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A 3-Sasakian structure on a 7-manifold may be used to define two distinct Einstein 
metrics: the 3-Sasakian metric and the squashed Einstein metric. Both metrics are induced 
by nearly parallel G2-structures which may also be expressed in terms of the 3-Sasakian 
structure. Just as Einstein metrics are critical points for the Ricci flow up to rescaling, 
nearly parallel G2-structures provide natural critical points of the (rescaled) geometric 
flows of G2-structures known as the Laplacian flow and Laplacian coflow. We study each 
of these flows in the 3-Sasakian setting and see that their behaviour is markedly different, 
particularly regarding the stability of the nearly parallel G2-structures. We also compare 
the behaviour of the flows of G2-structures with the (rescaled) Ricci flow.
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1. Introduction

1.1. Nearly parallel G2-structures

A G2-structure on a 7-manifold is encoded by a 3-form ϕ satisfying a certain nondegeneracy condition, and such a 3-
form determines a Riemannian metric and orientation. One of the most important types of G2-structure is a nearly parallel
G2-structure since it defines an Einstein metric with positive scalar curvature, as well as a real Killing spinor [2,7]. Moreover, 
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the cone over a 7-manifold with a nearly parallel G2-structure admits a conical metric with exceptional holonomy Spin(7)
(and so is Ricci-flat), and thus nearly parallel G2-structures are also important in the study of asymptotically conical and 
conically-singular Spin(7) manifolds (cf. [14]).

Since the existence of a complete positive Einstein metric will lead to compactness of the underlying manifold by Myers 
theorem, it is natural to ask which compact 7-manifolds admit nearly parallel G2-structures. Though this general question is 
currently open, an infinite number of examples of such compact 7-manifolds are known, including the 7-sphere, the Aloff–
Wallach spaces N(k, l), the Berger space SO(5)/SO(3), and the Stiefel manifold V5,2 [7]. The largest class of 7-manifolds that 
are known to admit nearly parallel G2-structures are the 3-Sasakian 7-manifolds, which are the focus of this paper.

1.2. Geometric flows

Nearly parallel G2-structures are natural to study from the perspective of several geometric flows. Since a nearly parallel 
G2-structure induces a positive Einstein metric, it is natural to evolve its induced metric g by the Ricci flow:

∂ g

∂t
= −2Ric(g). (1.1)

The induced metric will define a self-similarly shrinking solution to the Ricci flow, and thus a critical point after rescaling. 
However, a G2-structure contains more information than the metric (since the same metric is induced by a whole family of 
G2-structures), so it is worthwhile to examine flows of G2-structures relevant to nearly parallel G2-structures, and compare 
and contrast its behaviour to the Ricci flow.

Two such geometric flows of G2-structures which have been the most studied, and we shall examine here, are the 
Laplacian flow (introduced by Bryant [5]) and the Laplacian coflow (first considered in [12]1).

1.2.1. Laplacian flow
The Laplacian flow evolves the 3-form ϕ defining the G2-structure by its Hodge Laplacian:

∂ϕ

∂t
= �ϕϕ = (dd∗

ϕϕ + d∗
ϕd)ϕ. (1.2)

(Here, we emphasise the nonlinearity in the formal adjoint d∗
ϕ of the exterior derivative, since the metric and orientation 

depend on ϕ .) The Laplacian flow has received particular attention in the context of closed G2-structures (when dϕ = 0), 
where it has many attractive features, particularly with regards to torsion-free G2-structures (when dϕ = 0 and d∗

ϕϕ = 0), 
which define Ricci-flat metrics with holonomy contained in G2. For foundational results and a survey of recent developments 
in the Laplacian flow for closed G2-structures see e.g. [11,17,18].

A nearly parallel G2-structure defines a self-similarly expanding solution to the Laplacian flow (1.2), so can be viewed 
as a critical point up to rescaling. (We note the immediate difference with the Ricci flow where the induced metric was a 
shrinker.) A nearly parallel G2-structure is, however, not closed but coclosed: the defining 3-form ϕ satisfies d∗

ϕϕ = 0. Whilst 
it may seem potentially plausible to study coclosed G2-structures using the Laplacian flow (1.2), in fact it is not yet known 
in general whether this flow even has short time existence starting at a coclosed G2-structure. An example situation where 
it has proved instructive to use the Laplacian flow to study coclosed G2-structures can be found in [16].

1.2.2. Laplacian coflow
Currently the best candidate2 for studying coclosed G2-structures is the Laplacian coflow, which evolves the closed 4-

form ψ = ∗ϕϕ dual to the 3-form ϕ defining the G2-structure by its Hodge Laplacian:

∂ψ

∂t
= �ψψ = (d∗

ψd+ dd∗
ψ)ψ = dd∗

ψψ, (1.3)

using the fact that ψ is closed. (The 4-form ψ induces the metric just like ϕ , but not the orientation, though an orientation 
can be fixed by the initial choice of G2-structure.) The Laplacian coflow preserves the cohomology class [ψ] of ψ , where it 
may be viewed as the gradient flow of the Hitchin volume functional, and the induced flow of the metric g defined by ψ is

∂ g

∂t
= −2Ric(g) + Q (dϕ), (1.4)

where Q is a quadratic expression in dϕ: see [9,11] for details. Since Q only depends on first order information on ψ , 
whereas the Ricci tensor involves second order data, one may view (1.4) as a lower order perturbation of the Ricci flow 
(1.1).

1 It should be noted that in [12] the opposite sign for the velocity of the Laplacian coflow is used.
2 The Laplacian coflow for coclosed G2-structures has many attractive features analogous to the Laplacian flow for closed G2-structures, but with the 

significant difference that the analytic foundations for the Laplacian coflow are currently lacking: see [9,11] for a discussion of the analytic issues.
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However, just as for the Laplacian flow, a nearly parallel G2-structure defines a self-similarly expanding solution to the 
Laplacian coflow (1.3), whereas its induced metric defines a shrinker for Ricci flow. Hence the “lower order terms” in (1.4)
drastically alter the behaviour of the metric flow in this setting.

We should also note that coclosed G2-structures satisfy a parametric h-principle (see [6]). Therefore, coclosed G2-
structures exist on any (compact or non-compact) 7-manifold admitting a G2-structure, which just requires the 7-manifold 
to be oriented and spin, and so the Laplacian coflow can potentially be studied on any oriented spin 7-manifold. By contrast, 
it is currently not clear how restrictive the closed condition is for a G2-structure on a compact manifold.

1.3. 3-Sasakian 7-manifolds

A 3-Sasakian 7-manifold is a Riemannian 7-manifold M so that the metric cone over it is hyperkähler. One can use the 
3-Sasakian structure to define two3 distinct nearly parallel G2-structures (up to scale), one of which induces the original 
3-Sasakian Einstein metric on M , and the other induces the so-called squashed Einstein metric on M . This is most easily 
seen in the example of the 7-sphere, where the 3-Sasakian metric is the round metric, and the squashed Einstein metric is 
obtained by rescaling the 3-sphere fibres relative to the 4-sphere base in the Hopf fibration of the 7-sphere.

1.4. Stability

Our primary goal is to study the stability of nearly parallel G2-structures on 3-Sasakian 7-manifolds under the Laplacian 
flow and Laplacian coflow, and to compare the behaviour of these flows to the Ricci flow near their induced Einstein metrics.

For geometric flows, one is primarily interested in the question of dynamical stability of a critical point, i.e. when the 
flow starting near a critical point will flow back to it. An easier and weaker thing to check is linear stability: whether the 
critical point is stable for the linearized flow at that point. In some situations, one can infer dynamical stability from linear 
stability: e.g. for complete positive Einstein metrics in Ricci flow, linear stability plus an integrability assumption implies a 
weak form of dynamical stability [13].

