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by nearly parallel G;-structures which may also be expressed in terms of the 3-Sasakian
structure. Just as Einstein metrics are critical points for the Ricci flow up to rescaling,
nearly parallel G,-structures provide natural critical points of the (rescaled) geometric
flows of Gy-structures known as the Laplacian flow and Laplacian coflow. We study each

Is(gjégzlrdﬁ'olonomy of these flows in the 3-Sasakian setting and see that their behaviour is markedly different,
G-structure particularly regarding the stability of the nearly parallel G;,-structures. We also compare
Laplacian flow the behaviour of the flows of G;-structures with the (rescaled) Ricci flow.
Laplacian coflow © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
Ricci flow CC BY license (http://creativecommons.org/licenses/by/4.0/).
Contents
1 INETOdUCHION . . . . ottt e e e 1
2. Gy-structures on 3-Sasakian 7-manifolds . . . ... ... ... e 4
3. Laplacian coflow . .. ..o e e e e e e e e e e e 7
4, Laplacian flow . . ... e 12
D, RICCE lOW . . e 14
Data availability . . . . .. e e e e 18
ACKNOWIEAZEMENLS . . . . vt ettt ettt e e e e e et e e e e e e e e 18
REFEIBIICES . . . . e e e e 18

1. Introduction

1.1. Nearly parallel G,-structures

A Gy-structure on a 7-manifold is encoded by a 3-form ¢ satisfying a certain nondegeneracy condition, and such a 3-
form determines a Riemannian metric and orientation. One of the most important types of G-structure is a nearly parallel
Gy-structure since it defines an Einstein metric with positive scalar curvature, as well as a real Killing spinor [2,7]. Moreover,
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the cone over a 7-manifold with a nearly parallel G,-structure admits a conical metric with exceptional holonomy Spin(7)
(and so is Ricci-flat), and thus nearly parallel G,-structures are also important in the study of asymptotically conical and
conically-singular Spin(7) manifolds (cf. [14]).

Since the existence of a complete positive Einstein metric will lead to compactness of the underlying manifold by Myers
theorem, it is natural to ask which compact 7-manifolds admit nearly parallel G;-structures. Though this general question is
currently open, an infinite number of examples of such compact 7-manifolds are known, including the 7-sphere, the Aloff-
Wallach spaces N(k, 1), the Berger space SO(5)/SO(3), and the Stiefel manifold Vs [7]. The largest class of 7-manifolds that
are known to admit nearly parallel G-structures are the 3-Sasakian 7-manifolds, which are the focus of this paper.

1.2. Geometric flows

Nearly parallel G;-structures are natural to study from the perspective of several geometric flows. Since a nearly parallel
Gy-structure induces a positive Einstein metric, it is natural to evolve its induced metric g by the Ricci flow:
a_g = —2Ric(g). (1.1)
at
The induced metric will define a self-similarly shrinking solution to the Ricci flow, and thus a critical point after rescaling.
However, a G,-structure contains more information than the metric (since the same metric is induced by a whole family of
Gy-structures), so it is worthwhile to examine flows of G,-structures relevant to nearly parallel G;-structures, and compare
and contrast its behaviour to the Ricci flow.
Two such geometric flows of Gy-structures which have been the most studied, and we shall examine here, are the
Laplacian flow (introduced by Bryant [5]) and the Laplacian coflow (first considered in [12]").

1.2.1. Laplacian flow
The Laplacian flow evolves the 3-form ¢ defining the G,-structure by its Hodge Laplacian:

a(p * *

i App = (ddyp +dyd)e. (1.2)
(Here, we emphasise the nonlinearity in the formal adjoint d;‘; of the exterior derivative, since the metric and orientation
depend on ¢.) The Laplacian flow has received particular attention in the context of closed G,-structures (when dg = 0),
where it has many attractive features, particularly with regards to torsion-free G,-structures (when d¢ =0 and d(j)(p =0),
which define Ricci-flat metrics with holonomy contained in G,. For foundational results and a survey of recent developments
in the Laplacian flow for closed G,-structures see e.g. [11,17,18].

A nearly parallel G,-structure defines a self-similarly expanding solution to the Laplacian flow (1.2), so can be viewed
as a critical point up to rescaling. (We note the immediate difference with the Ricci flow where the induced metric was a
shrinker.) A nearly parallel G,-structure is, however, not closed but coclosed: the defining 3-form ¢ satisfies dj;,ga = 0. Whilst
it may seem potentially plausible to study coclosed Gy-structures using the Laplacian flow (1.2), in fact it is not yet known
in general whether this flow even has short time existence starting at a coclosed G,-structure. An example situation where
it has proved instructive to use the Laplacian flow to study coclosed Gj-structures can be found in [16].

1.2.2. Laplacian coflow
Currently the best candidate? for studying coclosed Gy-structures is the Laplacian coflow, which evolves the closed 4-
form v = *y¢ dual to the 3-form ¢ defining the G;-structure by its Hodge Laplacian:

aw * * *

EZA‘pw:(dlﬂd_’_ddlﬂ)w:ddV/w’ (1.3)
using the fact that ¢ is closed. (The 4-form i induces the metric just like ¢, but not the orientation, though an orientation
can be fixed by the initial choice of Gy-structure.) The Laplacian coflow preserves the cohomology class [] of i, where it
may be viewed as the gradient flow of the Hitchin volume functional, and the induced flow of the metric g defined by v is

0g

57 = —2Ric(g) + Q (dp). (4

where Q is a quadratic expression in dg: see [9,11] for details. Since Q only depends on first order information on v,
whereas the Ricci tensor involves second order data, one may view (1.4) as a lower order perturbation of the Ricci flow

(1.1).

T It should be noted that in [12] the opposite sign for the velocity of the Laplacian coflow is used.
2 The Laplacian coflow for coclosed Gy-structures has many attractive features analogous to the Laplacian flow for closed G,-structures, but with the
significant difference that the analytic foundations for the Laplacian coflow are currently lacking: see [9,11] for a discussion of the analytic issues.
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However, just as for the Laplacian flow, a nearly parallel G,-structure defines a self-similarly expanding solution to the
Laplacian coflow (1.3), whereas its induced metric defines a shrinker for Ricci flow. Hence the “lower order terms” in (1.4)
drastically alter the behaviour of the metric flow in this setting.

We should also note that coclosed Gy-structures satisfy a parametric h-principle (see [6]). Therefore, coclosed Gy-
structures exist on any (compact or non-compact) 7-manifold admitting a G,-structure, which just requires the 7-manifold
to be oriented and spin, and so the Laplacian coflow can potentially be studied on any oriented spin 7-manifold. By contrast,
it is currently not clear how restrictive the closed condition is for a G,-structure on a compact manifold.

