

1 THE LIMITS OF LOW TEMPERATURE SUPERPLASTICITY IN AA 5083 PRODUCED BY
2 ACCUMULATIVE ROLL BONDING (ARB)

3 Brady N.L. McBride^{*1}, Amy. J. Clarke¹, Kester D. Clarke¹

4 *corresponding author, bmcbride@mines.edu

5 ¹Colorado School of Mines George S. Ansell Department of Metallurgical and Materials Engineering
6 1500 Illinois Street Golden, CO 80401

7
8 Keywords: accumulative roll bonding, superplasticity, low temperature
9

10 **ABSTRACT**

11 Accumulative roll bonding (ARB) is a severe plastic deformation technique used to produce
12 microstructures conducive for low temperature superplasticity. This processing technique not only produces sub-
13 micron grains but also non-equilibrium grain boundaries with increased grain boundary diffusivity. Low
14 temperature superplasticity ($225 < T < 250^{\circ}\text{C}$) was achieved with activation energies between 40 and 80 kJ/mol;
15 significantly lower than what is commonly reported for grain boundary sliding limited by grain boundary diffusion
16 (84 kJ/mol). This reduction in activation energy is a direct result of non-equilibrium grain boundary development
17 which allows for enhanced diffusion rates at substantially lower temperatures. Activation energies increased above
18 100 kJ/mol after 15 minutes of thermal exposure between 225 and 250°C, providing further evidence that low
19 temperature superplasticity relies heavily on the metastable grain boundary structure produced by ARB. The
20 cavitation void area fraction for optimal low temperature superplastic conditions was well below 1% for thinning
21 ratios (t_o/t_f) around 2.0 ($\varepsilon=0.75$, $e=1.12$), which is far superior compared to the $\approx 5\%$ achieved in conventionally
22 processed material ($T=500^{\circ}\text{C}$) strained to similar levels. This work not only provides a framework for the
23 temperature and strain rate limits of superplasticity of submicron grained material, but also investigates critical
24 parameters pertinent to the forming industry, including damage accumulation, strain localization and thermal
25 stability of microstructure.

26
27 **INTRODUCTION**

28 Developments in superplastic sheet forming have led to the production of complex geometries from
29 monolithic sheets that would be otherwise impossible using traditional forming methods such as stamping, bending
30 or drawing [1,2]. Superplastic forming has the additional benefit of reducing the overall numbers of parts and
31 fasteners involved in an assembly, thus reducing the total weight [1,2]. A prime example of this is seen in the 2018
32 Bentley GT Continental, the first automobile to have all of its outer paneling produced with superplastic forming,
33 contributing to an overall 85 kg weight reduction in the body structure [3]. Similar adaptations are being made in
34 the aerospace industry for non-structural enclosures [1,4]. Despite these benefits, superplastic forming possesses its

35 own limitations. Superplasticity typically requires high forming temperatures and low strain rates which result in
36 high operating costs and long cycle times; this limits the profitability of superplastic forming to low volume, high
37 value-added part manufacturing [1,4-6]. Novel thermo-mechanical processing techniques have demonstrated low
38 temperature superplasticity [7,8], which has the potential to reduce costs associated with forming conventional
39 superplastic alloys such as AA 5083.

40 AA 5083 (Al-4.4Mg-0.7Mn) is a work-hardenable alloy which makes use of Mg solute additions and fine
41 dispersoids to reduce the propensity for recovery and to retain strain energy [6,9]. Recrystallization heat treatments
42 after deformation produce a refined microstructure with grains on the order of $10 \mu\text{m}$, which exhibits
43 superplasticity at temperatures around 500°C and strain rates on the order of $1 \times 10^{-4} \text{ s}^{-1}$ [5,6,9,10]. Superplastic
44 strain rates can be modeled by the empirical relationship

$$45 \quad \dot{\varepsilon} = A \frac{D G b}{k T} \left[\frac{b}{d} \right]^p \left[\frac{\sigma}{G} \right]^{1/m} \quad (1)$$

46 where A is a material constant, D the diffusivity of the rate-limiting deformation mechanism, G the elastic modulus,
47 b the burgers vector, k the Boltzman constant, and d the grain size [11]. The exponents p and m are the grain size
48 exponent and strain rate sensitivity, respectively. Superplasticity generally occurs due to grain boundary sliding
49 with a strain rate sensitivity around 0.5 [5]. The direct relationship between grain size and temperature suggests
50 grain refinement can lead to grain boundary sliding at lower temperatures. Alternatively, it may be possible to
51 achieve higher strain rates at the same temperature. Either of these outcomes has the potential to reduce costs
52 associated with superplastic sheet forming.

53 Methods of grain refinement in aluminum alloys, particularly AA 5083, have gained notable interest over
54 the past few decades. Severe plastic deformation (SPD) techniques such as high pressure torsion (HPT) [12], equal
55 channel angular pressing (ECAP) [13] and ball-milling [14] are a few examples used to produce grain sizes on the
56 order of a few hundred nanometers. These processing methods are limited by their inability to produce bulk
57 material relevant to industrial-scale forming processes. Continuous deformation processes, such as severe rolling,
58 can produce bulk monolithic material using conventional processing equipment. Severe warm rolling and
59 accumulative roll bonding (ARB) are two methods that have been used frequently to produce ultra-fine grained
60 material [7,8,15].

61 Severe warm rolling of AA 5083 has been used to produce material with strains as high as 4, resulting in
62 subgrains on the order of 500 nm [7]. Warm rolling is conducted without intermediate static annealing to suppress
63 recovery and recrystallization [7]. The resultant material has been shown to exhibit superplastic tensile elongations
64 on the order of 400% with temperatures and strain rates of 230°C and $1 \times 10^{-3} \text{ s}^{-1}$, respectively [16]. Despite the
65 potential for low temperature superplasticity, this process has its own limitations. To achieve a final strain of 4 in a
66 sheet geometry, the starting material must be on the order of a few centimeters thick. Moreover, employing a series

67 of rolling passes with different reductions and temperatures increases the susceptibility to undesirable process
68 variability that would be difficult to minimize.

69 Accumulative roll bonding (ARB) is an alternative to severe warm rolling capable of producing ultra-fine
70 grained sheet material [8,17]. This process involves repeated stacking and roll bonding of two sheets with 50%
71 reduction passes. After each pass the roll-bonded sheet is nominally twice as long and half as thick as the starting
72 geometry; the sheet is then sectioned in half and the process repeated. This process is advantageous over severe
73 warm rolling in that the same reduction is used for each pass, aiding in modeling efforts and process consistency.
74 AA 5083 processed with 5 cycles of ARB ($\varepsilon=4$) leads to grains on the order of 250 nm and has been shown to
75 exhibit superplastic elongations as high as 200% for temperatures of 200°C and strain rates of 1×10^{-3} s⁻¹ [18].

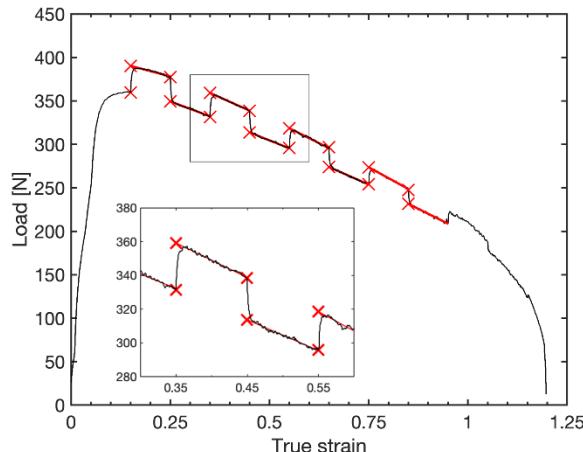
76 Despite early success in demonstrating low temperature superplasticity, additional work is needed to
77 understand the relationship between severely deformed microstructures and mechanical properties. Stress-strain
78 behavior during superplastic deformation is markedly different for samples produced by severe warm rolling as
79 opposed to ARB [16,18]. One possible explanation for this discrepancy is effect of strain path on thermal stability
80 of microstructure due to differences in high angle grain boundary (HAGB) fraction [19]. Furthermore, while
81 previous studies have suggested optimal parameters for superplasticity [13,16], these parameters have not been
82 finalized or rationalized in terms of acting deformation mechanisms. Previous reports on superplasticity of sub-
83 micron grained microstructures are further confounded by a lack of standardized testing parameters, such as heating
84 rate and soak duration of samples prior to elevated temperature testing [18,20]. Little, if any, discussion has taken
85 place concerning the effects of prolonged thermal exposure on microstructural stability during superplastic
86 forming. Lastly, microstructural characterization after forming, including final grain size, cavitation damage and
87 strain uniformity, has yet to be fully explored in the context of optimizing a cost-saving low temperature
88 superplastic response.