In the context of nearly parallel G2-structures on 7-manifolds M , it was shown in [19] that if the third Betti number 
b3(M) �= 0, then under the Ricci flow any Einstein metric induced by a nearly parallel G2 structure is linearly unstable and 
therefore dynamically unstable. As 3-Sasakian 7-manifolds M necessarily have b3(M) = 0, this class of examples admitting 
nearly parallel G2-structures is particularly interesting for Ricci flow in light of this result.

In this article, when discussing stability we will always be referring to dynamical stability.

1.5. Main results

On any 3-Sasakian 7-manifold we introduce two disjoint 3-parameter families of coclosed G2-structures defined in terms 
of the 3-Sasakian structure. These families of G2-structures each include exactly one of the natural nearly parallel G2-
structures we discussed above (and their rescalings). We refer the reader to §2 for details.

Our main results concern the behaviour of the Laplacian coflow, the Laplacian flow and the Ricci flow for these families 
of coclosed G2-structures and their induced metrics, which we show are preserved by the flows. (Note, in particular, that 
the Laplacian flow is shown to preserve the coclosed condition in this setting.)

Our most significant result is for the Laplacian coflow (1.3).

Theorem 1.1. The Laplacian coflow starting at any initial coclosed G2-structure in either of our families converges, after rescaling, to 
the nearly parallel G2-structure in that family. In particular, the nearly parallel G2-structures are both stable within their families.

Comparing the Laplacian flow (1.2) and Laplacian coflow (1.3), one might naively expect them to have similar behaviour 
as their velocities are Hodge dual. However, in our setting, we have the following, which contrasts sharply with our Laplacian 
coflow result.

Theorem 1.2. Both nearly parallel G2-structures are unstable sources within their families under the rescaled Laplacian flow, so co-
closed G2-structure in our families which are not nearly parallel cannot flow to either of them.

Finally, for the Ricci flow (1.1), we have the following, which differs again from our previous two results.

Theorem 1.3. Along the rescaled Ricci flow for our families of metrics, the 3-Sasakian metric is stable, whereas the squashed Einstein 
metric is a saddle point and so unstable.

This result again shows that, whilst the Ricci flow and the induced flow of metrics (1.4) from the Laplacian coflow are 
closely related, their behaviour can be markedly different.

3 In fact, there are three natural nearly parallel G2-structures inducing the 3-Sasakian metric, but these are permuted by the symmetries in the 3-Sasakian 
structure. The same does not occur for the squashed Einstein metric.
3
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1.6. Summary

We begin in §2 by discussing background on 3-Sasakian geometry, the nearly parallel G2-Structures determined by these 
geometries, and our geometric flow ansatz. We then study the behaviour of the Laplacian coflow in §3, the Laplacian flow 
in §4, and the Ricci flow in §5. To do this, we reduce the study of each rescaled flow to the analysis of a nonlinear ODE 
system for two functions.

2. G2-structures on 3-Sasakian 7-manifolds

In this section we recall some of the basics of 3-Sasakian geometry in 7 dimensions and outline its relationship to G2
geometry. Further details on 3-Sasakian geometry can be found in [3,4]. For information about G2-structures, we refer the 
reader to [10] or [11, pp. 3–50].

2.1. 3-Sasakian 7-manifolds

We first recall the definition of a 3-Sasakian 7-manifold.

Definition 2.1. A complete Riemannian 7-manifold (M7, gM) is 3-Sasakian if it has an orthonormal triple of Killing fields 
{E1, E2, E3} satisfying [Ei, E j] = 2Ek for a cyclic permutation (i, j, k) of (1, 2, 3), such that each Ei defines a Sasakian struc-
ture on (M, gM).

If (M, gM) is 3-Sasakian then gM is Einstein with positive scalar curvature equal to 42 (so M is compact) and there is a 
locally free action of SU(2) on M whose leaf space N is a 4-dimensional orbifold. Moreover, there is a canonical metric gN
on N , which is anti-self-dual Einstein with positive scalar curvature equal to 48, such that (M, gM ) and (N, gN ) are related 
by an orbifold Riemannian submersion:

π : M → N. (2.1)

Remark 2.2. The simplest example of a 3-Sasakian 7-manifold is the 7-sphere with its constant curvature 1 metric. In this 
setting, (2.1) just becomes the usual Hopf fibration with M = S7 and N = S4, and N = S4 has its constant curvature 4
metric.

The Levi-Civita connection of (N, gN ) lifts to a connection on the bundle (2.1), and so may be viewed as an su(2)-valued 
1-form η on M , which can be written as

η =
3∑

i=1

ηi ⊗ Ti, (2.2)

where η1, η2, η3 are 1-forms on M and {T1, T2, T3} is a basis for su(2) satisfying [Ti, T j] = 2Tk for cyclic permutations 
(i, j, k) of (1, 2, 3). The curvature of η is then an su(2)-valued 2-form ω which may be written as

ω = −2
3∑

i=1

ωi ⊗ Ti (2.3)

for 2-forms ω1, ω2, ω3 on M which are, in fact, pullbacks of orthogonal self-dual 2-forms on N since gN is anti-self-dual 
Einstein. (The factor of 2 and sign are chosen for convenience.) Moreover, we have that the forms ω1, ω2, ω3 are normalized 
such that

ωi ∧ ω j = 2δi jπ
∗volN . (2.4)

For later use, we record the following equations satisfied by η and ω where, in each case, (i, j, k) are taken to be a cyclic 
permutation of (1, 2, 3):

dηi = −2η j ∧ ηk − 2ωi, (2.5)

dωi = −2η j ∧ ωk + 2ηk ∧ ω j . (2.6)

The 3-Sasakian metric gM on M may then be given in terms of the ηi and gN as follows:

gM = η2
1 + η2

2 + η2
3 + π∗gN . (2.7)

We can scale gM by any positive constant c and then c2gM will still be Einstein with positive scalar curvature. We may 
also observe the following well-known fact.
4
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Lemma 2.3. The metric

g̃M = 1

5
(η2

1 + η2
2 + η2

3) + π∗gN (2.8)

is Einstein with positive scalar curvature and is known as the squashed Einstein metric on the 3-Sasakian M7 [7,8].

Remark 2.4. The metric cone on (M, gM) has holonomy contained in Sp(2), whereas the metric cone on (M, ̃gM) (once one 
scales g̃M appropriately) has holonomy Spin(7). In the first case, the metric cone has the full holonomy Sp(2) if it is not 
flat.

2.2. Natural G2-structures

We recall that a G2-structure on a 7-manifold is determined by a 3-form ϕ on the manifold satisfying a certain nonde-
generacy condition. Such a 3-form determines a metric gϕ and volume form volϕ , and hence a dual 4-form ψ = ∗ϕϕ , where 
∗ϕ is the Hodge star determined by ϕ .

Given the data in (2.1), (2.2) and (2.3) above, we may now write down a natural family of G2-structures on a 3-Sasakian 
7-manifold (M7, gM) as follows.