1.3. 3-Sasakian 7-manifolds

A 3-Sasakian 7-manifold is a Riemannian 7-manifold M so that the metric cone over it is hyperkdhler. One can use the
3-Sasakian structure to define two? distinct nearly parallel G,-structures (up to scale), one of which induces the original
3-Sasakian Einstein metric on M, and the other induces the so-called squashed Einstein metric on M. This is most easily
seen in the example of the 7-sphere, where the 3-Sasakian metric is the round metric, and the squashed Einstein metric is
obtained by rescaling the 3-sphere fibres relative to the 4-sphere base in the Hopf fibration of the 7-sphere.

1.4. Stability

Our primary goal is to study the stability of nearly parallel G;-structures on 3-Sasakian 7-manifolds under the Laplacian
flow and Laplacian coflow, and to compare the behaviour of these flows to the Ricci flow near their induced Einstein metrics.

For geometric flows, one is primarily interested in the question of dynamical stability of a critical point, i.e. when the
flow starting near a critical point will flow back to it. An easier and weaker thing to check is linear stability: whether the
critical point is stable for the linearized flow at that point. In some situations, one can infer dynamical stability from linear
stability: e.g. for complete positive Einstein metrics in Ricci flow, linear stability plus an integrability assumption implies a
weak form of dynamical stability [13].

In the context of nearly parallel G,-structures on 7-manifolds M, it was shown in [19] that if the third Betti number
b3(M) # 0, then under the Ricci flow any Einstein metric induced by a nearly parallel G, structure is linearly unstable and
therefore dynamically unstable. As 3-Sasakian 7-manifolds M necessarily have b3(M) = 0, this class of examples admitting
nearly parallel G;-structures is particularly interesting for Ricci flow in light of this result.

In this article, when discussing stability we will always be referring to dynamical stability.

1.5. Main results

On any 3-Sasakian 7-manifold we introduce two disjoint 3-parameter families of coclosed G;-structures defined in terms
of the 3-Sasakian structure. These families of Gj-structures each include exactly one of the natural nearly parallel G,-
structures we discussed above (and their rescalings). We refer the reader to §2 for details.

Our main results concern the behaviour of the Laplacian coflow, the Laplacian flow and the Ricci flow for these families
of coclosed G;-structures and their induced metrics, which we show are preserved by the flows. (Note, in particular, that
the Laplacian flow is shown to preserve the coclosed condition in this setting.)

Our most significant result is for the Laplacian coflow (1.3).

Theorem 1.1. The Laplacian coflow starting at any initial coclosed G,-structure in either of our families converges, after rescaling, to
the nearly parallel Gy-structure in that family. In particular, the nearly parallel G,-structures are both stable within their families.

Comparing the Laplacian flow (1.2) and Laplacian coflow (1.3), one might naively expect them to have similar behaviour
as their velocities are Hodge dual. However, in our setting, we have the following, which contrasts sharply with our Laplacian

coflow result.

Theorem 1.2. Both nearly parallel Gy-structures are unstable sources within their families under the rescaled Laplacian flow, so co-
closed Gy-structure in our families which are not nearly parallel cannot flow to either of them.

Finally, for the Ricci flow (1.1), we have the following, which differs again from our previous two results.

Theorem 1.3. Along the rescaled Ricci flow for our families of metrics, the 3-Sasakian metric is stable, whereas the squashed Einstein
metric is a saddle point and so unstable.

This result again shows that, whilst the Ricci flow and the induced flow of metrics (1.4) from the Laplacian coflow are
closely related, their behaviour can be markedly different.

3 In fact, there are three natural nearly parallel G,-structures inducing the 3-Sasakian metric, but these are permuted by the symmetries in the 3-Sasakian
structure. The same does not occur for the squashed Einstein metric.
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1.6. Summary

We begin in §2 by discussing background on 3-Sasakian geometry, the nearly parallel G,-Structures determined by these
geometries, and our geometric flow ansatz. We then study the behaviour of the Laplacian coflow in §3, the Laplacian flow
in §4, and the Ricci flow in §5. To do this, we reduce the study of each rescaled flow to the analysis of a nonlinear ODE
system for two functions.

2. Gz-structures on 3-Sasakian 7-manifolds

In this section we recall some of the basics of 3-Sasakian geometry in 7 dimensions and outline its relationship to G;
geometry. Further details on 3-Sasakian geometry can be found in [3,4]. For information about G-structures, we refer the
reader to [10] or [11, pp. 3-50].

2.1. 3-Sasakian 7-manifolds

We first recall the definition of a 3-Sasakian 7-manifold.

Definition 2.1. A complete Riemannian 7-manifold (M7, gy) is 3-Sasakian if it has an orthonormal triple of Killing fields
{E1, Ea, E3} satisfying [E;, E;] = 2E, for a cyclic permutation (i, j, k) of (1,2, 3), such that each E; defines a Sasakian struc-
ture on (M, gu).

If (M, gu) is 3-Sasakian then gy, is Einstein with positive scalar curvature equal to 42 (so M is compact) and there is a
locally free action of SU(2) on M whose leaf space N is a 4-dimensional orbifold. Moreover, there is a canonical metric gy
on N, which is anti-self-dual Einstein with positive scalar curvature equal to 48, such that (M, gy) and (N, gn) are related
by an orbifold Riemannian submersion:

m:M— N. (2.1)

Remark 2.2. The simplest example of a 3-Sasakian 7-manifold is the 7-sphere with its constant curvature 1 metric. In this
setting, (2.1) just becomes the usual Hopf fibration with M = S7 and N = §*, and N = S$* has its constant curvature 4
metric.

The Levi-Civita connection of (N, gy) lifts to a connection on the bundle (2.1), and so may be viewed as an su(2)-valued
1-form 1 on M, which can be written as

3
n=) n®T, (2.2)
i=1

where 71,12, 73 are 1-forms on M and {T1, T, T3} is a basis for su(2) satisfying [T;, Tj] = 2T for cyclic permutations
(i, j, k) of (1,2,3). The curvature of 7 is then an su(2)-valued 2-form @ which may be written as

3
w=-2) oi®T (2.3)
i=1

for 2-forms w1, w2, w3 on M which are, in fact, pullbacks of orthogonal self-dual 2-forms on N since gy is anti-self-dual
Einstein. (The factor of 2 and sign are chosen for convenience.) Moreover, we have that the forms w1, w, w3 are normalized
such that

i A wj = 28;;T*voly. (24)

For later use, we record the following equations satisfied by n and » where, in each case, (i, j, k) are taken to be a cyclic
permutation of (1, 2, 3):

dni = =2nj A N — 2w;, (2.5)

dw; = =21 A wg + 20k A ;. (2.6)
The 3-Sasakian metric gy on M may then be given in terms of the n; and gy as follows:

gm =17 + 15+ 15 + 7 gn. (2.7)

We can scale gy by any positive constant ¢ and then c2gy will still be Einstein with positive scalar curvature. We may
also observe the following well-known fact.
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Lemma 2.3. The metric

- 1

B =01+ 03 +n) +7 e (28)
is Einstein with positive scalar curvature and is known as the squashed Einstein metric on the 3-Sasakian M7 [7,8].