89 Previous work by the authors lead to the development of a reliable and consistent ARB process to produce
90 bulk samples without deleterious edge cracking [17]. This allowed for thorough investigation of the thermal
91 stability of AA 5083 microstructures produced with ARB to suggest possible temperature limits for low
92 temperature superplasticity [15]. The present work continues to investigate the industrial applicability and
93 limitations of low-temperature superplasticity through a holistic examination of the acting deformation
94 mechanisms, optimal temperature and strain rate combinations and microstructural damage that occurs during
95 uniaxial tensile testing.

96
97
98

99 **METHODOLOGIES**

100 Plates of 3.2 mm thick AA5083-H116 were used as starting material with composition listed in Table 1.
101 Plates were solutionized at 500°C for 30 minutes, cold rolled with a 68% reduction to 1 mm and then statically
102 recrystallized at 500°C for an additional 30 minutes before being water quenched. ARB was conducted using single
103 50% reduction passes with unlubricated rolls for a total of 5 cycles. Samples were preheated in an air furnace at
104 250°C prior to each roll bonding cycle to reduce flow stress and encourage bonding; preheating time was limited to
105 5 min to avoid strain recovery. Sacrificial aluminum frames as discussed in [17] were used to mitigate edge
106 cracking associated with lateral spreading. All rolling was conducted on a two-high laboratory scale Fenn rolling
107 mill with 133 mm rolls operating at 37 RPM. The microstructure after ARB processing had grain sizes between
108 250 and 500 nm and a HAGB fraction around 0.8, as previously reported [15].


109 Table 1 Composition of as-received AA 5083 (wt. %).

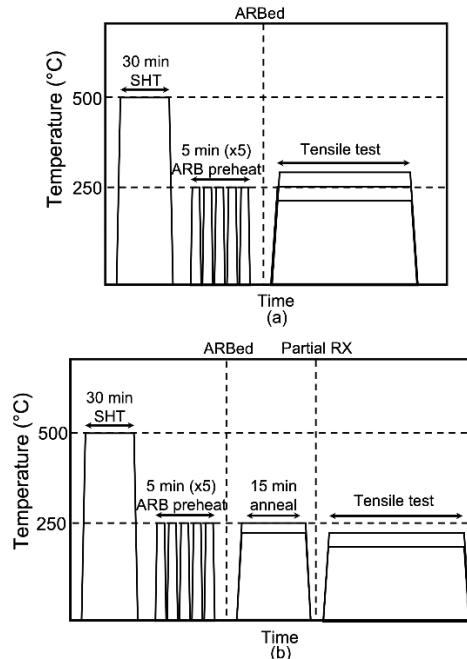
Mg	Mn	Cr	Cu	Fe	Si	Ti	Zn	Al
4.32	0.44	0.06	0.04	0.30	0.11	0.01	0.07	bal

110
111 Tensile samples were machined with a 12.7 by 6.4 mm gauge section. The gauge length was parallel to
112 the rolling direction and had a 1.6 mm transition radius between the grip and gauge section. A gauge length smaller
113 than that recommended by ASTM E2448 (25.4 mm) was used to minimize thermal gradients along the sample at
114 high strains. Specialized grips were used to transfer load to the specimen shoulders and minimize errors associated
115 with material flow [21]. Tensile testing was conducted on a screw-driven load frame equipped with a 4.4 kN load
116 cell and pull-rods extending into a 3-zone clamshell air furnace. Samples were given 15 minutes prior to the start of
117 each test to reach thermal equilibrium with the load train and furnace, which were held at the testing temperature.
118 Temperature along the gauge length was found to be consistent within $\pm 3^\circ\text{C}$ prior to the start of each test. All tests
119 were conducted using true strain rate control by adjusting the crosshead velocity as a linear function of
120 displacement. Strain rates ranging from 2×10^{-4} and $5 \times 10^{-3} \text{ s}^{-1}$ were investigated. True strain calculations assumed
121 constant uniform thinning and volume constancy. Frame deflection under maximum load was measured to be less
122 than 1% of the original gauge length, and crosshead displacement was taken as a direct measure of tensile
123 elongation.

124 Strain rate jump tests were used to determine strain rate sensitivities as shown in Figure 1. Samples were
125 first deformed to a true strain of 0.15 before the strain rate was increased by 20%. Deformation proceeded at this
126 increased rate for an additional 0.1 strain, at which point the strain rate was decreased back to the original rate. This
127 cycle was repeated for every 0.1 strain increment until failure. This method was chosen to observe the evolution of
128 strain rate sensitivity as a function of strain while minimizing the amount of microstructural evolution associated

129 with large strain rate changes [22]. The steady-state stress values corresponding to each strain rate jump were
130 determined by extrapolating local flow data to the start of the jump.

131
132 Figure 1 Example flow curve from a strain rate jump test (*ARBed* condition, 250°C, $5 \times 10^{-4} \text{ s}^{-1}$) showing the method used to determine strain rate
133 sensitivity, m . True strain rate is incrementally increased and decreased by 20% every 0.1 true strain until failure. Crosses mark extrapolated
134 load values used in calculation.
135

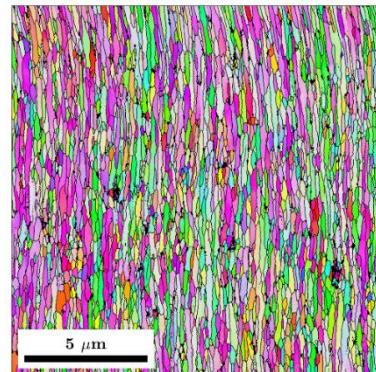

136 Electron backscatter diffraction (EBSD) analysis was performed on a JEOL 7000 JSM-7000F field
137 emission scanning electron microscope (SEM) operating at 15 kV with an EDAX Hikari Pro detector. EBSD data
138 was processed with EDAX's Neighbor Pattern Average and Reindexing (NPAR) software to increase Kikuchki
139 pattern fidelity in highly strained regions and then further refined using a neighbor orientation correlation (NOC)
140 algorithm with a cleanup level of '5', minimum confidence index of 0.1 and 2° orientation threshold. Samples for
141 EBSD analysis were mounted in a low-temperature epoxy resin, ground and polished in incremental steps and then
142 electropolished using Struers A2 electrolyte at 39 V for 5 seconds at room temperature.

143 Microstructural damage during uniaxial tensile testing was characterized using an image analysis routine
144 on backscatter electron (BSE) micrographs of the longitudinal plane of samples. A contrast threshold was applied
145 to BSE micrographs to delineate voids from the surrounding microstructure. ImageJ's Analyze Particles routine
146 was used to measure the size and shape of voids. A resolution of 0.1 $\mu\text{m}/\text{pixel}$ was used and only voids consisting
147 of four neighboring pixels were included in calculations. Spatial summation (e.g. along the rolling/tensile direction)
148 of void pixels was employed to create void intensity profiles through-thickness.

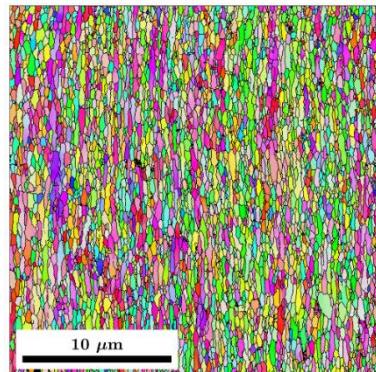
149 A 15 minute static annealing heat treatment at either 240 or 250°C was given to a subset of samples to
150 investigate the effects of thermal microstructural stability on superplastic performance. This was prior and in
151 addition to the 15 minutes used to preheat samples to the furnace temperature. Static annealing temperatures were
152 specially chosen to promote continuous recrystallization while avoiding deleterious grain growth that occurs above
153 250°C [15]; subsequent tensile testing on these partially recrystallized samples was conducted at or below 250°C.
154 The thermal processing history of these different starting microstructures is shown schematically in Figure 2. The

155 different microstructural conditions tested will hereafter be referred to as the *ARBed* (Figure 2a), *240RX* (Figure 2b)
156 and *250RX* (Figure 2b) conditions.

