

1 **Modeling of Dynamic Recrystallization Kinetics in Ce containing Mg alloys**

2 Storey, G.K.¹; Eres-Castellanos, A.^{1,*}; Sutton, S.²; McBride, B.N.L¹, Peterson, N.¹; Hartman, D.²; Clarke, A.J.¹;
3 Clarke, K.D.¹

4 ¹Center for Advanced Non-Ferrous Structural Alloys (CANFSA), Metallurgical and Materials Engineering
5 Department, Colorado School of Mines, Golden, CO 80401, canfsa.org (United States of America)

6 ²Mag Specialties Inc., Denver, CO, 80210 (United States of America)

7 *correspondence: erescastellanos@mines.edu

8 **Abstract**

9 ZK60 alloys are known to have high mechanical strength relative to other Mg alloys. Composition variations in
10 precipitate and solute content of ZK60 Mg alloys, with Zn variations and Ce substitutions, allows for the formation of
11 higher melting point precipitates, impact dynamic recrystallization (DRX) behavior, microstructure, and mechanical
12 properties. Creating constitutive models of the DRX process in various Mg alloys can help guide processing to
13 efficiently create products with desirable microstructures. In this work, hot compression testing at various strain rates
14 and temperatures was carried out. It has been shown that greater peak true stresses are required for DRX in alloys
15 processed at lower temperatures and higher strain rates. Moreover, increases in Zn and Ce content increase the stress
16 that the microstructure can absorb before DRX starts. Finally, Electron Backscattered Diffraction mapping shows how
17 texture is decreased by DRX, as compared to the as-received conditions, and how DRX was more advanced for low
18 Zr, low strain rate conditions, consistently with the developed model. Based on these experimental results, a
19 constitutive model to quantify the relationship between the Zener-Hollomon parameter and peak stress was developed.
20 The model showed to reflect the experimentally obtained results accurately.

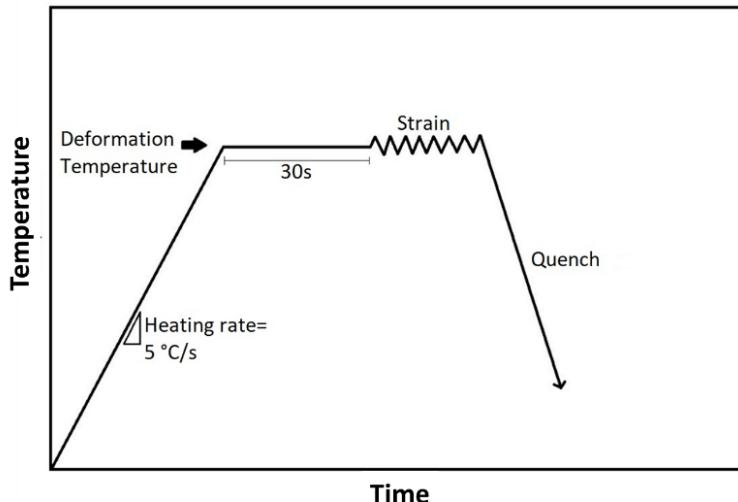
21 **1. Introduction**

22 ZK60 alloys are known to have high mechanical strength relative to other Mg alloys [1]. Low melting point
23 precipitates, such as Mg₂Zn, can cause incipient melting during thermomechanical processing if temperatures are too
24 high [2]. The substitution of rare earth elements, such as Ce, for Zn allows for the formation of higher melting point
25 precipitates [3], improving elevated temperature properties and higher temperature processing windows [4]. Ce
26 additions are also known to enhance corrosion resistance, improve creep resistance, and ultimately accelerate dynamic
27 recrystallization (DRX) [5]. Conventional Mg alloys exhibit improved formability at higher temperatures when non-
28 basal slip systems are activated, further facilitating dislocation slip [6,7]. In metal deformation processing, DRX is an
29 important process which significantly impacts the resultant microstructure and mechanical properties, through grain
30 refinement and texture weakening. [2,8] There is limited knowledge about the formation of preferred crystallographic
31 orientations in Mg alloys due to the possible deformation mechanisms, such as continuous DRX (CDRX),
32 discontinuous DRX (DDRX) and twin DRX [9]. The CDRX mechanism is known to occur via cross-slip during
33 compressive deformation [10], DDRX occurs by prior grain boundary protrusion toward surrounding, high dislocation
34 density grains, while twin DRX occurs at twin intersections or fragments. In alloys with rare earth elements, particle-

35 stimulated nucleation (PSN) in the vicinity of second phase particles has also been shown to occur [11]. Texture
36 weakening in Mg alloys has been associated with PSN, as well as other phenomena including particle pinning, solute
37 drag, and heterogeneous deformation promoting shear band formation [11]. Fu et al. [12] studied DRX mechanisms
38 in Mg-Zn-Mn alloys micro-alloyed with Sm, La, and/or Ca and determined that DDRX and PSN mechanisms
39 weakened the basal texture. The occurrence of CDRX was observed by Xu et al. [13] in a Mg-13Gd-4Y-2Zn-0.5Zr
40 (wt%) alloy during compression-torsion deformation at 450°C.