Remark 2.4. The metric cone on (M, gy) has holonomy contained in Sp(2), whereas the metric cone on (M, gy) (once one
scales gy appropriately) has holonomy Spin(7). In the first case, the metric cone has the full holonomy Sp(2) if it is not
flat.

2.2. Natural Gy-structures

We recall that a Gp-structure on a 7-manifold is determined by a 3-form ¢ on the manifold satisfying a certain nonde-
generacy condition. Such a 3-form determines a metric g, and volume form voly, and hence a dual 4-form v = *,@, where
* is the Hodge star determined by ¢.

Given the data in (2.1), (2.2) and (2.3) above, we may now write down a natural family of G,-structures on a 3-Sasakian
7-manifold (M7, gy) as follows.

Lemma 2.5. Given ay, ay, as,c > 0 and € € {£1}, if we let a = (ay, ay, a3) then the 3-form

Pac.e = €a102a311 A2 A3 — €211 A 1 +azm2 A w + €a313 A @3) (2.9)

defines a Gy-structure on M. Moreover, this G,-structure induces the following metric, volume form and dual 4-form:

ac=a1NT +a315 + @315 + A gn; (2.10)
Vola c.c = €ayazasc®ni Ama Az ATT*voly; (2.11)
Vac.e =ctmvoly — c2(eazazny A M3 A @1 + €a3a11m3 A N1 A @y +a1a201 A2 A @3). (2.12)

Note that g,  is independent of €.

This result is an elementary consequence of the fact that w1, wz, w3 are the pullbacks of self-dual 2-forms on N satisfying
(2.4).

Remark 2.6. Initially, one may allow for a1, ay, as € R\ {0}. However, ¢ and —¢ are the same G,-structure up to a change
of orientation. Moreover, there are only two possibilities: either a1, az, as all have the same sign, or just two have the same
sign. Therefore, we can take ai, az, as to be all positive and use € to account for the two choices.

We now compute the exterior derivatives of @ac ¢ and v, e, wWhich together encode all of the information about the
torsion of the G;-structure.

Lemma 2.7. Let ¢, ¢ and Ya c.c be asin Lemma 2.5. Then:

d@ace = 4c?(ay 4 ap + €az)m*voly
— 2(eayaza3 — cay + c*az + ec’az)nz Anz A wy
— 2(earazas + c?a; — cay + €C2‘13)773 AN AW
— 2(earazas + c2ay + c2az — ec2a3)r)1 AN A @3;
d‘//a,c,e =0.

This result follows quickly from (2.5) and (2.6). Notice in particular that the G,-structures are all coclosed.

Remark 2.8. We note the following special cases of our family of G;-structures.

e We can always make an overall rescaling so that ¢ = 1. (However, we shall see that we will require the freedom to vary
the scale ¢ along our flows.)

e Taking a1 =a; =a3 =c=1 and € =1 gives a coclosed G;-structure inducing the 3-Sasakian metric. It has been referred
to as the “canonical” G,-structure on a 3-Sasakian 7-manifold (see e.g. [1]).

e Taking a; =ay; =a3z =a and ¢ =1 gives the family of G,-structures considered in [15]. The subfamily where € =1 was
also studied earlier in [7].
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2.3. Nearly parallel G,-structures

We recall the definition of the distinguished class of G;-structures that will be the focus of this paper.

Definition 2.9. A G;-structure on a 7-manifold M defined by a 3-form ¢ with dual 4-form v is nearly parallel if

dp =2y
for some non-zero constant A. (A priori A could be a function on M, but a short argument using dy» = 0 and some repre-
sentation theory shows that it must in fact be constant.)
A nearly parallel G;-structure ¢ induces an Einstein metric g, with positive scalar curvature. If A is chosen so that the
scalar curvature of g, is 42, then the cone metric dr? +r2g¢, on R* x M is Ricci-flat and has holonomy contained in Spin(7),
and ¢ is strictly nearly parallel if the holonomy of this cone metric is Spin(7). (One should compare this to Remark 2.4.)

We now record the following facts, which follow immediately from (2.5) and (2.6), that show that our family of G,-
structures contains two nearly parallel G,-structures (up to scale).

Lemma 2.10. Take a1 = a; = a3 =ain Qace-

o Ifa= %C and € = 1, then the resulting G,-structure, which we may write c3¢™ with ¢ independent of c, is (strictly) nearly

parallel and its induced metric is c?gy;.
e Ifa=cand € = —1, then the resulting G,-structure, which we may write c3¢' where @' is independent of c, is nearly parallel
and its induced metric is c2gy.

Hence, within each branch (determined by € € {£1}) of our family of G,-structures, there is one natural critical point
(up to scale) for our geometric flows. For € =1, this is the strictly nearly parallel G,-structure ¢™ inducing the squashed
Einstein metric gy on M, and for € = —1 this is the nearly parallel Gy-structure @' (where “ts” stands for 3-Sasakian)
inducing the 3-Sasakian metric gy.

Remark 2.11. If we take a = %Sc and € = —1 in Lemma 2.10 then we obtain a coclosed G;-structure which induces the

Einstein metric c2gy, but is not nearly parallel. The same occurs when we a = ¢ and € = 1, but now for the Einstein metric
c2gy: this gives a multiple of the “canonical” G,-structure we saw earlier (cf. Remark 2.8).

Remark 2.12. It is worth noting that, by Lemma 2.10 and [6, Examples 1.14 and 1.15], the Gy-structures defined by @, ¢ +1
and ¢, 1 cannot be homotopic through G,-structures.

2.4. The ansatz

Motivated by Lemma 2.10, we will take our ansatz to be a special case of that of Lemma 2.5 where

a;=a;=af(), az3=b(t) and c=c(t), (213)

for positive time-dependent functions a(t), b(t), c(t). These then define 1-parameter families of G, 3-forms @ (t) depending
on t, with induced metric g(t), volume form vole (t) and dual 4-form . (t) as follows:

@e(t) = €a(t)*b(O)m A n2 Az —a®)c)* (M A o1 + 12 A w2) — €bD)c(t)’ N3 A w3; (2.14)
g0 =a®)*(F +n3) +b(O°n3 + c(O*7*gn; (215)
vole (t) = ea(t)?b(t)c(t)*n1 A 2 A n3 A T*voly; (2.16)
Ve (t) = c(t)*m*voly — €a(O)b()c(t)* (M2 A M3 A @1 + 13 A1 A@2) —a)2c(O)*m Az A ws. (217)

We include the subscript € to emphasise the choice of branch given by € € {£1}, as we shall see different behaviour for
distinct choices of €, but drop the subscript for g(t) since it is independent of €. We shall make the restriction in (2.13)
henceforth in this article.

Remark 2.13. The reader may wonder why we do not simply choose a =b in (2.13) given that this holds for the nearly
parallel Gy-structures in Lemma 2.10. We shall see that the simpler ansatz when a = b is not necessarily preserved along
the geometric flows we consider, and so we broaden our study to consider the larger class of 1-parameter families of G-
structures given by the condition (2.13). One could also consider curves in the full family of G,-structures in Lemma 2.5,
but this would be much more challenging and we already exhibit interesting behaviour within the framework provided by
(2.13).
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For the ansatz, we have the following simplification and slight extension of Lemma 2.7.

