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Abstract: The sphericalization procedure converts a Euclidean space into a compact sphere. In this note
we propose a variant of this procedure for locally compact, recti�ably path-connected, non-complete, un-
bounded metric spaces by using conformal deformations that depend only on the distance to the boundary
of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but
transforms the space into a bounded domain. We will show that if the original metric space is a uniform
domain with respect to its completion, then the transformed space is also a uniform domain.
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1 Introduction
The stereographic projection identi�es the one-point compacti�ed complex plane with the unit sphere, and
this identity has been exploited in the study of analytic functions and conformal maps between planar re-
gions and their behavior at in�nity. Higher dimensional stereographic projections also identify the one-point
compacti�cation of Rn with the n-dimensional unit sphere in Rn+1. The work of [5, 6] formulated a fruitful
generalization of stereographic projection tomore general metric spaces, and this formulation has been used
in the literature to study Gromov hyperbolic spaces, uniform domains, and quasi-Möbius maps, see for ex-
ample [2, 5, 6, 8, 9, 11–13, 17]. A metric space inversion about a point p in a metric space X turns a bounded
metric space X \ {p} into an unbounded metric space, and the sphericalization of X with respect to the base
point p ∈ X turns an unbounded metric space X into a bounded space whose completion is topologically
the one-point compacti�cation of X. It was also shown in [6] that the sphericalization and inversion oper-
ations of uniform domains yield uniform domains. Moreover, they show that if the metric space satis�es a
geometric condition called annular quasiconvexity, then there is control over how the uniformity constant is
transformed by these operations.

Apart from the study of quasiconformal geometry (see [4, 16] for a tiny sampling of o�erings from this
line of enquiry), uniform domains also play a key role in potential theory as uniform domains in a complete
doubling metric measure space supporting a p-Poincaré inequality are also known to support a p-Poincaré
inequality [3] and admit a description of traces of Sobolev-class functions on the domain as belonging to
certain Besov classes [15]. Hence, much of the potential theory and Dirichlet problems on smooth domains
are extendable to uniform domains. An additional sampling of the vast literature on potential theory related
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to uniform domains can be found in [1, 14]. For these reasons, a systematic study of metric transformations
that preserve the uniform domain property is desirable, and the goal of the present note is to contribute to
this study.

While sphericalization and inversion are analogues of stereographic projection and its inverse, these
operators distort themetric on X everywhere, including near the boundary of X if X is not complete. In certain
circumstances we would wish not to distort the metric, at least locally, near the boundary of X; for example,
if X is a uniform domain (and hence is locally compact but non-complete), we would wish to preserve the
local nature of the metric on X near ∂X := X \ X, where X denotes the completion of X, while transforming
X into a bounded space. Such transformation is desirable if we are interested in studying boundary-value
problems on X in terms of boundary value problems on bounded domains (see for example [7]) and so �nd
information about growth-at-in�nity behavior of solutions in the unbounded domain. The purpose of this
note is to propose a range of modi�cations of the sphericalization procedure of [6] so that the modi�cation
does not perturb the inner length metric, locally, near ∂X. Here, by the inner length metric, we mean the
metric dinn given by dinn(x, y) = infγ `d(γ), where the in�mum is over all curves in Ω with end points x and y.

To this end, we consider (Ω, d) to be a locally compact, non-complete metric space such that Ω is a uni-
form domain in Ω (that is, Ω is a uniform space in the language of [4]). We also �x a monotone decreasing
continuous function φ : (0,∞)→ (0,∞) such that φ(t) = 1 when 0 < t ≤ 1,

∞∫
0

φ(t) dt < ∞,

and there is a constant Cφ ≥ 1 such that we have φ(t) ≤ Cφ φ(2t) for all t > 0. As Ω is a uniform domain, it is
recti�ably connected, that is, pairs of points in Ω can be connected by curves in Ω of �nite length. Hence, we
use φ to construct a new metric dφ on Ω by setting

dφ(x, y) := inf
γ

∫
γ

φ ◦ dΩ ds,

with the in�mum ranging over all recti�able curves in Ω with end points x, y ∈ Ω. Here,
∫
γ
h ds :=∫

γ
h(γ(·)) ds is the path integral with respect to the arc-length parametrization of the recti�able curve γ, see

for example [10, Chapter 5]. In the above, dΩ is de�ned by dΩ(x) = dist(x, ∂Ω), see De�nition 2.1 below.
We will show in Section 2 that dφ and d are locally bi-Lipschitz near ∂Ω and that the completion of Ω

with respect to dφ is topologically a one-point compacti�cation of Ω. We denote Ωφ := Ω ∪ ∂Ωφ \ ∂Ω, where
Aφ is the completion of A ⊂ Ω with respect to the metric dφ. The following is the main theorem of this note.

Theorem 1.1. The domain Ωφ, equipped with the metric dφ, is a uniform domain with ∂Ωφ = ∂Ω and unifor-
mity constant depending only on the constant Cφ and the uniformity constant CU associated with the metric d.
Furthermore, the natural identity map I : Ω → Ωφ \ {∞} is a local bi-Lipschitz map, and it is also uniformly
locally bi-Lipschitz near ∂Ω. If Ω is a length space, then I is a local isometry near ∂Ω.

One additional advantage of the above is that we do not need annular quasiconvexity of Ω with respect
to the metric d in order to gain quantitative control over the uniformity constant with respect to the metric
dφ.

We end the discussion in this section by describing a simple illustrative example. Recall that the upper
half-planeΩ := R×(0,∞) is a uniformdomain and that the sphericalizationprocedure onΩ gives an isometric
copy of a spherical cap in S2. Fixing β > 1, with the choice of φ(t) = t−β for t > 1 and φ(t) = 1 for 0 < t ≤ 1,
we have that as a set, Ωφ = (R × (0,∞)) ∪ {∞}. Note that the Euclidean boundary ∂Ω = R × {0}. For each
z ∈ R × {0}, a calculation shows that dφ(z,∞) = β

β−1 , and so∞ is not an accumulation point (with respect to
the metric dφ) ofR × {0}; this is in contrast to the sphericalization of Ω, which has an accumulation point of
R × {0}. Note also that for each z ∈ R × {0}we have that dφ(z, z + 1) = 1, and hence, in this example, Ωφ

φ is
not compact.

