes, allows one to construct a
morphism
s
Bi  Hepen(BT) = Hepen(Z) — Ko(Z) — Ky (BT),
taking the composition with f, on K-homology,
By construction,

Bi(IXi]) = f.lDg,]. (5.3)
The map S, is part of the lower-left of diagram

even(BF) <_ Heven(z) —— KO(Z) —> KO(C*(F))
Sy

The upper-right of this diagram is defined to be 8,; by definition, (see [34])
Ba(IXi]) = f(u([Ds,1)).

The commutativity of this diagram is implied by the following lemma.
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Lemma 5.4 ([34] Prop. 7.3). The diagram commutes with 3, rationally injective:

Heven(r’ Z)

Ko(BT) a Ko(CE(D))

Thatis, 8, = My0p5;.
Now, from our calculations (see Lemma 3.7), we have,
H ypon(BT) ~ Ky(BT) ~ Z7.

Knowing that 8, maps generators to generators from (5.3), and in view of the fact that g, is
rationally injective (see [34, Proposition 7.3], 3, is an isomorphism. The commutativity 8, =
Hurof; hence implies that 3, is an isomorphism if and only if y, is an isomorphism.

Since 8, = u,0f;, we can also describe the map u, explicitly:

K+ Ko(BI) = Ko(Cr ()
f*[Dzl-] = f*M([Dzi])

We are ready to prove the following theorem.
Theorem 5.5. The assembly map
U 1 Ko(BT) = Ko(CH(D))
is an isomorphism, with

wr(felDg D) = fu(u[Dg, D),  1<i<6
ur(1) = [1].

Proof. Consider the trivial homomorphism 1: T' — {e}. It induces a map BI' — {pt} and
a map C*(I') —» C such that the K-homology and K-theory functor lead to two morphisms
1, : Ko(BT') —» Ky(pt) and 1,, : Ko(C*(T)) — Ky(C). The first morphism in K-homology is a
surjective map capturing the O-simplex of BT'. The functoriality of the Baum-Connes assembly
map gives rise to the commutative diagram

Ko(BT) —5= Ko(C*(D))
% “l

Ho
Ky(pt) Ky(©)

where Ly is the identity map from Z to itself. Leti = 1 or 2, and let j = 1,2, or 3. Denote by
¢;; the surjective morphism given by

. 2
¢ij I'»Z OCpHapiOCi, 6p |—>5pj,5j,
where §; jis the Kronecker delta. As above, it induces two maps

¢ij . BT - BZZ ~ Tz, ¢1J . C*(F) - C%(Zz),
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where we denote by T2 the torus. Note that the map on the classifying space is given by collaps-
ing all 1-cells which do not represent a; or 8; to a point, and collapsing all 2-cells that do not
represent the group relation involving o; 3 ocl.‘l (denoted R;;) to a point. Thus, the induced map
on K-homology ¢;; . : Ko(BI') — Ko(T?) is a surjective map that maps the 2-cell represented
by R;; to the Bott generator of Ko(T?). As above, we also have the induced map on K-theory
¢ij 1 Ko(C*(I)) = Ko(C*(Z?)) the commutative diagram

Ko(BT) —= Ko(C*(D))

Pijx L Pij j

Hij
Ky(T?) — Ko(C*(Z%)).
Here (;; is the assembly map for Z2. Putting 7 diagrams (involving 1, and ¢; j« Wherei =1,2
and j = 1, 2, 3) together, we have a commutative diagram

Ko(BT) - Ko(C*(I)

N N

Ko B [, Ro(12)] ~ Ko © B [, , Ro(C*(22)].

Here, Ky(T?) is the reduced K-homology, excluding elements generated by the trivial cycle
from K,(T?), and K,(C*(Z?)) is the reduced K-theory, eliminating elements generated by the
trivial projection from K,(C*(Z?)). By construction, ¢, on K-homology (the left arrow) is an
isomorphism. It is well known that u’ is an isomorphism for abelian groups Z2 and for the
trivial group {e}. Together with the commutativity of the diagram, the map ¢, on K-theory
(the right arrow) is surjective. Because ¢, is a surjective group homomorphism from Z’ to
itself, we conclude that ¢, on K-theory is an isomorphism. Therefore the commutativity of
the diagram implies that u for I' is an isomorphism. As the group I is K-amenable, we have
K. (C*(T)) ~ K,(C;(T)), hence we find that the assembly map y, is an isomorphism. O

5.3. Isomorphism for P,. Letusnow recover Oyono-Oyono’s theorem for P, using the Kiin-
neth formula.

Theorem 5.6. The assembly map
pr @ Ki(BPy) = Ki(Cr(Py))
is an isomorphism fori = 0 or 1.
Proof. Note that the isomorphism P, ~ I X Z implies that
K;(BP,) ~ Ko(BI') ® K;(BZ) @ K, (BT') ® K;11(BZ),
Ki(C7(Py)) = Ko(Cr (D) @ Ki(Cr(2)) & K1 (C(T) @ Ki41(C (2)).