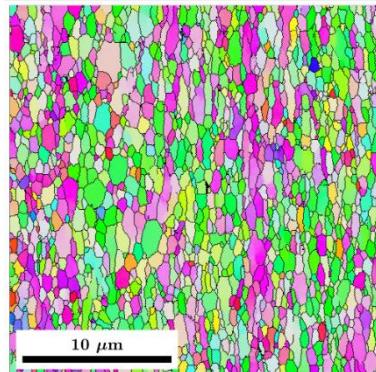
157

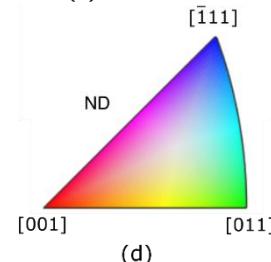

158

159 Figure 2 Schematic showing thermal processing history for the (a) *AsARBed* and (b) partially recrystallized microstructures. The partially
160 recrystallized samples (*240RX* and *250RX*) received a 15 minute static annealing heat treatment at 240 and 250°C, respectively, prior to tensile
161 testing. Note 15 minutes of preheating time was applied to each sample immediately preceding tensile testing, regardless of previous static
162 annealing treatments.

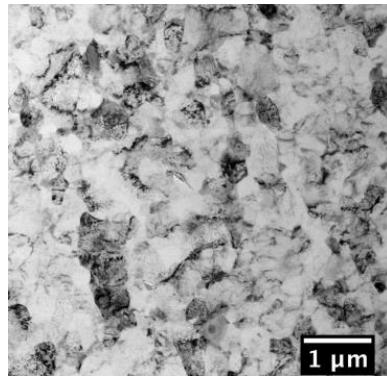

163

164 Microstructures of the three different microstructural conditions preceding tensile testing are shown in
165 inverse pole figure (IPF) maps in Figure 3. The location of these microstructures in the thermal processing history
166 schematic (Figure 2) is designated as either *ARBed* or *Partial RX*. Short duration static annealing at low
167 temperatures has a marked effect on the morphology of grains with a change in the elongated deformation structure
168 after exposure at 240°C. The microstructure after 250°C exposure is similar albeit with near-equiaxed grains and
169 evidence of grain growth. TEM micrographs shown in Figure 4 provide additional information about the
170 dislocation density and grain boundary structure of the different microstructures. The *ARBed* condition appears to
171 consist of grains with higher dislocation densities and only partially resolved grain boundaries. In the *240RX* and
172 *250RX* conditions the dislocation density appears lower and grain boundaries are more distinct. This
173 microstructural transition has been attributed to continuous dynamic recrystallization and has been previously
174 reported by the authors in extensive detail [15].


175

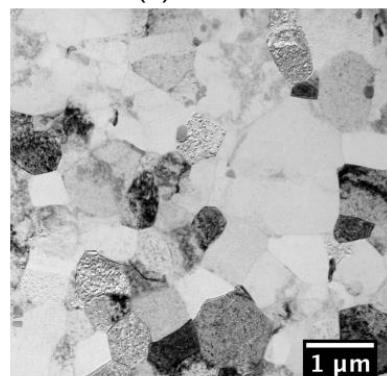

(a) ARBed

(b) 240RX


(c) 250RX

(d)

176


177 Figure 3 Inverse pole figure (IPF) maps of the longitudinal plane near the sample mid-thickness showing grain morphology for the (a) ARBed,
 178 (b) 240RX and (c) 250RX conditions preceding tensile testing. Note the change in scale bar between maps. The rolling direction is vertical and
 179 the normal direction is horizontal. Grain orientations are colored with respect to the normal direction in (d).

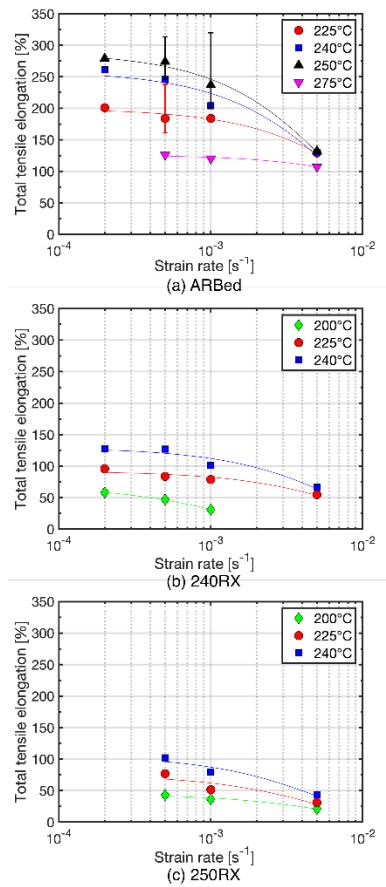
(a) ARBed

(b) 240RX

(c) 250RX

180

181 Figure 4 TEM brightfield micrographs from the rolling plane taken near the mid-thickness of samples showing dislocation density and grain
 182 boundary character for the (a) *ARBed*, (b) 240RX and (c) 250RX conditions. The rolling direction is vertical and the transverse direction is
 183 horizontal.


184

185 **EFFECTS OF PARTIAL RECRYSTALLIZATION ON SUPERPLASTICITY**

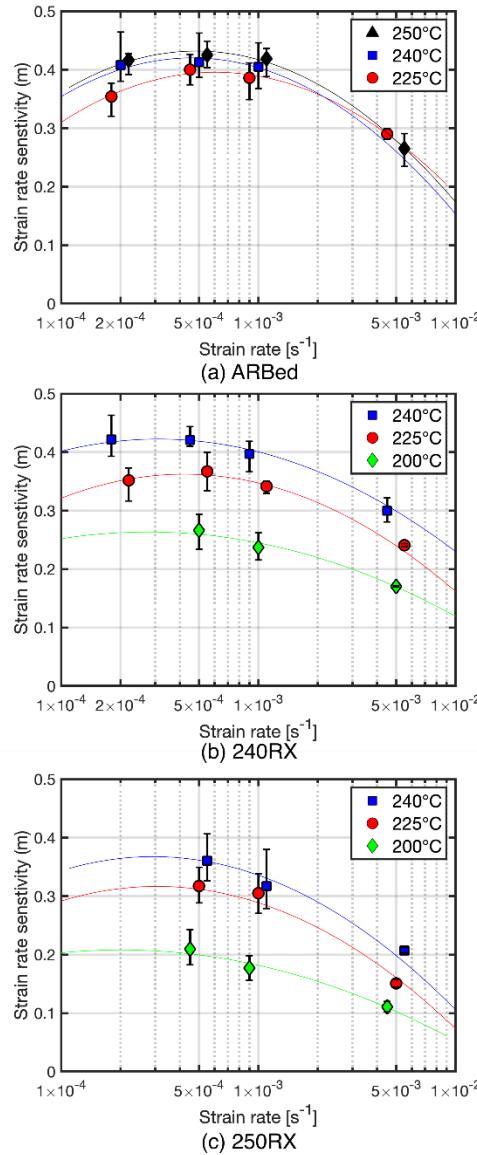
186 Total tensile elongations for the three different starting microstructures (Figures 3 & 4) tested under
 187 various temperature and strain rate combinations are shown in Figure 5. There is a clear dependence of
 188 microstructure on elongation to failure despite all microstructures having initial sub-micron grain sizes. The *ARBed*
 189 microstructure achieved tensile elongations as high as 275%, whereas the 240RX and 250RX conditions only
 190 achieved as much as 125%. In all cases, total tensile elongation increases with decreasing strain rate, with the

191 *ARBed* condition being substantially more sensitive to strain rate. Attention should be drawn to the fact that tensile
 192 elongation does not scale linearly with strain rate; instead, the marginal increases in ductility become less with each
 193 reduction in strain rate. This suggests some sort of trade-off between maximizing formability (total tensile
 194 elongation) and minimizing forming cycle time (strain rate), which will be discussed in more detail in the following
 195 sections. The depreciation of total tensile elongation with decreased strain rate is also indicative of a transition to
 196 regime I creep [5].

197

198

199 Figure 5 Total tensile elongations for the (a) *ARBed*, (b) 240RX and (c) 250RX microstructural conditions. Error bars are used in cases where
 200 duplicate samples were tested. Large discrepancies in duplicate samples are due to the formation of multiple diffuse necks preceding failure.
 201 Tests were duplicated until a sample that failed with one diffuse neck was achieved for a direct comparison.


202

203 The effect of temperature on superplastic ductility is not as straightforward. At first glance total tensile
 204 elongation increases with temperature. In the *ARBed* condition, an increase in temperature from 225 to 250°C
 205 ($\Delta T=25^\circ\text{C}$) is responsible for an additional 50 to 75% elongation. This effect of temperature is not exhibited to the
 206 same extent in the 240RX and 250RX conditions, where an increase in temperature from 200 to 240°C ($\Delta T=40^\circ\text{C}$)
 207 results in only a 50% increase in elongation. On the other hand, the effect of raising temperature above 250°C is

208 highly consequential; a temperature increase from 250 to 275°C ($\Delta T=25^\circ\text{C}$) results in a roughly 100% decrease in
209 elongation for the *ARBed* condition. The *240RX* and *250RX* conditions were not tested at higher temperatures, but it
210 is interesting to note that testing at 275°C for the *ARBed* condition fared worse than testing at 240°C for the
211 partially recrystallized conditions. Previous work by the authors [15] has shown significant grain growth to occur
212 above 250°C, and it has been suggested that grain growth is not conducive for grain boundary sliding [16]. Thus,
213 deformation at 250°C may be an upper limit for low temperature superplasticity.