The above example illustrates the fact that givenΩ and φ as in this note, there is a positive distance (with
respect to the metric dφ) between∞ and ∂Ωφ = ∂Ω; see Lemma 2.6 and its proof below.
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2 Preliminaries
Consider an unboundedmetric space (Ω, d)with completion Ω and boundary ∂Ω := Ω \Ω. We say that Ω is a
uniform domain if it is locally compact and non-complete, and there exists a constant CU ≥ 1 for which each
pair x, y ∈ Ω with x ≠ y can be connected by a CU -uniform curve γ. That is, γ satis�es the following:

• its length (with respect to the metric d) satis�es `d(γ) ≤ CU d(x, y);
• for each z in the trajectory of γ, we have

min{`d(γx,z), `d(γz,y)} ≤ CU dist(z, ∂Ω).

By increasing the value of CU if need be, we can assume that subcurves of uniform curves are also uni-
form, see [4]. Moreover, for each point ζ ∈ ∂Ω and x ∈ Ω we can �nd a CU -uniform curve γ : [0, L)→ Ω such
that γ(0) = x and limt→L− γ(t) = ζ .

More generally, given x ∈ Ω and ζ ∈ ∂Ω, we say that a curve β : [0, L) → Ω has end points x and ζ with
respect to the metric d if β(0) = x and limt→L− β(t) = ζ , the limit being taken with respect to d.

De�nition 2.1. For x ∈ Ω, we set dΩ(x) := dist(x, ∂Ω). We let

Ω0 := {x ∈ Ω : dΩ(x) ≤ 1},

and, for positive integers n, we set

Ωn := {x ∈ Ω : 2n−1 < dΩ(x) ≤ 2n}.

Note that Ω = ⋃∞n=0 Ωn.
We�x amonotone decreasing continuous functionφ : (0,∞)→ (0,∞) such thatφ(t) = 1when0 < t ≤ 1,

there is a constant Cφ ≥ 1 such that we have φ(t) ≤ Cφ φ(2t) for all t > 0, and
∞∫
0

φ(t) dt < ∞.

This condition ensures, by quasiconvexity of Ω, that the metric space (Ωφ , dφ) is bounded, see Lemma 2.10.
The above condition is equivalent to the condition we will use frequently in this note:

∞∑
n=0

2n φ(2n) < ∞. (2.2)

The prototype function φ to keep in mind is φ(t) = t−β for some β > 1 when t > 1, or φ(t) = t−β(1 + log(t))−κ
for some β > 1 and κ > 0 when t > 1. The �rst prototype function is used in [7, Section 7] to convert an
unbounded uniform domain Z × [0,∞), with Z a compact length space, into a bounded uniform domain.

Standing assumptions: In summary, we will assume that (Ω, d) is an unbounded uniform domain and that
subcurves of all uniform curves are also uniform. Moreover, φ : (0,∞) → (0,∞) is a monotone decreasing
function such that φ(t) = 1 for t ≤ 1,

∫∞
0 φ(t) dt is �nite, and there is a constant Cφ ≥ 1 such that for all t > 0

we have φ(t) ≤ Cφ φ(2t).
We use φ to, in the language of [4], dampen the metric d on Ω by modifying it to dφ. We de�ne this new

metric by setting
dφ(x, y) := inf

γ

∫
γ

φ ◦ dΩ ds =: inf
γ

∫
γ

φ(dΩ(γ(t))) dt,

with the in�mum ranging over all recti�able curves γ in Ω with end points x and y; we consider the arc-
length (with respect to the original metric d) parametrization of γ. As φ(t) ≤ 1 for all t > 0, we have that
dφ(x, y) ≤ CUd(x, y) whenever x, y ∈ Ω.
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Now we have two identities for the set Ω; namely, (Ω, d) and (Ω, dφ). Since φ = 1 on Ω0, both metrics d
and dφ extend as metrics to Ω ∪ ∂Ω. We will show this below in Lemma 2.6.

We denote Ωφ := Ω ∪ ∂Ωφ \∂Ω, where Aφ is the completion of A ⊂ Ωwith respect to themetric dφ. First,
we show in the following lemma that there is only one point in the completion of Ω with respect to dφ that is
not in the completion of Ω with respect to d. Denoting this point by∞, it follows that Ωφ = Ω ∪ {∞}.

Lemma 2.3. There is a sequence in Ω that is Cauchy with respect to the metric dφ but not with respect to d. Any
two dφ-Cauchy sequences that are not d-Cauchy sequences must be equivalent with respect to the metric dφ.

Proof. We �x x0 ∈ Ω2, and we choose xj ∈ Ωj for each integer j ≥ 3. Let βj be a CU -uniform curve in Ω with
end points x0, xj. Since Ω is locally compact, we can exhaust Ω by a sequence of proper subdomains Dk of Ω
such that x0 ∈ Dk b Dk+1. Here Dk b Dk+1 means that the closure of Dk is a compact subset of Dk+1. By the
Arzelà-Ascoli theorem, we can then �nd a curve β∞ and a subsequence of βj, also denoted βj, such that for
each k the segments of the curves βj lying in Dk converge uniformly to the segment of β∞ in Dk. Since each
βj is a CU -uniform curve, so is β∞ and each of its subcurves.

We now use β∞ to construct a sequence that is Cauchy with respect to dφ but not Cauchy with respect to
d. Since d(x0, xj) → ∞, it follows that `d(βj) → ∞ as j → ∞, and so `d(β∞) = ∞. Hence, by the uniformity
of β∞, we know that for each j ≥ 3 the curve β∞ intersects Ωj. For each j ≥ 3, we set yj = β∞(tj) to be the �rst
time β∞ intersects Ωj. Then for each m ∈ N, d(yj , yj+m) ≥ 2j+m−1 − 2j, showing that (yj)j is not Cauchy with
respect to d. Let γj be a subcurve of β∞ with end points yj and yj+1. Then, as φ is monotone decreasing, we
have

dφ(yj , yj+1) ≤ `φ(γj) =
∫
γj

φ(dΩ(γj(t))) dt ≤ φ(2j/CU)`d(γj) ≤ φ(2j/CU) CUdΩ(yj+1) ≤ 2CU 2jφ(2j/CU).

By the reverse doubling property ofφ, and from the above inequality it follows that there is a positive constant
C depending solely on CU and Cφ such that

dφ(yj , yj+1) ≤ C 2jφ(2j).

It follows that for each j ≥ 3 and m ∈ N,

dφ(yj , yj+m) ≤ C
j+m−1∑
n=j

2nφ(2n).