41 Creating constitutive models for DRX as a function of processing parameters (e.g. ε , $\dot{\varepsilon}$, T) in various Mg alloys can
42 help guide efforts to design thermo-mechanical processing routes to create desired microstructures. For Mg alloys,
43 flow stresses increase with strain due to work hardening until they reach a peak stress, σ_p , as DRX occurs after a
44 critical strain is reached, ε_c [14]. In this work, the peak stress, determined from measured flow curves, was correlated
45 to the deformation strain rate and temperature through the use of the Zener-Hollomon parameter (Z), which has been
46 used in previous studies of DRX kinetics in other alloy systems, including Mg alloys. [15–19] Given the current
47 interest in Mg alloys with rare earth elements, it is especially interesting to define constitutive models showing the
48 relationship between the peak stress and Z for these alloys. Five different modified ZK60 compositions, containing
49 different levels of Zn and Ce were subjected to high temperature deformation at different temperatures and strain rates.
50 The effect of temperature and strain rate on flow stress behavior and texture was also evaluated.

51 **2. Experimental**


52 The alloys used for this study are modified ZK60 (Mg-Zn-Zr) compositions, with deliberate variations in Zn levels
53 and a replacement of Ce for Zr in various amounts. ZK60 is an extrusion alloy that experiences precipitation hardening
54 and exhibits finer microstructures after solidification, hot working, or annealing processes. The composition matrix is
55 separated into three levels of Zn, varying the hypothesized solute content, and three levels of Ce, varying the
56 hypothesized precipitate volume, as can be observed in Table 1. The variations in Zn and Ce within these alloys
57 theoretically result in changes to second phase insoluble particle type, volume fraction, and distribution. The pinning
58 levels, calculated by Pandat's CompuTherm using the 2023 Mg database and included in the mentioned table, were
59 provided by Mag Specialties Inc. ZK60 is ideally suited for this study, because it is a commercial alloy with insoluble
60 Mg-Zr precipitates that influence DRX kinetics and texture. The samples for this study were machined into small
61 cylindrical compression specimens with a diameter of 10 mm and a height of 15 mm, with the cylinder height along
62 the extrusion direction.

63 Table 1. Composition matrix for five alloys studied, varied by pinning phases and solute level

	Complete Solid Solution	~ 1% pinning phases	~ 3% pinning phases
Low solute	-	Alloy LZ-0.4Ce Mg-1.40Zn-0.38Ce	-
Med solute	-	Alloy MZ-0.4Ce Mg-3.52Zn-0.38Ce	-
High solute	Alloy HZ-0Ce Mg-4.21Zn	Alloy HZ-0.1Ce Mg-5.26Zn-0.12Ce	Alloy HZ-0.3Ce Mg-6.78Zn-0.31Ce

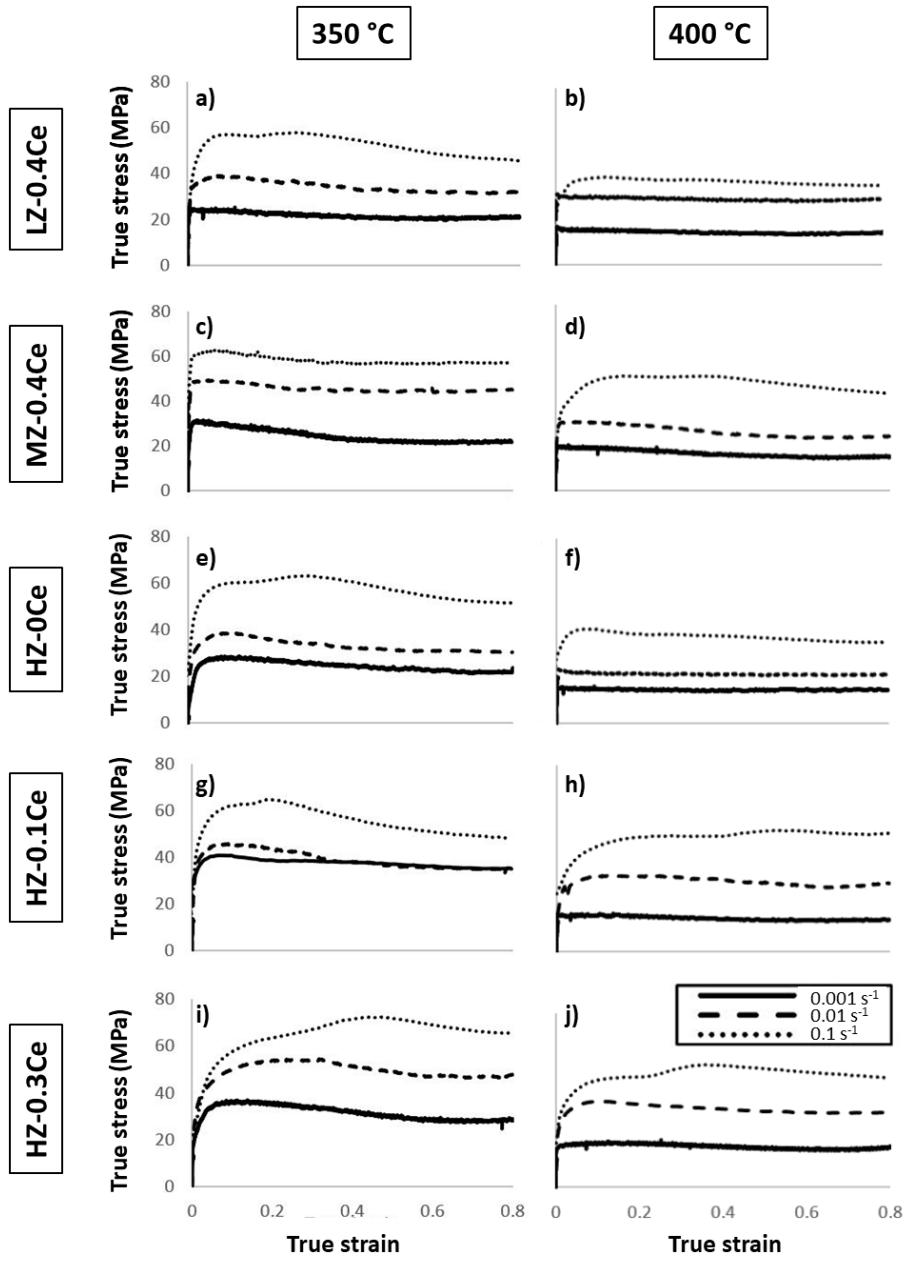
64 Electron backscatter diffraction (EBSD) was completed on all alloys and processing conditions. After compression
65 testing, each sample was mounted, ground, and polished to $0.05\text{ }\mu\text{m}$ colloidal silica and etched after each polishing
66 step in a solution of 4.2g picric acid, 70 mL ethanol, 10 mL glacier acetic acid, and 10 mL deionized water, for 10 s
67 [20]. The polished surface for these samples was parallel to the extrusion direction, for the as-received material, and
68 the compression direction, for the deformation samples. Additionally, all as-received conditions were also EBSD-
69 scanned to use as a reference. EBSD mapping analysis was performed with a 20 kV electron beam, 18 mm working
70 distance, and $2\text{ }\mu\text{m}$ step size. Each inverse pole figure (IPF) map was processed with Neighbor Pattern Averaging &
71 Indexing (NPAR) in the EDAX® Orientation Imaging Microscopy (OIM™) software.