Lemma 2.14. Let ¢ = ¢ (t) and Ye = V¢ (t) be given by Lemma 2.5 with the conditions in (2.13). Then:

dge = 4c(2a + eb)*voly — 2eb(a® + 22 A3 A wy
- Zeb(a2 + CZ)T’}g AN Awy — Ze(azb + 2eac® — bc2)171 AN A W3;
d'l/fg = 0.

Moreover, we may write dpe = ToWe + *T3 Where

n=:-55 (4a(a2 +¢c?) 4+ eb2a® — cz))
7a4c

and 13 A e =0 =13 A Ye.
Proof. The formulas for dg. and dy are immediate from Lemma 2.7. We then compute that
dpe A @e = 4(ea2bc2 (2a + €b) + Zeabcz(a2 + cz) + bcz(azb +2eac® — bcz))m A N2 A N3 A TT*vVoly

= 4ebc* (4a(a® + c?) + eb(2a® — )1 Am2 A3 A T*VOlN.

The formula for 7 follows. O

Remark 2.15. Lemma 2.14 shows that, regardless of the choice of € € {1}, we can always choose initial conditions for
our flows of Gj-structures such that 7o =0 (and necessarily 73 # 0), even though we are trying to flow to nearly parallel
Gy-structures, which must have 79 # 0 and 73 =0.

3. Laplacian coflow

We start by studying the Laplacian coflow, which is arguably the natural flow for our ansatz of coclosed G;-structures
since it manifestly preserves the coclosed condition. We recall that this flow, if it is well-posed and stays within the ansatz,
is given by

0
&We(t) =Ay . ¥e(®) = dd*,/,e(t)l/’e(t), (3.1)
for the closed 4-forms v (t) in (2.17).
3.1. The flow equations
Since we have that

dd3, e = d + de,

it is straightforward to compute the right-hand side of (3.1) from Lemma 2.14 as follows.

Lemma 3.1. The Hodge Laplacian of v in (2.17) is given by:

2ebc?  b*c?
Ay e =8 <2a2 +b% 202 + — a—2> *voly

, 4ed®b 2a%b* 2ebc?  b2c? (3.2)
—4<b—|— ) + 2 + 4 —a—z)(nz/\ngAw1+ng/\m/\w2) :

5 2 .o  4ed®b 2a’h?> 2ebc*  b*c?
—4(2a —b*4+2c" + =) + Z g +a—2>n1/\n2/\w3

In particular, (3.2) is in the same form as (2.17) and so the Laplacian coflow (3.1) is well-defined.

Given this result and (2.17), we may write down the Laplacian coflow (3.1) as the following system of ordinary differential
equations for the coefficient functions a(t), b(t), c(t):
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2ebc®>  b?c?\
a az )’

d
a(c“) =38 (2a2 +b%+2c2 +

c2 c? a a2 )’

d 4ea®b  2a’b?*  2ebc?  b3c?
a(azc2)=4(2az—b2+2c2+ LR A C)~

4ab  2ea?b® 2bc?  eb?c?
+ 5 + 3 .
c a a

d

—(abc®) =4 eb® +

dt( ) ( 2
We can simplify the analysis of these equations by introducing new variables as follows.

Lemma 3.2. Define

X @ and Y ab
T2 T2
and introduce a new variable s by

ds 1

de %

Ifwelet X = %—’S‘ and Y = %, then the Laplacian coflow equations for (2.17) imply that
. 4
X= -z ((x +1DY?24+2e2X? —2X —1DXY = 2X?QX - D(X + 1)) : (3.3)
. 4Y 5 2
Y:ﬁ<2(1—X)Y +e€(2X —3X—1)Y+2X(1—2X)). (3.4)

We note that X and Y are scale-invariant quantities and that solutions to (3.3)-(3.4) give the solutions to the Laplacian
coflow (3.1) up to rescaling.

3.2. Critical points and dynamics

To understand the dynamics of the flow (3.3)-(3.4), we need to study its critical points. Some straightforward calculations
show the following.

Lemma 3.3. The only critical points for X, Y > 0 to the system (3.3)-(3.4) are:
1
XZY:E and e=1 (3.5)
and

X=Y=1 and e€=-1. (3.6)

Moreover, if € = 1 the condition X =Y is preserved, but if ¢ = —1 the condition X =Y is not preserved except when X =Y = 1.

Remark 3.4. By Lemma 2.10, the critical points (3.5)(3.6) correspond to the 4-forms ¥ and y** dual to the nearly parallel
Ga-structures ¢ and @' respectively. Thus, Lemma 3.3 shows that the only critical points for (3.1) up to rescaling are v
and .

Before considering the general ansatz, we note that if we set X =Y and € =1 in (3.3)-(3.4) then we obtain:

X =41 -5X).

Hence, X is positive for X < 1/5 and negative for X > 1/5, which clearly shows the stability along the line X =Y of the
critical point (3.5). Thus ¥™ is stable within the restricted ansatz (2.13) with a =b.

Remark 3.5. Lemma 3.3 shows that the coclosed G;-structure with € =1 inducing the 3-Sasakian metric (up to scale), as
well as the one with € = —1 inducing the squashed Einstein metric, have no significance for the Laplacian coflow. It also
shows that we need to use the ansatz (2.13) with a and b distinct (i.e. allowing X # Y) to understand the Laplacian coflow
for e = —1.
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Fig. 3.1. Dynamic plots for Laplacian coflow for € =1 and € = —1. (For interpretation of the colours in the figure(s), the reader is referred to the web

version of this article.)

We provide dynamic plots of the equations (3.3)-(3.4) in Fig. 3.1 for € = 1. In the plots, the curves yx and yy across
which X and Y change sign respectively are also shown, along with the line X =Y.

Fig. 3.1 indicates that the critical points (3.5) and (3.6), which correspond to "™ and ¥ as in Remark 3.4, are both
stable. We now show that this is indeed true.

Proposition 3.6. The 4-forms " and v dual to the nearly parallel Gy-structures @™ and ¢** are stable sinks under the Laplacian
coflow (3.1), after rescaling.

Proof. We study the linearization of the flow equations (3.3)-(3.4) at the critical points (3.5) and (3.6) to determine their
stability.
At X=Y =1/5 and € =1, the linearized equations are
76 24 12 88

X=——X-="VY and Y=—X-—VY.
5 5 5 5

(Note that X =Y is preserved by the above system as expected.) The associated 2 x 2 matrix of coefficients of X,Y in the
above equations has two negative eigenvalues (—64/5 and —20) and so (3.5) is a stable critical point.
Similarly, at X =Y =1 and € = —1, the linearized equations are

X=-76X+24Y and Y =-36X+8Y,

noting that this time X =Y is not preserved. Here, the matrix one obtains again has two negative eigenvalues, which are
—4 and —64, so the critical point (3.6) is stable. O

Remark 3.7. We see from (3.3)-(3.4) that if we allow X =0 or Y =0 then there are additional critical points:

1
(X,Y)= (§,0> fore = +1.