The above inequality and (2.2) guarantee that the sequence (yj)j is Cauchy with respect to dφ.
Let (zj)j be another sequence in Ω that is Cauchy with respect to dφ but not with respect to d. Then we

know that limj dΩ(zj) =∞. Indeed, if there is some k0 ∈ N such that each zj ∈
⋃k0
n=0 Ωn, then for j, k ∈ N and

γ any curve connecting zj and zk with `φ(γ) ≤ 11
10dφ(zj , zk) we have either that γ lies in ⋃k0+1

n=0 Ωn, in which
case

`φ(γ) =
∫
γ

φ(dΩ(γ(t))) dt ≥ φ(2k0+1)`d(γ) ≥ φ(2k0+1)d(zj , zk),

or else that γ intersects Ωk0+2, in which case

`φ(γ) ≥
∫

γ∩Ωk0+1

φ(dΩ(γ(t))) dt ≥ φ(2k0+1)`d(γ ∩ Ωk0+1) ≥ 2
k0φ(2k0+1).

In both of these cases, we get that lim supj,k→∞ dφ(zj , zk) > 0, violating the dφ-Cauchy property.
To complete the proof of the lemma, we show that (zj)j is dφ-equivalent to (yj)j, that is, limj dφ(zj , yj) = 0.

Since limj dΩ(zj) = ∞ and limj dΩ(yj) = ∞, for each integer m ≥ 2 both zj and yj belong to ⋃∞n=m Ωn for
su�ciently large j. So, for su�ciently large j, with αj a CU -uniform curve in Ω with end points zj and yj, let
αj : [0, L] → Ω be the standard arclength parametrization of αj (with respect to the metric d). Then with n0
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the positive integer for which 2n0−1 < CU ≤ 2n0 ,

`φ(αj|[0,L/2]) =
∞∑

n=m−n0
`φ(αj ∩ Ωn) ≤

∞∑
n=m−n0

φ(2n)`d(αj ∩ Ωn)

≤
∞∑

n=m−n0
φ(2n) CU 2n .

An analogous treatment of αj|[L/2,L] then tells us that

`φ(αj) ≤ 2 CU
∞∑

n=m−n0
2n φ(2n),

which goes to zero as m →∞ by (2.2).

Remark 2.4. Here, and in the rest of the paper, n0 is the positive integer such that 2n0−1 ≤ CU < 2n0 . The
above proof also yields an additional property, namely, that if y, z ∈ ⋃∞n=m Ωn for some m ≥ n0, then with γ a
CU -uniform curve with end points x and y, we have

dφ(y, z) ≤ `φ(γ) ≤ 2 CU
∞∑

n=m−n0
2n φ(2n).

Remark 2.5. From the fact that
∫∞
0 φ(t) dt is �nite, we see that whenever c > 0, then there is a positive integer

Nc such that whenever n ∈ N with
∫∞
2n φ(t) dt ≥ c, we have n ≤ Nc.

Lemma 2.6. ∂Ωφ = ∂Ω. Moreover, the extensions of the metrics d and dφ to ∂Ω and ∂Ωφ are locally bi-
Lipschitz.

We point out here that this lemma does not require Ω to be a uniform domain, but we do need Ω to be
Cq-quasiconvex with respect to the metric d; in this case the reader should replace CU in the following proof
with Cq, the quasiconvexity constant.

Proof. If (xj)j is a sequence in Ω that converges to a point ζ ∈ ∂Ω with respect to the metric d, then we have
that this sequence is also Cauchy in Ωφ. Moreover, for su�ciently large j, k we have that d(xj , xk) < 1

10CU and
d(xj , ζ ) < 1

10CU . It follows that for su�ciently large j, xj ∈ Ω0, and if γ is a curve in Ω with end points xj and
xk such that `φ(γ) ≤ 11

10dφ(xj , xk), then γ cannot leave Ω0; for if it does, then

11
10dφ(xj , xk) ≥ `φ(γ) =

∫
γ

φ(dΩ(γ(t))) dt ≥ `d(γ0) ≥ 9
10 ,

where γ0 is the largest subcurve of γ with one end point xj and such that γ0 ⊂ Ω0. Since dφ(xj , xk) ≤
CUd(xj , xk) < 1

10 , this leads to a contradiction.
We now show that the sequence (xj)j, which is Cauchy with respect to both d and dφ, cannot be dφ-

equivalent to any dφ-Cauchy sequence (yj)j that is not a d-Cauchy sequence (see Lemma 2.3 for the existence
and uniqueness of such a sequence (yj)j, which is denoted in this paper by∞). Indeed, as (yj)j is not Cauchy
with respect to d, it is not equivalent to (xj)j with respect to themetric d. Hence there is some0 < c < 1/(10CU)
such that for su�ciently large j (perhaps after passing to a subsequence if necessary), we have that d(xj , yj) >
c. Now, if β is any curve in Ω connecting xj to yj, we must then have that β starts from xj and leaves the ball
Bd(xj , c) ⊂ Ω0, and so

`φ(β) ≥
∫

β∩Bd(xj ,c/2)

ds ≥ c/2.

Taking the in�mum over all such β gives us dφ(xj , yj) ≥ c/2. It follows that (xj)j cannot be equivalent to (yj)j
with respect to the metric dφ, that is, (xj)j cannot converge to∞ in the metric dφ.
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Moreover, if (xj)j and (yj)j are two non-equivalent d-Cauchy sequences in Ω, converging to two distinct
points ζ , η ∈ ∂Ω, then for su�ciently large j we have that d(xj , yj) ≥ τ = d(ζ , η)/2 > 0. In this case, any curve
γ connecting xj to yj in Ω must have length `d(γ) ≥ τ. If such γ does not stay within Ω0, then an argument as
above tells us that `φ(γ) ≥ 9

10 when j is large. If γ stays entirely within Ω0, then `φ(γ) = `d(γ) ≥ τ. It follows
that dφ(xj , yk) ≥ min{τ, 9

10} > 0, and thus the two sequences are not Cauchy-equivalent with respect to the
metric dφ either. That is, ∂Ω ⊂ ∂Ωφ.