Following the definition of the assembly map in [34] by twisting Mishchenko line bundles, we
have ,uf“ x®y) = ul(x) ® uZ(y) forx € K;(Bl)and y € K j(BZ), which are represented
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by Dirac-type operators. Then the assembly map for P, is an isomorphism if u, : K;(BT) —
K;(C#(T)) for i = 0,1 is an isomorphism. The theorem thus follows from Theorems 5.2 and
5.5. O

5.4. Baum-Connes isomorphism for P,. Let us now prove the following theorem, which
is originally due to Oyono-Oyono.

Theorem 5.7 ([24] Proposition 7.2). The Baum—-Connes assembly map for the pure braid group
P,
My - Ki(BPn) - Ki(c;k(Pn))
is an isomorphism.
Fork €{l1,...,n—1},let
Fo 1= Fi(Apy ks, Azerts - A1)
be the free subgroup in P, (see section 2.1). There is a canonical homomorphism
p:P, > F XFy;X--XF,_q, A= (e, ...,e,Agy e, 0)

where e is the identity element; here, A, € F,_;. In particular, all relations in the presentation
for P,, reduce to the form

P(A,)p(A; ;) = p(A; j)p(A; ), i<j, r<s, §<]j
in the image. The map p induces maps between the classifying spaces and the C*-algebras:
Bp : BP,, » BF{ X :-- X BF,_1, p:C*P,) > C*(F)® - @ C*(F_1).

Consider the induced maps on K-homology and K-theory. By the functoriality of the Baum-
Connes assembly map at the level of the maximal C*-algebra, one has the following commu-
tative diagram,

Ki(BPn) Kl(C*(P}’l)) (5-4)

Bp*j p*j
!

Ki(BFy X -+ X BFy_1) —— K{(C*(F)) ® - ® C*(Fy,_1))

where 1’ is an isomorphism because the groups F, and their direct products have Haagerup’s
property (see [23]). Let us describe the map Bp as a morphism between CW-complexes. For
1 < r < n, choose pairs of numbers (i, ji ), where k € {1, 2, ..., r}, satisfying

1<i;<ip<--<i.<n, 1< ji < ig. (5.5)

It can be checked that every r-simplex of BP,, depends uniquely on the pairs (i, ji), where
1 < k < r. Denote the r-simplex by [A A; i ]. Note that for a fixed r, the number of
distinct r-simplices in BP,, is equal to

Z (-1 G -1=a,

1<) <-+-<i, <n

jl’il’ eee g
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which is the rank of the free part of H"(BP,,). Set a, = 1 and recall that ay + --- a, = n!, so that
BP,, has n! simplices in total.

Example 5.8. The CW complex BP, has 1 0-simplex; 6 1-simplices a,, ¢ty, 51, 52, 53, 11 2-simplices
R1,R2,R3,R4,R5,R6,cXay,cXay, X B1,cX B2, cXB3; and 6 3-simplices R; X c fori € {1, ---, 6}.

The map Bp : BP, — BF, X--- X BF,_, is defined by sending the r-simplex [A; ; ,..., A; ; |
in BP,, to the r-simplex

(A1, -,[A}, ;1) € BF;_y X - XBF; _; C BFy X -+ X BF,_;.
Observe that Bp gives rise to an isomorphism
Bp. : Hi(BP,) - H;(BF; X --- X BF,_1).
Because the Chern character maps
Ch : Ko/1(BPy) = Heven/odd(BPy)
Ch : Ko/ (BFj,_y C BFy X -+ BF,_1) = Hepenjodd(BF1 X -+ X BF,,_;)

are isomorphisms, and by the functoriality of the Chern character, we obtain an isomorphism
on K-homology

Bp* . Kl(BPn) e Kl(BFl X e XBFVL—I)’ i = 0, 1.

Because the Baum-Connes conjecture holds for free groups, we obtain that ¢’ in (5.4) is an
isomorphism. By the commutativity of (5.4), the map on K-theory

Ps - Kz(C*(Pn)) - KI(C*(Fl) ®---® C*(Fn—l))

is surjective. It is an easy exercise to compute that K;(C*(F;) ® --- ® C*(F,_;)) = Z>.Thus

P is a surjective morphism from Z> to itself. So p,, is in fact an isomorphism. Therefore u is
an isomorphism, by the commutativity of the diagram (5.4). As P, is K-amenable (see section
2.3), Theorem 5.7 is then proved.

6. The full braid group on three stands B;

In this section we consider full braid groups. The Baum-Connes correspondence for B,, is
known to be an isomorphisms by the work of Schick ([31]). We provide the explicit description
in the case n = 3, modulo torsion. Note that in the paper [4], the authors had computed the
K-theory of C;(B3).

6.1. K-homology of BB,,. Modulo torsion, the K-homology of BB,, is easier to compute using
the rational isomorphism of the Chern character:

Ch : Ky(BB,) > €P Hx(B,. 2), Ch : K(BB,) > €D Hyi_1(B,.. 2).
i i

Arnold computed the integral cohomology ring of the braid groups:
H’B,,7)~Z, H'(B,,Z)~Z,
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and H'(B,, Z) is finite for i > 1; see [2] and [35]. By Poincaré¢ duality, we obtain the following
result.