Lemma 2.5. Given a1, a2, a3, c > 0 and ε ∈ {±1}, if we let a = (a1, a2, a3) then the 3-form

ϕa,c,ε = εa1a2a3η1 ∧ η2 ∧ η3 − c2(a1η1 ∧ ω1 + a2η2 ∧ ω2 + εa3η3 ∧ ω3) (2.9)

defines a G2-structure on M. Moreover, this G2-structure induces the following metric, volume form and dual 4-form:

ga,c = a21η
2
1 + a22η

2
2 + a23η

2
3 + c2π∗gN ; (2.10)

vola,c,ε = εa1a2a3c
4η1 ∧ η2 ∧ η3 ∧ π∗volN ; (2.11)

ψa,c,ε = c4π∗volN − c2(εa2a3η2 ∧ η3 ∧ ω1 + εa3a1η3 ∧ η1 ∧ ω2 + a1a2η1 ∧ η2 ∧ ω3). (2.12)

Note that ga,c is independent of ε .

This result is an elementary consequence of the fact that ω1, ω2, ω3 are the pullbacks of self-dual 2-forms on N satisfying 
(2.4).

Remark 2.6. Initially, one may allow for a1, a2, a3 ∈ R \ {0}. However, ϕ and −ϕ are the same G2-structure up to a change 
of orientation. Moreover, there are only two possibilities: either a1, a2, a3 all have the same sign, or just two have the same 
sign. Therefore, we can take a1, a2, a3 to be all positive and use ε to account for the two choices.

We now compute the exterior derivatives of ϕa,c,ε and ψa,c,ε , which together encode all of the information about the 
torsion of the G2-structure.

Lemma 2.7. Let ϕa,c,ε and ψa,c,ε be as in Lemma 2.5. Then:

dϕa,c,ε = 4c2(a1 + a2 + εa3)π
∗volN

− 2(εa1a2a3 − c2a1 + c2a2 + εc2a3)η2 ∧ η3 ∧ ω1

− 2(εa1a2a3 + c2a1 − c2a2 + εc2a3)η3 ∧ η1 ∧ ω2

− 2(εa1a2a3 + c2a1 + c2a2 − εc2a3)η1 ∧ η2 ∧ ω3;
dψa,c,ε = 0.

This result follows quickly from (2.5) and (2.6). Notice in particular that the G2-structures are all coclosed.

Remark 2.8. We note the following special cases of our family of G2-structures.

• We can always make an overall rescaling so that c = 1. (However, we shall see that we will require the freedom to vary 
the scale c along our flows.)

• Taking a1 = a2 = a3 = c = 1 and ε = 1 gives a coclosed G2-structure inducing the 3-Sasakian metric. It has been referred 
to as the “canonical” G2-structure on a 3-Sasakian 7-manifold (see e.g. [1]).

• Taking a1 = a2 = a3 = a and c = 1 gives the family of G2-structures considered in [15]. The subfamily where ε = 1 was 
also studied earlier in [7].
5
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2.3. Nearly parallel G2-structures

We recall the definition of the distinguished class of G2-structures that will be the focus of this paper.

Definition 2.9. A G2-structure on a 7-manifold M defined by a 3-form ϕ with dual 4-form ψ is nearly parallel if

dϕ = λψ

for some non-zero constant λ. (A priori λ could be a function on M , but a short argument using dψ = 0 and some repre-
sentation theory shows that it must in fact be constant.)

A nearly parallel G2-structure ϕ induces an Einstein metric gϕ with positive scalar curvature. If λ is chosen so that the 
scalar curvature of gϕ is 42, then the cone metric dr2+r2gϕ on R+ ×M is Ricci-flat and has holonomy contained in Spin(7), 
and ϕ is strictly nearly parallel if the holonomy of this cone metric is Spin(7). (One should compare this to Remark 2.4.)

We now record the following facts, which follow immediately from (2.5) and (2.6), that show that our family of G2-
structures contains two nearly parallel G2-structures (up to scale).

Lemma 2.10. Take a1 = a2 = a3 = a in ϕa,c,ε .

• If a = 1√
5
c and ε = 1, then the resulting G2-structure, which we may write c3ϕnp with ϕnp independent of c, is (strictly) nearly 

parallel and its induced metric is c2 g̃M .
• If a = c and ε = −1, then the resulting G2-structure, which we may write c3ϕts where ϕts is independent of c, is nearly parallel 

and its induced metric is c2gM .

Hence, within each branch (determined by ε ∈ {±1}) of our family of G2-structures, there is one natural critical point 
(up to scale) for our geometric flows. For ε = 1, this is the strictly nearly parallel G2-structure ϕnp inducing the squashed 
Einstein metric g̃M on M , and for ε = −1 this is the nearly parallel G2-structure ϕts (where “ts” stands for 3-Sasakian) 
inducing the 3-Sasakian metric gM .

Remark 2.11. If we take a = 1√
5
c and ε = −1 in Lemma 2.10 then we obtain a coclosed G2-structure which induces the 

Einstein metric c2 g̃M , but is not nearly parallel. The same occurs when we a = c and ε = 1, but now for the Einstein metric 
c2gM : this gives a multiple of the “canonical” G2-structure we saw earlier (cf. Remark 2.8).

Remark 2.12. It is worth noting that, by Lemma 2.10 and [6, Examples 1.14 and 1.15], the G2-structures defined by ϕa,c,+1
and ϕa,c,−1 cannot be homotopic through G2-structures.

2.4. The ansatz

Motivated by Lemma 2.10, we will take our ansatz to be a special case of that of Lemma 2.5 where

a1 = a2 = a(t), a3 = b(t) and c = c(t), (2.13)

for positive time-dependent functions a(t), b(t), c(t). These then define 1-parameter families of G2 3-forms ϕε(t) depending 
on t , with induced metric g(t), volume form volε(t) and dual 4-form ψε(t) as follows:

ϕε(t) = εa(t)2b(t)η1 ∧ η2 ∧ η3 − a(t)c(t)2(η1 ∧ ω1 + η2 ∧ ω2) − εb(t)c(t)2η3 ∧ ω3; (2.14)

g(t) = a(t)2(η2
1 + η2

2) + b(t)2η2
3 + c(t)2π∗gN ; (2.15)

volε(t) = εa(t)2b(t)c(t)4η1 ∧ η2 ∧ η3 ∧ π∗volN ; (2.16)

ψε(t) = c(t)4π∗volN − εa(t)b(t)c(t)2(η2 ∧ η3 ∧ ω1 + η3 ∧ η1 ∧ ω2) − a(t)2c(t)2η1 ∧ η2 ∧ ω3. (2.17)

We include the subscript ε to emphasise the choice of branch given by ε ∈ {±1}, as we shall see different behaviour for 
distinct choices of ε , but drop the subscript for g(t) since it is independent of ε . We shall make the restriction in (2.13)
henceforth in this article.

Remark 2.13. The reader may wonder why we do not simply choose a = b in (2.13) given that this holds for the nearly 
parallel G2-structures in Lemma 2.10. We shall see that the simpler ansatz when a = b is not necessarily preserved along 
the geometric flows we consider, and so we broaden our study to consider the larger class of 1-parameter families of G2-
structures given by the condition (2.13). One could also consider curves in the full family of G2-structures in Lemma 2.5, 
but this would be much more challenging and we already exhibit interesting behaviour within the framework provided by 
(2.13).
6
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For the ansatz, we have the following simplification and slight extension of Lemma 2.7.

Lemma 2.14. Let ϕε = ϕε(t) and ψε = ψε(t) be given by Lemma 2.5 with the conditions in (2.13). Then:

dϕε = 4c2(2a + εb)π∗volN − 2εb(a2 + c2)η2 ∧ η3 ∧ ω1

− 2εb(a2 + c2)η3 ∧ η1 ∧ ω2 − 2ε(a2b + 2εac2 − bc2)η1 ∧ η2 ∧ ω3;
dψε = 0.