72 Uniaxial compression tests on small cylindrical samples of each of the five alloys was conducted on a Gleeble 3500
73 thermal-mechanical simulator. All samples were compressed to a final true strain of 0.8 and were deformed at
74 approximate engineering strain rates of 0.001, 0.01 and 0.1 s^{-1} at either 350 or 400 °C. One set of thermocouples was
75 welded on the surface at half height of each sample and used to monitor temperature throughout the test. The samples
76 were lubricated at the surface of each anvil with layers of Ni paste and flexible graphite. Each sample was heated at 5
77 °C/s under force control to the deformation temperature (350 or 400 °C), held in displacement control for 30 s to
78 ensure the temperature throughout the sample was homogenous, deformed to approximately 0.8 true strain and
79 quenched with compressed air (Figure 1). Load-displacement data was obtained from the compression tests and
80 converted to true stress-true strain using standard conversion equations. This data gives way to analysis of flow
81 behavior and microstructural characterization.

82
83 Figure 1. Gleeble testing schematic, performed at deformation temperatures of 350 °C or 400 °C and strain rates of
84 0.001 s^{-1} , 0.01 s^{-1} and 0.1 s^{-1} .

85 3. **Results and discussion**

86 3.1. **Effect of DRX on flow behavior and DRX kinetics modeling**


87 True stress-strain curves for all five alloys tested at all processing conditions are presented in Figure 2. A flow stress
88 curve is normally separated by a work-hardening stage, transition stage, softening stage and steady stage. In general,
89 curves in Figure 2 increase to a maximum flow stress, called peak stress (σ_p) and then decrease to a steady state. The
90 onset of DRX is known to happen at a critical stress (σ_c), lower than σ_p , which is achieved at earlier strain stages.
91 Curves represent how work softening is more noticeable at higher strain rates and at lower temperatures.

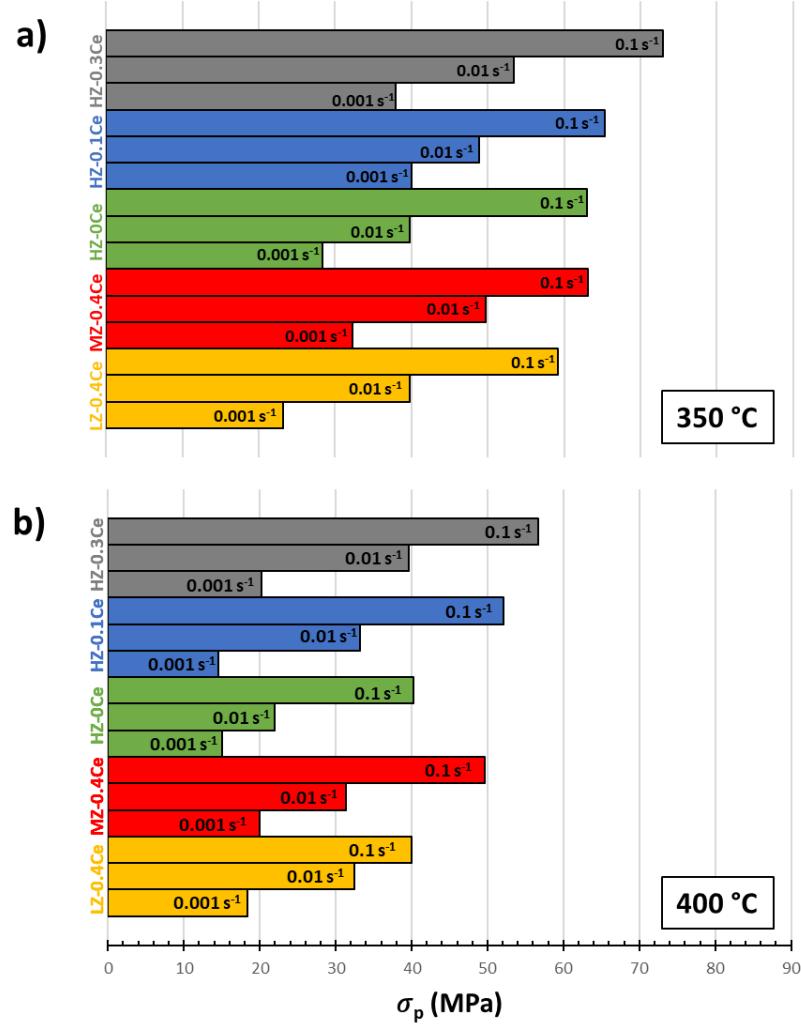
92 In this work, the relationship between the Zener-Hollomon parameter Z and the peak stress in flow stress curves σ_p
93 was calculated for the five alloys of study. To obtain such relationship for each alloy of study, the true stress-true
94 strain curves shown in Figure 2 are used to first calculate both σ_c and σ_p values [21]. To do so, a third order polynomial
95 is fit to each true stress-strain curve up to the peak stress. The used polynomial function, which effectively fits data
96 with prolonged and multiple peaks, is shown in Equation 1 [17],

