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Abstract— We consider the problem of nonlinear stochastic
optimal control. This problem is thought to be fundamentally
intractable owing to Bellman’s “curse of dimensionality”. We
present a result that shows that repeatedly solving an open-
loop deterministic problem from the current state, similar to
Model Predictive Control (MPC), results in a feedback policy
that is O(¢*) near to the true global stochastic optimal policy.
Furthermore, empirical results show that solving the Stochastic
Dynamic Programming (DP) problem is highly susceptible to
noise, even when tractable, and in practice, the MPC-type
feedback law offers superior performance even for stochastic
systems.

Index Terms— Stochastic Optimal Control, Nonlinear Sys-
tems, Model Predictive Control.

[. INTRODUCTION

In this paper, we consider the problem of finite time non-
linear stochastic optimal control. We present a fundamental
result that establishes that repeatedly solving a deterministic
optimal control, or open-loop problem, from the current state,
results in a feedback policy that is O(e*) near-optimal to
the optimal stochastic feedback policy, in terms of a small
noise parameter €. Although near-optimal, empirical evidence
shows that this Model Predictive Control (MPC)-type policy
is the best we can do in practice, in the sense that albeit
the optimal stochastic law should, in theory, have better
performance, solving these problems is highly susceptible to
noise, and in reality, the MPC law gives better performance.
Thus, this result cuts the Gordian knot of the trade-off
between tractability and optimality in stochastic feedback
control problems, showing that, in practice, “what is tractable
is also optimal”. In this paper, we consider the case where a
model is available for the control synthesis, we consider the
case of data-based control in another paper [23].

A large majority of sequential decision making problems
under uncertainty can be posed as a nonlinear stochastic
optimal control problem that requires the solution of an
associated Dynamic Programming (DP) problem, however,
as the state dimension increases, the computational com-
plexity goes up exponentially in the state dimension [3]: the
manifestation of the so called Bellman’s infamous “curse of
dimensionality (CoD)” [2]. To understand the CoD better,
consider the simpler problem of estimating the cost-to-go
function of a feedback policy pu.(-). Let us further assume
that the cost-to-go function can be “linearly parametrized”
as: Ji'(z) = Zgl algi(x), where the ¢;(x)’s are some
a priori basis functions. Then the problem of estimating
JI'(x) becomes that of estimating the parameters a; =
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Fig. 1: Practical optimality of the deterministic nonlinear feedback law i.e. MPC on
stochastic problems. The data shown are results of solving the stochastic optimal
control problem on nonlinear 1-D systems shown in Section V-A using the two
methods. The lines in the plot denote the mean value and the shade denotes the
standard deviation of the corresponding metric. J represents the cost incurred and
€ is a parameter used to modulate the noise level. It is easy to infer from the figures
that in practice, there are no gains in using the stochastic feedback law (i.e. DP) and
in some cases, even unreliable, as seen from the high variance in the performance.

{a},---,aM}. This can be done using numerical quadra-
tures given knowledge of the model, termed Approximate
DP (ADP), or alternatively, in Reinforcement Learning (RL)
[9, 3]. But, as the dimension d increases, the number of basis
functions, and more importantly, the number of evaluations
required go up exponentially. There has been recent success
using the Deep RL paradigm where deep neural networks
are used as nonlinear function approximators to keep the
parametrization tractable [1, 22, 21, 10, 11], however, the
training times required for these approaches, and the variance
of the solutions, is still prohibitive. Hence, the primary
problem with ADP/ RL techniques is the CoD inherent in
the complex representation of the cost-to-go function, and
the exponentially large number of evaluations required for its
estimation resulting in high solution variance which makes
them unreliable and inaccurate.