Moreover, we may write dϕε = τ0ψε + ∗τ3 where

τ0 = 4

7a2c2

(
4a(a2 + c2) + εb(2a2 − c2)

)

and τ3 ∧ ϕε = 0 = τ3 ∧ ψε .

Proof. The formulas for dϕε and dψε are immediate from Lemma 2.7. We then compute that

dϕε ∧ ϕε = 4
(
εa2bc2(2a + εb) + 2εabc2(a2 + c2) + bc2(a2b + 2εac2 − bc2)

)
η1 ∧ η2 ∧ η3 ∧ π∗volN

= 4εbc2
(
4a(a2 + c2) + εb(2a2 − c2)

)
η1 ∧ η2 ∧ η3 ∧ π∗volN .

The formula for τ0 follows. �
Remark 2.15. Lemma 2.14 shows that, regardless of the choice of ε ∈ {±1}, we can always choose initial conditions for 
our flows of G2-structures such that τ0 = 0 (and necessarily τ3 �= 0), even though we are trying to flow to nearly parallel 
G2-structures, which must have τ0 �= 0 and τ3 = 0.

3. Laplacian coflow

We start by studying the Laplacian coflow, which is arguably the natural flow for our ansatz of coclosed G2-structures 
since it manifestly preserves the coclosed condition. We recall that this flow, if it is well-posed and stays within the ansatz, 
is given by

∂

∂t
ψε(t) = �ψε(t)ψε(t) = dd∗

ψε(t)ψε(t), (3.1)

for the closed 4-forms ψε(t) in (2.17).

3.1. The flow equations

Since we have that

dd∗
ψε

ψε = d ∗ dϕε,

it is straightforward to compute the right-hand side of (3.1) from Lemma 2.14 as follows.

Lemma 3.1. The Hodge Laplacian of ψε in (2.17) is given by:

�ψε ψε = 8

(
2a2 + b2 + 2c2 + 2εbc2

a
− b2c2

a2

)
π∗volN

− 4
(
b2 + 4εa3b

c2
+ 2a2b2

c2
+ 2εbc2

a
− b2c2

a2

)
(η2 ∧ η3 ∧ ω1 + η3 ∧ η1 ∧ ω2)

− 4
(
2a2 − b2 + 2c2 + 4εa3b

c2
+ 2a2b2

c2
− 2εbc2

a
+ b2c2

a2

)
η1 ∧ η2 ∧ ω3

(3.2)

In particular, (3.2) is in the same form as (2.17) and so the Laplacian coflow (3.1) is well-defined.

Given this result and (2.17), we may write down the Laplacian coflow (3.1) as the following system of ordinary differential 
equations for the coefficient functions a(t), b(t), c(t):
7
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d

dt
(c4) = 8

(
2a2 + b2 + 2c2 + 2εbc2

a
− b2c2

a2

)
;

d

dt
(a2c2) = 4

(
2a2 − b2 + 2c2 + 4εa3b

c2
+ 2a2b2

c2
− 2εbc2

a
+ b2c2

a2

)
;

d

dt
(abc2) = 4

(
εb2 + 4a3b

c2
+ 2εa2b2

c2
+ 2bc2

a
− εb2c2

a2

)
.

We can simplify the analysis of these equations by introducing new variables as follows.

Lemma 3.2. Define

X = a2

c2
and Y = ab

c2

and introduce a new variable s by

ds

dt
= 1

c2
.

If we let Ẋ = dX
ds and Ẏ = dY

ds , then the Laplacian coflow equations for (2.17) imply that

Ẋ = 4

X2

(
(X + 1)Y 2 + 2ε(2X2 − 2X − 1)XY − 2X2(2X − 1)(X + 1)

)
; (3.3)

Ẏ = 4Y

X2

(
2(1− X)Y 2 + ε(2X2 − 3X − 1)Y + 2X(1 − 2X)

)
. (3.4)

We note that X and Y are scale-invariant quantities and that solutions to (3.3)–(3.4) give the solutions to the Laplacian 
coflow (3.1) up to rescaling.

3.2. Critical points and dynamics

To understand the dynamics of the flow (3.3)–(3.4), we need to study its critical points. Some straightforward calculations 
show the following.

Lemma 3.3. The only critical points for X, Y > 0 to the system (3.3)–(3.4) are:

X = Y = 1

5
and ε = 1 (3.5)

and

X = Y = 1 and ε = −1. (3.6)

Moreover, if ε = 1 the condition X = Y is preserved, but if ε = −1 the condition X = Y is not preserved except when X = Y = 1.

Remark 3.4. By Lemma 2.10, the critical points (3.5)–(3.6) correspond to the 4-forms ψnp and ψ ts dual to the nearly parallel 
G2-structures ϕnp and ϕts respectively. Thus, Lemma 3.3 shows that the only critical points for (3.1) up to rescaling are ψnp

and ψ ts .

Before considering the general ansatz, we note that if we set X = Y and ε = 1 in (3.3)–(3.4) then we obtain:

Ẋ = 4(1 − 5X).

Hence, Ẋ is positive for X < 1/5 and negative for X > 1/5, which clearly shows the stability along the line X = Y of the 
critical point (3.5). Thus ψnp is stable within the restricted ansatz (2.13) with a = b.

Remark 3.5. Lemma 3.3 shows that the coclosed G2-structure with ε = 1 inducing the 3-Sasakian metric (up to scale), as 
well as the one with ε = −1 inducing the squashed Einstein metric, have no significance for the Laplacian coflow. It also 
shows that we need to use the ansatz (2.13) with a and b distinct (i.e. allowing X �= Y ) to understand the Laplacian coflow 
for ε = −1.
8
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Fig. 3.1. Dynamic plots for Laplacian coflow for ε = 1 and ε = −1. (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)

We provide dynamic plots of the equations (3.3)–(3.4) in Fig. 3.1 for ε = ±1. In the plots, the curves γX and γY across 
which Ẋ and Ẏ change sign respectively are also shown, along with the line X = Y .

Fig. 3.1 indicates that the critical points (3.5) and (3.6), which correspond to ψnp and ψ ts as in Remark 3.4, are both 
stable. We now show that this is indeed true.

Proposition 3.6. The 4-forms ψnp and ψ ts dual to the nearly parallel G2-structures ϕnp and ϕts are stable sinks under the Laplacian 
coflow (3.1), after rescaling.

Proof. We study the linearization of the flow equations (3.3)–(3.4) at the critical points (3.5) and (3.6) to determine their 
stability.

At X = Y = 1/5 and ε = 1, the linearized equations are

Ẋ = −76

5
X − 24

5
Y and Ẏ = −12

5
X − 88

5
Y .

(Note that X = Y is preserved by the above system as expected.) The associated 2 × 2 matrix of coefficients of X, Y in the 
above equations has two negative eigenvalues (−64/5 and −20) and so (3.5) is a stable critical point.

Similarly, at X = Y = 1 and ε = −1, the linearized equations are

Ẋ = −76X + 24Y and Ẏ = −36X + 8Y ,

noting that this time X = Y is not preserved. Here, the matrix one obtains again has two negative eigenvalues, which are 
−4 and −64, so the critical point (3.6) is stable. �
Remark 3.7. We see from (3.3)–(3.4) that if we allow X = 0 or Y = 0 then there are additional critical points:

(X, Y ) =
(
1

2
,0

)
for ε = ±1.

We can see these critical points in Fig. 3.1. We can also consider (X, Y ) = (0, 0) to be a degenerate critical point, even 
though the equations (3.3)–(3.4) are not defined there. We can understand these additional critical points geometrically as 
follows.