$$\theta = A\sigma^3 + B\sigma^2 + C\sigma + D \quad (1)$$

97 where $\theta = \frac{d\sigma}{d\varepsilon}$ and constants A, B, C and D allow for calculations of certain DRX conditions. When this equation is
98 differentiated, as shown in Equation 2 [17],

$$\frac{d\theta}{d\sigma} = 3A\sigma^2 + 2B\sigma + C \quad (2)$$

99


100 Figure 2. Flow curves of the five modified ZK60 alloys varying by both temperature and strain rate.

101 The peak stress can be calculated as the stress value for which the derivative is zero. The calculation of critical stress
 102 σ_c according to the derivative can be done as shown in Equation 3 [17]:

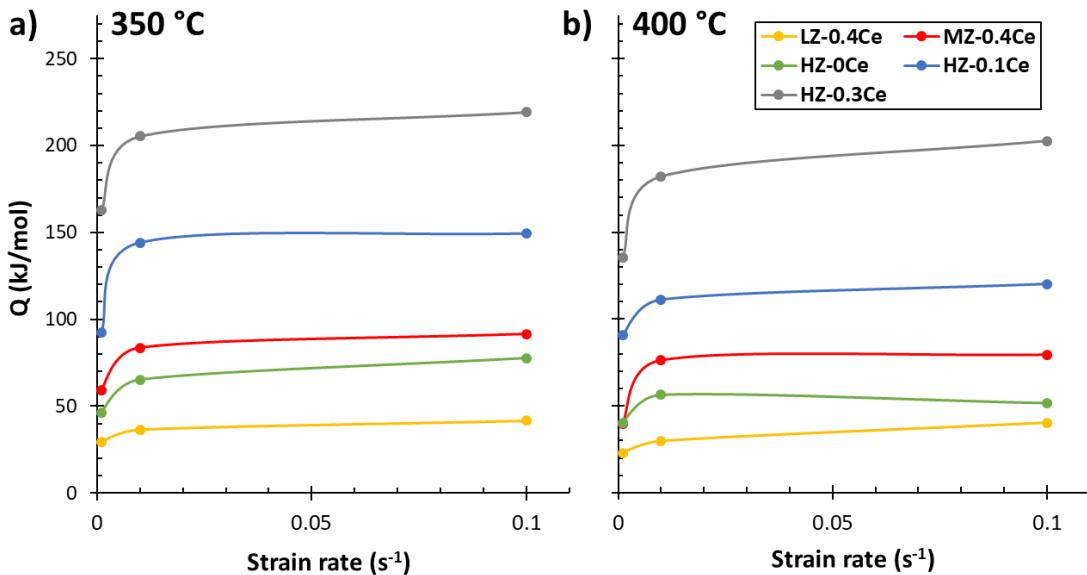
$$\frac{d^2\theta}{d\sigma^2} = 0 \rightarrow 6A\sigma_c + 2B = 0 \rightarrow \sigma_c = \frac{-B}{3A} \quad (3)$$

103 The fitted functions for each alloy, temperature and strain rate can be found in the Table S1 of Supplementary Material,
 104 as well as the values for σ_c and σ_p . Note that σ_c increases linearly with σ_p , which has been previously reported in the
 105 literature for steels [17], proving that both values can be effective at showing trends with respect to DRX kinetics.

106 Figure 3 includes the effect of alloy content, temperature and strain rate on σ_p , displaying that increases in Zn and Ce
 107 content increase the stress that the microstructure can absorb before DRX starts. With respect to the effect of
 108 temperature, it can be seen that a greater true stress is required for DRX in alloys processed at lower temperatures and
 109 higher strain rates.

