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Abstract: The sphericalization procedure converts a Euclidean space into a compact sphere. In this note
we propose a variant of this procedure for locally compact, rectifiably path-connected, non-complete, un-
bounded metric spaces by using conformal deformations that depend only on the distance to the boundary
of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but
transforms the space into a bounded domain. We will show that if the original metric space is a uniform
domain with respect to its completion, then the transformed space is also a uniform domain.
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1 Introduction

The stereographic projection identifies the one-point compactified complex plane with the unit sphere, and
this identity has been exploited in the study of analytic functions and conformal maps between planar re-
gions and their behavior at infinity. Higher dimensional stereographic projections also identify the one-point
compactification of R" with the n-dimensional unit sphere in R"*1. The work of [5, 6] formulated a fruitful
generalization of stereographic projection to more general metric spaces, and this formulation has been used
in the literature to study Gromov hyperbolic spaces, uniform domains, and quasi-Mobius maps, see for ex-
ample [2, 5, 6, 8, 9, 11-13, 17]. A metric space inversion about a point p in a metric space X turns a bounded
metric space X \ {p} into an unbounded metric space, and the sphericalization of X with respect to the base
point p € X turns an unbounded metric space X into a bounded space whose completion is topologically
the one-point compactification of X. It was also shown in [6] that the sphericalization and inversion oper-
ations of uniform domains yield uniform domains. Moreover, they show that if the metric space satisfies a
geometric condition called annular quasiconvexity, then there is control over how the uniformity constant is
transformed by these operations.

Apart from the study of quasiconformal geometry (see [4, 16] for a tiny sampling of offerings from this
line of enquiry), uniform domains also play a key role in potential theory as uniform domains in a complete
doubling metric measure space supporting a p-Poincaré inequality are also known to support a p-Poincaré
inequality [3] and admit a description of traces of Sobolev-class functions on the domain as belonging to
certain Besov classes [15]. Hence, much of the potential theory and Dirichlet problems on smooth domains
are extendable to uniform domains. An additional sampling of the vast literature on potential theory related
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to uniform domains can be found in [1, 14]. For these reasons, a systematic study of metric transformations
that preserve the uniform domain property is desirable, and the goal of the present note is to contribute to
this study.

While sphericalization and inversion are analogues of stereographic projection and its inverse, these
operators distort the metric on X everywhere, including near the boundary of X if X is not complete. In certain
circumstances we would wish not to distort the metric, at least locally, near the boundary of X; for example,
if X is a uniform domain (and hence is locally compact but non-complete), we would wish to preserve the
local nature of the metric on X near 0X := X \ X, where X denotes the completion of X, while transforming
X into a bounded space. Such transformation is desirable if we are interested in studying boundary-value
problems on X in terms of boundary value problems on bounded domains (see for example [7]) and so find
information about growth-at-infinity behavior of solutions in the unbounded domain. The purpose of this
note is to propose a range of modifications of the sphericalization procedure of [6] so that the modification
does not perturb the inner length metric, locally, near 0X. Here, by the inner length metric, we mean the
metric diyy, given by din, (x, y) = inf,, £;(~), where the infimum is over all curves in Q with end points x and y.

To this end, we consider (2, d) to be a locally compact, non-complete metric space such that Q is a uni-
form domain in Q (that is, Q is a uniform space in the language of [4]). We also fix a monotone decreasing
continuous function ¢ : (0, o0) — (0, oo) such that ¢(t) = 1 when 0 < t < 1,

/ p(t)dt < oo,
0

and there is a constant Cy > 1 such that we have ¢(t) < Cyp @(2¢) for all ¢t > 0. As Q is a uniform domain, it is
rectifiably connected, that is, pairs of points in Q can be connected by curves in Q of finite length. Hence, we
use @ to construct a new metric dy on Q by setting

de(x,y) :=inf /(p odgds,
¥
%

with the infimum ranging over all rectifiable curves in Q with end points x,y € Q. Here, fw hds :=
f,y h(~(-)) ds is the path integral with respect to the arc-length parametrization of the rectifiable curve v, see
for example [10, Chapter 5]. In the above, d, is defined by dg(x) = dist(x, 0Q), see Definition 2.1 below.

We will show in Section 2 that d, and d are locally bi-Lipschitz near 02 and that the completion of Q
with respect to d,, is topologically a one-point compactification of Q. We denote Q, := Q U 00” \ 0Q, where
A7 is the completion of A ¢ Q with respect to the metric dy. The following is the main theorem of this note.

Theorem 1.1. The domain Q, equipped with the metric dy, is a uniform domain with 0Qy = 0Q and unifor-
mity constant depending only on the constant Cy and the uniformity constant Cy associated with the metric d.
Furthermore, the natural identity map I : Q — Qg \ {oo} is a local bi-Lipschitz map, and it is also uniformly
locally bi-Lipschitz near 0Q. If Q is a length space, then I is a local isometry near 0Q.

One additional advantage of the above is that we do not need annular quasiconvexity of Q with respect
to the metric d in order to gain quantitative control over the uniformity constant with respect to the metric
do.