Recall the fibration (2.1) of M7 over N4. The point (0, 0) corresponds to sending the 3-dimensional fibres of (2.1) to zero 
size (since a = b = 0), and so M has collapsed to N (or a point). In this setting, the 4-form ψε reduces to simply the volume 
form of N (or zero if the collapse is to a point).

If we instead view the fibres of (2.1) as circle bundles over S2 (where E3 is tangent to the circle direction in the notation 
of Definition 2.1), then at (1/2, 0) the circle fibres have now collapsed (as b = 0 in (2.13)). Since a �= 0 there M7 has 
collapsed to a 6-manifold Z which is a 2-sphere bundle over N . This 6-manifold Z is the twistor space of N , and at this 
critical point it will be endowed with its nearly Kähler metric gZ , which is an Einstein metric on Z with positive scalar 
curvature. This Einstein metric gZ is not Kähler (unlike the standard choice of metric on the twistor space), but instead is 
related to G2 geometry as the metric cone over a 6-dimensional nearly Kähler manifold will have holonomy G2.
9
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3.3. Long-time behaviour

The plots in Fig. 3.1 suggest that, within our ansatz, any initial condition flows to the unique (up to scale) nearly parallel 
G2-structure in the family. We now show that this is indeed the case. For the statement, as in Remark 3.4, we denote by 
ψnp and ψ ts the duals of the nearly parallel G2-structures ϕnp and ϕts defined in Lemma 2.10, and recall that they induce 
the squashed Einstein metric and 3-Sasakian metric respectively.

Theorem 3.8. Let ψε = ψε(0) be a closed 4-form as in (2.17) dual to a G2-structure. The solution to the Laplacian coflow (3.1) starting 
at ψε converges, after rescaling, to ψnp if ε = 1 and to ψ ts if ε = −1, which are the only critical points of the rescaled flow. In particular, 
the nearly parallel G2-structures given by ψnp and ψ ts are stable for (3.1) after rescaling.

Theorem 3.8 gives Theorem 1.1 in the introduction. The proof of Theorem 3.8 is quite lengthy, so we break it up into 
several smaller results.

3.3.1. Strategy
Our aim is to prove that, given any initial condition, the flow (3.3)–(3.4) for (X(s), Y (s)) exists for all s and converges 

to the critical point with X > 0 and Y > 0. From (3.3)–(3.4), long time existence will be guaranteed as long as X, Y remain 
bounded and X remains bounded away from 0. Moreover, periodic orbits are not possible as we know the Laplacian coflow 
is a gradient flow. Hence, long time existence will imply convergence to the critical point with X, Y > 0 if we additionally 
know that Y remains bounded away from 0.

To deduce the result for the Laplacian coflow we observe that the evolution equation for c2, which determines the 
parameter s by Lemma 3.2, is:

d

dt
(c2) = 8

(
2X + Y 2

X
+ 2+ 2ε

Y

X
− Y 2

X2

)
,

so c2 cannot blow up in finite time because X, Y are bounded and bounded away from zero. In fact, c2 grows at most 
linearly, so we can integrate dsdt = 1

c2
to find s as a function of the Laplacian coflow parameter t .

Throughout the proof, we denote the curves where Ẋ and Ẏ change sign, respectively, by γX and γY as in Fig. 3.1.

3.3.2. Bounds on X
We start by looking at the behaviour of X .

Lemma 3.9. The function X(s) is bounded away from zero and can only diverge in the region to the left of γX .

Proof. We first see that X is decreasing whenever it is to the right of γX and so X will remain bounded by its initial 
condition in this region. We then see that X is increasing in the region to the left of γX , which is the region containing 
X = 0, and so X is bounded away from zero in this region by its initial condition. �

Since γX meets Y = X (at the critical point), the unbounded part of γX lies above the line Y = X , i.e. where Y > X . 
Therefore, it suffices to show that Y remains bounded in the region to the left of γX where additionally Y > X to deduce 
that X is bounded everywhere.

3.3.3. Bounds on Y : ε = 1
Given our earlier discussion, we now turn to showing that Y remains bounded and bounded away from zero. We start 

with the case ε = 1.

Lemma 3.10. When ε = 1, Y (s) can only diverge in the region above the upper part of γY and can only tend to zero in the region above 
the lower part of γY but below the line Y = X.

Proof. In this case, Ẏ < 0 in the region above the lower part of γY and below or to the right of the upper part of γY , so 
Y remains bounded by its initial value in this region. Note that γY meets the line X = 0 at Y = 0 and Y = 1/2. Hence, in 
the same region we just considered, we are either to the left of γX and so Ẋ > 0, which means we cannot reach (0, 0), or 
we are to the right of γX but also above γY . In this latter region, if we are above the line Y = X we cannot cross it by 
Lemma 3.3, and so Y remains bounded away from zero here.

We then notice that Ẏ > 0 in the region bounded by the lower part of γY , in which Y is bounded, and so Y is additionally 
bounded away from 0 here. �

We now have our crucial observation for the case ε = 1.
10
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Lemma 3.11. When ε = 1, Y (s) is decreasing and hence bounded in the region where Y > X and X ≥ 1.

Proof. In this setting, we can rewrite (3.4) in the following manner:

Ẏ = 4Y

X2 (2(1− X)(Y − X)Y − XY − Y + 2X(1 − 2X)) .

Hence, Ẏ < 0 when Y > X and X ≥ 1. Therefore, Y will be bounded in this region. �
Since the only part of the quadrant with X, Y > 0 where Y can become unbounded is where Y > X by Lemma 3.10, we 

deduce that Y can only become unbounded, when ε = 1, if X remains in (0, 1). We now show that this is impossible.

Proposition 3.12. For ε = 1, there are no solutions (X(s), Y (s)) above the upper part of γY with X(s) ∈ (0, 1) and Y (s) unbounded.

Proof. Suppose not and that we have such a solution. Note that there is a finite Ȳ > 0 such that for all X ∈ (0, 1),

Y 2 + 2(2X2 − 2X − 1)XY − 2X2(2X − 1)(X + 1) > 0 and (2X2 − 3X − 1)Y + 2X(1 − 2X) < 0 (3.7)

for all Y > Ȳ . Since Y is increasing and unbounded in the region under consideration, we may assume that Y (s) > Ȳ . Then, 
comparing (3.7) and (3.3)–(3.4), we see that

Ẋ ≥ 4

X
Y 2 and Ẏ ≤ 8(1− X)

X2
Y 3.

Hence, we see that

dY

dX
≤ 2(1 − X)

X
Y .

Grönwall’s inequality then shows that there are constants C0, C1 depending only on the initial conditions so that Y is 
bounded by C0X2e−2X + C1. Since we assumed X(s) ∈ (0, 1), this is a contradiction. �

Our results so far show that, when ε = 1, both X and Y are bounded and that X is bounded away from zero. To complete 
the proof of Theorem 3.8 in the ε = 1 case we therefore only need the following.

Lemma 3.13. When ε = 1, Y (s) is bounded away from zero.

Proof. By Remark 3.7 and Lemma 3.10, we need only consider points near (X, Y ) = (1/2, 0) above γY . Linearizing around 
the critical point (1/2, 0), so writing X = 1

2 + δX1 and Y = δY1 for δ small, we find that the linear term in δ gives

Ẋ1 + Ẏ1 = −24(X1 + Y1) and Ẏ1 = 0.

These equations are degenerate along the line X1 + Y1 = 0, which is tangent to γY at (1/2, 0). However, γY lies above this 
line for all points near (1/2, 0), so we may restrict to the region where X1 + Y1 > 0. Therefore, to leading order, Y1 remains 
a non-zero constant and X1 +Y1 decreases with an exponential rate. Hence, Y will be bounded away from 0, as claimed. �

We can now put our results together so far.