In the case of continuous state, control and observation
space problems, the Model Predictive Control [13, 19] ap-
proach has been used with a lot of success in the control
system and robotics community. For deterministic systems,
the process results in solving the original DP problem
in a recursive online fashion. However, stochastic control
problems, and the control of uncertain systems in general,
is still an unresolved problem in MPC. As succinctly noted
in [13], the problem arises due to the fact that in stochastic
control problems, the MPC optimization at every time step
cannot be over deterministic control sequences, but rather has
to be over feedback policies, which is, in general, difficult
to accomplish since a tractable parameterization of such
policies to perform the optimization over, is, in general,
unavailable. Thus, the tube-based MPC approach, and its
stochastic counterparts, typically consider linear systems [5,
20, 14] for which a linear parametrization of the feedback
policy suffices but the methods become intractable when
dealing with nonlinear systems [15]. In more recent work,



event-triggered MPC [8, 12] keeps the online planning
computationally efficient by triggering replanning in an event
driven fashion rather than at every time step. We note that
event-triggered MPC inherits the same issues mentioned
above with respect to the stochastic control problem, and
consequently, the techniques are intractable for nonlinear
systems.

The basic issue at work above is that, albeit solving

the open-loop problem via the Minimum Principle [4] is
much easier, solving for the optimal feedback control under
uncertainty requires the solution of the DP equation, which
is intractable. Moreover, this also begs the question, since
all systems are subject to uncertainty, what is the utility of
deterministic optimal control?
Contributions: In this work, we establish that the basic MPC
approach of solving the deterministic open-loop problem at
every time step results in a near-optimal policy, to O(e?*),
for a nonlinear stochastic system. The result uses a pertur-
bation expansion of the cost-to-go function in terms of a
perturbation parameter €. We show the global optimality of
the open-loop solution obtained by satisfying the Minimum
Principle using the classical Method of Characteristics [6]
thereby establishing that the MPC feedback law is indeed
the optimal deterministic feedback law. We also obtain the
true linear feedback gain equations of the optimal deter-
ministic policy as a by-product, which shows it to be very
different from the Riccati equation governing a typical LQR
perturbation feedback design [4]. Finally, albeit the MPC
law is only “near-optimum”, our empirical evidence shows
that this deterministic law has better performance than the
optimal stochastic law, even for stochastic systems where
the DP problem can be solved numerically, showing the
susceptibility of the DP problem to noise. Thus, in practice,
the MPC law is optimal.

The rest of the document is organized as follows: Sec-
tion II states the problem, Sec. III presents three fundamental
results that represent the three legs of the stool that supports
the fact that the MPC feedback law is near-optimal, which is
established in Sec. IV. We illustrate our results empirically
in Sec. V using simple 1-dimensional examples for which
the stochastic DP problem can be solved, and more practical
examples from nonlinear robotic planning.

II. PROBLEM FORMULATION

The following outlines the finite time optimal control
problem formulation that we study in this work.

a) System Model: For a dynamic system, we denote
the state and control vectors by z; € X C R™ and u; €
U C R"™ respectively at time ¢. The motion model h :
Xx U x R" — X is given by the equation

Tt41 = h(wuut,éwt); wt ~ N(O7Ewt), (1)

where {w;} are zero mean independent, identically dis-
tributed (i.i.d) random sequences with variance X,,,, and e
is a parameter modulating the noise input to the system.

b) Stochastic optimal control problem: The stochastic
optimal control problem for a dynamic system with initial
state x is defined as:

T—1
JT(* (xo) = Irgn E Z C(iftﬂrt(xt)) + CT(.TT) , (2
t=0
s.t. ey = h(xg, m(x), ewy), where, the optimization is
over feedback policies 7 := {mp,m1,...,77—1} and m:(-):
X — U specifies an action given the state, u; = m(x¢);
J™ () : X — R is the cost function on executing the optimal
policy 7*; ¢¢(+, ) : Xx U — R is the one-step cost function;
cr(+) : X — R is the terminal cost function; 7" is the horizon
of the problem.

III. A PERTURBATION ANALYSIS OF OPTIMAL
FEEDBACK CONTROL

In order to derive the results in this section, we need
some additional structure on the dynamics. In essence, the
results in this section require that the time discretization of
the dynamics be small enough. Thus, let the dynamics given
in Eq.(1) be written in the form:

1 = e + (f(xe) + g(ae)ug) At + cw VAL, (3)

where € < 1 is a perturbation parameter, w; is a white noise
sequence, and the sampling time At is small enough that
the O(At®) terms are negligible for o« > 1. The noise term
above stems from Brownian motion, and hence the /At
factor. We also assume that the instantaneous cost c(-,-) has
the following simple form, c(z,u) = (I(z) + Fu'Ru)At,
where R is symmetric and R > 0. The main reason to use the
above assumptions is to simplify the Dynamic Programming
(DP) equation governing the optimal cost-to-go function of
the system developed in section III-B.

