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Abstract— This paper proposes two approaches to control
the shape of the structure or the position of the end effector
for a soft-robotic application. The first approach is a model-
based approach where the non-linear dynamics of the tensegrity
system is used to regulate position, velocity and acceleration to
the specified reference trajectory. The formulation uses state
feedback to obtain the solution for the control (tension in the
strings) as a linear programming problem. The other model-free
approach is a novel decoupled data-based control (D2C) which
first optimizes a deterministic open-loop trajectory using a
black-box (no actual model) simulation model and then develops
a linear quadratic regulator around the linearized open-loop
trajectory. A two-dimensional tensegrity robotic reacher is used
to compare the results for both the approaches for a given
cost function. The D2C approach is also used to study two
more complex tensegrity examples whose dynamics is difficult
to model analytically.

I. INTRODUCTION

The design of high DOF soft robotic systems has attracted
increasing interest in recent years [1], [2]. In this regard,
tensegrity structures offer a tantalizing prospect for the
principled design of such soft robotic systems. In this paper,
we study the modeling and control of high DOF tensegrity
robotic systems. In particular, we develop full and reduced
order models of class-k tensegrity structures and study both
model based and data based approaches to the control of
such systems. We also delineate the relative advantages and
disadvantages of these approaches.

A. Related Work

Tensegrity structures are designed by placing bars and
strings in a methodical arrangement to yield certain desired
properties [3]. The dynamics of a tensegrity system can
be very accurately modeled as all the members in the
system are l-dimensional elements which only take uni-
directional loading [4]. The absence of bending moments
on any individual element not only allows for the accurate
modeling of the system but also provides the minimum mass
solution to various kinds of loading conditions in engineering
mechanics [3], [5]. For the same shape, the stiffness of
the structure can also be changed by changing the pre-
tension in the strings. The minimal mass architecture along
with the variable stiffness characteristic makes it suitable for
soft robotic applications like planetary landers [6], flexible
robots [7], [8], and deployable space structures [9]. Some
of the researchers used model-based approach [7], [8] and
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some used learning/evolutionary algorithm based approach
[6], [10], [11] to control the tensegrity structures but no
discussion has been given in the past to compare the two
methods.

The control of tensegrity systems amounts to the de-
sign of a nonlinear stochastic controller for a very high
DOF complex nonlinear system. Controlling an unknown
dynamical system adaptively has a rich history in control
literature [12] [13]. This classical literature provides rigorous
analysis about the asymptotic performance and stability of
the closed-loop system, mostly for linear systems or finite
state and control space systems. The optimal control of a
possibly unknown nonlinear dynamical system with continu-
ous state and action space is a significantly more challenging
problem. Even with a known model, computing an optimal
control law requires solving a dynamic programming prob-
lem. The ‘curse of dimensionality’ associated with dynamic
programming makes solving such problems computationally
intractable, except under special structural assumptions on
the underlying system. Learning to control problems where
the model of the system is unknown, or is too large or
complex for a tractable control synthesis, also suffer from
this computational complexity issues, in addition to the usual
identifiability problems of adaptive control. For the model-
based methods, the computational time is often negligible if
analytical model is known.

The past several years have seen significant progress
in deep neural networks based reinforcement learning ap-
proaches for controlling unknown dynamical systems, with
applications in many areas like playing games [14], loco-
motion [15] and robotic hand manipulation [16]. A number
of new algorithms that show promising performance are
proposed [17] [18] [19] and various improvements and inno-
vations have been continuously developed. However, despite
excellent performance on a number of tasks, reinforcement
learning (RL) is still considered very data intensive. The
training time for such algorithms is typically really large.
Moreover, high variance and reproducibility issues on the
performance are also reported [20].

In recent work [21], we proposed a novel decoupled
data based control (D2C) algorithm for learning to control
an unknown nonlinear dynamical system. Our approach
introduced a rigorous decoupling of the open-loop (planning)
problem from the closed-loop (feedback control) problem.
This decoupling allows us to come up with a highly sample
efficient approach to solve the problem in a completely
data based fashion. Our approach proceeds in two steps:
(1) first, we optimize the nominal open-loop trajectory of
the system using a blackbox simulation model, (ii) then we
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identify the linear system governing perturbations from the
nominal trajectory using random input-output perturbation
data, and design an LQR controller for this linearized system.
We have shown that the performance of D2C algorithm is
approximately optimal, in the sense that the decoupled design
is near optimal to second order in a suitably defined noise
parameter [21]. In this paper, we show the application of
the D2C data based control approach to complex and high
DOF tensegrity robotic systems, including challenging cases
of hard-to-model soft contact constraints and dynamic fluid
interactions.