110

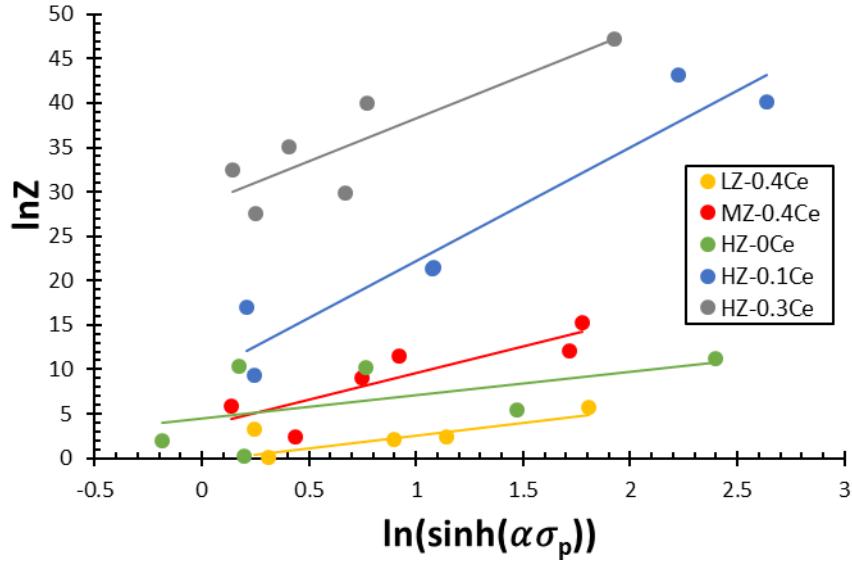
111 Figure 3. Influence of alloy composition and strain rate on σ_p at 350°C (a) and 400°C (b) of modified Mg-Zn-Ce
 112 alloys.


113 Subsequently, each θ/σ polynomial relation and associated σ_c are tabulated and utilized to determine Z and
 114 deformation activation energy (Q) by Equations 4-6 [17],

$$\dot{\varepsilon} = A_1 \sigma^{n_1} = A_2 \exp(\beta\sigma) = A(\sinh(\alpha\sigma))^n \exp\left(-\frac{Q}{RT}\right) \quad (4)$$

$$Z = \dot{\varepsilon} \exp\left[\frac{Q}{RT}\right] = A(\sinh(\alpha\sigma))^n \quad (5)$$

$$Q = R \left[\frac{\partial \ln \epsilon}{\partial \ln(\sinh(\alpha\sigma))} \right]_T \cdot \left[\frac{\partial \ln \sinh(\alpha\sigma)}{\partial \left(\frac{1}{T} \right)} \right]_{\epsilon} \quad (6)$$