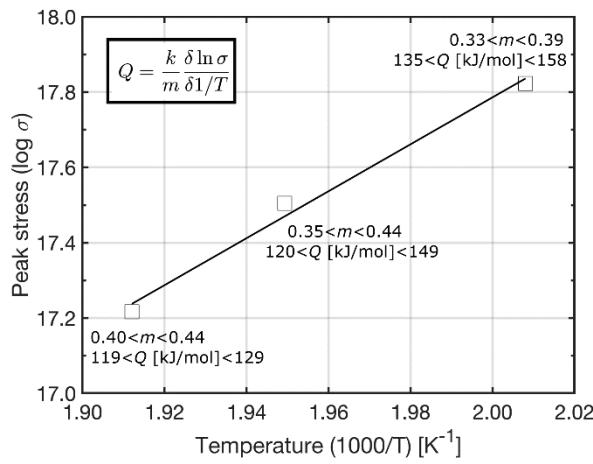
214 Strain rate sensitivities calculated via strain rate jump tests for the three microstructures provide further
215 information about the mechanisms responsible for superplasticity. Figure 6 shows a parabolic relationship between
216 strain rate and strain rate sensitivity which is typical of materials deforming under creep conditions [5]. A
217 maximum strain rate sensitivity ($m \approx 0.5$) due to grain boundary sliding typically occurs at intermediate strain rates
218 in superplastic materials; this is referred to as regime II creep [5]. The location of this maximum is consistently
219 between strain rates of 5×10^{-4} to $1 \times 10^{-3} \text{ s}^{-1}$ independent of starting microstructure. This is in agreement with other
220 studies on both coarse-grained [10,23] and sub-micron grained [18,24] AA 5083 tested at temperatures around 500
221 and 250°C, respectively. It should be noted, however, that the strain rate sensitivity for sub-micron grained material
222 reportedly tends toward 0.3 for strain rates below $1 \times 10^{-4} \text{ s}^{-1}$ [18,24], whereas coarse-grained material typically
223 retains high strain rate sensitivities ($m \approx 0.4$) for strain rates as low as $1 \times 10^{-5} \text{ s}^{-1}$ [10,23]. Overall, the strain rate
224 sensitivities of the *ARBed* microstructure showed the least dependence on temperature. Error bars in Figure 6 show
225 the range of strain rate sensitivities observed during deformation for each condition tested. Strain rate sensitivities
226 generally start high and decay with increased strain, thus providing an indirect measure of microstructural evolution
227 during testing.

228

229

230 Figure 6 Strain-rate sensitivity (m) values for the (a) ARBed, (b) 240RX and (c) 250RX microstructural conditions calculated using a repeated
231 strain rate jump test. Error bars represent the range of strain rate sensitivities observed during deformation.

232


233 Additional information concerning deformation mechanisms can be ascertained by calculating activation
234 energies. The activation energy for deformation represents the change in stress resulting from a change in
235 temperature through the relationship

236

$$Q = \frac{k}{m} \frac{\delta \ln \sigma}{\delta 1/T} \Big|_{\varepsilon, \dot{\varepsilon}, d} \quad (2)$$

237 which is a rearrangement of Equation 1. A graphical example of how activation energies are calculated is shown in
238 Figure 7 and activation energies for different testing parameters are shown in Figure 8. Note Equation 2 assumes a
239 constant grain size and microstructure, limiting this analysis to temperature and strain rate combinations

240 demonstrating similar ($m \pm 0.05$) strain rate sensitivities. For the 250RX condition, activation energies are near self
 241 diffusion in aluminum ($Q_{Al} = 142$ kJ/mol [9]) with some variation to lower energies around 120 kJ/mol. The 240RX
 242 condition also exhibits mean activation energies around Q_{Al} , albeit with a greater tendency toward values between
 243 100 and 120 kJ/mol. While these values are still much higher than that of grain boundary diffusion in aluminum
 244 typically associated with superplasticity ($Q_{GB} = 84$ kJ/mol [9]), their respective m values, between 0.3 and 0.4, are
 245 also considerably higher than that of diffusional creep ($m=0.2$) [5,9]. This suggests deformation consisting of both
 246 grain boundary sliding and diffusional creep, with the accommodation by diffusional creep being greater in the
 247 250RX condition.

248

249 Figure 7 Example showing the calculation of activation energy from peak stress and temperature for samples deformed in the ARBed condition
 250 at 2×10^{-4} s⁻¹. A linear regression is conducted between peak stress and temperature; ranges of strain rate sensitivities (Figure 6) are used to
 251 calculate activation energies at each temperature.
 252

253

254 Figure 8 Activation energies for the (a) ARBed, (b) 240RX and (c) 250RX microstructural conditions. Error bars represent the range of activation
 255 energies calculated from the evolution of strain rate sensitivity observed during deformation.

256

257 The activation energies for the ARBed condition are considerably different than those for the partially
 258 recrystallized conditions. Activation energies as low as 40 kJ/mol are observed at $1 \times 10^{-3} \text{ s}^{-1}$. More confounding still
 259 is that activation energies are near that of grain boundary diffusion for $5 \times 10^{-4} \text{ s}^{-1}$ but then continue to increase with

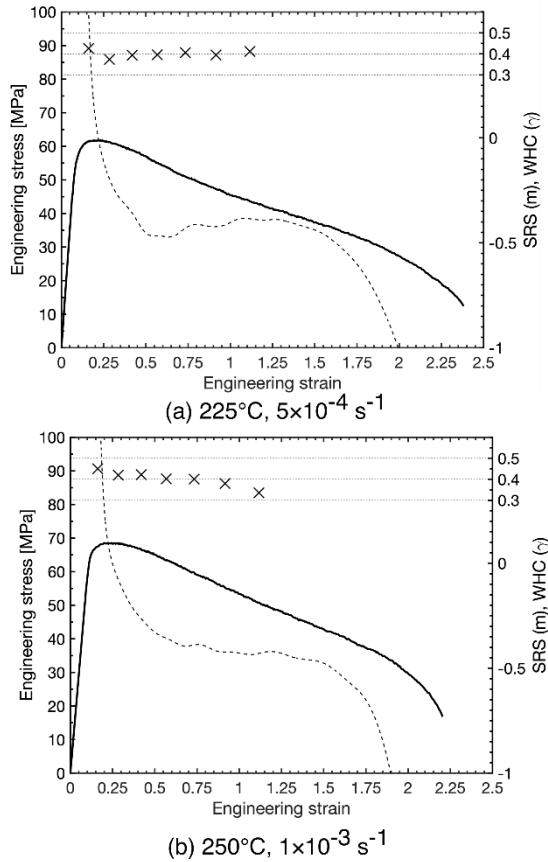

260 decreasing strain rates toward $2 \times 10^{-4} \text{ s}^{-1}$; all of these instances occur with strain rate sensitivities indicative of grain
261 boundary sliding ($0.4 < m < 0.5$). This will be the subject of future discussion in a following section.

262

263 **CHARACTERIZING OPTIMAL SUPERPLASTIC RESPONSE**

264 Two testing conditions ($5 \times 10^{-4} \text{ s}^{-1}$ at 225°C and $1 \times 10^{-3} \text{ s}^{-1}$ at 250°C) with the *ARBed* microstructure were
265 investigated in more detail to determine the cause of low activation energies associated with grain boundary sliding
266 ($0.4 < m < 0.5$). Although both conditions exhibited tensile elongations in excess of 200% and strain rate sensitivities
267 above 0.4, they possessed significantly different mean activation energies — around 82 and 40 kJ/mol, for the low
268 and high strain rate conditions, respectively.

269 Inverse pole figure (IPF) maps showing microstructural evolution with strain are shown in Figure 9. Note
270 these are colorized with respect to the RD as opposed to the conventional ND shown in Figure 2, to provide greater
271 distinction between texture components with similar plane normals, such as Brass $\{011\} <211>$ and Goss
272 $\{110\} <001>$. A microstructural transition occurs at low strains ($\varepsilon < 0.1$) which results in a finer microstructure
273 compared to immediately after static annealing (Figure 3). This is akin to continuous dynamic recrystallization,
274 which may be energetically favorable at low strain levels if the initial microstructure consists of a significant
275 proportion of remnant subgrains. Subgrains rely on cooperative grain boundary sliding (CGBS) rather than
276 independent grain boundary sliding, which may increase the driving force for subgrain boundary mobility [25, 26].
277 Continuous geometric dynamic recrystallization (GDRX) may also be active, where HAGBs “pinch off” elongated
278 grains under the influence of an applied tensile stress in the rolling direction [27].