The contributions of the paper are as follows: we show
how to model general tensegrity systems and find reduced
order models for control design. We present a model based
control approach and the application of the data based D2C
control approach to such tensegrity systems, and present
the relative advantages and disadvantages of the respective
methods. We hope the comparison will help to determine
the suitable applications for both methods and construct a
systematic control solution for tensegrity soft robots.

II. DYNAMICS OF GENERAL TENSEGRITY STRUCTURES

This section provides a brief overview of the non-linear
dynamic model of a general tensegrity structure. The final
form of class-1 tensegrity dynamics is formulated as a
second-order matrix differential equation [4].

NM, + NK, =W, (1)
M, = [CT(CIIC, + CTimyCy)  Cling], ()
K, = [CT4Cy, — CT,CTAC, CTACL], 3)

where A represents the force density (compressive force per
unit length) in the bar, given by:

5‘ = _le_Q LBTBJ - %[_2 LBT(W - S’?CS)CL)C;-J, “4)

and N = [n1 no n2sto] € R3¥(2A+9) represents
the matrix containing the node position vectors n; € R3*1,
B represents the number of bars, and o represents the
number of string-to-string nodes. The acceleration vector
corresponding to the i node is represented by #;, which
forms the matrix N = [ﬁl Mo ﬁ2ﬂ+g]. The bar
matrix B = [by  bo bs] € R3*F and string matrix
S=[s1 s Sa) € R¥** contain bar vectors b; and
string vectors s;, respectively. The diagonal matrices ; and
mg are formed by arranging bar masses and string point
masses along the diagonal elements, respZectively, and J is
a diagonal matrix with J; = % + mb;;bi as the diagonal
element that allows to accommodate the inertia in the bars.
The connectivity matrices Cpyp, Cp, C,, Cps, Cs, Csp, and
(s define the connections between different nodes to form
bar vector, string vectors and string-to-string node positions.
The external force matrix W = [wl W w23+g]
represents the matrix containing external force vector w;
corresponding to each node position vector n;. The term
‘force density in strings’ is denoted by ~; to describe tensile
force per unit length in the ™ string member and 4 represents

the diagonal matrix formed from ~; as its diagonal elements.
Equation (4) provides the analytical formula to calculate the
diagonal matrix A where |o| operator sets every off-diagonal
element of the square matrix to zero. The diagonal matrix I
is formed by the length of the bar members where [; denotes
the length of the i bar. Please refer to [4] for the detailed
derivation of this dynamics model.

Dynamics Model for Class-k Tensegrity Structure

The model presented above is formulated for class-1
tensegrity structures. Any class-k structure can be described
as a special case of class-1 structures by adding constraints
on k nodes to have same node positions. These constraints
are written in the linear form as:

NP =D, (5)

where matrix P € R(2/+9)x¢ and matrix D € R3*¢ can be
written from the observation to provide constraints and c is
the number of added constraints [4]. The added constraints
can be accommodated in the class-1 tensegrity dynamics by
introducing Lagrange multiplier Q € R3*€ that constraints
the motion to a certain space by adding Lagrange constraint
forces of the form QLPT. The full-order dynamics model for
class-k tensegrity structure is written as:

NM,+ NK, =W +QPT, (6)

with a modification for force density in the bars as:
. n R 1-
A=-JI"?B"B| - 51*2 |BT(W + QPT — S5C,)CT,Cy |
(N
The degree of freedom for the entire structure has reduced
because of the above mentioned constraints. This reduction
in the number of allowed displacement dimension can be
captured in a reduced dimensional space by reducing the
order of the model. The following second order matrix

differential equation provides the reduced-order dynamic
model as:

oMo + e Ko =W, 3
where My = UJ MUy, Ky = UJK Uy, W = WU, —
m UlT KU, and the remaining variables are generated from
the Singular Value Decomposition (SVD) of the full-column
rank matrix P as:

NP =NUSVT = N[U; Us] [201} V=D,

where we use [17; 172] = NU to get:
m =DVIh, i =0, ij =0. (10)

Notice that 7; represents the constraint space in the
transformed coordinates and 7y represents the reduced order
space where the motion is present. The Lagrange multiplier
is calculated at each step to introduce constraint forces by
solving the following algebraic equation:

MUy K MUy + Uy K MU
=WM U, + QUVE]UT MU, (11)



Please refer [4] for the analytic solution of this linear
algebra problem.
III. CONTROL FOR CLASS-K TENSEGRITY SYSTEMS

An important step in writing the control of this non-
linear dynamic system into a linear programming problem
is to be able to write the force densities in the bar A =
[A1 A2 --- Ag]T in terms of the linear function of force
densities in the strings v = [y; 72 -+ 7a]". Let us write
the i'" diagonal element of the matrix A from Eq. (7) as:

/\i = —Jili_Qe;r I_BTBJ €;
1
— Sl e LBT(W +QPT = S5C)CrCy Jei, (12)

which is written using the identity 2y = gz, for z and y
being the column vectors, and stacking all the scalars into a
column vector as:

A=Ay +T, (13)
where
T T
A:[AIAgn-AH ,7—:[71T7'2T~-Tg] ,

: 1
7= =il bl [P = SLN(W 4 QPO Ch e,

1
A = 5z;%}S(Oscgbc;ei), fori=1,2 -+ f.

A. Controller for Reduced-Order Dynamics Model

In this section, we write down the control algorithm to
control the position of certain nodes in the structure. Let us
define the position of those nodes by ¥ = LNR, where
L is a matrix that defines the x,y or z coordinates of the
node and R matrix defines which nodes to be controlled. Y
defines the final desired location of the nodes that we want
to move from Y to Y. Therefore, the error in the positions
at any time is written as:

E=LNR-Y =L(mU{ +nU)R-Y, (14

and the first and second derivatives of the error with respect
to time is written as:

E = LipUJR, E = LijhUJR, (15)

where 773 = 11 = 0 was used from the dynamics model
formulation. Now, a second-order differential equation in the
error dynamics is used to move the nodes from the current
position to the desired position by aptly choosing the control
gain parameters matrices ¥ and O:

E+EV+ FEO =0, (16)

LijyUy R+LijpUy RY + [L(m U] +moU; )R — Y]O = 0.
(17)

Further substituting for 7> from Eq. (8), the following
equation is obtained:

LWUy—mU{f K Us—1pUy K Uz) My "Uj R+LijyUy R
+ [L(mU] +nU])R—-Y]© =0. (18)

Rearranging the above equation to collect all the known and
unknown terms together, we get:

LWUy My 'Uy R+-LijpUy RUA[L(n U +12U5 )R—Y]©
= L(mU{ KUs + U3 K Up) My 'US R, (19)
Let us define the known left side of the equation as:
C & LWU, M, 'Uj R + Lij,U] RY
+[LmU{ +n2U3 )R~ Y]O, (20)
and write the right hand side of the Eq. (19) as:
LU K Us +noUy K Ua) My 'US R
= LNK,U,M;'U] R.
N—_——

Msn

21

We now take the ™ column of thp above matrix and
substitute for K = CT4Cs — CT, CTAC,Chyp to obtain:
LNK,M,,Re; = LNCT4C,M,, Re;
— LNCJ,CYACyCry My Rei,  (22)

and using the identity £y = gz for the right-hand side terms
gives:

LNK,M,,Re; = LNCI(C,M,, Re;)y

— LNCT,CJ(CyCry Mo Re)N.  (23)

Substituting for A in terms of v from Eq. (13) gives:

LNK M,,Re; = —LNC],CT (CyChpy My, Res)T

n (LNCJ(CSMsnRei)fLNCZbCJ (CanmeRei)A)fy.

Now, substituting it back to the vector equation of Eq. (19),
and stacking up all these matrices on left and vectors on right,
we get:

T
2 ] 24

7 T3 0]y = [u]

where

I = LNCT(C;M,,Re;) — LNCT,CJ (C,Cry My, Re;)A,

wi = Ce; + LNCT,CJ (C,Cry My, Re;),

C = LWM,, R+ LijyUy RY + [L(m U +nU] )R — Y0,

]\4371,:[]2]\42_1(];—7 for ¢=1,2 -+ n,.