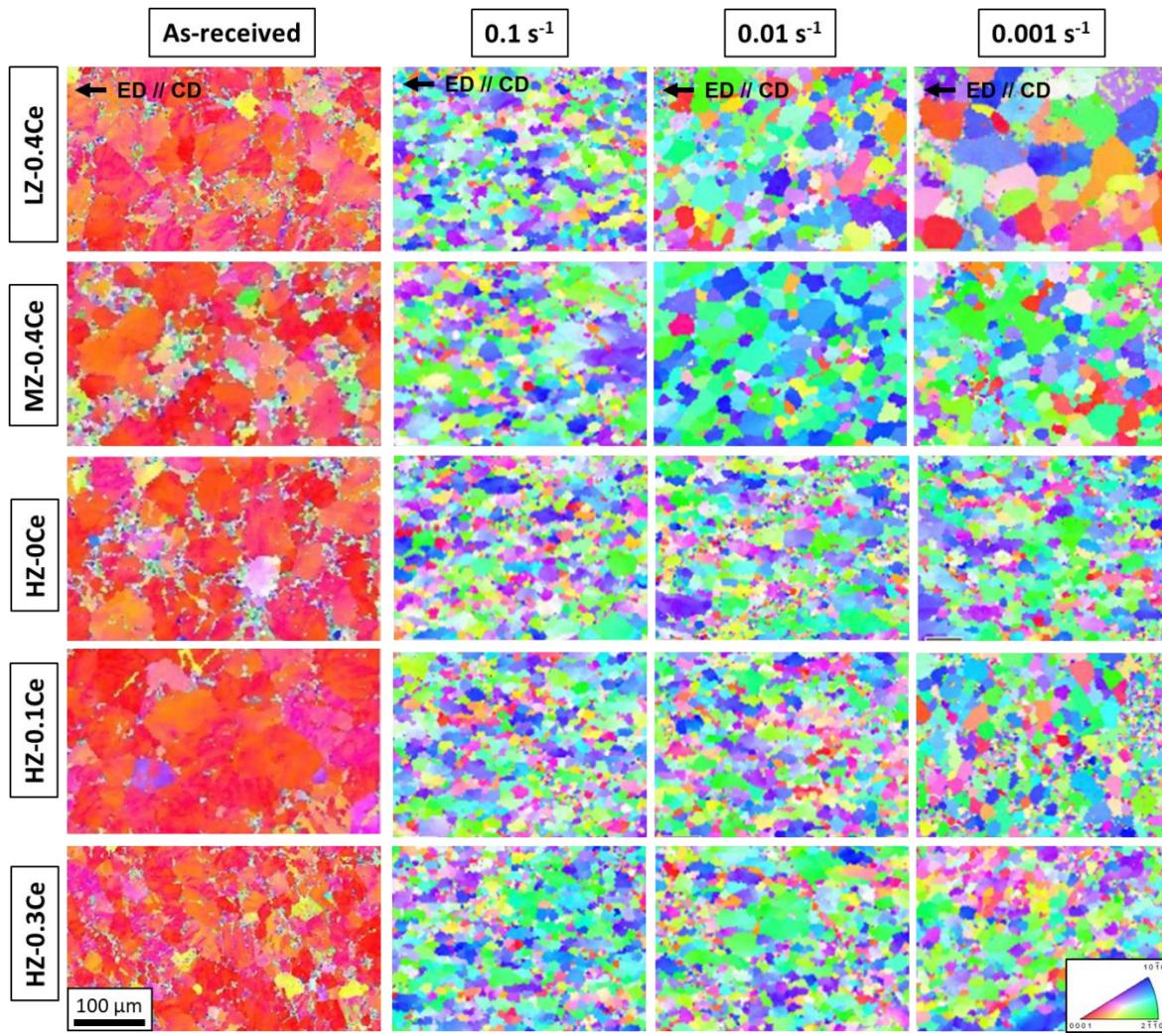

115 where R is the gas constant (8.314 J/mol K), σ is flow stress, T is the deformation temperature and n, A_1 , β , A_2 , and
 116 α are material constants. The value of n_1 is obtained from the linear regression of $\ln \dot{\epsilon} - \sigma_p$ using Equation 4 [17], while
 117 the values of β are determined by the slope of the linear regression of $\ln \dot{\epsilon} - \ln \sigma_p$. The values of n_1 , β , and α values
 118 ($\alpha = \beta/n_1$) are included in Table S2 of Supplementary Material. From these values, one can calculate the linear slopes
 119 $\left[\frac{\partial \ln \epsilon}{\partial \ln(\sinh(\alpha\sigma))} \right]_T$ and $\left[\frac{\partial \ln \sinh(\alpha\sigma)}{\partial \left(\frac{1}{T} \right)} \right]_{\epsilon}$, enabling to calculate Q as defined in Equation 6. The Q value for each $\dot{\epsilon}$ and T is
 120 presented in Supplementary Material, Table S1, and shown graphically in Figure 4. The obtained values lie in the
 121 range 25-225 kJ/mol, showing a significant variability with respect to the activation energy obtained for pure Mg (135
 122 kJ/mol) [22] and for the commercial ZK60 alloy (115-153 kJ/mol) [22-24]. Compositional changes of the alloys of
 123 study, with respect to these two references, are most likely the reason of such a Q variability. Q increases with Zn and
 124 Ce contents, denoting that DRX is impeded by the addition of these elements. Samples with higher Zn content, as well
 125 as higher Ce content, have slower DRX and require more energy for the process to begin. Moreover, greater
 126 dependence on Ce additions is observed than for Zn additions. With respect to the effect of pinning phases, it seems
 127 that, on average, a higher fraction of pinning phases (as classified in Table 1) leads to an increase of the activation
 128 energy Q.

129
 130 Figure 4. Calculated Q values vs. strain rate at 350°C (a) and 400°C (b).
 131 After Q-values are known, Z values are calculated based on Equation 5. These calculated Zener-Hollomon parameter
 132 values are shown in Table S2 of Supplementary Material. Z-values describe the effect of both strain rate and
 133 temperature on flow stress and DRX. Lower Z values lead to higher DRX rates and fractions with less deformation

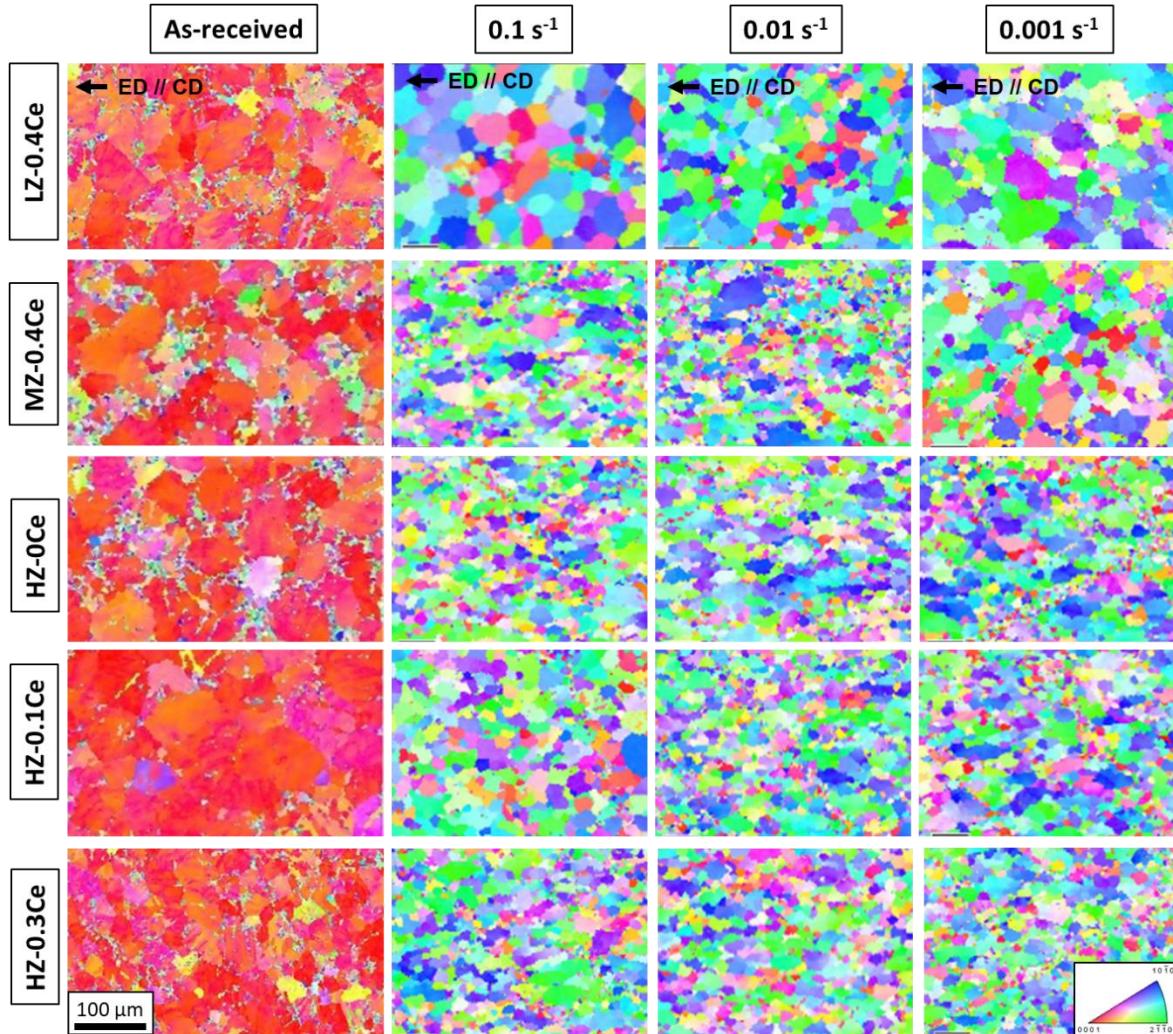
134 degree [15]. Finally, Equation 7 was fitted by using the linear relationship shown in Figure 5, where the slope
 135 represents stress exponent, n , and the intercept is the constant A . The fitted parameters can be found in the
 136 Supplementary Material, in Table S2, while the fitted expressions of Z as a function of peak stress can be found in
 137 Table 2.