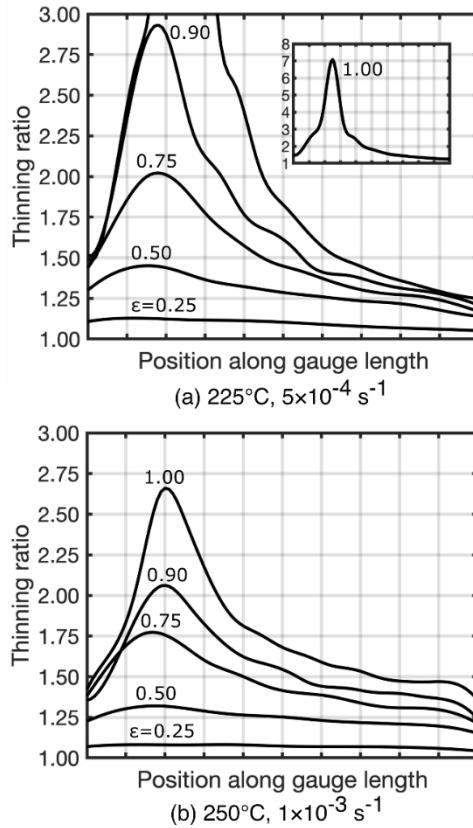


279
280 Figure 9 Inverse pole figure (IPF) maps of the longitudinal plane taken near the mid-thickness after interrupted tests at 0.1, 0.25, 0.5 and 0.75

281 true strain for the *ARB*ed microstructure tested at (a) 225°C, 5×10^{-4} s⁻¹ and (b) 250°C, 1×10^{-3} s⁻¹. The rolling and tensile directions are vertical
282 while the normal direction is horizontal. IPF orientations are with respect to the rolling direction.
283

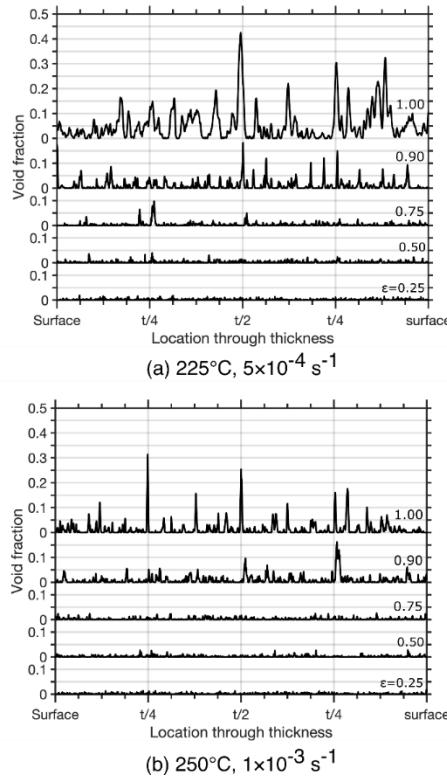
284 This initial dynamic recrystallization may explain the difference in work-hardening behavior between
285 material produced with severe warming rolling and ARB [16,17]. Severely warm rolled material exhibits extensive
286 work hardening up to approximately 0.5 true strain ($e=0.65$) [7,28] after which there is a sharp decrease in the
287 cluster size of regions participating in CGBS [16]. On the other hand, *ARB*ed material only strain hardens until
288 approximately 0.1 true strain ($e=0.11$) [18]. While the nature of CGBS in material produced with ARB has yet to be
289 discussed in literature, the greater fraction of HAGBs in *ARB*ed material (≈ 0.8) [15] compared to severely warm
290 rolled material (≈ 0.4) [16] suggests *ARB*ed material exhibits a faster transition from CGBS to independent GBS
291 during early stages of deformation. Thus, processing pathways may have a marked effect the degree of dynamic
292 recrystallization at low strains, which have the potential to culminate in significance differences in subsequent
293 superplastic deformation behavior. While this topic is of notable interest for optimizing a superplastic response, it is
294 outside the scope of this work and will not be discussed in more detail.

295 The stress-strain curves of the two testing conditions are presented in Figure 10 with strain rate sensitivity
296 (m) and work hardening coefficient ($\gamma = de(d\sigma/de)$) values overlaid. Work hardening coefficients were calculated
297 from engineering stress and do not account for cross-sectional area reduction. Both conditions exhibit stable grain
298 boundary sliding as evidenced by the high strain rate sensitivities ($0.4 < m < 0.5$) sustained for the majority of
299 deformation. The operation of grain boundary sliding is further corroborated by the interrupted strain IPF maps
300 shown in Figure 9. Grain size and morphology remain constant up to 0.75 true strain ($e=1.12$) with a general
301 weakening of texture, neither of which would occur during dislocation-creep deformation.


302 Figure 10 Engineering stress-strain curves for *ARBed* material tested at (a) 225°C , $5 \times 10^{-4} \text{ s}^{-1}$ and (b) 250°C , $1 \times 10^{-3} \text{ s}^{-1}$. The dashed line
 303 represents the instantaneous work hardening coefficient (WHC), γ , while the crosses represent strain rate sensitivity (SRS), m . Stable grain
 304 boundary sliding is apparent in both conditions until the point of final strain localization, which occurs around roughly 1.0 true strain ($e=1.72$) as
 305 evidenced by the local plateau in work hardening coefficient.
 306

307

308 Deformation at strain levels greater than 0.75 ($e=1.12$) progresses with accelerated strain localization. This
 309 is shown in Figure 11, which summarizes the thinning ratio (t_o/t_f) along the gauge length for different bulk strain
 310 levels. Perturbations in the thinning ratio for strains less than 0.75 ($e=1.12$) are indicative of necks that localize and
 311 strain-rate-harden during deformation; these are responsible for fluctuations in the γ curves in Figure 10. A
 312 transition from quasi-uniform to localized strain occurs between 0.75 and 1.0 strain ($e=1.12$ and 1.72) for both
 313 conditions which manifests as a drop in strain rate sensitivity and local plateau in the work hardening coefficient.
 314 Strain localization in the final neck contributes an additional 75% elongation when tested at 250°C , $1 \times 10^{-3} \text{ s}^{-1}$
 315 ($m \approx 0.42$) compared to an additional 100% for 225°C , $5 \times 10^{-4} \text{ s}^{-1}$ ($m \approx 0.40$). Evidently, deformation is more uniform
 316 at 250°C , $1 \times 10^{-3} \text{ s}^{-1}$ due to the higher strain rate sensitivity.


317 Damage accumulation in the microstructure in the form of cavitation voids was characterized through-
 318 thickness using image analysis on backscatter scanning electron micrographs. Spatially-resolved void intensity
 319 profiles through thickness, where void intensities are summed along the rolling (tensile) direction, are shown in
 320 Figure 12 for different strain levels. Void intensities appear at regular intervals through thickness which correspond

321 to the individual bonding interfaces. Void presence is minimal for both testing conditions up to 0.75 strain ($\epsilon=1.12$)
 322 with mean void sizes below 1 μm in diameter. The void size and area fraction increase at higher strains with void
 323 growth significantly faster at 225°C. The void profiles in Figure 12 correlate well to the strain localization in
 324 Figure 11; the two conditions exhibit extensive strain localization and void formation above 0.75 strain ($\epsilon=1.12$),
 325 although both characteristics are more extreme at 225 °C.

326
 327
 328
 329

Figure 11 Thinning ratios (t_o/t_f) measured along the gauge length at different strain levels for the *ARBed* condition tested at (a) 225°C, $5 \times 10^{-4} \text{ s}^{-1}$ and (b) 250°C, $1 \times 10^{-3} \text{ s}^{-1}$. True strain values reported are of the bulk sample assuming uniform elongation.

330

331 Figure 12 Through-thickness void intensity profiles summed along the rolling/tensile direction for the *ARBed* condition tested at (a) 225°C,
 332 5×10⁻⁴ s⁻¹ and (b) 250°C, 1×10⁻³ s⁻¹. Void intensities become prominent after 0.75 strain ($\epsilon=1.12$) and are more severe for testing at 225°C.
 333

334

335

336 DISCUSSION

337 Total tensile elongation has proven to be highly dependent on microstructure, temperature and strain rate
 338 for sub-micron grained material produced with ARB. As with most SPD techniques, the microstructure after
 339 processing consists of non-equilibrium grain boundaries characterized by high free volume [29]. These boundaries
 340 arise from the vast amount of intrinsic grain boundary dislocations that are introduced during processing, which
 341 increase the boundary energy without contributing to misorientation [29]. Such non-equilibrium grain boundaries
 342 are two to four times wider than a traditional HAGB, which results in enhanced grain boundary diffusivities and
 343 lower activation energies for grain boundary diffusion [30–32].