Now suppose that (xj)j is a Cauchy sequence in Ωφ that does not converge. Then, in particular, there is
some r > 0 such that for su�ciently large j we have that xj ∉ Bφ(∞, r). It follows then from Remark 2.5 that
there is some k0 ∈ N such that when j is su�ciently large, we have xj ∈

⋃k0
n=0 Ωn. For such su�ciently large

j, k ∈ N, let γ be a curve in Ω with end points xj , xk such that dφ(xj , xk) ≤ 11
10 `φ(γ), then we consider two

cases. Either γ is entirely inside⋃2k0
n=0 Ωn, in which case we have

`φ(γ) ≥ φ(22k0 ) `d(γ) ≥ φ(22k0 )d(xj , xk),

or else γ intersects Ω2k0+1, in which case, we have that

`φ(γ) ≥ φ(22k0 )`d(γ ∩ Ω2k0 ) ≥ 2
2k0−1φ(22k0 ).

This latter case is not possible for su�ciently large j and k, since by choice, limj,k→∞ dφ(xj , xk) = 0. The
former case is therefore the only possibility for su�ciently large j, k, and hence (xj)j is Cauchy with respect
to the original metric d. As this sequence does not converge with respect to dφ, it follows that it does not
converge in Ω with respect to d either; hence, ∂Ωφ ⊂ ∂Ω.

The above argument also shows that if ζ , η ∈ ∂Ω with d(ζ , η) ≤ 1
10 , then d(ζ , η) ≤ dφ(ζ , η) ≤ CUd(ζ , η),

where we used the quasiconvexity of Ω with respect to the metric d. Thus, the two metrics are locally bi-
Lipschitz.

For x ∈ Ωφ, we set
dΩφ (x) := distφ(x, ∂Ωφ) := inf{dφ(x, ζ ) : ζ ∈ ∂Ωφ}.

We now consider some preliminary lemmas that will be useful in showing that Ωφ is uniform.
When m is a non-negative integer and γ is a curve in Ω that intersects both Ωm and Ωm+2, then

`φ(γ) ≥ φ(2
m)

C2φ
`d(γ ∩ Ωm+1)) ≥

φ(2m)
C2φ

2m . (2.7)

Lemma 2.8. Let x ∈ Ωm for some integer m ≥ 0. If y ∈ Ω is such that

dφ(x, y) <
[
min

{
10

11C2φ
2−2, 10

22C2q

}]
φ(2m) 2m ,

then
φ(2m+1) d(x, y) ≤ 11

10 dφ(x, y) ≤ CA φ(2
m) d(x, y).

In particular, C−1A φ(2m) d(x, y) ≤ dφ(x, y) ≤ CAφ(2m) d(x, y).

Here the constant Cφ is the reverse doubling constant, preventing uncontrolled decay of the dampening
function φ. It follows from the above lemma that the twometrics are locally bi-Lipschitz equivalent in Ω, and
generate the same topology there. This lemma is applicable even when Ω is not a uniform domain, but we
need Ω to be quasiconvex.

Proof. Let γ be a curve in Ω connecting x, y such that `φ(γ) ≤ 11
10 dφ(x, y). Then

`φ(γ) < φ(2m) 2m−2/C2φ ,

and so by (2.7) we have that γ does not intersect Ωm+2. Ifm ≥ 2 and γ intersects Ωm−2, then by (2.7) again, we
would have `φ(γ) ≥ φ(2m−2) 2m−2/C2φ ≥ φ(2m) 2m−2/C2φ, which again violates the above inequality. It follows
that γ ⊂ Ωm−1 ∪ Ωm ∪ Ωm+1, where, for convenience, we set Ωn = ∅ when n is a negative integer. Hence

11
10dφ(x, y) ≥ `φ(γ) ≥ φ(2

m+1)`d(γ) ≥ φ(2m+1)d(x, y), (2.9)
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which proves the �rst inequality of the desired double inequality claimed in the lemma.
On the other hand, as Ω is a quasiconvex space, we can �nd a curve β with end points x, y such that

`d(β) ≤ Cqd(x, y) where Cq is the quasiconvexity constant of the metric d on Ω. We consider two cases, Cq <
2Cφ and Cq ≥ 2Cφ.

In the �rst case, Cq < 2Cφ. Here we use that dφ(x, y) < 10
11C2φ

φ(2m) 2m−2 and so (2.9) implies that d(x, y) <
C−1φ 2m−2. Hence, for each z in the trajectory of β,

dΩ(z) ≤ dΩ(x) + `d(β) < 2m + CqCφ
2m−2 =

(
1 + Cq

4Cφ

)
2m < 2m+1

and
dΩ(z) ≥ dΩ(x) − `d(β) ≥ 2m−1 −

Cq
Cφ

2m−2 = A1 2m−1.

Here, A1 = 1 − Cq
2Cφ > 0.

In the second case Cq ≥ 2Cφ. Here we use that dφ(x, y) < 10
22C2q

φ(2m) 2m, and so it follows from (2.9) that
d(x, y) < CφC−2q 2m−1. Hence, for each z in the trajectory of β,

dΩ(z) ≤ dΩ(x) + `d(β) ≤ 2m + CφCq
2m =

(
1 + CφCq

)
2m ≤ 2m+1

and
dΩ(z) ≥ dΩ(x) − `d(β) ≥ 2m−1 −

Cφ
Cq

2m−1 = A2 2m−1.

Here, A2 = 1 − Cφ
Cq > 0.

Let k0 be the positive integer such that 2−k0 < A1 ≤ 21−k0 if Cq < 2Cφ or the positive integer such that
2−k0 < A2 ≤ 21−k0 if Cq ≥ 2Cφ. In either case, it follows that β ⊂ ⋃m+1

n=m−k0 Ωn, and so

dφ(x, y) ≤ `φ(β) ≤ φ(2m−k0−1)`d(β) ≤ Cq Ck0+1φ φ(2m)d(x, y).

We set CA = Cq Ck0+1φ to complete the proof.

Note that if x ∈ Ωn and d(x, y) < s 2nφ(2n) for su�ciently small s > 0, then dφ(x, y) satis�es the hypothe-
sis of Lemma 2.8. Hence the lemmaalso tells us thatwe should think of balls Bd(x, s 2nφ(2n)) asWhitney-type
balls in dφ; note that the doubling property ofφ guarantees thatφ satis�es aHarnack-type condition on these
balls, as outlined in [4].

Lemma 2.10. Let x ∈ Ωm for some integer m ≥ n0 + 2. Then

CUCφ
∞∑

n=m−n0
2nφ(2n) ≥ dφ(x,∞) ≥ 5

11

∞∑
n=m+1

2nφ(2n).

Here n0 is the positive integer such that 2n0−1 ≤ CU < 2n0 with CU the uniformity constant associated with the
uniform domain (Ω, d).