$$\sigma_p = \frac{1}{\alpha} \left(\left(\frac{Z}{A} \right)^{\frac{1}{n}} + \left(\frac{Z}{A} \right)^{\frac{2}{n}} + 1 \right)^{\frac{1}{2}} \quad (7)$$

138
 139 Figure 5. Relationship of flow stress and the Zener-Hollomon parameter at each processing condition. The linear
 140 regression of each alloy dataset provides the stress exponent, n , and constant A .


141 Table 2. Function of Zener-Hollomon parameter (Z) and flow stress (σ_p) as linear regression equation for each alloy.
 142 The slope represents stress exponent, n , and the intercept is constant A .

Alloy	lnZ- $\ln(\sinh(\alpha\sigma_p))$
LZ-0.4Ce	$\ln Z = 2.8711 \ln(\sinh(\alpha\sigma_p)) - 0.2696$
MZ-0.4Ce	$\ln Z = 6.0024 \ln(\sinh(\alpha\sigma_p)) + 3.6255$
HZ-0Ce	$\ln Z = 9.6003 \ln(\sinh(\alpha\sigma_p)) + 28.687$
HZ-0.1Ce	$\ln Z = 12.766 \ln(\sinh(\alpha\sigma_p)) + 9.4806$
HZ-0.3Ce	$\ln Z = 2.6505 \ln(\sinh(\alpha\sigma_p)) + 4.4968$


143 **3.2. Effect of DRX on microstructure**

144 Finally, the effect of DRX on texture was evaluated. Figure 6 and Figure 7 show the IPF maps corresponding to the
 145 as-received conditions, as well as to the post-deformation structures at 350 °C (Figure 6) and 400 °C (Figure 7).
 146 Coloring corresponds to the out of plane directions; perpendicular to the extrusion direction (ED) and to the
 147 compression direction (CD) –both of them defined on the top subfigures. It can be observed how the as-received
 148 samples showed a predominant basal $\approx <0001> \perp$ ED fiber, in good agreement with previous works on cold extrusion

149 texture in Mg alloys [25,26]. Post-deformation samples are fully recrystallized, based on their grain morphology and
 150 texture, regardless of the deformation temperature and strain rate. Note that Mg samples with a similar initial texture
 151 and compressed along the same direction that the one used in this work have shown a texture characterized by a
 152 $\approx<0001> // CD$ fiber [27], in good agreement with the observed IPF colors. Moreover, results show how reduced
 153 amounts of Zr or slower strain rates cause larger post-DRX grain size. These results indicate that all microstructures
 154 were fully recrystallized after the applied deformations. Moreover, results also show that DRX was completed for
 155 shorter times and grain growth was more advanced for low Zr, low strain rate conditions. These trends are consistent
 156 with the previously obtained activation energy results, which showed that samples with higher Zn content, as well as
 157 those deformed at a higher strain rate, have slower DRX and require more energy for the process to begin. Consistently,
 158 previous works have shown that recrystallized grain size increases with decreasing Z values [27].

159
 160 Figure 6. Representative IPF maps at strain rates 0.1 s^{-1} - 0.001 s^{-1} and $350 \text{ }^{\circ}\text{C}$ for each alloy, where coloring
 161 corresponds to the direction out of plane. The extrusion direction (ED), parallel to the compression direction (CD),
 162 is represented by arrows on the top subfigures.

163

164 Figure 7. Representative IPF maps at strain rates 0.1 s^{-1} - 0.001 s^{-1} and 400°C for each alloy, where coloring
 165 corresponds to the direction out of plane. The extrusion direction (ED), parallel to the compression direction (CD),
 166 is represented by arrows on the top subfigures.