A. Characterizing the Performance of a Feedback Policy

Let us consider a noiseless version of the system dynamics
given by (3), obtained by setting w; = 0 for all ¢: Z,y; =
Ty + (f(Z) + g(Z¢)ur) At, where we denote the “nominal”
state trajectory as Z; and the “nominal” control as u;, with
Uy = my(Z4), and IT = {m; }7,* is a given control policy.

Assuming that f(-) and 7:(-) are sufficiently smooth, we
can expand the dynamics about the nominal trajectory using
a Taylor series. Denoting dx; = x; — Ty, duy = uy — Uy, We
can express,

556,54.1 = Atdmt + Btéut + St(ésct) “+ ewyV At, (4)

5ut = Kt(sxt + St((sxt)v (5)
where A: = I xn, + Wlitﬂ“ B =
thm = g(z¢)At, Ky = %bw and Sy (-), Si(")

are second and higher order terms in the respective
expansions. Similarly, we can expand the instantaneous cost
¢(x¢,uy) about the nominal values (T, u;) as,

oz, w) = (l(ft) + LSz + Hy(0xy)+
1 1
ia;Rat + duy Riig + §6u;R5ut)At, (6)
cr(zr) = er(Zr) + Cpdxr + Hy(dzr), (7)



where Ly = 2L|;,, Cr = %25, and Hy(-) and Hyp(-) are
second and higher order terms in the respective expansions.
Using (4) and (5), we can write the closed-loop dynamics

of the trajectory (6x;)7_; as,

5It+1 = (Af + Bth) 55615 + Btgt((;mt) =+ St(gxf)
~—_——

Ay St (5371,)

+ ewy \/E7 (8)

where A, represents the linear part of the closed-loop sys-
tems and the term S;(-) represents the second and higher
order terms in the closed-loop system. Similarly, the closed-
loop incremental cost given in (6) can be expressed as

Ct ét
H,(8x). Therefore, the cumulative cost of any given closed-
loop trajectory (z4,u;)l_; can be expressed as, J™ =
Z;T:_ll c(xg,ur = me(x)) + er(ar), which can be written
in the following form:

T
JW:Z@+

t=1

T B T _
Z C’téxt + Z Ht((;xt), (9)
t=1 t=1

where ¢r = cr(Z7),Cr = Cr.

We first show the following critical result. Note: Due to
paucity of space, the proofs for the results shown here are
given in the extended version’s appendix [16].

Lemma 1: Given any sample path, the state perturbation
equation given in (8) can be equivalently characterized as

oxy = (Szljff + e4, 5mé+1 = /L/foi + ewy VAL (10)

where ¢; is an O(e?) function that depends on the entire noise
history {wq,ws,---w;} and éx! evolves according to the
linear closed-loop system. Furthermore, e; = 62(52) + O(e?),
where ¢\” = A,_1e!?; + 621 5P 521, ) = 0, and SV
represents the Hessian corresponding to the Taylor series
expansion of the function S, (-).

Next, we have the following result for the expansion of
the cost-to-go function J™.

Lemma 2: Given any sample path, the cost-to-go under a
policy can be expanded about the nominal as:

J" = Z Ct+ Z Cyoxt + Z in'H§2)5xi + C'te?) +0(é%),
t t t
Jm 8JT 8JF

where Ht(Q) denotes the second order coefficient of the Taylor
expansion of Hy(-).

Now, we show the following important result.

Proposition 1: The mean of the cost-to-go function J™
obeys: E[J™] = J™0 + 2J™! + €tJ™2 + R, for some
constants J™*, k = 0,1,2, where R is o(e?), ie.,
lim,_,g e *R = 0. Furthermore, the term .J™° arises solely
from the nominal control sequence while J™! is solely
dependent on the nominal control and the linear part of the
perturbation closed-loop.