Proof of Theorem 3.8 for ε = 1. Lemma 3.9 shows that X is bounded away from 0 and bounded above if Y is bounded. 
Lemma 3.10, Lemma 3.11 and Proposition 3.12 show that Y is bounded and hence X is bounded. Finally, Lemma 3.13 shows 
that Y is bounded away from 0. The observations in §3.3.1 then give the result. �
3.3.4. Bounds on Y : ε = −1

Having proved Theorem 3.8 for ε = 1 now move on to the case where ε = −1. The arguments here are similar to the 
ε = 1 case, but often easier.

Lemma 3.14. When ε = −1, Y (s) can only diverge in the region to the left of γY and above the line Y = X, and can only tend to 0 to 
the right of γY but below the line Y = X.

Proof. These are elementary observations given that Y is decreasing to the right of γY and increasing to the left of γY . �
We now see that the evolution equation (3.4) for Y has a useful feature when ε = −1.
11
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Lemma 3.15. When ε = −1, there exists a least X̄ ∈ (1, 2) such that X ≤ X̄ whenever (X, Y ) is on γY . Hence, Ẏ ≤ 0 and thus Y is 
bounded whenever X ≥ X̄ .

Proof. This is an elementary calculation, showing that X takes a maximum value on the curve γY . �
We deduce from Lemma 3.14 and Lemma 3.15 that the only way Y can become unbounded when ε = −1 is if X remains 

in the interval (0, X̄). We now show that this is not possible.

Proposition 3.16. Recall X̄ from Lemma 3.15. For ε = −1, there are no solutions (X(s), Y (s)) to the left of γY and above Y = X with 
X(s) ∈ (0, X̄) and Y (s) unbounded.

Proof. We suppose, for a contradiction, that there is such a solution. Suppose that the solution enters the part of the region 
where X ≥ 1. Then X is strictly increasing, so X > 1 for all subsequent times. However, the line γY asymptotes to X = 1 as 
Y → ∞, so we must eventually have that X is decreasing, which is a contradiction.

We deduce that X(s) ∈ (0, 1) for all s. We note that there is a finite Ȳ > 0 such that

Y 2 − 2(2X2 − 2X − 1)XY − 2X2(2X − 1)(X + 1) > 0

and (2X2 − 3X − 1)Y − 2X(1− 2X) > 0
(3.8)

for all X ∈ (0, 1) and Y > Ȳ . Since Y is increasing in the region we are studying and we are assuming it is unbounded, we 
may restrict to the case where Y (s) > Ȳ . Comparing (3.8) to (3.3)–(3.4) yields the differential inequalities

Ẋ ≥ 4

X
Y 2 and Ẏ ≤ 8(2− X)Y 3

X2
.

We deduce that
dY

dX
≤ 2(2 − X)

X
Y

and so, by Grönwall’s inequality, we have that Y is bounded by X4e−2X (up to multiplicative factors and additive constants 
depending only on the initial conditions). Since X ∈ (0, 1), this forces our required contradiction. �

To complete the proof in the ε = −1 we now only need to show that Y stays away from 0.

Lemma 3.17. When ε = −1, Y (s) is bounded away from zero.

Proof. The proof is entirely analogous to that of Lemma 3.13. Remark 3.7 and Lemma 3.14 show that we may restrict 
attention to points near (1/2, 0) to the right of γY . Writing X = 1

2 + δX1 and Y = δY1 for δ small, we find that the linear 
term in δ gives

Ẋ1 − Ẏ1 = −24(X1 − Y1) and Ẏ1 = 0.

Note that the line X1 = Y1 is tangent to γY at (1/2, 0) and that γY lies above this line. Therefore, we need only consider 
X1 − Y1 > 0 and see that, to leading order, Y1 remains a non-zero constant whilst X1 − Y1 exponentially decreases. Hence, 
Y will be bounded away from 0. �

We may now complete the proof of Theorem 3.8.

Proof of Theorem 3.8 for ε = −1. We first see that Lemma 3.9 shows that X is bounded away from 0 and bounded if Y
is bounded. Lemmas 3.14 and 3.15, together with Proposition 3.16, show that Y is bounded, and thus X is also bounded. 
Finally, Lemma 3.17 shows that Y is bounded away from zero, which completes the proof by the discussion in §3.3.1. �
4. Laplacian flow

We now consider the Laplacian flow for our family of G2-structures in (2.14). We recall that this flow, if it is well-posed 
and stays within the ansatz, is given by

∂

∂t
ϕε(t) = �ϕε(t)ϕε(t) = d∗

ϕ(t)dϕε(t), (4.1)

for the coclosed 3-forms ϕε(t) in (2.14). Here we have to be particularly mindful that the coclosed condition may not be 
preserved by the flow, let alone the ansatz.
12
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4.1. The flow equations

We first observe that the Hodge Laplacian of the 3-form defining the G2-structure follows immediately from that of the 
4-form by taking the Hodge star:

dd∗
ϕε

ϕε = ∗�ψε ψε.

To compute the Hodge star we use the following relations:

∗ϕεπ
∗volN = εa2b

c4
η1 ∧ η2 ∧ η3;

∗ϕε (η2 ∧ η3 ∧ ω1 + η3 ∧ η1 ∧ ω2) = ε

b
(η1 ∧ ω1 + η2 ∧ ω2);

∗ϕε (η1 ∧ η2 ∧ ω1) = εb

a2
η3 ∧ ω3.

We can now use Lemma 3.1 to find an expression for the Hodge Laplacian of ϕε , which we need to consider the Laplacian 
flow (4.1).

Lemma 4.1. The Hodge Laplacian of ϕε in (2.14) is given by:

�ϕεϕε = 8εa2b

c2

(
2a2

c2
+ b2

c2
+ 2+ 2εb

a
− b2

a2

)
η1 ∧ η2 ∧ η3

− 4
(
εb + 4a3

c2
+ 2εa2b

c2
+ 2c2

a
− εbc2

a2

)
(η1 ∧ ω1 + η2 ∧ ω2)

− 4εb
(
2− b2

a2
+ 2c2

a2
+ 4εab

c2
+ 2b2

c2
− 2εbc2

a3
+ b2c2

a4

)
η3 ∧ ω3

(4.2)

In particular, (4.2) is coclosed and in the same form as (2.14), so the Laplacian flow (4.1) is well-defined.

Remark 4.2. We observe that Lemma 4.1 shows that the coclosed condition on the G2-structure is preserved along the 
Laplacian flow in this situation.

As a consequence of Lemma 4.1 and (2.14), we can write down the Laplacian flow (4.1) as a system of ODEs for a(t), 
b(t), c(t):

d

dt
(a2b) = 8a2b

c2

(
2a2

c2
+ b2

c2
+ 2+ 2εb

a
− b2

a2

)
;

d

dt
(ac2) = 4

(
εb + 4a3

c2
+ 2εa2b

c2
+ 2c2

a
− εbc2

a2

)
;

d

dt
(bc2) = 4b

(
2− b2

a2
+ 2c2

a2
+ 4εab

c2
+ 2b2

c2
− 2εbc2

a3
+ b2c2

a4

)
.

Just as for the Laplacian coflow, it turns out that the Laplacian flow is easier to analyze if we introduce scale-invariant 
quantities and a new time parameter. The resulting equations we obtain then describe the rescaled Laplacian flow.

Lemma 4.3. Define

X = a2

c2
and Y = ab

c2

and introduce a new variable s by

ds

dt
= 1

c2
.