B. Controlling the Velocity and Acceleration

For controlling the node positions we write the error in
position as F, = L, N R, —Y, where subscript p is used for
the position and write the ﬁnal linear equation for the force
densities in the string in a compact form as (refer Eq. (24)):

Ipy=pp, ~v20. (25)

For controlling the velocity, we define the error in velocity
of certain nodes as:

E, = LyjpUJR, —Y,, E,+EW, =0, (26)

and use a first-order differential equation to derive the error in
velocity to zero. Only first derivative of error E, is required
as the control variable, force density «y in the strings come
out at the same level of time derivative. Following the same
derivation as used in the previous subsections, we write the
linear equation to control the nodal velocities as:

vy =y, v=0. 27

To control the acceleration of the nodes, the error is
defined as:

Eq = LatixUs Ry — Y, (28)

which can be directly converted to a linear equation in
control variable by equating it to zero as I, = 0. Following
the same procedure, we get the linear algebra equation to
solve for control variable as:

Loy = pa, (29)

Finally, combining the Egs. (25), (27), and (29) allows to
simultaneously control the position, velocity and acceleration
of different nodes in the structure.

T T

Ly o Tal v=[uy wl ngl .

IV. DECOUPLED DATA BASED CONTROL (D2C)
ALGORITHM

v =0.

v=0. (30)

In this section, we propose a data-based approach to solve
the tensegrity shape control problem as an alternative to the
model-based approach in the previous section. In particular,
we apply the so-called decoupled data-based control (D2C)
algorithm that we recently proposed [21]. The D2C algo-
rithm is a highly data-efficient Reinforcement Learning (RL)
method that has shown to be much superior to state of the
art RL algorithms such as the Deep Deterministic Policy
Gradient (DDPG) in terms of data efficiency and training
stability while retaining similar or better performance. In
the following, we give a very brief introduction to the D2C
algorithm (please see [21][22] for the relevant details).

Let us reconsider the dynamics of the tensegrity system
given in Eq. (8) and rewrite it in a discrete time, noise
perturbed state space form as follows:

= f(e) + g(xe) (ug + ewy),

where z; is the state, u; is the control, w; is a white
noise perturbation to the system, and € is a small param-
eter that modulates the noise in the system. Suppose now

Ti41 (31)

that we have a finite horizon objective function: J(zg) =
E[ZtT;Ol c(x, ur)+d(ar)], where c(x, u) denotes a running
incremental cost, ¢(z) denotes a terminal cost function and
E[-] is an expectation operator taken over the sample paths
of the system. The objective of the control design is then
to design a feedback policy w;(z;) that minimizes the cost
function above and is given by:

T-1

J*(z9) = min E[Z c(xe,ur) + ¢(z7)].

(32)
AR

The D2C algorithm then proposes a 3 step procedure to
approximate the solution to the above problem.

First, a noiseless open-loop optimization problem is solved
to find an optimal control sequence, %y, that generates the
nominal state trajectory Zj:

T—1
mln Z c(xe, up) + o(ar)). (33)
t=0
subject to the zero noise nominal dynamics: x;11 = f(x:)+

g(xs)uy.

Second, the perturbed time varying linear system around
the nominal given by dx; 1 = Asdxy + Byduy is identified
in terms of the time varying system matrices A;, By.

Third, an LQR controller for the above time varying
linear system is designed whose time varying gain is given
by K. Finally, the control applied to the system is given
by ut(:ct) = 'L_l/z< + Ktﬁxt.

Near Optimality of D2C: Let the mean and variance of the
true cost function be given by J* and Var[J]* respectively.
Then, it can be shown that the D2C procedure outlined
above is near optimal to the second order in the small
parameter e in the sense that |J —.J*| is O(¢2) and moreover,
VIVar[J] = Var[J]*| = O(e?), where J and Var[J] are
the mean and variance of the cost corresponding to the D2C
policy above (refer to [21] for the details).

The following subsections provide details for each of the
above-mentioned steps of the D2C algorithm.