We can see these critical points in Fig. 3.1. We can also consider (X,Y) = (0,0) to be a degenerate critical point, even
though the equations (3.3)-(3.4) are not defined there. We can understand these additional critical points geometrically as
follows.

Recall the fibration (2.1) of M7 over N*. The point (0, 0) corresponds to sending the 3-dimensional fibres of (2.1) to zero
size (since a =b =0), and so M has collapsed to N (or a point). In this setting, the 4-form ¢ reduces to simply the volume
form of N (or zero if the collapse is to a point).

If we instead view the fibres of (2.1) as circle bundles over S (where E3 is tangent to the circle direction in the notation
of Definition 2.1), then at (1/2,0) the circle fibres have now collapsed (as b =0 in (2.13)). Since a # 0 there M’ has
collapsed to a 6-manifold Z which is a 2-sphere bundle over N. This 6-manifold Z is the twistor space of N, and at this
critical point it will be endowed with its nearly Kdhler metric gz, which is an Einstein metric on Z with positive scalar
curvature. This Einstein metric gz is not Kdhler (unlike the standard choice of metric on the twistor space), but instead is
related to G, geometry as the metric cone over a 6-dimensional nearly Kdhler manifold will have holonomy G,.

9
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3.3. Long-time behaviour

The plots in Fig. 3.1 suggest that, within our ansatz, any initial condition flows to the unique (up to scale) nearly parallel
Gy-structure in the family. We now show that this is indeed the case. For the statement, as in Remark 3.4, we denote by
Y™ and ¥ the duals of the nearly parallel Gy-structures @™ and ¢ defined in Lemma 2.10, and recall that they induce
the squashed Einstein metric and 3-Sasakian metric respectively.

Theorem 3.8. Let . = ¥ (0) be a closed 4-form as in (2.17) dual to a G,-structure. The solution to the Laplacian coflow (3.1) starting
at e converges, after rescaling, to "™ if € = 1 and to ¥ if e = —1, which are the only critical points of the rescaled flow. In particular,
the nearly parallel G,-structures given by ¥ and v** are stable for (3.1) after rescaling.

Theorem 3.8 gives Theorem 1.1 in the introduction. The proof of Theorem 3.8 is quite lengthy, so we break it up into
several smaller results.

3.3.1. Strategy

Our aim is to prove that, given any initial condition, the flow (3.3)-(3.4) for (X(s), Y(s)) exists for all s and converges
to the critical point with X > 0 and Y > 0. From (3.3)-(3.4), long time existence will be guaranteed as long as X, Y remain
bounded and X remains bounded away from 0. Moreover, periodic orbits are not possible as we know the Laplacian coflow
is a gradient flow. Hence, long time existence will imply convergence to the critical point with X,Y > 0 if we additionally
know that Y remains bounded away from 0.

To deduce the result for the Laplacian coflow we observe that the evolution equation for c¢Z, which determines the
parameter s by Lemma 3.2, is:

d(cz)—s 2x+Y2+2+2eY y2
dt o X X x2)

2

so ¢ cannot blow up in finite time because X,Y are bounded and bounded away from zero. In fact, ¢2 grows at most
linearly, so we can integrate % = Clz to find s as a function of the Laplacian coflow parameter t.

Throughout the proof, we denote the curves where X and Y change sign, respectively, by yx and yy as in Fig. 3.1.

3.3.2. Bounds on X
We start by looking at the behaviour of X.

Lemma 3.9. The function X(s) is bounded away from zero and can only diverge in the region to the left of yx.

Proof. We first see that X is decreasing whenever it is to the right of yx and so X will remain bounded by its initial
condition in this region. We then see that X is increasing in the region to the left of yx, which is the region containing
X =0, and so X is bounded away from zero in this region by its initial condition. O

Since yx meets Y = X (at the critical point), the unbounded part of yx lies above the line Y = X, i.e. where Y > X.
Therefore, it suffices to show that Y remains bounded in the region to the left of yx where additionally Y > X to deduce
that X is bounded everywhere.

33.3. BoundsonY:e =1
Given our earlier discussion, we now turn to showing that Y remains bounded and bounded away from zero. We start
with the case € = 1.

Lemma 3.10. When € =1, Y (s) can only diverge in the region above the upper part of yy and can only tend to zero in the region above
the lower part of yy but below the line Y = X.

Proof. In this case, Y <0 in the region above the lower part of yy and below or to the right of the upper part of py, so
Y remains bounded by its initial value in this region. Note that yy meets the line X =0 at Y =0 and Y = 1/2. Hence, in
the same region we just considered, we are either to the left of yx and so X > 0, which means we cannot reach (0, 0), or
we are to the right of yx but also above yy. In this latter region, if we are above the line Y = X we cannot cross it by
Lemma 3.3, and so Y remains bounded away from zero here.

We then notice that Y > 0 in the region bounded by the lower part of yy, in which Y is bounded, and so Y is additionally
bounded away from 0 here. O

We now have our crucial observation for the case € = 1.

10
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Lemma 3.11. When € = 1, Y (s) is decreasing and hence bounded in the region where Y > X and X > 1.

Proof. In this setting, we can rewrite (3.4) in the following manner:
4y
il O =X)(Y =X)Y — XY —Y +2X(1 —2X)).

Hence, Y <0 when Y > X and X > 1. Therefore, Y will be bounded in this region. O

Y:

Since the only part of the quadrant with X,Y > 0 where Y can become unbounded is where Y > X by Lemma 3.10, we
deduce that Y can only become unbounded, when € =1, if X remains in (0, 1). We now show that this is impossible.

Proposition 3.12. For € = 1, there are no solutions (X(s), Y (s)) above the upper part of yy with X(s) € (0, 1) and Y (s) unbounded.

Proof. Suppose not and that we have such a solution. Note that there is a finite Y > 0 such that for all X € (0, 1),

Y2 4+202X% —2X - 1DXY =2X?QX-1D(X+1)>0 and (2X?>—-3X—-1)Y +2X(1-2X)<0 (3.7)

for all Y > Y. Since Y is increasing and unbounded in the region under consideration, we may assume that Y (s) > Y. Then,
comparing (3.7) and (3.3)-(3.4), we see that

. 4 . 8(1-X
X>—-Y? and Y< 80X ys
X X2

Hence, we see that

dy 2(1-X)

—<——Y.

dx — X
Gronwall’'s inequality then shows that there are constants Cp, C; depending only on the initial conditions so that Y is
bounded by CoX2e—2X + (. Since we assumed X(s) € (0, 1), this is a contradiction. O

Our results so far show that, when € =1, both X and Y are bounded and that X is bounded away from zero. To complete
the proof of Theorem 3.8 in the € =1 case we therefore only need the following.

Lemma 3.13. When € =1, Y (s) is bounded away from zero.