Remark 1: The physical interpretation of the result above
is as follows: it shows that the €® term, J™°, in the cost,
stems from the nominal action of the control policy, the €2
term, J™!, stems from the linear feedback action of the
closed-loop, while the higher order terms stem from the
higher order terms in the feedback law. In the next section,
we use DP, to find the equations satisfied by these terms.

B. A Closeness Result for Optimal Stochastic and Determin-
istic Control

The DP equation for the optimal control problem on the
system in Eq.(3) is given by:

Je(2) = min{c(z, ur) + E[Jp1 ()]}, (11
where o' = z + f(x)At + g(x)u; At + ewv/At and Jy(x)
denotes the cost-to-go of the system given that it is at state
z at time t. The above equation is marched back in time
with terminal condition Jr(x) = cr(x), and cp(-) is the
terminal cost function. Let u;(-) denote the corresponding
optimal policy. Then, it follows that the optimal control u;
satisfies (since the argument to be minimized is quadratic in
Uy)

uy =—R7'g'Jl 4, (12)

where J | = 6{3{‘;1 . Further, let uf(-) be the optimal control

policy for the deterministic system, i.e., Eq. (3) with € =
0. The optimal cost-to-go of the deterministic system, ¢, (-)
satisfies the deterministic DP equation:

dr(w) = minfe(z,w) + Guy ()], (13)
where ' = = + (f(x) + g(x)us)At. Then, identical to the
stochastic case, uf = —R™'g’¢?. Next, let () denote the
cost-to-go of the deterministic policy when applied to the
stochastic system, i.e., uf applied to Eq. (3) with € > 0. The
cost-to-go ¢ (+) satisfies the policy evaluation equation:

pr(x) = c(z, u(2)) + Elpea(a”)],

where now ' = z+ (f(z) +g(2)ud(x)) At + ew;v/At. Note
the difference between the equations (13) and (14). Then, we
have the following key result. An analogous version of the
following result was originally proved in a seminal paper [7]
for first passage problems. We provide a simple derivation
of the result for a finite time final value problem below.

Proposition 2: The cost function of the optimal stochastic
policy, J;, and the cost function of the “deterministic policy
applied to the stochastic system”, ¢, satisfy: Jy(z) =
J0(2) + M @) + T2 (x) + -, and @i(z) = () +
€20} (x) + e*p?(z) + - - - . Furthermore, J) (x) = ¢Y(x), and
J} = ¢t (z), for all ¢, z.

(14)

C. A Perturbation Expansion of Deterministic Optimal Feed-
back Control: the Method of Characteristics (MOC)

In this section, we will use the classical Method of Char-
acteristics to derive some results regarding the deterministic
optimal control problem, and in particular, regarding the
open-loop solution [6]. In particular, we will show that



satisfying the Minimum Principle is sufficient to assure us
of a global optimum to the open-loop problem. We shall
also do a perturbation expansion of the DP equation around
the Characteristic curves to obtain the equations governing
the linear feedback term, and show that this gain is entirely
different from an LQR design. Since the classical MOC
is derived in continuous-time, we derive the following
results in continuous-time, the extension to the discrete-
time case is given in [16]. Also, for simplicity, we derive
the following for the case of a scalar state and control,
please see [16] for the vector case.

Let us recall the Hamilton-Jacobi-Bellman (HJB) equation
in continuous-time under the same assumptions as above, i.e.,

quadratic in control cost ¢(z,u) = I(z) + $ru?, and affine
in control dynamics & = f(z) + g(x)u [4]:
oJ lg*
ey N R —) 15
o Tl T f 15)

where J = Ji(z), J, = 5=, and the equation is integrated
back in time with termlnal COIldlthIl Jr(xr) = er(xr).
Define % = p, J. = ¢, then the HIB can be Written as

F(t,z,J,p,q) =0, where F(t,z,J,p,q) = p+1— 2 ,7(] +
fq. One can now write the Lagrange-Charpit equations [6]
for the HIB as:

92
i=F,=f-"q¢ (6
T
G=—F—qF; =+ %~ f7q, (1)

with the terminal conditions z(T") = zp, ¢(T) = & (zr),

oF OF . 89 jx _ 0 bl

where F, a_ L F, = al; gfza—g,l*"zi,f”ﬁ:—f
cr

and ¢y = L.