344 The presence of non-equilibrium grain boundaries partially explains the deformation behavior observed
 345 with different starting microstructures. Grain boundary sliding ($0.4 < m > 0.5$) in the *ARBed* condition at strain rates
 346 above 5×10^{-4} s⁻¹ occurs with activation energies much lower than those reported for diffusion in conventional grain
 347 boundaries – between 40 to 80 kJ/mol compared to 84 kJ/mol. This reduction in activation energy is attributed to
 348 enhanced diffusion along non-equilibrium grain boundaries. Grain boundary sliding is also presumed to occur for
 349 the 240RX and 250RX microstructures for temperatures and strain rates between 225 to 240°C and 5×10^{-4} to 1×10^{-3} ,

350 respectively; the activation energies (<143 kJ/mol) and m values (0.35 to 0.45) are in the appropriate range for this
351 type of deformation. The increase in activation energy for the partially recrystallized microstructures is associated
352 with grain boundary recovery, where the non-equilibrium nature of boundaries is lost and grain boundary
353 diffusivities tend toward conventional values. It should be noted that grain boundary sliding is not an independent
354 deformation mechanism, but rather a combination of creep mechanisms relying on bulk and grain boundary
355 diffusion. Thus, instances where activation energies are closer to Q_{Al} than Q_{GB} suggest a greater proportion of
356 lattice diffusion accommodation mechanisms. A similar argument can be made for strain rate sensitivities; while m
357 values of 0.5, 0.3 and 0.2 are generally associated with pure grain boundary sliding, solute drag creep and
358 dislocation creep [5], respectively, intermediate values suggest a combination of deformation mechanisms.

359 Superplastic behavior, using the definition of $m>0.3$ and elongation of at least 200% [5], is not observed
360 for any of the microstructures tested below 225°C. Deformation of the partially recrystallized microstructures at
361 200°C occurs with strain rate sensitivities ($m<0.25$) indicative of dislocation creep. Although the *ARBed*
362 microstructure was not tested below 225°C, extrapolation to lower temperatures suggests deformation would likely
363 occur with strain rate sensitivities around 0.3 and tensile elongations not exceeding 150%. Thus, it is concluded that
364 grain boundary sliding is not a dominant deformation mechanism below 225°C, likely due to reduced thermal
365 mobility. This raises the question of using lower strain rates to compensate for reduced thermal mobility at lower
366 temperatures.

367 The effect of lower strain rate on tensile properties is particularly interesting, as rates below 5×10^{-4} s $^{-1}$
368 correlate with both higher tensile elongations and activation energies. In the *ARBed* condition, strain rates of 2×10^{-4}
369 s $^{-1}$ produce m values indicative of grain boundary sliding ($0.35< m<0.45$) but also activation energies suggestive of
370 dislocation creep (108 to 160 kJ/mol). This can be explained in terms of solute-dislocation interactions in solid
371 solution strengthened alloys. As strain rate decreases, so does the resolved shear stress on the crystal lattice and
372 therefore the velocity of mobile lattice dislocations [33, 34]. At elevated temperatures solute atoms, which are
373 attracted to the dislocation strain fields, have enhanced thermal mobility. The combination of these factors means
374 the dislocation velocity is comparable to the velocity of diffusing Mg atoms, which results in a drag force on
375 dislocation motion [32, 33]. This phenomenon is commonly referred to as solute drag creep ($m=0.3$) [5], where
376 deformation is rate-limited by the diffusion of solute and demonstrates an activation energy near that of Mg
377 diffusion in Al ($Q_{Mg}=136$ kJ/mol) [33-35]. This hypothesis is supported by other studies in literature; solute drag
378 has been postulated as a primary deformation mechanism in other sub-micron AA 5083 studies [16], and a
379 transition from dislocation creep to solute drag creep, independent of grain size, has been observed for strain rates
380 below 1×10^{-3} s $^{-1}$ in Al-Mg alloys [35]. Thus, a transition from grain boundary sliding ($0.4< m<0.5$) to solute drag
381 creep ($m\approx0.3$) occurs at lower strain rates below 5×10^{-4} s $^{-1}$.

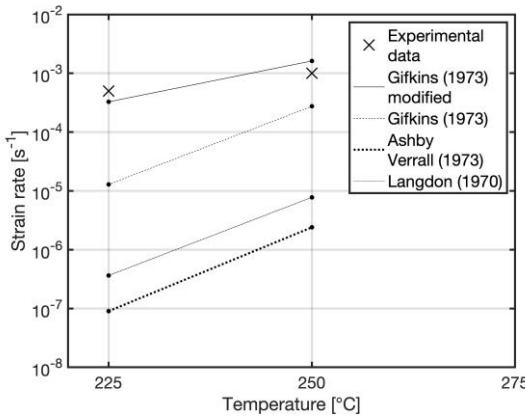
382 To further discuss the effects of temperature on active deformation mechanisms, bulk and grain boundary
383 diffusivities for pure aluminum are reported in Table 2 with respect to the length scale of the Burgers vector (b^2/t)

384 and grain size (d^2/t) [9]. For the temperature range of interest — 200 to 250°C — bulk diffusivity is sufficient for
 385 diffusion on the scale of the Burger's vector but not high enough to traverse the grain interior (i.e. $b^2/t < D_{bulk} < d^2/t$).
 386 Appreciable diffusion is therefore limited to short circuits along grain boundaries and in the narrow mantle region
 387 that extends from grain boundaries toward the grain interior [36]. Some studies have suggested bulk diffusion
 388 in the narrow region of the mantle to be considerably faster than bulk diffusion through the lattice, with levels
 389 similar to that of grain boundary diffusion [29,37]. Additionally, appreciable segregation of Mg to the mantle
 390 region has been reported in severely deformed Al-Mg alloys [38], which may be an exacerbating factor to the
 391 aforementioned solute-drag interactions at low strain rates. Based on the diffusivity values at low temperatures, it
 392 becomes clear that deformation accommodation is highly dependent on the structure and composition mantle
 393 region.

394 Table 2 Grain boundary and bulk lattice diffusivities in coarse-grained aluminum as a function of temperature compared to the scale of the Burgers
 395 vector, b^2/t and the scale of the grain diameter, d^2/t . A grain size of 500 nm was used to represent the grain scale.

	Temperature [°C]		
	200	225	250
D_{GB} [m ² /s]	3×10^{-13}	6×10^{-13}	1×10^{-12}
D_{bulk} [m ² /s]	4×10^{-19}	2×10^{-18}	8×10^{-18}
b^2/t [m ² /s]		8.2×10^{-20}	
d^2/t [m ² /s]		2.5×10^{-13}	

396


397 Experimental data from the tests conducted at 225°C, 5×10^{-4} s⁻¹ and 250°C, 1×10^{-3} s⁻¹ were compared to
 398 several proposed models for grain boundary sliding, shown in Figure 13. These models were populated with
 399 experimentally determined stresses, grain sizes, and strain rate sensitivities along with tabulated values of elastic
 400 modulus, Burger's vector and relevant diffusivities. All models predict strain rates orders of magnitude lower than
 401 what was experimentally observed. Models based on lattice diffusion, such as those by Ashby-Verrall [39] and
 402 Langdon [40], fared significantly worse than models based on grain boundary diffusion such as that by Gifkins
 403 [36]. It should be noted, however, that strong agreement with the Gifkins model is achieved when the grain
 404 boundaries are assumed to be non-equilibrium and modeled as

405
$$D_{GB} = 5 \times 10^{-12} e^{\left(\frac{-Q}{RT}\right)} \quad (3)$$

406 with the value of Q taken as 60 kJ/mol (an average of the two conditions based on data in Figure 5) and a grain
 407 boundary width, δ , taken as four-times the typical value of 0.5 nm [29,41,42]. This enhanced diffusivity is roughly
 408 two orders of magnitude greater than the tabulated values reported in Table 2. Agreement between experimental
 409 data and the modified Gifkins model demonstrates the necessity of non-equilibrium grain boundaries in achieving
 410 low temperature superplasticity.