Proof. By Remark 3.7 and Lemma 3.10, we need only consider points near (X,Y) = (1/2,0) above yy. Linearizing around
the critical point (1/2, 0), so writing X = % +6X1 and Y =48Y; for § small, we find that the linear term in § gives

X1+Y1=-24(X;+Y;) and Y;=0.

These equations are degenerate along the line X; + Y1 =0, which is tangent to yy at (1/2,0). However, yy lies above this
line for all points near (1/2, 0), so we may restrict to the region where X; + Y > 0. Therefore, to leading order, Y; remains
a non-zero constant and X7 + Yy decreases with an exponential rate. Hence, Y will be bounded away from 0, as claimed. O

We can now put our results together so far.
Proof of Theorem 3.8 for ¢ = 1. Lemma 3.9 shows that X is bounded away from 0 and bounded above if Y is bounded.
Lemma 3.10, Lemma 3.11 and Proposition 3.12 show that Y is bounded and hence X is bounded. Finally, Lemma 3.13 shows
that Y is bounded away from 0. The observations in §3.3.1 then give the result. O
3.34. BoundsonY:e=—1

Having proved Theorem 3.8 for € =1 now move on to the case where ¢ = —1. The arguments here are similar to the

€ =1 case, but often easier.

Lemma 3.14. When € = —1, Y(s) can only diverge in the region to the left of yy and above the line Y = X, and can only tend to 0 to
the right of yy but below the line Y = X.

Proof. These are elementary observations given that Y is decreasing to the right of yy and increasing to the left of yy. O

We now see that the evolution equation (3.4) for Y has a useful feature when € = —1.

11
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Lemma 3.15. When € = —1, there exists a least X € (1,2) such that X < X whenever (X, Y) is on yy. Hence, Y <0 and thus Y is
bounded whenever X > X.

Proof. This is an elementary calculation, showing that X takes a maximum value on the curve yy. 0O

We deduce from Lemma 3.14 and Lemma 3.15 that the only way Y can become unbounded when € = —1 is if X remains
in the interval (0, X). We now show that this is not possible.

Proposition 3.16. Recall X from Lemma 3.15. For € = —1, there are no solutions (X(s), Y (s)) to the left of yy and above Y = X with
X(s) € (0, X) and Y (s) unbounded.

Proof. We suppose, for a contradiction, that there is such a solution. Suppose that the solution enters the part of the region
where X > 1. Then X is strictly increasing, so X > 1 for all subsequent times. However, the line yy asymptotes to X =1 as
Y — 0o, so we must eventually have that X is decreasing, which is a contradiction.

We deduce that X(s) € (0, 1) for all s. We note that there is a finite Y > 0 such that
Y2 -202X% —2X - DXY - 2X*Q2X-1D(X+1) >0 ()
and (2X?>-3X—-1)Y —2X(1-2X)>0 ’

for all X € (0,1) and Y > Y. Since Y is increasing in the region we are studying and we are assuming it is unbounded, we
may restrict to the case where Y(s) > Y. Comparing (3.8) to (3.3)-(3.4) yields the differential inequalities

8(2 — X)Y?3

. 4 .
X > —Y? and Y <
X X2

We deduce that

dY 22-X)

_— <Y

dx — X
and so, by Gronwall’s inequality, we have that Y is bounded by X4e=2X (up to multiplicative factors and additive constants
depending only on the initial conditions). Since X € (0, 1), this forces our required contradiction. 0O

To complete the proof in the € = —1 we now only need to show that Y stays away from 0.
Lemma 3.17. When € = —1, Y(s) is bounded away from zero.

Proof. The proof is entirely analogous to that of Lemma 3.13. Remark 3.7 and Lemma 3.14 show that we may restrict
attention to points near (1/2,0) to the right of yy. Writing X = % +6X1 and Y =38Y; for § small, we find that the linear
term in § gives

X1—-Y1=-24X; —-Y7) and Y;=0.

Note that the line X1 =Y, is tangent to yy at (1/2,0) and that yy lies above this line. Therefore, we need only consider
X1 —Y1 >0 and see that, to leading order, Y; remains a non-zero constant whilst X; — Y exponentially decreases. Hence,
Y will be bounded away from 0. O

We may now complete the proof of Theorem 3.8.
Proof of Theorem 3.8 for ¢ = —1. We first see that Lemma 3.9 shows that X is bounded away from 0 and bounded if Y
is bounded. Lemmas 3.14 and 3.15, together with Proposition 3.16, show that Y is bounded, and thus X is also bounded.
Finally, Lemma 3.17 shows that Y is bounded away from zero, which completes the proof by the discussion in §3.3.1. O

4. Laplacian flow

We now consider the Laplacian flow for our family of G;-structures in (2.14). We recall that this flow, if it is well-posed
and stays within the ansatz, is given by

0
&ﬁpe () = Ap. ype(t) = d?;(t)dwe ), (4.1)

for the coclosed 3-forms @ (t) in (2.14). Here we have to be particularly mindful that the coclosed condition may not be
preserved by the flow, let alone the ansatz.

12
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4.1. The flow equations

We first observe that the Hodge Laplacian of the 3-form defining the G;-structure follows immediately from that of the
4-form by taking the Hodge star:

dd:;e Ye = *A¢E wé.
To compute the Hodge star we use the following relations:
. €a’b
*p 7T VOl = A2 A

€
*p (M AN3 AW +13 AN /\wz)ZE(m A w1+ 12 A W2);

eb
*p. (M AMA©1) = prRE A w3.

We can now use Lemma 3.1 to find an expression for the Hodge Laplacian of ¢, which we need to consider the Laplacian
flow (4.1).

Lemma 4.1. The Hodge Laplacian of ¢¢ in (2.14) is given by:

8ea’b (2a%> b2 2¢b b2
Arpdﬂezc—2 C—2+C—2+2+T—a—2 mAnN2AN3
4a3  2ea?b 2¢*  ebc?
— 4(eb —t——+ — - —) AW A W (4.2)
tat—a p 2 )mA@rtmAaw)
b b2 2c2  4eab 2b%* 2ebc?  b%c2
—aeb(2- Gt T T mes

In particular, (4.2) is coclosed and in the same form as (2.14), so the Laplacian flow (4.1) is well-defined.

Remark 4.2. We observe that Lemma 4.1 shows that the coclosed condition on the G;-structure is preserved along the
Laplacian flow in this situation.

As a consequence of Lemma 4.1 and (2.14), we can write down the Laplacian flow (4.1) as a system of ODEs for a(t),
b(t), c(t):

d (@b) — 8a’b (2a® N b2 Lol 2¢b  b*\
dt o2 ez 2 a a?)’
d , 4a® 2ea’b  2c¢®  ebc?
@ =a(eb+ G T )

d , b2  2¢%  deab 2b* 2ebc?  b3c?
Gt =2 -G T T T )

Just as for the Laplacian coflow, it turns out that the Laplacian flow is easier to analyze if we introduce scale-invariant

quantities and a new time parameter. The resulting equations we obtain then describe the rescaled Laplacian flow.