Given a terminal condition zr, the equations above can be
integrated back in time to yield a characteristic curve of the
HJB PDE. Now, we show how one can use these equations
to get a local solution of the HIB, and consequently, the
feedback gain Kj.

Suppose now that one is given an optimal nominal tra-
jectory T, t € [0,7] for a given initial condition g,
from solving the open-loop optimal control problem. Let
the nominal terminal state be zr. We now expand the
HJB solution around this nominal optimal solution. To this
purpose, let z; = Ty + dxy, for t € [0, T]. Then, expanding
the optimal cost function around the nominal yields: J(z;) =
jt + Gtéa?t + 1Pt(5£? + L where jt = Jt(.’ft),Gt =
8” L P = \it. Then, the co-state ¢ = (%It =G+
P, t 5$t + -

For simplicity, we assume that g® = 0 (this is relaxed but
at the expense of a rather tedious derivation shown in the
appendix of [16]). Hence,

2

d
%(ft‘i’él‘t): f(-ft‘i’(sxt) —i(Gt+Pt6$t+),
— r

Gty (fetfEoTet-)

= _ = E) . .
where ft.: f (x?), F= 67{2\@. Expandmg in powers Of. the
perturbation variable dx;, the equation above can be written

. — 2 .
as (after noting that z, = f; — %Gt due to the nominal
trajectory T, satisfying the characteristic equation):

Mf4ﬁf§ﬂwm+mmﬂ (18)
Next, we have: % =—l, — fzq
7 (Gt + Pidzy+ ) = —(IF + 176wy + )
—(ff + ffo0xy + - )(Gy + Piday + -+, (19)
where frr o= 3z2 |zf,l"” = |m”l_” = |I, Using

Ptéact = P,6x; + P,oxy, substltuting for (5th from (18),
and expandmg the two sides above in powers of dz; yields:

Gi+ (P4 P (f} **Pf))&ﬁﬂr —(F+fE G — (I +
fEP+ f7Gy)oa, + -
Equating the first two powers of dx; yields:
Q+F+ﬁ@:o (20)
+IT+ Pff + [P P - Pt‘i‘ftmG =0. @D

The optimal feedback law is given by: us(z;) = 4+ Kidxi+
O(6xz7), where K; = —2P,.

Now, we provide the final result for the general vector
case, with a state dependent control influence matrix (please
see [16] for details). Let the control influence matrix be

g1(z) - gi (x)
gives as: § = =
, gn (@) -+ gh (@)

i.e., IV represents the control influence vector correspond-
ing to the ;" input. Let G; = G(%;), where {Z;} rep-
resents the optimal nominal trajectory. Further, let F =

[Fl(x) .. .rp(x)],

[fi(z)- fa(z)]" denote the drift/ dynamics of the system.
Let Gy = [G} - GP]T, and R™1GI Gy = —[u} - - u}]T, de-
note the optimal nominal co-state and control vectors respec-
of1
3I1 e Bz,,
tively. Let F}' = , |z,,» and similarly T'J* =
oxq Oxp
2fhH .. _9h
0x10x; 0xy, 0T,
V.I'|z,. Further, define: 7™ = |2,
%fn .. _0%fn
Ox10x; 0T, 0T -
and I‘j 2@, similarly for the vector function I'/, and G;*
391 .. 297
al'i 6%
|z, Finally, define A, = F¥ + 325, T 4],
99y . . 59n

oz;

L¥ =V, l|wt, and L?* = V2 _l|3,.

Proposition 3: Given the above definitions, the following
result holds for the evolution of the co-state/ gradient vector
G}, and the Hessian matrix P;, of the optimal cost function
Ji(x¢), evaluated on the optimal nominal trajectory Z;,t €



[0,T7:
G+ L+ ATG, =0,
P, + AT P, + P A, + L2®

(22)

n p
D [F Y TP a])GE - KTRK, =0, (23)
i=1 j=1

Ky=-R'[> G/"TG+ G P,

i=1

(24)

with terminal conditions Gy = V,cr|z,., and Pr =
V2 crlz, and the control input with the optimal linear
feedback is given by u; = uy + K;dz;.