A. Open Loop Trajectory Optimization

A first-order gradient descent based algorithm is proposed
here for solving the open-loop optimization problem given
in Eq. (33), where the underlying dynamics model is used
as a blackbox, and the gradients are found from a sequence
of rollout data with input perturbed by Gaussian noise. Let
us denote the initial guess of the control sequence as U(®) =
{a,@}f:ﬁ, and the corresponding state trajectory X =

M., The control policy is updated iteratively via:

U(n-H) = U(n) — aVUJf|(X<n>7U<n)), (34)
where U {agn)}fgol denotes the nominal control
sequence after n iterations. %; ~ is a vector of the control
value for each control channel at step ¢ and « is the step

size parameter. .J l¢ x(m,yo) is the expected episodic cost



under U™ and the corresponding state trajectory X'("). The
gradient vector is defined as:

Lj) |
Bur ) | vy
(35)

T _ oJ aJ
Vodle,um) = (*aul iz

which is the gradient of the expected episodic cost w.r.t the
control sequence after n iterations. The following paragraph
elaborates on how to estimate the above gradient.

Here we define a rollout to be an episode in the simulation
that starts from the initial settings to the end of the horizon
with a control sequence. For each iteration, multiple rollouts
are conducted sequentially, and the gradient vector is updated
iteratively after each rollout. The expected episodic cost for
the (n+ 1)™ iteration is calculated by simulating a noiseless
rollout with the control sequence U(™). The gradient vector
is then estimated in a sequential manner as:

1 .
VUJ|(X<n> Uy = =(1- E)VUJ“ZXW,UW)"'

1

]06 (J|(XJ (n) Uir(n)y — J| x(n) U(n)))(Uj’(”) — U(n))7

(36)

where j and n denote the j® rollout of the (n + 1)1
iteration. J |( X Um) is the expected episodic cost of the
(n + 1)" iteration while J|(Xj,(n>’Uj,(n>) denotes the cost
of the j" rollout under control sequence U7 (™) and the
corresponding state trajectory Xj’(”). Note that U7(") =
{a{™ + sul "™y where {ul™}T ! is the zero-mean,
i.i.d Gaussian noise added as perturbation to the control
sequence U™, Scalar o5, is the variance of the input
perturbation and V¢ J |Z;(1,,) U denotes the gradient vector
after j rollouts. The total rollout number r in one iteration
is decided by the convergence of the gradient vector. After r
rollouts, the control sequence is updated by Eq. (34) in which
VUJ|(X(H> U is estimated by Vo (x(m) ) using this
iterative method. Repeat this until the cost converges and
the optimized nominal control sequence is {u}}. , =
{aN}- L. The idea is basically averaging the gradient vector
over all the rollouts in an iterative way.

B. Linear Time-Varying System Identification

Closed-loop control design in step 2 of D2C requires the
knowledge of the linearized system parameters A; and B; for
0 <t < T—1. Here we use the standard least square method
to estimate these parameters from input-output experiment
data.

First start from the perturbed linear system about the
nominal trajectory and estimate the system parameters A
and B, from: dx 1 = Atécct + Btéut, where 633t ™) is the
state perturbation vector and 5ut ™) is the control perturbation
vector we feed to the system at step ¢, n'M simulation. All
the perturbations are zero-mean, i.i.d, Gaussian noise with
covariance matrix o/. o is a o(u) small value selected by the
user. 535,(51)1 denotes the deviation of the output state vector
from the nominal state after propagating for one step.

Run N simulations for each step and collect the input-
output data:

=[A | B)X (37)
and write out the components:
1 2 N
e [ A ] B
Y §x§1) 5x§2) 5:E,EN) (38)
6u§1) 5u§2) 5u£N) '

Finally, using the standard least square method, the lin-
earized system parameters are estimated as:

[A | B]=YXT(XX")! (39)

C. Closed Loop Control Design

Given the estimated perturbed linear system, we de-
sign a finite horizon, discrete time LQR [23] along the
trajectory for each time step to mlnlmize the cost func-
tion J = 6éxhQdxr + Zf B (5(Et Qdézy + ul Ru, +
20T Nuy), subjects to dwry1 = Adx, + Bydug, where
up = —Kidx;. The feedback gains are calculated as K; =
(R+ BTP,1B)"Y(BTP; 1A+ NT), where P; is solved
in a back propagation fashion from the Riccati equation:
P,y =ATPA—(ATP.B+N)(R+BTP.B)"Y(BTP,A+
NT)+Q,Pr = Q,N = 0. The closed-loop control policy
is us(xy) = af — Koy, where dx; is the state deviation
vector from the nominal state at time step t.