Proof. Let (xj)j>m be a sequence of points in Ω such that xj ∈ Ωj. Then this sequence is not convergent in Ω.
Let βj be a uniform curve in Ω with end points x, xj. Note that `d(βj) ≤ CUd(x, xj) where CU is the uniformity
constant of Ω. Recall from Section 2 that we only consider CU -uniform curves (with respect to the metric d)
whose each subcurve is also CU -uniform, see [4] for more on this. It follows from the local compactness of Ω
and the Arzelà-Ascoli theorem that there is a locally uniformly convergent subsequence of the sequence of
curves βj, that converges to a curve β with one end point x and leaving each compact subdomain of Ω; note
that each βj lies in Ω \ Ω0, and hence so does β. We also have limt→∞ d(x, β(t)) = ∞, and so β connects x to
∞. For each positive integer n let β̂n = β∩Ωn. By the uniformity of each βj we know that βj does not intersect
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Ωm−n0−1, and hence neither does β. Then

dφ(x,∞) ≤ `φ(β) =
∞∑

n=m−n0
`φ(β̂n) ≤

∞∑
n=m−n0

φ(2n−1)`d(β̂n)

≤
∞∑

n=m−n0
φ(2n−1)CUdΩ(zn)

≤ CUCφ
∞∑

n=m−n0
φ(2n) 2n ,

where zn is a point in β̂n. In particular, this also means that dφ(x,∞) is �nite by (2.2).
Now let γ : [0,∞) → Ω be any curve in Ω such that γ(0) = x and limn→∞ d(x, γ(t)) = ∞ and `φ(γ) ≤

11
10dφ(x,∞). Letting γn = γ ∩ Ωn, we see that

11
10dφ(x,∞) ≥

∞∑
n=m+1

`φ(γn) ≥
∞∑

n=m+1
φ(2n) `d(γn) ≥

∞∑
n=m+1

φ(2n) 2n−1.

Thanks to the above lemma, we know thatΩφ is a bounded domain. Indeed, when x, y ∈ Ω, we have that

dφ(x, y) ≤ dφ(x,∞) + dφ(y,∞) ≤ 2CUCφ
∞∑
n=0

2nφ(2n).

Lemma 2.11. Let x ∈ Ωm for some non-negative integer m. If m > 0, then

CUCφ
m+n0∑
n=0

2nφ(2n) ≥ dΩφ (x) ≥
(

50
121

) m−1∑
n=0

2nφ(2n).

If m = 0, then dΩφ (x) = dΩ(x). Here, as usual, n0 is the positive integer such that 2n0−1 ≤ CU < 2n0 with CU the
uniformity constant associated with the uniform domain (Ω, d).

Proof. By Lemma 2.6 we know that ∂Ωφ = ∂Ω. Let ζ ∈ ∂Ω be such that dΩ(x) = d(x, ζ ), and let β be a
CU -uniform curve (with respect to the metric d) with end points x and ζ . Then,

2m−1 ≤ dΩ(x) ≤ `d(β) ≤ CUd(x, ζ ) ≤ CU 2m ≤ 2m+n0 .

It follows that the trajectory of β lies in⋃m+n0
n=0 Ωn. Therefore,

`φ(β) ≤
m+n0∑
n=0

φ(2n−1)`d(β ∩ Ωn) ≤ Cφ
m+n0∑
n=0

φ(2n) CUdΩ(zn)

≤ CUCφ
m+n0∑
n=0

φ(2n) 2n

= CUCφ
m+n0∑
n=0

φ(2n) 2n ,

where zn is a point in β ∩ Ωn. Hence,

dΩφ (x) ≤ `φ(β) ≤ CUCφ
m+n0∑
n=0

φ(2n) 2n .

If m ≥ 1, then let ζ ∈ ∂Ω such that dΩφ (x) ≥ 10
11dφ(x, ζ ), and let γ be a curve in Ω connecting x to ζ such

that `φ(γ) ≤ 11
10dφ(x, ζ ). Then

`φ(γ) ≥
m−1∑
n=0

`φ(γ ∩ Ωn) ≥
m−1∑
n=0

φ(2n)`d(γ ∩ Ωn) ≥
m−1∑
n=0

φ(2n)2n−1.
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It follows that

dΩφ (x) ≥
1
2

(
10
11

)2 m−1∑
n=0

φ(2n)2n .

If m = 0, then φ(t) = 1 for 0 < t ≤ 1 tells us that dΩφ (x) ≥ dΩ(x).

3 Uniform domain property of Ωφ.
This section is devoted to the proof of Theorem 1.1, the main theorem of this note.

Lemma 3.1. Suppose that x ∈ Ωm and y ∈ Ωk with 0 ≤ m ≤ k. If

dφ(x, y) < 5
44 Cn0+1φ C2qCUCA

2mφ(2m),

then any CU -uniform curve with respect to the original metric d with end points x, y is a Cφ1 -uniform curve with
respect to the metric dφ, where

Cφ1 = max
{
CACn0+1φ CU , 363 CU

50

}
.

Here CA is the constant from Lemma 2.8, which depends only on Cφ and the quasiconvexity constant Cq.

Proof. We �rst consider the case m ≥ 1. By Lemma 2.8, we have that φ(2m) d(x, y) ≤ CA dφ(x, y). It follows
that

d(x, y) ≤ CA
φ(2m)dφ(x, y) ≤

5
44 Cn0+1φ C2qCU

2m ,

and so
2m−1 ≤ dΩ(y) ≤ d(x, y) + dΩ(x) ≤ 5

44 Cn0+1φ C2qCU
2m + 2m+1 ≤ C* 2m .

It follows that if β is a CU -uniform curve with respect to d with end points x, y that β ⊂ ⋃m+k0+n0
n=m−n0 Ωn, where

n0 is the positive integer such that 2n0−1 ≤ CU < 2n0 , see Remark 2.4, and k0 is the positive integer such that
2k0−1 ≤ C* < 2k0 . Hence,

`φ(β) =
m+k0+n0∑
n=m−n0

∫
β∩Ωn

φ(dΩ(β(t))) dt ≤
m+k0+n0∑
n=m−n0

φ(2n)`d(β ∩ Ωn)

≤ φ(2m−n0−1) `d(β)
≤ Cn0+1φ φ(2m) CU d(x, y).