167 **4. Conclusions**

168 The DRX kinetics during compression testing at elevated temperatures and resultant microstructural properties in a
 169 set of designed Mg-Zn-Ce alloys were investigated in this study to give further insight into the effect of varying solute
 170 and precipitate content. The following conclusions were determined.

171 1. Samples with higher Zn content, as well as higher Ce content, have slower DRX and require more energy for
 172 the process to begin. This trend is directly associated to Q-values, which increase with Zn and Ce contents,
 173 denoting that DRX is impeded by the addition of these elements.

174 2. Greater dependence of Q on Ce additions is observed than for Zn additions. Both σ_p , determined via flow
 175 curves, and σ_c , determined through calculations, are an accurate representation of DRX initiation.

176 3. The determined constitutive equations for the DRX process, where Z-values are calculated as a function of
177 peak flow stress for the alloys of study, can be used to determine industrially relevant processing parameters,
178 given different processing conditions.

179 4. Lower Zr, low strain rate conditions showed a more advanced DRX state, as its kinetics were faster.

180 **Acknowledgements**

181 The authors acknowledge support by the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), a National
182 Science Foundation Industry/University Cooperative Research Center (I/UCRC) (Award No. 1624836) at the
183 Colorado School of Mines. Mag Specialties, Inc. supplied and designed all alloys evaluated during the project
184 duration.

185 **Conflicts of interest**

186 On behalf of all authors, the corresponding author states that there is no conflict of interest.

187 **References**

1. M. M. Avedesian and H. Baker, *ASM Specialty Handbook: Magnesium and Magnesium Alloys* (ASM international, 1999).
2. A. Hadadzadeh, S. K. Shaha, M. A. Wells, H. Jahed, and B. W. Williams, in *Magnesium Technology 2017* (Springer, 2017), pp. 513–519.
3. Z. Zhu and A. D. Pelton, *Journal of Alloys and Compounds* **652**, 426 (2015).
4. H. Yu, Y. M. Kim, B. S. You, H. S. Yu, and S. H. Park, *Materials Science and Engineering: A* **559**, 798 (2013).
5. E. Silva, R. H. Buzolin, F. Marques, F. Soldera, U. Alfaro, and H. C. Pinto, *Journal of Magnesium and Alloys* **9**, 995 (2021).
6. S. R. Agnew and Ö. Duygulu, *International Journal of Plasticity* **21**, 1161 (2005).
7. R. Verma, L. G. Hector, P. E. Krajewski, and E. M. Taleff, *Jom* **61**, 29 (2009).
8. T. Sakai and J. J. Jonas, *Acta Metallurgica* **32**, 189 (1984).
9. S. Fatemi and H. Paul, *Materials Chemistry and Physics* **257**, 123726 (2021).
10. A. Galiyev, R. Kaibyshev, and G. Gottstein, *Acta Materialia* **49**, 1199 (2001).
11. J. Dong, J. Sun, L. Jin, Z. Zhang, and W. Ding, *Proceedings of 135h International Conference on Fracture* 1 (2013).
12. L. Fu, Q. Le, W. Hu, J. Zhang, and J. Wang, *Journal of Materials Research and Technology* **9**, 6834 (2020).
13. P. Xu, J. Yu, and Z. Zhang, *Materials* **12**, 2773 (2019).
14. J. Liu, Z. Cui, and C. Li, *Computational Materials Science* **41**, 375 (2008).
15. L. Li, Y. Wang, H. Li, W. Jiang, T. Wang, C.-C. Zhang, F. Wang, and H. Garmestani, *Computational Materials Science* **166**, 221 (2019).
16. H. Mirzadeh, M. Roostaei, M. H. Parsa, and R. Mahmudi, *Materials & Design* **68**, 228 (2015).
17. A. Najafizadeh and J. J. Jonas, *ISIJ International* **46**, 1679 (2006).
18. N. Safara Nosar, F. Sandberg, and G. Engberg, in (Trans Tech Publ, 2018), pp. 458–467.
19. J. Duan, Y. Tan, L. Ji, W. Liu, J. Zhang, and R. Liu, *Progress in Natural Science: Materials International* **25**, 34 (2015).
20. T. Lin, J.-X. Zhou, C.-N. Jing, Y.-T. Liu, L.-L. Zhang, and X.-B. Meng, *High Temperature Materials and Processes* **39**, 200 (2020).
21. H. Mecking and U. Kocks, *Acta Metallurgica* **29**, 1865 (1981).
22. H. Mirzadeh, *Materials Chemistry and Physics* **152**, 123 (2015).
23. Y.-J. Qin, Q.-L. Pan, Y.-B. He, W.-B. Li, X.-Y. Liu, and X. Fan, *Materials Science and Engineering: A* **527**, 2790 (2010).
24. H. Yu, H. Yu, G. Min, S. S. Park, B. S. You, and Y. M. Kim, *Metals and Materials International* **19**, 651 (2013).
25. M. Nienaber, G. Kurz, D. Letzig, K. U. Kainer, and J. Bohlen, *Crystals* **12**, 1307 (2022).

221 26. I. Dillamore, P. Hadden, and D. Stratford, in (Hindawi, 1970).
222 27. Y. Li, P. Hou, Z. Wu, Z. Feng, Y. Ren, and H. Choo, Materials & Design **202**, 109562 (2021).
223