We end the discussion in this section by describing a simple illustrative example. Recall that the upper
half-plane Q := Rx(0, oo) is a uniform domain and that the sphericalization procedure on Q gives an isometric
copy of a spherical cap in S2. Fixing # > 1, with the choice of ¢(t) = t# fort > 1and @(t) = 1 for0 < t < 1,
we have that as a set, Qp = (R x (0, 00)) U {oo}. Note that the Euclidean boundary 0Q = R x {0}. For each
z € R x {0}, a calculation shows that dy(z, o) = ﬁ‘%, and so oo is not an accumulation point (with respect to
the metric dy) of R x {0}; this is in contrast to the sphericalization of Q, which has an accumulation point of
R x {0}. Note also that for each z € R x {0} we have that dy(z, z + 1) = 1, and hence, in this example, _(T(,fp is
not compact.

The above example illustrates the fact that given Q and ¢ as in this note, there is a positive distance (with
respect to the metric dy) between o and 002y = 00Q; see Lemma 2.6 and its proof below.
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2 Preliminaries

Consider an unbounded metric space (Q, d) with completion Q and boundary 0Q := Q\ Q. We say that Qisa
uniform domain if it is locally compact and non-complete, and there exists a constant C; = 1 for which each
pair x, y € Q with x # y can be connected by a Cy-uniform curve ~. That is, - satisfies the following:

e its length (with respect to the metric d) satisfies £,4(v) < Cy d(x, y);
e for each z in the trajectory of v, we have

min{gd("}/x,z), gd(’}/z,y)} < CU diSt(Z, aQ).

By increasing the value of Cy if need be, we can assume that subcurves of uniform curves are also uni-
form, see [4]. Moreover, for each point { € 0Q and x € Q we can find a Cy-uniform curve v : [0, L) — Q such
that 4(0) = x and lim;_,;- v(t) = (.

More generally, given x € Q and { € 00, we say that a curve 8 : [0, L) — Q has end points x and { with
respect to the metric d if f(0) = x and lim,_,;- B(t) = {, the limit being taken with respect to d.

Definition 2.1. For x € Q, we set dg(x) := dist(x, 0Q2). We let
Qo:={xeQ:dox)=1},
and, for positive integers n, we set
Qni={xeQ:2" <dy(x) <2"}.

Note that Q = |, Qn.

We fix a monotone decreasing continuous function ¢ : (0, o0) — (0, o) such that ¢(t) = 1whenO < t < 1,
there is a constant Cy > 1 such that we have @(t) < Cy ¢(2t) forall t > 0, and

0/(p(t) dt < oo.

This condition ensures, by quasiconvexity of Q, that the metric space (Qy, dy) is bounded, see Lemma 2.10.
The above condition is equivalent to the condition we will use frequently in this note:

oo

> 2" p(2") <o 2.2)

n=0

The prototype function ¢ to keep in mind is ¢(t) = t# for some B>1whent > 1,or¢(t) = t A1 +log(t)) ¥
for some B > 1 and xk > O when t > 1. The first prototype function is used in [7, Section 7] to convert an
unbounded uniform domain Z x [0, oo), with Z a compact length space, into a bounded uniform domain.

Standing assumptions: In summary, we will assume that (Q, d) is an unbounded uniform domain and that
subcurves of all uniform curves are also uniform. Moreover, ¢ : (0, o) — (0, o0) is a monotone decreasing
function such that ¢(t) = 1 for t < 1, f0°° @(t) dt is finite, and there is a constant Cy > 1 such that for all t > 0
we have @(t) < Cyp @(20).

We use ¢ to, in the language of [4], dampen the metric d on Q by modifying it to d,. We define this new
metric by setting

dy(x,y) = inf / ¢ o dgds = inf / oG (0)) dt,
Y Y

with the infimum ranging over all rectifiable curves + in Q with end points x and y; we consider the arc-
length (with respect to the original metric d) parametrization of v. As ¢(t) < 1 for all t > 0, we have that
dy(x,y) < Cyd(x, y) whenever x, y € Q.
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Now we have two identities for the set Q; namely, (2, d) and (Q, dy). Since ¢ = 1 on Qo, both metrics d
and dy extend as metrics to Q U 0Q. We will show this below in Lemma 2.6.

We denote Qg := QU 00”100, where A7 is the completion of A C Q with respect to the metric d. First,
we show in the following lemma that there is only one point in the completion of Q with respect to d, that is
not in the completion of Q with respect to d. Denoting this point by oo, it follows that Q¢ = Q U {eo}.

Lemma 2.3. Thereis a sequence in Q that is Cauchy with respect to the metric dy but not with respect to d. Any
two dy-Cauchy sequences that are not d-Cauchy sequences must be equivalent with respect to the metric dy.