Remark 2: Not LQR. The co-state equation (22) above is
identical to the co-state equation in the Minimum Principle
[4, 18]. However, the Hessian P, equation (23) is Riccati-like
with some important differences: note the extra second order
terms due to F;*" and ['y™" in the second line stemming
from the nonlinear drift and input influence vectors and an
extra term in the gain equation (24) coming from the state
dependent influence matrix. These terms are not present in
the LQR Riccati equation, and thus, it is clear that this cannot
be an LQR, or perturbation feedback design (Ch. 6, [4]). If
the input influence matrix is independent of the state, the
first term in the second line remains, and hence, it is still
different from the LQR case.

Remark 3: Convexity and Global Minimum. Recall the
Lagrange-Charpit equations for solving the HIB (16), (17).
Given an unconstrained control, from the theory of the MOC
(under standard smoothness assumptions on the involved
functions), the characteristic curves are unique, and do not
intersect. Therefore, the open-loop optimal trajectory, found
by satisfying the Minimum Principle is also the unique global
minimum even though the open-loop problem is non-convex.
This observation is formalized in the following result.

Proposition 4: Global Optimality of open-loop solution.
Let the cost functions I(-), c¢r(-), the drift f(-) and the
input influence function g(-) be C?, ie., twice continuously
differentiable. Then, an optimal trajectory that satisfies the
Minimum Principle from a given initial state x, is the unique
global minimum of the open-loop problem starting at the
initial state xg.

IV. THE NEAR-OPTIMALITY OF MODEL
PREDICTIVE CONTROL

Consider now a Model Predictive approach to solving
the stochastic control problem. We outline the algorithmic
procedure below to highlight that our advocated procedure is
slightly different from the traditional MPC approach studied
in the literature [13, 19].

Remark 4: In traditional MPC [13, 19], the horizon H
to solve the open-loop problem over is fixed. The setting is
deterministic, and the necessity of replanning for the problem
stems from the assumption that the actual problem horizon
is infinite. In lieu, our problem horizon is finite, the repeated
replanning takes place over progressively shorter horizons,
and the setting is stochastic.

Algorithm 1: Shrinking Horizon MPC

1 Given: initial state xq, time horizon T', cost
c(z,u) = l(z) + $ru?, and terminal cost cp(z).
2 Set H="T, x; = xg.
3 while 7 > 0 do
1) Solve the open-loop (noise free) optimal control
problem (Eq. 2) for initial state z; and horizon H.
Let optimal sequence U* = {ug, u1, - ,up_1}-
2) Apply the first control ug to the stochastic
system, and observe the next state x,,.
3 set H=H -1, z; = z,.

4 end

Theorem 1: Near-Optimality of MPC. The MPC feedback
policy obtained from the recursive application of the MPC
algorithm is near-optimal to O(e*) to the optimal stochastic
feedback policy for the stochastic system (3).

Proof: We know that J?(x) = ¢¥(z), and J}(z) =
¢+ (z) from Proposition 2, for all (¢,z). Owing to the
uniqueness and global optimality of the open-loop from
Proposition 4, it follows that the nominal control sequence
found by the MPC procedure coincides with the nominal
action of the optimal deterministic feedback law for any state
z and any time t. Therefore, the result follows. |

A further important practical consequence of Theorem 1
is that we can get performance comparable to MPC, by
wrapping the optimal linear feedback law around the nominal
control sequence (u; = u; + K;dxy), and replanning the
nominal sequence only when the deviation is large enough.
This is similar to the event driven MPC philosophy [8, 12].
This event driven replanning approach is also demonstrated
in the next section.

V. EMPIRICAL RESULTS

This section is divided into two subsections. Subsection V-
A shows the practical optimality of MPC and Subsection V-B
shows the near-optimality of the linear feedback law and the
effect of replanning in robotic planning problems.