Using Lemma 2.8 again, we conclude that

dφ(x, y) ≥ C−1A φ(2m) d(x, y) ≥
1

CACn0+1φ CU
`φ(β);

that is, β is a quasiconvex curve with respect to the metric dφ.
Next, if z is a point in the trajectory of β, then by Lemma 2.11,

dΩφ (z) ≥ dΩφ (x) − dφ(x, z) ≥
50
121

m−1∑
n=0

2nφ(2n) − `φ(β)

≥ 50
121 2m−1φ(2m−1) − CACn0+1φ CUdφ(x, y)

≥ 50
121 2m−1φ(2m−1) − 5

44C2q
2mφ(2m)

≥ 50
121 2m−1φ(2m−1) − 5

22C2q
2m−1φ(2m−1)

= 45
2422

m−1φ(2m−1).
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As
`φ(β) ≤ CACn0+1φ CU dφ(x, y) ≤

5
44C2q

2mφ(2m) ≤ 5
22C2q

2m−1φ(2m−1),

it follows that β is a Cφ1 -uniform curve with respect to the metric dφ.
Now we consider the case m = 0; that is, x ∈ Ω0. Then, by the assumption on y, we must have that

y ∈ Ω0 ∪ Ω1. If not, then any curve in Ω that connects x to y must have a segment in Ω1 with length at least
2, and therefore the dφ-length of all such curves are at least 2φ(2) ≥ 2/Cφ which is larger than the assumed
bound on dφ(x, y). Moreover, by Lemma 2.8 we have that d(x, y) ≤ 1/(4Cφ). Hence any CU -uniform curve (in
the metric d) with end points x, ymust lie in⋃n0+1

n=0 Ωn. Let β be such a curve. We have that `φ(β) ≤ `d(β). This
implies, by Lemma 2.8, that

dφ(x, y) ≥ C−1A d(x, y) ≥ C−1A C−1U `d(β) ≥ C−1A C−1U `φ(β),

meaning that β is quasiconvex with respect to the metric dφ.
For z in the trajectory of β, consider the segment β[x, z] of β with end points x, z. As we require that

subcurves of chosen uniform curves (with respect to the metric d) also be uniform, β has no loops, and so
there is only one such segment. If z ∈ Ω0, then

dΩφ (z) = dΩ(z) ≥ C
−1
U `d(β[x, z]) ≥ C−1U `φ(β[x, z]).

If z ∈ Ωj for some 0 < j ≤ n0 + 1, then

`φ(β[x, z]) =
j∑

n=0

∫
β[x,z]∩Ωn

φ(dΩ(β(t))) dt ≤
j∑

n=0
φ(2n)`d(β[x, z] ∩ Ωn)

≤
j∑

n=0
φ(2n)`d

( n⋃
i=1
β[x, z] ∩ Ωi

)

≤ CU
j∑

n=0
φ(2n)2n .

Thus, noting that 2j−1φ(2j−1) + 2jφ(2j) ≤ 3(2j−1φ(2j−1)), from Lemma 2.11 it follows that

dΩφ (z) ≥
50
121

j−1∑
n=0

2nφ(2n) = 50
121

 j−2∑
n=0

2nφ(2n) + 2j−1φ(2j−1)


≥ 50
363

j∑
n=0

2nφ(2n)

≥ 50
363 CU

`φ(βx,z).

This shows that β is a Cφ1 -uniform curve with respect to dφ.

From equation (2.2) it follows that we can �x a positive integer m0 > n0 + 2 such that
∞∑

n=m0−n0
2nφ(2n) < 1

8CUCφ
. (3.2)

Lemma 3.3. Suppose that x ∈ Ωm and y ∈ Ωk with m0 ≤ m ≤ k. If γ is a curve in Ω with end points x and y
such that `φ(γ) ≤ 11

10dφ(x, y), then γ is a 1331
669 -uniform curve with respect to the metric dφ.

Proof. Suppose that x ∈ Ωm and y ∈ Ωk with k ≥ m ≥ m0. Then by Lemma 2.10, dφ(x, y) ≤
2CUCφ

∑∞
n=m−n0 2

nφ(2n) < 1
4 , and moreover, by Lemma 2.11 we also have

dΩφ (x) ≥
50
121

m−1∑
n=0

2nφ(2n) ≥ 50
121 .
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Similar statement holds also for dΩφ (y). Let γ be a curve inΩwith end points x, y such that `φ(γ) ≤ 11
10dφ(x, y).

Then `φ(γ) < 11
40 . Let z be a point in the trajectory of γ; then,

dΩφ (z) ≥ dΩφ (x) − dφ(x, z) ≥
50
121 − `φ(γ) ≥

50
121 −

11
40 = 669

4840 .

It follows that
dΩφ (z) ≥

669
1331 `φ(γ),

that is, γ is a 1331
669 -uniform curve with respect to the metric dφ.

In what follows, we denote by λ and Λ the numbers

λ = min
0≤n≤m0+n0

2nφ(2n) and Λ = max
0≤n≤m0+n0

2nφ(2n). (3.4)

Lemma 3.5. Suppose that x ∈ Ωm and y ∈ Ωk with 0 ≤ m ≤ k ≤ m0, and

5
22C2φ

2mφ(2m) ≤ dφ(x, y) < C 2mφ(2m).

Any CU -uniform curve with respect to the original metric d with end points x, y lying entirely in
⋃m0+n0
j=0 Ωj is a

Cφ2 -uniform curve with respect to the metric dφ.
If the uniform curve is not entirely contained in

⋃m0+n0
j=0 Ωj, then with z1, z2 two points in the trajectory of

the curve with the segment between x and z1, and the segment between z2 and y lying in
⋃m0+n0
j=0 Ωj, we can

replace the segment between z1 and z2 by a 11/10-quasiconvex curve with respect to dφ with end points z1, z2
to obtain a Cφ2 -uniform curve with respect to the metric dφ.

Here

Cφ2 = 2000
669

2CCφ1
T

Λ
λ

(
2T0 +

121C2φ
20λ

)
.

Moreover, in both cases, for each point z in the trajectory of β (resp. γ), we have that Cφ2 dΩφ (z) is minorized by
the length of the entire curve with respect to the metric dφ.

Proof. Let β be a CU -uniform curve (with respect to d) with end points x, y with arclength (with respect to d)
parametrization β : [0, L]→ Ω. We can �nd t1, t2, . . . , tJ−1 ∈ (0, L) such that

0 = t0 < t1 < t2 < · · · < tJ−1 < tJ = L

and for j = 1, . . . , J,
dφ(β(tj), β(tj−1)) < 5

22 Cn0+1φ CUCA
2mjφ(2mj ) = T2mjφ(2mj )

with
dφ(β(tj), β(tj−1)) ≥ T2mj−1φ(2mj ).