If we let Ẋ = dX
ds and Ẏ = dY

ds , then the Laplacian flow equations (4.1) imply that

Ẋ = 4

X2

(
2X2(2X − 1)(X + 1) + 2ε(1+ 2X − 2X2)XY − (1 + X)Y 2

)
; (4.3)

Ẏ = 4Y
2

(
2X(2X − 1) + ε(1+ 3X − 2X2)Y + 2(X − 1)Y 2

)
. (4.4)
X

13
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Fig. 4.1. Dynamic plots for Laplacian flow for ε = 1 and ε = −1.

4.2. Critical points and dynamics

We observe that (4.3)–(4.4) are just the negative of the equations (3.3)–(3.4) arising from the Laplacian coflow. We 
therefore have the following.

Lemma 4.4. The only critical points for X, Y > 0 to (4.3)–(4.4) are:

X = Y = 1

5
and ε = 1

and

X = Y = 1 and ε = −1,

and the condition X = Y is preserved for ε = 1, but not preserved for ε = −1 except when X = Y = 1.

The observation that the Laplacian flow equations (4.3)–(4.4) are the negative of the Laplacian coflow equations also 
implies the following result, based on our stability analysis for the Laplacian coflow, which gives Theorem 1.2 in the Intro-
duction.

Theorem 4.5. The only critical points of the Laplacian flow (4.1), after rescaling, are the nearly parallel G2 structures ϕts and ϕnp

inducing the 3-Sasakian and squashed Einstein metrics. Both critical points are unstable sources under the rescaled Laplacian flow.

For completeness, we provide the dynamic plots in Fig. 4.1 for the Laplacian flow (4.1) for our ansatz with ε = 1 and 
ε = −1. We again indicate the curves γX and γY where Ẋ and Ẏ change sign, respectively. Of course, the dynamics are 
simply the opposite of those which appear in the Laplacian coflow plot in Fig. 3.1.

Remark 4.6. Fig. 4.1 shows that several different behaviours are possible for the rescaled Laplacian flow when the initial 
condition is close to a nearly parallel G2-structure. One possibility is flowing to the origin, which corresponds again to the 
7-manifold M collapsing to the 4-manifold N through the fibration (2.1). Notice that the 3-dimensional fibres of (2.1) are 
calibrated by the G2-structure ϕ , i.e. ϕ restricts to be the volume form on the fibres, and so are associative by definition. 
The fact that dϕ �= 0 means that the volume of any compact associative 3-fold is not necessarily topologically determined, 
unlike for closed G2-structures.

5. Ricci flow

In this section we compare the results we have obtained for the Laplacian flow and coflow of our G2-structures with the 
behaviour of the induced metric of the G2-structures under the Ricci flow. We recall that this comparison is useful because 
the nearly parallel G2-structures, which are critical points of the rescaled Laplacian flow and coflow that we studied earlier, 
14
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induce Einstein metrics which are then critical points of the Ricci flow up to scale. It is also of interest because if we use 
the Laplacian coflow for coclosed G2-structures (1.3), then the induced flow (1.4) on the induced metric of the G2-structures 
is the Ricci flow plus lower order terms determined algebraically by the torsion of the G2-structure.

5.1. The flow equations

We wish to study the Ricci flow for our ansatz

∂

∂t
g(t) = −2Ric(t), (5.1)

if it exists. From general theory the Ricci flow will have short time existence starting from our metric ansatz (2.15), though 
it is not immediately obvious that the ansatz will be preserved.

We begin by computing the Ricci curvature of g(t) from (2.15). (Note that g(t) is independent of ε ∈ {±1}.)

Lemma 5.1. Let g(t) be as in (2.15). The Ricci curvature Ric(t) of g(t) satisfies

Ric = 2

(
2− b2

a2
+ 2a4

c4

)
(η2

1 + η2
2) + 2

(
b4

a4
+ 2b4

c4

)
η2
3 + 2

(
6− 2a2 + b2

c2

)
π∗gN .

In particular, Ric(t) is of the same form as (2.15), and so the Ricci flow (5.1) is well-defined.

Proof. Our approach is to use the O’Neill formulas for Riemannian submersions [20].
We let ∇ denote the Levi-Civita connection of the 3-Sasakian metric gM . Recall the orthonormal Killing fields E1, E2, E3

in Definition 2.1 and let B0, B1, B2, B3 be local orthonormal vector fields on M which are horizontal for the Riemannian 
submersion (2.1). It is then straightforward to compute that

∇Ei E j =
3∑

k=1

εi jk Ek, ∇Ei Bl = 0, ∇Bl Ei = −
4∑

m=0

σilmBm, (∇Bl Bm)V =
3∑

i=1

σilmEi,

where ()V indicates the vertical projection with respect to (2.1), εi jk is the sign of the permutation (i, j, k) of (1, 2, 3), and 
σilm is skew-symmetric in l, m satisfying σi0 j = 1 and σi jk = εi jk for i, j, k ∈ {1, 2, 3}. In particular, we notice that the fibres 
of the Riemannian submersion (2.1) are totally geodesic, so the O’Neill tensor often denoted T vanishes, and that the other 
O’Neill tensor, often called A, is horizontally divergence-free.

We then let ∇̃ denote the Levi-Civita connection of g = g(t) and let

Ẽ1 = E1

a
, Ẽ2 = E2

a
, Ẽ3 = E3

b
, B̃l = Bl

c
.

We may then compute that the quantities we need to complete our computation are:

[Ẽ2, Ẽ3] = 2

b
Ẽ1, [Ẽ3, Ẽ1] = 2

b
Ẽ2, [Ẽ1, Ẽ2] = 2b

a2
Ẽ3,

∇̃Ẽ2
Ẽ3 = b

a2
Ẽ1, ∇̃Ẽ3

Ẽ1 = 2a2 − b2

a2b
Ẽ2, ∇̃Ẽ1

Ẽ2 = b

a2
Ẽ3, ∇̃Ẽ i

B̃l = 0,

∇̃B̃l
Ẽ1 = − a

c2

4∑
m=0

σ1lm B̃m, ∇̃B̃l
Ẽ2 = − a

c2

4∑
m=0

σ2lm B̃m, ∇̃B̃l
Ẽ3 = − b

c2

4∑
m=0

σ3lm B̃m.

Using the fact that the metric on N is Einstein with scalar curvature 48 and the O’Neill formulas, we see that the Ricci 
tensor of g is diagonal and satisfies:

Ric(Ẽ1, Ẽ1) = Ric(Ẽ2, Ẽ2) = 4

a2
− 2b2

a4
+ 4a2

c4
,

Ric(Ẽ3, Ẽ3) = 2b2

a4
+ 4b2

c4
,

Ric(B̃l, B̃l) = 12c2 − 2(2a2 + b2)

c4

as desired. �
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Given Lemma 5.1, we can now write down the Ricci flow equations for our ansatz in (2.15):

d

dt
(a2) = −4

(
2− b2

a2
+ 2

a4

c4

)
;

d

dt
(b2) = −4

(
b4

a4
+ 2

b4

c4

)
;

d

dt
(c2) = −4

(
6− 2

a2

c2
− b2

c2

)
.

To simplify the analysis of these equations we introduce some scale-invariant quantities and rescale the time parameter to 
find the following after a short computation.

Lemma 5.2. Define

A = a2

c2
and B = b2

c2

and introduce a new variable s by

ds

dt
= 1

c2
.

If we let Ȧ = dA
ds and Ḃ = dB

ds , then the Ricci flow equations for (2.15) imply that

Ȧ = 4(1− A)

A
(B(1 + A) − 2A(1− 2A)) ; (5.2)

Ḃ = 4B

A2

(
2A2(3 − A) − B(1 + 3A2)

)
. (5.3)

The equations (5.2)–(5.3) describe the rescaled Ricci flow.