A. Comparison of Stochastic DP and MPC: 1-D problems

The following two 1-D systems are considered to test the
optimality of MPC on stochastic systems by comparing it to
the DP solution (For more details related to the implemen-
tation of DP, see [16]).

System 1: x4y = 2 + (—cos(x;) + u) At + ewV/At,
System 2: x4 41 = 24+ (—1—227 —0.523 +u;) At Fews VAL

One can infer from Fig. 1 that MPC, equivalently de-
terministic DP (DP with € = 0.0) actually performs better
than its stochastic counterpart even for non-zero noise. Thus,
there are no significant gains (in some cases makes it worse)
when solving the stochastic DP problem, in practice, even
for simple cases such as these. The closeness between the
DP solution and MPC also adds empirical evidence to the
result in Proposition 4, that there is only a unique global
optimum for the open-loop when working with cost func-
tions and dynamics that are quadratic and affine in control,
respectively.



B. Robotic Planning problems
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(a) Cost comparison. (b) Frequency of replanning.

Fig. 2: Cost evolution over a feasible range of € for a car-like robot system, where €
is a measure of the noise in the system. Note that the performance of T-PFC is close
to MPC for a wide range of noise levels (¢ < 0.4) but the cost and more importantly
the standard deviation of the cost is seen to be larger than MPC as noise increases.
T-PFC2 performs very similar to MPC, i.e. the mean and the standard deviation of
the cost of T-PFC2 matches that of MPC, achieving it by replanning efficiently as
seen in the subfigure (b). The key takeaways are: 1) the optimal policy for finite
horizon stochastic optimal control problem is to use MPC as opposed to MPC-FH
which is catastrophically off, 2) Significant gain in computation is achieved by using
the linear feedback policy T-PFC/T-PFC2 without much loss in performance. The car-
like robot considered has the motion model described by @+ = vy cos(0¢), Yt =
v sin(6y), 0y = U—Lt tan(¢¢), ¢+ = we and is discretized using forward Euler. The
cost function used is ¢(z, u) = 1/2(z'Qz + u’ Ru)At, cr(z) = (1/2)z' Qrz,
At = 0.01s, Horizon = 30, Planning Horizon for MPC-FH = 5, Replanning threshold
for T-PFC2 = 20%.

This section shows empirical results obtained by designing

the feedback policy - dubbed Trajectory optimized Pertur-
bation Feedback Controller (T-PFC) [17] - as discussed in
section III-C and IV for a car-like robot tasked to move from
an initial state to a goal state within a finite time. Experiments
on other nonlinear systems are shown in [16]. We also
show the performance of our MPC and compare it with the
traditional MPC, dubbed MPC-Fixed Horizon (MPC-FH).
MPC-FH, unlike MPC, plans for a short horizon repeatedly
rather than the full time horizon (as outlined in Section IV).
In addition to that, we also show the performance of T-PFC2
which is simply T-PFC with cost triggered replanning, i.e.
if the run time cost deviates beyond a threshold from the
nominal cost, a new nominal is generated from the current
state for the remainder of the horizon.
It is evident from Fig. 2 that solving MPC for the en-
tirety of the horizon gives the best possible solution and
is significantly better than MPC-FH. It also shows that
significant computational savings can be achieved without
losing optimality if the linear feedback policy (T-PFC/T-
PFC2) is used especially in low noise cases.

VI. CONCLUSION

In this paper, we have considered the problem of stochastic
nonlinear control. We have shown that recursively solving the
deterministic optimal control problem from the current state,
a la MPC, results in a near-optimum policy to fourth order in
a small noise parameter, and in practice, empirical evidence
shows that the MPC law performs better than the law ob-
tained by computationally solving the stochastic DP problem.
An important limitation of the method is the smoothness of
the nominal trajectory such that suitable Taylor expansions
are possible, this breaks down when trajectories are non-
smooth such as in hybrid systems like legged robots, or

maneuvers have kinks for car-like robots such as in a tight
parking application. It remains to be seen as to if, and
how, one may extend the result to such applications that are
piecewise smooth in the dynamics.
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