Here mj is chosen such that either β(tj) ∈ Ωmj or β(tj−1) ∈ Ωmj . With zj = β(tj), note by the hypotheses of the
lemma that when mj ≤ m0 + n0,

dφ(zj , zj−1) < T2mjφ(2mj ) ≤ TΛ 22C2φ
5 · 2mφ(2m)dφ(x, y)

≤ 22C
2
φ

5 T Λλ dφ(x, y).

The remaining proof is split into two cases.
Case 1: β ⊂

⋃m0+n0
j=0 Ωj. It follows that 0 ≤ mj ≤ m0 + n0. Then by the CU -uniformity of β with respect to the

metric d, we have that for the midpoint z ∈ β,

2m0+n0 ≥ dΩ(z) ≥
1
CU

`d(β)
2 ≥ 1

2CU
d(x, y),
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that is, d(x, y) ≤ 2m0+n0+1CU . Hence

J ≤ `d(β)Tλ ≤ CUd(x, y)Tλ ≤ 2
m0+n0+1C2U
Tλ .

Applying Lemma 3.1 to each subcurve βj connecting zj = β(tj) and zj−1 = β(tj−1), we have that

`φ(β) =
J∑
j=1

`φ(βj) ≤ Cφ1
J∑
j=1

dφ(zj , zj−1) ≤ Cφ1 J
22C2φ
5 T Λλ dφ(x, y)

≤ Cφ1
22C2φ
5 T Λλ

2m0+n0+1C2U
Tλ dφ(x, y).

We set
T0 := Cφ1

22C2φ
5

Λ
λ
2m0+n0+1C2U

λ .

Moreover, any z in the trajectory of β is in the trajectory of βj for some j and so, applying Lemma 3.1 to this
curve,

dΩφ (z) ≥
1
Cφ1

`φ(βj) ≥
1
Cφ1
dφ(zj , zj−1) ≥

1
Cφ1

T
2 λ

1
C 2mφ(2m)dφ(x, y)

≥ T
2C Cφ1

λ
Λ dφ(x, y)

≥ T
2C Cφ1

λ
Λ

1
T0

`φ(β).

Case 2: There is some z in the trajectory of β such that dΩ(z) > 2m0+n0 . Let z1, z2 be two points in the trajectory
of β such that dΩ(z1) = dΩ(z2) = 2m0+n0 and β[x, z1], β[z2, y] lie entirely in⋃m0+n0

j=0 Ωj. In this case, we replace
β[z1, z2]with a curve β̂ with end points z1, z2 such that `φ(β̂) ≤ 11

10dφ(z1, z2). By Lemma 2.10 and by (3.2), we
have that

`φ(β̂) ≤ 1110
[
dφ(z1,∞) + dφ(z2,∞)

]
≤ 1140 ≤

11
40

22C2φ
λ dφ(x, y).

Considering the subdivisions of β[x, z1] and β[z2, y] as before, we get

`φ(β[x, z1]) ≤
J1∑
j=1

dφ(zj , zj−1) ≤ T0 dφ(x, y)

and

`φ(β[z2, y]) ≤
J∑
j=J2

dφ(zj , zj−1) ≤ T0 dφ(x, y).

Here we used the fact that both J1 and J − J2 satisfy the estimates given in Case 1 for J. Thus, with γ the
concatenation of the three curves β[x, z1], β̂, and β[z2, y], we obtain

`φ(γ) ≤
(
2T0 +

121C2φ
20λ

)
dφ(x, y).

Let z ∈ γ. If z ∈ β[x, z1] or if z ∈ β[z2, y], then as in Case 1 above, we obtain

dΩφ (z) ≥
T

2C Cφ1
λ
Λ dφ(x, y) ≥

T
2C Cφ1

λ
Λ

(
2T0 +

121C2φ
20λ

)−1
`φ(γ).

If z ∈ β̂, then by Lemma 3.3,
dΩφ (z) ≥

669
1331 `φ(β̂).

Hence
dΩφ (z) ≥ dΩφ (z1) − dφ(z, z1) ≥ dΩφ (z1) − `φ(β̂)
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and so, by the inequality above, we have

dΩφ (z) ≥
669
2000dΩφ (z1) ≥

669
2000

T
2C Cφ1

λ
Λ

(
2T0 +

121C2φ
20λ

)−1
`φ(γ).

Recall the de�nition of λ and Λ from (3.4) above.

Lemma 3.6. Suppose that x ∈ Ωm and y ∈ Ωk with 0 ≤ m ≤ k ≤ m0. Then,

dφ(x, y) ≤
2m0+n0+1C2U

λ 2mφ(2m).

Proof. Suppose that x, y are as in the hypothesis of the lemma, and that

dφ(x, y) >
2m0+n0+1C2U

λ 2mφ(2m).

Let β be a CU -uniform curve (with respect to d) with end points x, y. By the above supposition, there is some
point z in the trajectory of β such that dΩ(z) > 2m0+n0 . Let z1, z2 be two points in the trajectory of β such that
dΩ(z1) = dΩ(z2) = 2m0 and β[x, z1], β[z2, y] lie entirely in ⋃m0

j=0 Ωj. We replace β[z1, z2] with a curve β̂ with
end points z1, z2 such that `φ(β̂) ≤ 11

10dφ(z1, z2). By the supposition assumed at the beginning of the proof
again, with C = 2m0+n0+1C2U

λ , we have

`φ(β[x, z1]) ≤ `d(β[x, z1]) ≤ CUdΩ(z1)=CU2m0 ≤ CU2
m0

λC dφ(x, y).

Similarly, we get
`φ(β[z2, y]) ≤

CU2m0

λC dφ(x, y).

Moreover, by Lemma 2.10 and (3.2),

`φ(β̂) ≤ 1110dφ(z1, z2) ≤
11
40 ≤

11
40

1
Cλ dφ(x, y).

It follows that
`φ(γ) ≤

(
2m0+1CU
λC + 11

40C λ

)
dφ(x, y) < dφ(x, y),

which is not possible.