D. D2C Algorithm: Summary

The Decoupled Data Based Control (D2C) Algorithm is
summarized in Algorithm 1.

Algorithm 1: D2C Algorithm

1) Solve the deterministic open-loop optimization
problem for optimal open-loop control sequence and
state trajectory ({@}}/—o", {Z}]_,) using gradient
descent (Section TV-A).

2) Linearize and identify the LTV system parameters
(At, Bt) via least square (Section IV-B).

3) Solve the Riccati equations for each step along the
nominal trajectory for feedback gain { K} tT_Ol

4) Apply the closed-loop control policy,

while ¢ < T do

up = uy — Koy,
w1 = f(@e) + Bi(ug + ewy),
0T41 = Tep1 — Tiyq (40)
t=t+1.
end while

V. SIMULATION RESULTS

In this section, we present the application of both the
model based control and the data based D2C approach on
three tensegrity robotic models with control inputs as the
tension in the strings.



A. Structure and Task

We simulated all three robotic models in the MuJoCo
simulator [24]: Reacher, Arm and 6-link swimmer. Each of
the systems and their tasks are defined as follows:

a) Reacher: The minimal mass solution to compressive
loading is provided by T-bar structure [3]. Tensegrity D-
bar structure has also been shown to require less mass than
a simple continuum bar to take the same load with the
added advantage of deployability which makes it suitable for
large motion space robotic applications. A T2D1 tensegrity
structure is made by combining T-bar and D-bar structures
as shown in Fig. 1(a). The two-dimensional structure has 22
bars and 22 strings. The bars in the system are connected
by hinge joints reducing the degrees-of-freedom to 14 and
the system is controlled by controlling the tension in the 22
control channels (strings). The control task is to move the
top tip (end effector) to the target position (red dot).

b) Arm: The arm model is composed of 10 T-bar
elements, made from rigidly attaching a vertical bar with
a horizontal bar. The horizontal bars are aligned in the
direction of the arm length. The first vertical bar is fixed
as the base of the model. The model has 18 dimension of
states and 38 control channels. The control task is to move
the tip to the target position (red dot).

c) 6-link Swimmer: The 6-link swimmer is composed
of 6 T-bar elements. The T-bar element here has the same
structure as the arm model. Compared with the arm model,
the first bar for the swimmer is not fixed so it could swim
in the environment. The fluid density for the environment
is 3000 kg/m?, three times the density of water. The model
swims by swaying its body so the horizontal bars would
interact with the fluid to generate a forward force. Note that
the diameter of the vertical bars is very small (difficult to see
in the figure) so that they won’t generate too much resistance
while swimming. The model has 16 state variables and 22
control channels. The control task is to swim to the target
position (red dot).

The initial positions of the models are shown in Fig. 1.
The orange objects are the bars, and the grey ones are the
strings.

B. Training and Testing

D2C implementation is done in three stages corresponding
to those mentioned in the previous section and ‘MuJoCo Pro
200 C++ version’ is used as the environment for simulat-
ing the blackbox model. The model based control (MBC)
approach does not require any training time since it is a
closed-form solution.

Training (D2C only): The open-loop training plots in
Fig. 3 show the cost curves during training. After the cost
curves converge, we get the optimal control sequence that
could drive the systems to accomplish their tasks. The
respective model positions at the end of the horizon are
shown in Fig. 2. The training parameters and outcomes are
summarized in (Table I).