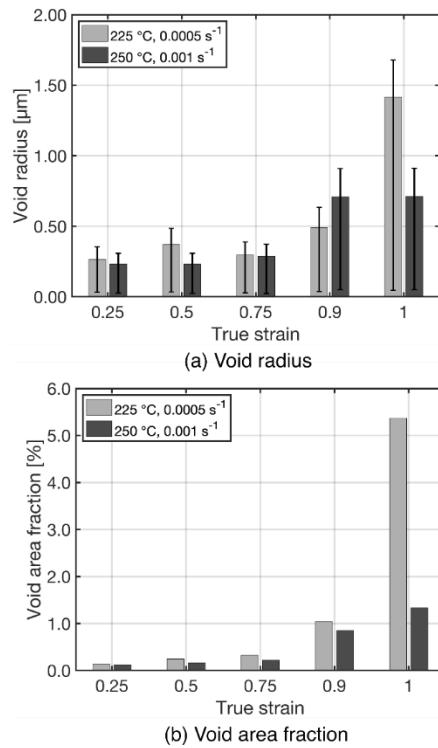
411 The preceding discussion has focused on effects of microstructure, temperature and strain rate on total
 412 tensile elongation; the remainder of this section will explore the formability potential of the *ARBed* microstructure

413 at 225°C, $5 \times 10^{-4} \text{ s}^{-1}$ and 250°C, $1 \times 10^{-3} \text{ s}^{-1}$. In particular, forming characteristics of sub-micron grained material will
 414 be compared with conventional coarse-grained (10 μm) material.

415

416 Figure 13 Comparison of experimental strain rates and calculated strain rates from different grain boundary sliding models. All models resemble
 417 some form of Equation 1 with appropriate strain rate sensitivities and activation energies.
 418

419 The *ARBed* microstructure demonstrated stable grain boundary sliding for a significant portion of deformation
 420 during both testing conditions, as seen from the microstructural changes in the IPF maps of Figure 9, the stable
 421 strain rate sensitivities in Figure 10 and the inhibition of localized necking in Figure 11. To better understand
 422 superplastic forming potential, it is worth discussing the mechanisms by which materials fail. Materials tested at
 423 low homologous temperatures and quasi-static strain rates fail due to strain localization soon after the Considère
 424 criterion is met; for superplastic samples this condition is modified to account for strain rate hardening [43] as

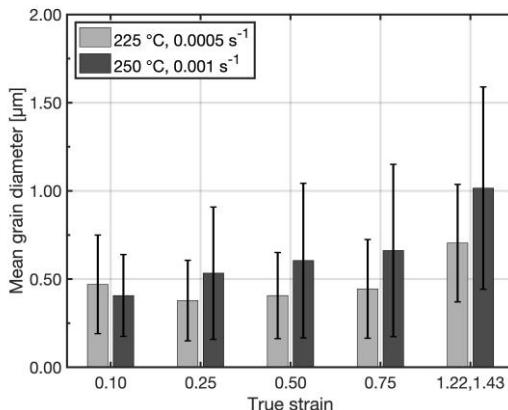

$$425 \quad \gamma + m < 1 \quad (4)$$

426 where γ is the work hardening coefficient and m is the strain rate sensitivity. Figure 10 shows that this condition is
 427 met shortly after 0.1 true strain ($e=0.11$) and the majority of deformation thereafter manifests as non-uniform
 428 elongation due to the high strain rate sensitivity. Deformation proceeds with initiation and retardation of strain
 429 localization resulting in fluctuations in the work hardening coefficient. Cavitation voids, which form when the
 430 imposed strain rate is too high for deformation accommodation mechanisms, can also be viewed as a tensile
 431 instability; this explains why the increased void presence in Figure 12 closely matches strain localization in Figure
 432 11. The onset of final strain localization, Equation 4, depends on the magnitude of the strain rate sensitivity and
 433 therefore occurs earlier at 225°C, $5 \times 10^{-4} \text{ s}^{-1}$ ($m \approx 0.40$) compared to 250°C, $1 \times 10^{-3} \text{ s}^{-1}$ ($m \approx 0.42$).

434 Changes in void size and volume fraction provide additional information regarding tensile instability. Figure 14
 435 shows that voids remain under 1 μm for strains below 0.75 ($e=1.25$), agreeing with models for diffusion-controlled
 436 void growth during grain boundary sliding [5]. Further deformation causes strain-controlled void growth [5] for
 437 testing at 225°C, $5 \times 10^{-4} \text{ s}^{-1}$ but not for 250°C, $1 \times 10^{-3} \text{ s}^{-1}$. These observations are consistent with the strain
 438 localization response in Figure 11, where strain localization is retarded more at 250°C, $1 \times 10^{-3} \text{ s}^{-1}$ owing to the

439 higher strain rate sensitivity. It is worth mentioning that strain localization leads to increased local strain rates and
440 reduced local strain rate sensitivities, which further exacerbates the rate of subsequent strain localization.

441


442

443 Figure 14 Individual void radius (a) and total void area fraction (b) for the 225°C, $5 \times 10^{-4} \text{ s}^{-1}$ and 250°C, $1 \times 10^{-3} \text{ s}^{-1}$ conditions as a function of
444 strain. Void size and fraction are stable for both testing conditions below 0.75 true strain ($e=1.46$).
445

446 For current industrial applications, such as the manufacture of automotive body panel discussed initially,
447 superplastic forming is usually limited to thinning ratios (t_f/t_o) < 2 to ensure the cavitation volume fraction does not
448 exceed 2 to 3% [1,4]. The results presented herein suggest thinning ratios as high as 2.5 can be sustained without
449 exceeding 1% void fraction. This is far superior to conventional material ($d \approx 10 \text{ } \mu\text{m}$, $T > 500^\circ\text{C}$) strained to similar
450 levels which exhibit void area fractions between 2.5 and 10% [10,23,45]. Attention should be drawn to the fact that
451 void size during grain boundary sliding is generally on the order of the material's grain size [5,10,23,45], which is
452 corroborated by Figure 14. Lastly, void intensities for the *ARBred* material are highest at bonding interfaces,
453 suggesting the bonds are limited in ability to accommodate superplastic deformation, particularly at higher strains.
454 Thus, the *ARBred* material exhibits higher damage tolerance compared to conventional material as the sub-micron
455 grain size and presence of regular interfaces controls the size and distribution of voids.

456 Grain growth is a final consideration when discussing forming potential, as the grain size after forming
457 correlates with final part strength. Figure 15 shows the change in mean grain size as a function of strain for both
458 testing conditions. The grain growth behavior confirms previous work by the authors [15] where grain size was

459 found to be stable for extended durations below 225°C. Both forming conditions show apparent grain growth past
 460 0.75 ($e=1.12$), suggesting a change in grain boundary mobility as a result of strain localization; this may be due to
 461 different deformation mechanisms that occur in the localized region prior to failure. Nevertheless, testing at both
 462 225 and 250°C maintains a sub-micron grain size up to 0.75 true strain ($e=1.12$).

463

464 Figure 15 Mean grain diameter at interrupted strains for the ARBed condition tested at 225°C, $5 \times 10^{-4} \text{ s}^{-1}$ and 250°C, $1 \times 10^{-3} \text{ s}^{-1}$. Testing at 225°C
 465 retains a near-constant grain size, although grain growth occurs immediately preceding failure. Stable grain growth occurs at 250°C as predicted
 466 by [11].

467

468 CONCLUSIONS

469 The work presented here outlines the significance of non-equilibrium grain boundaries produced by severe
 470 plastic deformation in achieving low temperature superplasticity. Although ARB processing produces sub-micron
 471 grains delineated by HAGBs [8,15], it is the excess free volume and high-energy state of these boundaries
 472 immediately following severe plastic deformation that reduces the activation energy for grain boundary diffusion.
 473 This decreases the energy barrier for grain boundary sliding and allows superplasticity to occur at temperatures as
 474 low as 225°C.

475 The lowest temperature for which grain boundary sliding is operable in severely deformed materials is difficult
 476 to identify due to the convoluted interaction between microstructure, temperature and strain rate. While a lower
 477 limit of 200°C has been postulated [7,24], this would require even lower strain rates to compensate for the
 478 reduction in thermal mobility. This work has shown that strain rates below $5 \times 10^{-4} \text{ s}^{-1}$ result in solute drag due to the
 479 reduction in dislocation velocity during deformation. Thus, the limiting factor in minimizing the temperature for
 480 superplasticity is not the thermal activation for grain boundary sliding, but instead the transition to low strain rate
 481 solute drag creep regimes.