Lemma 3.7. Suppose that x ∈ Ωm and y ∈ Ωk with 0 ≤ m < m0 < k. If

dφ(x, y) ≥ 5λ
44Cn0+1φ C2qCUCA

then with β a CU -uniform curve (with respect to the metric d) with end points x, y and with z1 a point in the
trajectory of β such that dΩ(z1) = 2m0 and β[x, z1] contained in

⋃m0
j=0 Ωj, and β̂ a curve with end points z1 and

y such that `φ(β̂) ≤ 11
10dφ(z1, y), the concatenation γ of β[x, z1] and β̂ is a Cφ3 -uniform curve with respect to the

metric dφ with end points x, y.
Here Cφ3 is the larger of the two following numbers:

Cφ2 +
44Cn0+1φ C2qCUCA

5λ

(
Cφ2
2Cφ

+ 11
40

)
,

Cφ2

[
1 +
(

11
40Cφ2

+ 1
2Cφ

) 2000 Cφ2
669λ

]
.
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Proof. Let β, z1, β̂, and γ be as in the statement of the lemma. Then by Lemma 2.10, equation (3.2), and
Lemma 3.5,

`φ(γ) = `φ(β[x, z1]) + `φ(β̂) ≤ Cφ2 dφ(x, z1) +
11
40

≤ Cφ2
[
dφ(x, y) + dφ(z1, y)

]
+ 11
40

≤ Cφ2 dφ(x, y) +
(
Cφ2
2Cφ

+ 11
40

)
≤
[
Cφ2 +

(
Cφ2
2Cφ

+ 11
40

) 44Cn0+1φ C2qCUCA
5λ

]
dφ(x, y),

showing that γ is quasiconvex with respect to dφ.
Now, if z is a point in the trajectory of β[x, z1], then by Lemma 3.5 we have that

dΩφ (z) ≥
1
Cφ2

`φ(β[x, z1]).

If z is a point in β̂, then

dΩφ (z) ≥ dΩφ (z1) − dφ(z, z1) ≥
1
Cφ2

`φ(β[x, z1]) −
1

2Cφ

≥ 1
Cφ2

`φ(γ) −
(
`φ(β̂)
Cφ2

+ 1
2Cφ

)

≥ 1
Cφ2

`φ(γ) −
(

11
40Cφ2

+ 1
2Cφ

)
.

Also, by Lemma 3.3,
dΩφ (z) ≥

669
1331 `φ(β̂),

and so
dΩφ (z) ≥

1
Cφ2

`φ(β[x, z1]) − `φ(β̂) ≥
2m0φ(2m0 )

Cφ2
− 1331

661 dΩφ (z),

from whence we obtain
2000
669 dΩφ (z) ≥

λ
Cφ2

.

Thus, we �nally get
1
Cφ2

`φ(γ) ≤
[
1 +
(

11
40Cφ2

+ 1
2Cφ

) 2000 Cφ2
669λ

]
dΩφ (z),

implying that γ is a Cφ3 -uniform curve with respect to dφ.

Lemma 3.8. Suppose that x ∈ Ω and y =∞. Then, there exists a Cφ4 -uniform curve with respect to dφ with end
points x, y. Here

Cφ4 = max
{
1331
669 , Cφ3

}
.

Proof. Let x ∈ Ωm for somenon-negative integerm. Ifm ≥ m0, then as in theproof of Lemma2.10we can�nda
curve β beginning from x andwith limt→∞ β(t) =∞, such that `φ(β) ≤ 11

10dφ(x,∞) < 11
80 . Here β : [0,∞)→ Ω.

By considering x, β(t), and β|[0,t] in Lemma 3.3, we see that β[0, t] is a 1331
669 -uniform curve with respect to the

metric dφ for each t > 0. It follows that β is a 1331
669 -uniform curve with respect to dφ as well.

Now we consider the case that m < m0. Let β be a CU -uniform curve (with respect to the metric d) as
constructed in Lemma 2.3 such that β : [0,∞) → Ω with limt→∞ β(t) = ∞. We �x k ≥ m0 + n0 such that
for each z ∈ Ωk we have dφ(z, x) ≥ 5λ

44Cn0+1φ C2qCUCA
as in Lemma 3.7. If no such k exists, then we can directly
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apply Lemma 3.7 to β to see that β is a Cφ3 -uniform curve. With the choice of such k, let τ = inf{t > 0 : β(t) ∈⋃∞
j=k Ωj}, and we set γ to be the concatenation of β|[0,τ] with a curve β̂ with end points β(τ) and∞ such that

`φ(β̂) ≤ 11
10dφ(β(τ),∞). An application of Lemma 3.7 now tells us that γ is a Cφ3 -uniform curve with respect to

the metric dφ.
By combining the above two cases, we obtain a Cφ4 -uniform curve with respect to the metric dφ and con-

necting x to∞; here
Cφ4 = max

{ 1331
669 , C

φ
3
}
.

Now we are ready to prove the main theorem of this note.

Proof of Theorem 1.1. The second claim of the theorem was established in Section 2, and so we now focus on
proving that Ωφ is a uniform domain. To this end, let x, y ∈ Ωφ with x ≠ y. If x = ∞ or y = ∞, then by
Lemma 3.8 we have a Cφ4 -uniform curve with respect to dφ connecting x to y. So it only remains to consider
when x, y ∈ Ωφ \ {∞} = Ω.

Letm, k be twonon-negative integers such that x ∈ Ωm and y ∈ Ωk.Without loss of generality,we assume
that m ≤ k.

With n0 and m0 positive integers such that 2n0−1 ≤ CU < 2n0 and m0 ≥ n0 + 2 with∑∞
n=m0−n0 2

nφ(2n) <
(8CUCφ)−1 as in (3.2), we consider three cases.

1. m0 ≤ m ≤ k. In this case, by Lemma 3.3 we have a 1331
669 -uniform curve with respect to dφ connecting x to

y.
2. 0 ≤ m ≤ k ≤ m0. In this case, Lemma 3.6 we know that dφ(x, y) ≤ 2m0+n0+1C2Uλ−1 2mφ(2m). Hence, by

Lemma 3.1 and by Lemma 3.5 (with C = 2m0+n0+1C2Uλ−1), there is a max{Cφ1 , C
φ
2 }-uniform curve, with

respect to the metric dφ, connecting x to y.
3. 0 ≤ m < m0 < k. Then by Lemma 3.1 and Lemma 3.7 there is amax{Cφ1 , C

φ
3 }-uniform curve with respect

to the metric dφ with end points x and y.

Since the above cases exhaust all the possibilities of x, y ∈ Ω, it follows that Ωφ is Aφ-uniform with
respect to the metric dφ, with

Aφ = max{Cφ1 , C
φ
2 , C

φ
3 , C

φ
4 , 1331669 }.
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