Proposition 6.1. Up to torsion,
Ky(BB,) ~ K(BB,) ~ Z.
Remark 6.2. As the referee pointed out, B; is a one relator group, its presentation complex

has dimension 2 and can be taken as a model for its classifying space. So the K-homology can
be computed in this case. See [4].

Remark 6.3. Calculating K,.(BB,,) is a challenging task, since K, (BB,,) may contain torsion.
For example, in Example 5.10 in [18], the K-theory of the reduced group C*-algebra of B, is
computed to be

Ko(Ci(By) =~ Z @ (Z/22), Ki(CE(By)) = Z.
By the Baum-Connes isomorphism for the braid group, one knows that K,(BB,) has torsion.

6.2. K-theory of C;(B3). Let B; = (0y,0,|0,0,0, = 0,0,0,) be the braid group on three
strands. The center of this group is generated by (0,0,)® = (0,0,0;)%. Let x = 0,0,0; and
Yy = 0,0,. Then B; can be presented alternatively as

B3 = <X,y | x2 = y3>’
where (x?) = (y3) = Z(B5). Setting G = (x),H = (y) and K = (x?) = (y3), then
B3 = (x) #z,) (¥) = G #¢ H.
For an amalgamated free product, one has the following six-term exact sequence (See [21]
Theorem Al).

Ko(CH(K)) —% Ko(C3H(G)) @ Ko(C(H)) ~— Ko(C*(B))

| l

Ky (G} (By)) ~—— K;(C} (@) @ Ky (C (D) <= K4 (C} (K))
Note that K;(C;(K)) = K;(C;(G)) = K;(C;(H)) ~ Z. By definition,
a:Z-72&7Z, a(x) = (x, x);
b:Z->7&®7Z, b(x) = (2x, 3x).
Thus a and b are injective, and then c and d are surjective. Therefore we have
Ky\(C}(By) = Z ® Z/im(b) ~ Z,
where the last isomorphism is due to the linear transformation
70777, (x,y) > Bx—2y,—x+Yy)

in SL(2, Z). Similarly,
Ky(Ci(B3) ~Z® Z/im(a) ~ Z.
Thus the following proposition is proved.
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Proposition 6.4. We have that

(1) Ky(C;(Bs3)) ~ Z is generated by the unit of C;(Bs), and
(2) K (Cj(B3)) ~ Z is generated by [0, ] = [o0,].

Remark 6.5. The K-theory of C;(B,) is computed in [18], Example 5.10. At present, we are
not aware of any direct method of computing K,.(C;(B,)) when n > 5.

The proof of the Baum-Connes isomorphism (rationally) for B; can be carried out analo-
gously to Theorem 5.2 by considering the trivial morphism B; — {e}, the quotient morphism
B3 — B3 /[Bs, B3] ~ Z, and these commutative diagrams:

Ko(BB3) —=> Ko(C;(B3)) K1(BB3) —— K;,(C:(I))
Ko(Ble}) —= Ko(CF({e}) Ki(BZ) —“- K\ (CH(2))

Theorem 6.6. The Baum—-Connes assembly map
K;(BB;) — K;(C}(B5)), i=0,1

is an isomorphism rationally.

7. Appendix

In this appendix, we give some of diagrams that illustrate the structure of pure braid groups.

7.1. Generators of P,.

Jiv
JiN
f
JA\

— _ -1
a; =0 ©5) —0'20'10'2
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—/ . —
(< —
C\ ~ ~
_ 2 _ 2_—1 _ 2_—1_—1
B =03 B, = 03050; B3 = 030,070, 05

7.2. Relations for F(a,, a,) X F(o?).

—

| P
Jiv
JoJouC
fi
]\
fi

—J
U

2 -2 — 2 — —
O'lalo'l = (azal) 10(1(0{20(1) 0106201 =0 10(20(1

7.3. Relations for F(B,, 8,, B3) X (F(ety, oxz) X F(c2)).

J

J\
J\
J \

_A_TA_

JUUUUL

—J

0B’ = fa 026,07 = (B382) " B2(B32)

1289
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J\__

J \

I\
JUuUL

0%5301_2 =B, '85>

_J\%}\_
fi
T

a1 Bra;t = BB

D d
I

axBra;,t = (B3B1) " B1(BsB1)

JUUUUL

<

) c
BB <
|

JUUUUL

j d

arBra;t = (B281) 7 B1(B2B1)

)\

J \
J \

I

_J\

a Bzt = Bs

) \__

J \
J\UJU

—J\

syt = By BB
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_|J =
= — =
—3

d=|— —
—\ —
L =
—j 1=
]

“252“2_1 = (5351)_1(5153)52(5153)_1(5351)

7.4. The center of P,.

J C

4 2
(010203) = 01“20‘1535251

)L
JU\
JUUL___

These diagrams show that the center splits off and gives us the direct product decomposition:

F(B1,B2,83) X (F(Ofl, ;) X (Cff» = (F(B1, B2, B3) X F(ay, ay)) X <Uf“2“1535251>-
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