Lemma 4.3. Define

a? J ab
X:C_2 an Y:C_z

and introduce a new variable s by

ds 1

dt ¢
Ifwelet X = ‘31—)5( and Y = c(li—’s(, then the Laplacian flow equations (4.1) imply that
. 4
X=—= (zxz(zx — (X + 1) +2e(1+2X —2X)XY — (1 + X)Yz) ; 4.3)

4y , ,
V=25 (2x<2x-1)+e(1+3><—2x )Y +2(X —1)Y ) (4.4)

13
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Fig. 4.1. Dynamic plots for Laplacian flow for ¢ =1 and € = —1.

4.2. Critical points and dynamics

We observe that (4.3)-(4.4) are just the negative of the equations (3.3)-(3.4) arising from the Laplacian coflow. We
therefore have the following.

Lemma 4.4. The only critical points for X, Y > 0 to (4.3)-(4.4) are:

1
X=Y=- and e€=1
5

and

X=Y=1 and e€=-1,

and the condition X =Y is preserved for € = 1, but not preserved for ¢ = —1 except when X =Y = 1.

The observation that the Laplacian flow equations (4.3)-(4.4) are the negative of the Laplacian coflow equations also
implies the following result, based on our stability analysis for the Laplacian coflow, which gives Theorem 1.2 in the Intro-
duction.

Theorem 4.5. The only critical points of the Laplacian flow (4.1), after rescaling, are the nearly parallel Gy structures ¢ and @™
inducing the 3-Sasakian and squashed Einstein metrics. Both critical points are unstable sources under the rescaled Laplacian flow.

For completeness, we provide the dynamic plots in Fig. 4.1 for the Laplacian flow (4.1) for our ansatz with € =1 and
€ = —1. We again indicate the curves yx and yy where X and Y change sign, respectively. Of course, the dynamics are
simply the opposite of those which appear in the Laplacian coflow plot in Fig. 3.1.

Remark 4.6. Fig. 4.1 shows that several different behaviours are possible for the rescaled Laplacian flow when the initial
condition is close to a nearly parallel G;-structure. One possibility is flowing to the origin, which corresponds again to the
7-manifold M collapsing to the 4-manifold N through the fibration (2.1). Notice that the 3-dimensional fibres of (2.1) are
calibrated by the G,-structure ¢, i.e. ¢ restricts to be the volume form on the fibres, and so are associative by definition.
The fact that dp # 0 means that the volume of any compact associative 3-fold is not necessarily topologically determined,
unlike for closed G;-structures.

5. Ricci flow
In this section we compare the results we have obtained for the Laplacian flow and coflow of our G,-structures with the
behaviour of the induced metric of the G,-structures under the Ricci flow. We recall that this comparison is useful because

the nearly parallel G;-structures, which are critical points of the rescaled Laplacian flow and coflow that we studied earlier,

14
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induce Einstein metrics which are then critical points of the Ricci flow up to scale. It is also of interest because if we use
the Laplacian coflow for coclosed G;-structures (1.3), then the induced flow (1.4) on the induced metric of the G,-structures
is the Ricci flow plus lower order terms determined algebraically by the torsion of the G;-structure.

5.1. The flow equations

We wish to study the Ricci flow for our ansatz

0 .
5780 = —2Ric(®), (5.1)

if it exists. From general theory the Ricci flow will have short time existence starting from our metric ansatz (2.15), though
it is not immediately obvious that the ansatz will be preserved.
We begin by computing the Ricci curvature of g(t) from (2.15). (Note that g(t) is independent of € € {£1}.)

Lemma 5.1. Let g(t) be as in (2.15). The Ricci curvature Ric(t) of g(t) satisfies

. b*  2a* p4 bt 20% + b2
R1C=2<2—a—z+C—4)(7ﬁ+7)§)+2<a—4+c—4)n§+2<6—762 )n*gN.

In particular, Ric(t) is of the same form as (2.15), and so the Ricci flow (5.1) is well-defined.

Proof. Our approach is to use the O’'Neill formulas for Riemannian submersions [20].

We let V denote the Levi-Civita connection of the 3-Sasakian metric gy;. Recall the orthonormal Killing fields Eq, E3, E3
in Definition 2.1 and let By, B, B2, B3 be local orthonormal vector fields on M which are horizontal for the Riemannian
submersion (2.1). It is then straightforward to compute that

3 4 3
VEEj=) €ijxEr. VEBI=0. VyEi=—) OimBm. (V5Bm)" =) oumEi.
i=1

k=1 m=0

where () indicates the vertical projection with respect to (2.1), €ijk is the sign of the permutation (i, j, k) of (1,2, 3), and
Oiim is skew-symmetric in I, m satisfying ojo; = 1 and ojj; = €;j for i, j, k € {1, 2, 3}. In particular, we notice that the fibres
of the Riemannian submersion (2.1) are totally geodesic, so the O’Neill tensor often denoted T vanishes, and that the other
O'Neill tensor, often called A, is horizontally divergence-free.
We then let V denote the Levi-Civita connection of g = g(t) and let
=D BB BB gl
a a b c

We may then compute that the quantities we need to complete our computation are:

- 2. - = 2. ~ 2b -
[52’53]=5E]’ [E3,E1]=EEz, [El,Ez]=a—ZE3,

-~ b - -~ 202 — b2 . -~ b - -~
VEZE3:a—2E1, VE3E‘127E2, VE—lEZZG—ZEg, VE,'B[:O’
a < a < b &
V3151=—C—2 ZUUmBm, Vg152=—c—2 ZGZImBms VBIE3=_C_2 ZU3ImBm-
m=0 m=0 m=0

Using the fact that the metric on N is Einstein with scalar curvature 48 and the O’Neill formulas, we see that the Ricci
tensor of g is diagonal and satisfies:

L= -~ 4 2b%2  4q?

RlC(E],E]):R]C(Ez,EZ)z—Z__4_;’__4’
a a C
2% 4b?

Ric(E3, E3) = e + -

12¢2 — 2(2a% + b?)

Ric(B. B) = -

as desired. O
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Given Lemma 5.1, we can now write down the Ricci flow equations for our ansatz in (2.15):

d@y——a(2-2 150,
e~ a2 “ct)
d , bt bt
&(b)=_4<a—4+zc—4),

d , a? b
G )_—4<6—2C—2——>.

c2

To simplify the analysis of these equations we introduce some scale-invariant quantities and rescale the time parameter to
find the following after a short computation.

Lemma 5.2. Define
2 2
a b
A=— and B=—
c2 c2
and introduce a new variable s by

ds 1
dt = 2’
Ifwelet A= dA and B = ‘gg, then the Ricci flow equations for (2.15) imply that

. 41— A)
A== (B(1+A) ~2A(1-24)); (5.2)

. 4B 2
B=—5 (2A (3—A)—B(1+3A )) (53)
The equations (5.2)-(5.3) describe the rescaled Ricci flow.