482 The implications of low temperature superplasticity to the sheet forming industry are pronounced. Sub-micron
 483 grained material produced by ARB can be deformed to meet current industrial forming limits at a significantly
 484 reduced temperature — 225°C ($0.60T_m$) as opposed to 500°C ($0.92T_m$). Moreover, sub-micron grained material has
 485 a lower tendency to develop large cavitation voids at appreciable strain levels owing to the reduced grain size; it

486 may be possible to deform material past current strain limitations without negatively affecting final part strength. A
487 final benefit of material produced with ARB is Hall-Petch strengthening. Grain size remains sub-micron up to 0.75
488 true strain ($e=1.12$), meaning final sheet components after forming have the potential to exhibit higher strengths.
489 This may be sufficient to reduce the overall part thickness needed in sheet assemblies.

490 The benefits that arise from ARB processing all stem from the creation of non-equilibrium grain boundaries
491 during processing. While this work has provides a holistic view of the effects of microstructure, temperature and
492 strain rate on superplasticity, it is evident this behavior is highly dependent on atomic-scale structures of
493 boundaries which are thermally unstable; additional preheating by as much as 15 minutes reduces tensile
494 elongation by a much a 100%. The effect of starting microstructure on superplastic performance was also discussed
495 with comparison to studies claiming 400% elongation after severe warm rolling [16]. Although the sample
496 geometries used in these studies have been highly criticized for providing erroneously high tensile elongations [46],
497 differences in grain boundary character produced by each processing pathway may also be a significant factor
498 contributing to total tensile elongation. A thorough understanding of interplay between grain boundary structure
499 and deformation mechanics is needed to explicitly determine the limits of low temperature superplasticity in sub-
500 micron grained material. This work not only validates some of the early studies on non-equilibrium grain
501 boundaries in severely deformed materials, but also provides rationale for future work in this area to further
502 investigate the mechanistic limitations of low temperature superplasticity.

503

504 **CONFLICTS**

505 The authors declare that they have no conflict of interest.

506

507 **ACKNOWLEDGEMENTS**

508 The work herein is a part of the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), a National
509 Science Foundation (NSF) Industry-University Cooperative Research Center (IUCRC). The authors would like to
510 thank J. Carpenter of Los Alamos National Laboratory (LANL) for his support in ARB studies and A. Creuziger of
511 the National Institute of Standards and Testing (NIST) for his support in processing and representing texture data.
512 The MTEX community served by R. Hielscher and R. Kilian have also been instrumental for collection and
513 processing EBSD data.

514 **REFERENCES**

515 [1] A. J. Barnes: *J. Mater. Eng. Perform.*, 16(4):440-454, 2007.
516
517 [2] R. Koganti and J. Weishaar: *SAE Int. J. Mater. Manuf.*, 1(1):491-502, 2009.
518
519 [3] Hydro introduces new alloys for superplastic forming of complex automotive components. Light

520 Metal Age, pages 28-31, December 2018.
521
522 [4] A. J. Barnes, H. Raman, A. Lower, and D. Edwards: *Mater. Sci. Forum*, 735:361–371, 2013.
523
524 [5] J. Pilling and N. Ridley, *Superplasticity in crystalline solids*, Institute of Metals London, 1989.
525
526 [6] R. Verma, A. K. Ghosh, S. Kim, and C. Kim: *Mater. Sci. Eng. A*, 191(1-2):143-150, 1995.
527
528 [7] I. C. Hsiao and J. C. Huang: *Scr. Mater.*, 40(6):697-703, 1999.
529
530 [8] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: *Acta Mater.*, 47(2):579-583, 1999.
531
532 [9] G. E. Totten and D. S. MacKenzie: *Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes*, Taylor & Francis, 2003.
533
534 [10] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley: *Mater. Sci. Eng. A*, 351(1-2):228-236, 2003.
535
536 [11] A.K. Mukherjee, J.E. Bird, and J.E. Dorn: *Trans. ASM*, 62:155-179, 1969.
537
538 [12] M. Liu, R. Zheng, C. Ma, and N. Tsuji: *Mater.*, 8, 2019.
539
540 [13] J. C. Lee, S. H. Lee, S. W. Kim, D. Y. Hwang, D. H. Shin, and S. W. Lee: *Thermochim. Acta*, 499(1-2):100-105, 2010.
541
542 [14] F. Zhou, X. Z. Liao, Y. T. Zhu, S. Dallek, and E. J. Lavernia: *Acta Mater.*, 51:2777-2791, 2003.
543
544 [15] B. N. L. McBride, M. Sanders, K. D. Clarke, and A. J. Clarke, *Metall. Mater. Trans., A*, accepted July 2022.
545
546 [16] I. C. Hsiao and J. C. Huang. *Metall. Mater. Trans.. A*, 33A:1373-1384, 2002.
547
548 [17] B. N. L. McBride, K. D. Clarke, and A. J. Clarke: *J. Manuf. Process.*, 55:236-239, 2020.
549
550 [18] N. Tsuji, K. Shiotsuki, and Y. Saito: *Mater. Trans., JIM*, 40(8):765-771, 1999.
551
552 [19] N. Tsuji, R. Ueij, Y. Ito, and Y. Saito: *Proc. Risø Int. Symp. Metall. Mater. Sci.*, 607-616, 2000.
553
554 [20] I. C. Hsiao and J. C. Huang: *Scr. Mater.*, 40(6):697-703, 1999.
555
556 [21] ASTM E2448. ASTM International, West Conshohocken, PA, 2018.
557
558 [22] D. H. Bae and A. K. Ghosh: *Acta Mater.*, 48:1207-1224, 2000.
559
560 [23] R. Verma, P. A. Friedman, A. K. Ghosh, S. Kim, and C. Kim: *Metall. Mater. Trans. A*, 27:1889-1898, 1996.
561
562 [24] I. C. Hsiao, J. C. Huang, and S. W. Su: *Mater. Trans.*, 40(8):744-753, 1999.
563
564 [25] H. P. Pu, F. C Liu, and J. C. Huang: *Metall. Mater. Trans. A*, 26(5):1153-1166, 1995.
565
566 [26] Y. N. Wang and J. C. Huang: *Scr. Mater.*, 48(8):1117-1122, 2003.
567
568 [27] A. Gholinia, F. J. Humphreys, and P. B. Prangnell. *Acta Mater.*, 50:4461-4476, 2002.
569
570 [28] I. C. Hsiao, S. W. Su, and J. C. Huang: *Metall. Mater. Trans. A*, 31(9):2169-2180, 2000.
571
572 [29] X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, and R. Z. Valiev: *Mater. Sci. Eng. A*, 540:1-12, 2012.
573
574
575

576 [30] A. V. Mikhaylovskaya, O. A. Yakovtseva, I. S. Golovin, A. V. Pozdniakov, and V. K. Portnoy: *Mater. Sci. Eng. A*, 627:31-41, 2015.

577

578 [31] J. Lian, R. Z. Valiev, and B. Baudelet: *Acta Metall.*, 43(11):4165-4170, 1995.

580

581 [32] R. Z. Valiev, E. V. Kozlov, Y. F. Ivanov, J. Lian, A. A. Nazarov, B. Baudelet: *Acta Metall. Mater.*, 42(7):2467-2475, 1994.

583

584 [33] J. Weertman: *J. Appl. Phys.*, 28(10):1185-1189, 1957.

585

586 [34] A. H. Cottrell and M. A. Jason: *Proc. R. Soc. London*, 199(1056):104-114, 1949.

587

588 [35] E. M. Tale, G. A. Henshall, T. G. Nieh, D. R. Lesuer, and J. Wadsworth: *Metall. Mater. Trans. A*, 29(13):1081-1091, 1998.

590

591 [36] R. C. Gifkins: *Metall. Trans. A*, 7(8):1225-1232, 1976.

592

593 [37] A. K. Ghosh: *Mater. Sci. Forum*, 170172:39-46, 1994.

594

595 [38] X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin: *Acta Mater.*, 72:125-136, 2014.

596

597 [39] M. F. Ashby and R. A. Verrall: *Acta Metall.*, 21(2):149-163, 1973.

598

599 [40] T. G. Langdon: *Philos. Mag.*, 22(178):689-700, 1970.

600

601 [41] H. J. Frost and M. F. Ashby: *Deformation mechanism maps: the plasticity and creep of metals and Ceramics*, Pergamon Press, 1982.

603

604 [42] C. Herzig and S. V. Divinski: *Mater. Trans.*, 44(1):14-27, 2003.

605

606 [43] E. W. Hart: *Acta Metall.*, 15:351-355, 1967.

607

608 [44] A. J. Barnes: *J. Mater. Eng. Perform.*, 16(4):440-454, 2007.

609

610 [45] R Verma, P A Friedman, A K Ghosh, C Kim, and S Kim: *J. Mater. Eng. Perform.*, 4:543-550, 1995.

611

612 [46] F. Abu-Farha, M. Nazzal and R. Curtis: *Exp. Mech.*, 903-917, 2011.

613

614