Testing Criterion: For the closed-loop design, we proceed
with the system identification and feedback gain design step

of the D2C algorithm mentioned in the previous section to
get the closed-loop control policy. For testing, we compare
the performance between the open-loop D2C control policy
and the closed-loop D2C control policy under different noise
levels. We also compare the D2C closed-loop performance
to the MBC design for the Reacher example. The MBC
design cannot be applied to the arm or the swimmer because
of the moment on the elements and solid-fluid interaction.
The open-loop control policy is to apply the optimal control
sequence solved in the open-loop training step without any
feedback. So the perturbation drives the model off the nom-
inal trajectory and increases the episodic cost as the noise
level increases. Zero-mean Gaussian i.i.d. noise is added to
every control channel at each step. The standard deviation
of the noise is proportional to the maximum control signal
in the designed optimal control sequence for D2C. As for
MBC, we use the maximum control value in the noiseless
nominal control sequence. It must be noted that the range of
noise levels (at least up until about 60 % of the maximum
nominal control signal) that we are considering here is far
beyond what is typically encountered in practical scenarios.
As for the criterion for performance, we use episodic cost
at each noise level. 500 rollouts are simulated at every noise
level tested.

Robustness to Noise: From Fig. 4(a), we can see that both
the mean episodic cost and the cost variance of the closed-
loop D2C policy is much smaller than that of the open-loop
policy for the reacher example throughout the noise level
range shown in the plots which prove the success of using
D2C on tensegrity models. Although the MBC design can
only take up to 30% noise before the simulation fails, it has
similar performance with the D2C closed-loop policy when
applicable. For the D2C approach, the swimmer example
fails after 60% noise, while the reacher and the arm example
worked upto 100% noise level. When there is no noise, the
analytical solution has the lowest cost of all three. From
Fig. 5, it is clear that the control energy used by the MBC
solution is way larger than D2C, where the episodic energy is
calculated as the L2-norm of the control sequence. This is the
result of the optimization-based formulation of D2C. Also,
MBC takes up to 30% noise and has higher variance than
D2C, which aligns with what is shown in Fig. 4(a). With less
control effort, the D2C policy gets a feedback policy close
to the accuracy of the analytical solution and endure a wider
range of noise. The closed-loop cost for all the three models
increases as noise level increases. If we keep increasing the
noise level, there exists a threshold that the noise will drive
the system too far away from the nominal trajectory that
the LQR controller cannot fix it. However, till that point, the
closed-loop policy always performs better than the open-loop
policy (Fig. 4).

Discussion: The advantage of the MBC approach is that,
whenever applicable, it has negligible training time when
compared to a data based approach like D2C. However, the
D2C approach can achieve the same performance as the
model based approach with far less control effort. One of the
reasons for this might be that the reference system needed by
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Fig. 1: Models simulated in MuJoCo in their initial states
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Fig. 2: Models simulated in MuJoCo in their terminal states
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Fig. 3: Episodic cost vs time taken during open-loop training

the MBC design has not been designed optimally, and thus,
a more careful design might result in control efforts that are
on par with D2C. In a sense, the philosophies followed by
the D2C and the MBC approach are quite similar in that
a reference nominal system to be tracked is designed in
both, which is then tracked using the closed-loop control.
However, the D2C obtains this via optimizing a suitable
finite horizon cost of the nonlinear system whereas the MBC
approach provides a somewhat arbitrary prescribed behavior,
which, in turn, needs much more control effort in order to be
tracked. As mentioned above, the arm and swimmer model

are difficult to model due to increased complexity and solid-
fluid interaction, but the data based D2C approach can still
be applied to these models, indicating a wider application
potential for such data based control design approaches.

VI. CONCLUSIONS

In this article, we have provided an overview of the
modeling of tensegrity structures that can be used as the
mechanism for enabling very high DOF robots, in particular,
tensegrity robots. We have also studied model-based and
data-based approaches to the control of such robots and have
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TABLE I: D2C training parameters and outcomes

System Steps Time- | Rollout | Iteration Training time
per step number | number (in sec.)
episode | (in sec.) Open- | Closed-
loop loop
Reacher 400 0.01 300 1300 4462.1 4.25
Arm 400 0.01 20 600 149.5 4.14
Swimmer | 1500 0.006 50 7000 9204.0 5.83

! The open-loop training is run on a laptop with I7-7700HQ CPU and 8G
RAM. No multi-threading at this point.

outlined their relative merits and demerits. In future work, we
shall further develop these control approaches to tensegrity
robots, and study the design, construction, and control of
such robots. In particular, we plan to apply these techniques
to a physical model of tensegrity robotic arm.
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