5.2. Critical points and dynamics

It is straightforward to find the critical points and observe some basic facts about the dynamics of the flow equations
(5.2)-(5.3) as follows.

Lemma 5.3. The only critical points for A, B > 0 of the flow equations (5.2)—(5.3) are
1
A:Bzg and A=B=1.
Moreover, the lines A= B and A = 1 are preserved by the flow.

Lemma 5.2 leads us to draw the plot in Fig. 5.1 showing the dynamics of the equations. If we denote the curve where
B(1+ A)=2A( —2A) for A,B>0 by ya and the curve 2A2(3 A)=B( +3A2) for A,B>0 by ys, these are the curves
which, together with the line A =1, determine the sign of A and B.

The first plot in Fig. 5.1 indicates that there is a stable critical point at A= B =1, where y4 and A =1 intersect. In the
second plot, we focus on the critical point A= B =1/5 where y4 and yp intersect, which appears to be unstable (in fact, a
saddle point).

Remark 5.4. The curves y4 and yp also intersect at A = B =0, which is a degenerate critical point in terms of the equations
(5.2)-(5.3), since they are not defined there. From the geometric point of view, here M’ has collapsed to the 4-dimensional
orbifold N (or a point) in the fibration (2.1), since a=b =0 in (2.15), and so any flow lines tending to (0, 0) converge to the
Einstein metric gy on N up to scale (or 0). We can avoid the possibility of converging to a point along the rescaled Ricci
flow, since the diameter will stay bounded away from 0.

Remark 5.5. One may observe from (5.2)-(5.3) that there are two other degenerate critical points if we allow A =0 or
B =0:

(A,B):(%,O) and (A,B)=(1,0).
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Fig. 5.1. Dynamic plot for Ricci flow.

These critical points correspond to a collapsed situation where the S! fibres corresponding to E3 (in the notation of Defini-
tion 2.1) now have zero size since b =0 in (2.13). The 7-manifold M has therefore collapsed to the twistor space Z®, which
is a 2-sphere bundle over N*. The metrics with (A, B) = (1,0) and (A, B) = (1/2, 0) correspond to two Einstein metrics on
the twistor space Z: the canonical Kdhler-Einstein and nearly Kdhler metric, respectively. It is natural to see these Einstein
metrics appear at the boundary of our Ricci flow ansatz as critical points. However, it is interesting to note that the Kdhler-
Einstein metric on Z does not play a distinguished role in the study of the Laplacian coflow and Laplacian flow, whereas
the nearly Kahler metric does.

We now study the dynamics of the flow and show the following, recalling the fibration (2.1) of M7 over a 4-dimensional
base N4,

Theorem 5.6. The only critical points for the Ricci flow (5.1), after rescaling, are the 3-Sasakian metric gy and the squashed Einstein
metric gy on M. The 3-Sasakian metric is a stable critical point for the rescaled Ricci flow within the ansatz (2.15), whilst the squashed
Einstein metric is an unstable critical point which is a saddle point. Moreover, there is an open set of initial metrics in the ansatz (2.15),
which can be chosen arbitrarily near gy, such that they flow either to gy or to the collapsed limit (even after rescaling) where the
3-dimensional fibres in (2.1) shrink to 0 and the flow converges to the Einstein 4-orbifold (N, gn).

Proof. We recall the curves y,4, yg introduced after Lemma 5.3 and plotted in Fig. 5.1.

For A > 1 we have that A <0 and hence A remains bounded as long as the flow exists. We also see that B < 0 whenever
B is above the curve yp (which passes through (0, 0) and (3, 0)) and hence also remains bounded as long as the flow exists.
Since

d(z)— 46 —2A — B)
a )T TAAT R

the right-hand side is bounded and so c? cannot blow up in finite time. Moreover, cZ goes to zero at a linear rate in t at
most, and so we can integrate Clz with respect to t to obtain s in Lemma 5.2.
We linearize (5.2)-(5.3) around (A, B) = (1, 1) to obtain:

A=-16A and B=—16B.

Hence (1, 1) is a stable critical point, which corresponds to the 3-Sasakian metric.

We now observe that if we start above the curve y4, which passes through (0,0) and (%, 0), then A >0 for A <1, so
A is always bounded away from O in this region, depending on its initial value. Recalling that A <0 for A > 1, we deduce
that all of the terms in (5.2)-(5.3) are bounded and there can be no periodic orbits in this region as A cannot cross the line
A =1 by Lemma 5.3. We also note that B> 0 when A € (1/5,1) and B is near 0 since then (A, B) lies below y3, and thus
B is bounded away from 0 when A € (1/5,1).
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Since (1/5,1/5) lies on y4, we deduce that the flow will converge to the critical point at (1, 1) if the initial value of
(A, B) lies above or to the right of the curve y4 and A is greater than 1/5 initially. This proves the statement about initial
conditions near gy; which flow to gy, since gy corresponds to (1/5,1/5).

Now if we specialize to the line A = B which, by Lemma 5.2, is preserved, we see that

A=4(1-A)GGA-1). (5.4)

We see immediately that for A= B < 1/5 we have A <0, for A=B e (1/5,1) we have A > 0. (For A=B >1 we have A <0
again, as expected by the stability of (1,1).) Thus, the critical point at (1/5,1/5) is unstable, even within the restricted
ansatz when A = B. Furthermore, if we linearize the system (5.2)-(5.3) around (1/5, 1/5) we obtain

. 16 96 . 192 112

A=——A+—B and B=—A— —B,

5 5 5 5
from which it follows that (1/5,1/5) is a saddle point, as the matrix corresponding to the above dynamical system has one
positive and one negative eigenvalue: 16 and —208/5.
We see from (5.4) that we have initial conditions for (5.2)-(5.3), even with A = B, such that A and B go to 0. In

fact, suppose we choose any initial condition in the region R below y4 but above yg, which means in particular that
A,B € (0, %). Since the flow lines enter R vertically from above along y4 and horizontally from the right along ys, no flow

lines can leave R so A, B are bounded and can only reach 0 when (A, B) =(0,0). In R, A <0 and B <0 and there are no
periodic orbits. We conclude that all flow lines starting in R must converge to (0, 0). We again note as in Remark 5.4 that
M cannot collapse to a point along the rescaled Ricci flow. The discussion in Remark 5.4 then implies that the point (0, 0)
corresponds to the fibres of the fibration (2.1) collapsing, even in the rescaled Ricci flow, so that M7 collapses to the base
N# (with its Einstein metric). Since R is open and has (1/5,1/5) on its boundary, this complete the proof. O

Theorem 5.6 proves Theorem 1.3 in the Introduction.

Remark 5.7. By dynamical systems theory, there is a 1-dimensional stable manifold for the squashed Einstein metric within
our rescaled Ricci flow ansatz. We can discern this stable manifold from the plots in Fig. 5.1. It might be interesting to
understand whether this stable manifold (or, equally, the corresponding unstable manifold) has any geometric significance,
e.g. any special curvature properties.
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