5.2. Critical points and dynamics

It is straightforward to find the critical points and observe some basic facts about the dynamics of the flow equations 
(5.2)–(5.3) as follows.

Lemma 5.3. The only critical points for A, B > 0 of the flow equations (5.2)–(5.3) are

A = B = 1

5
and A = B = 1.

Moreover, the lines A = B and A = 1 are preserved by the flow.

Lemma 5.2 leads us to draw the plot in Fig. 5.1 showing the dynamics of the equations. If we denote the curve where 
B(1 + A) = 2A(1 − 2A) for A, B ≥ 0 by γA and the curve 2A2(3 − A) = B(1 + 3A2) for A, B ≥ 0 by γB , these are the curves 
which, together with the line A = 1, determine the sign of Ȧ and Ḃ .

The first plot in Fig. 5.1 indicates that there is a stable critical point at A = B = 1, where γA and A = 1 intersect. In the 
second plot, we focus on the critical point A = B = 1/5 where γA and γB intersect, which appears to be unstable (in fact, a 
saddle point).

Remark 5.4. The curves γA and γB also intersect at A = B = 0, which is a degenerate critical point in terms of the equations 
(5.2)–(5.3), since they are not defined there. From the geometric point of view, here M7 has collapsed to the 4-dimensional 
orbifold N (or a point) in the fibration (2.1), since a = b = 0 in (2.15), and so any flow lines tending to (0, 0) converge to the 
Einstein metric gN on N up to scale (or 0). We can avoid the possibility of converging to a point along the rescaled Ricci 
flow, since the diameter will stay bounded away from 0.

Remark 5.5. One may observe from (5.2)–(5.3) that there are two other degenerate critical points if we allow A = 0 or 
B = 0:

(A, B) =
(
1
,0

)
and (A, B) = (1,0).
2
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Fig. 5.1. Dynamic plot for Ricci flow.

These critical points correspond to a collapsed situation where the S1 fibres corresponding to E3 (in the notation of Defini-
tion 2.1) now have zero size since b = 0 in (2.13). The 7-manifold M has therefore collapsed to the twistor space Z6, which 
is a 2-sphere bundle over N4. The metrics with (A, B) = (1, 0) and (A, B) = (1/2, 0) correspond to two Einstein metrics on 
the twistor space Z : the canonical Kähler–Einstein and nearly Kähler metric, respectively. It is natural to see these Einstein 
metrics appear at the boundary of our Ricci flow ansatz as critical points. However, it is interesting to note that the Kähler–
Einstein metric on Z does not play a distinguished role in the study of the Laplacian coflow and Laplacian flow, whereas 
the nearly Kähler metric does.

We now study the dynamics of the flow and show the following, recalling the fibration (2.1) of M7 over a 4-dimensional 
base N4.

Theorem 5.6. The only critical points for the Ricci flow (5.1), after rescaling, are the 3-Sasakian metric gM and the squashed Einstein 
metric g̃M on M7 . The 3-Sasakian metric is a stable critical point for the rescaled Ricci flow within the ansatz (2.15), whilst the squashed 
Einstein metric is an unstable critical point which is a saddle point. Moreover, there is an open set of initial metrics in the ansatz (2.15), 
which can be chosen arbitrarily near g̃M , such that they flow either to gM or to the collapsed limit (even after rescaling) where the 
3-dimensional fibres in (2.1) shrink to 0 and the flow converges to the Einstein 4-orbifold (N, gN).

Proof. We recall the curves γA , γB introduced after Lemma 5.3 and plotted in Fig. 5.1.
For A > 1 we have that Ȧ < 0 and hence A remains bounded as long as the flow exists. We also see that Ḃ < 0 whenever 

B is above the curve γB (which passes through (0, 0) and (3, 0)) and hence also remains bounded as long as the flow exists. 
Since

d

dt
(c2) = −4(6− 2A − B),

the right-hand side is bounded and so c2 cannot blow up in finite time. Moreover, c2 goes to zero at a linear rate in t at 
most, and so we can integrate 1

c2
with respect to t to obtain s in Lemma 5.2.

We linearize (5.2)–(5.3) around (A, B) = (1, 1) to obtain:

Ȧ = −16A and Ḃ = −16B.

Hence (1, 1) is a stable critical point, which corresponds to the 3-Sasakian metric.
We now observe that if we start above the curve γA , which passes through (0, 0) and ( 12 , 0), then Ȧ > 0 for A < 1, so 

A is always bounded away from 0 in this region, depending on its initial value. Recalling that Ȧ < 0 for A > 1, we deduce 
that all of the terms in (5.2)–(5.3) are bounded and there can be no periodic orbits in this region as A cannot cross the line 
A = 1 by Lemma 5.3. We also note that Ḃ > 0 when A ∈ (1/5, 1) and B is near 0 since then (A, B) lies below γB , and thus 
B is bounded away from 0 when A ∈ (1/5, 1).
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Since (1/5, 1/5) lies on γA , we deduce that the flow will converge to the critical point at (1, 1) if the initial value of 
(A, B) lies above or to the right of the curve γA and A is greater than 1/5 initially. This proves the statement about initial 
conditions near g̃M which flow to gM , since g̃M corresponds to (1/5, 1/5).

Now if we specialize to the line A = B which, by Lemma 5.2, is preserved, we see that

Ȧ = 4(1− A)(5A − 1). (5.4)

We see immediately that for A = B < 1/5 we have Ȧ < 0, for A = B ∈ (1/5, 1) we have Ȧ > 0. (For A = B > 1 we have Ȧ < 0
again, as expected by the stability of (1, 1).) Thus, the critical point at (1/5, 1/5) is unstable, even within the restricted 
ansatz when A = B . Furthermore, if we linearize the system (5.2)–(5.3) around (1/5, 1/5) we obtain

Ȧ = −16

5
A + 96

5
B and Ḃ = 192

5
A − 112

5
B,

from which it follows that (1/5, 1/5) is a saddle point, as the matrix corresponding to the above dynamical system has one 
positive and one negative eigenvalue: 16 and −208/5.

We see from (5.4) that we have initial conditions for (5.2)–(5.3), even with A = B , such that A and B go to 0. In 
fact, suppose we choose any initial condition in the region R below γA but above γB , which means in particular that 
A, B ∈ (0, 15 ). Since the flow lines enter R vertically from above along γA and horizontally from the right along γB , no flow 
lines can leave R so A, B are bounded and can only reach 0 when (A, B) = (0, 0). In R, Ȧ < 0 and Ḃ < 0 and there are no 
periodic orbits. We conclude that all flow lines starting in R must converge to (0, 0). We again note as in Remark 5.4 that 
M cannot collapse to a point along the rescaled Ricci flow. The discussion in Remark 5.4 then implies that the point (0, 0)
corresponds to the fibres of the fibration (2.1) collapsing, even in the rescaled Ricci flow, so that M7 collapses to the base 
N4 (with its Einstein metric). Since R is open and has (1/5, 1/5) on its boundary, this complete the proof. �

Theorem 5.6 proves Theorem 1.3 in the Introduction.

Remark 5.7. By dynamical systems theory, there is a 1-dimensional stable manifold for the squashed Einstein metric within 
our rescaled Ricci flow ansatz. We can discern this stable manifold from the plots in Fig. 5.1. It might be interesting to 
understand whether this stable manifold (or, equally, the corresponding unstable manifold) has any geometric significance, 
e.g. any special curvature properties.
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