Proof. We fix xo € Q,, and we choose x; € Q; for each integer j > 3. Let §; be a Cy-uniform curve in Q with
end points xo, X;. Since Q is locally compact, we can exhaust Q by a sequence of proper subdomains Dy of Q
such that xog € Dy € Dy,,. Here D, € D;,; means that the closure of D, is a compact subset of D;, ;. By the
Arzela-Ascoli theorem, we can then find a curve - and a subsequence of ;, also denoted f;, such that for
each k the segments of the curves §; lying in D; converge uniformly to the segment of . in D;. Since each
B; is a Cy-uniform curve, so is B and each of its subcurves.

We now use - to construct a sequence that is Cauchy with respect to dy but not Cauchy with respect to
d. Since d(xo, Xj) — oo, it follows that £4(B;) — oo asj — oo, and so £4(B) = co. Hence, by the uniformity
of B, we know that for each j = 3 the curve . intersects Q;. For each j > 3, we set y; = ,Boo(t,-) to be the first
time B intersects Q;. Then for each m € N, d(y;, yjm) = 27*™ ! - 2/, showing that (y;); is not Cauchy with
respect to d. Let +; be a subcurve of S with end points y; and y;,,. Then, as ¢ is monotone decreasing, we
have

do(yj, Vjr1) < Lp()) = /¢(d9(7j(f))) dt < (2 /C)ta(y) < (2 Cy) Cyda(yjia) < 2Cy 292 Cy).
%

By the reverse doubling property of ¢, and from the above inequality it follows that there is a positive constant
C depending solely on Cy and C, such that

do(yj, Vjs1) < C2P (2.

It follows that foreachj =3 and m € N,

j+m-1

le(yj’ yj+m) <C Z 2”(p(2”).

n=j

The above inequality and (2.2) guarantee that the sequence (y;); is Cauchy with respect to d,.

Let (z;); be another sequence in Q that is Cauchy with respect to d, but not with respect to d. Then we
know that lim; dg (z,-) = oo, Indeed, if there is some ko € N such that each z; € Uﬁ":o Qn, then for j, k € Nand
+ any curve connecting z; and z; with £,(y) < %d¢(zj, z;) we have either that v lies in Uﬁ‘:{)l Qn, in which
case

lo(y) = / P(da((0)) dt > (2 )04() > (2 ™)d(z;, 21,
¥

or else that y intersects Qy ., in which case

lo() 2 / P(do((O) dt = PR Vgl 1 Qg 0r) 2 20 (2K0"1),

7ﬂ9k0+1

In both of these cases, we get that lim sup; ;_, .. dy(z;, zi) > 0, violating the dy-Cauchy property.

To complete the proof of the lemma, we show that (z;); is dy-equivalent to (y;);, that s, lim; dy(zj, y;) = 0.
Since lim; d(zj) = oo and lim; dg(y;) = oo, for each integer m > 2 both z; and y; belong to | J;-,, @n for
sufficiently large j. So, for sufficiently large j, with a; a Cy-uniform curve in Q with end points z; and y;, let
a; : [0, L] — Q be the standard arclength parametrization of a; (with respect to the metric d). Then with ng
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the positive integer for which 21 < Cy < 2™,

Z(p(aj|[0,L/z]) = Z f(p(aj n .Qn) < Z <p(2”)£d(aj n .Qn)
n=m-ng n=m-ng
< Z (p(Z") CU 2”.
n=m-nop

An analogous treatment of a;|[;/, ;) then tells us that

lola)<2Cy D 2",

n=m-ng
which goes to zero as m — oo by (2.2). O

Remark 2.4. Here, and in the rest of the paper, ny is the positive integer such that 2""1 < Cy < 2", The
above proof also yields an additional property, namely, that ify, z € | ;. ,, @n for some m > no, then with v a
Cy-uniform curve with end points x and y, we have

dp(y,2) < Lp()<2Cy > 2" p(2M.

n=m-no

Remark 2.5. From the fact that f(;” @(t) dt is finite, we see that whenever ¢ > 0, then there is a positive integer
N¢ such that whenever n € N with f;’ @(t)dt = c, we have n < N¢.

Lemma 2.6. 0Qy = 0Q. Moreover, the extensions of the metrics d and dy to 0Q and 0Q are locally bi-
Lipschitz.

We point out here that this lemma does not require Q to be a uniform domain, but we do need Q to be
Cq-quasiconvex with respect to the metric d; in this case the reader should replace Cy in the following proof
with Cq4, the quasiconvexity constant.

Proof. If (x;); is a sequence in Q that converges to a point { € 0Q with respect to the metric d, then we have
that this sequence is also Cauchy in Q. Moreover, for sufficiently large j, k we have that d(xj, Xp) < ﬁ and
d(xj, {) < ﬁ. It follows that for sufficiently large j, x; € Qo, and if v is a curve in Q with end points x; and
xy such that £, (v) < %dq,(xj, Xi), then  cannot leave Qy; for if it does, then

15dp(xj, xi) 2 Lyp(y) = /‘P(do(’Y(t))) dt > ly(v0) = 5,
vy

where g is the largest subcurve of v with one end point x; and such that o C Q. Since d(p(xj, Xy) <
C Ud(x]-, Xy) < Tlo’ this leads to a contradiction.

We now show that the sequence (x;);, which is Cauchy with respect to both d and dy, cannot be d,-
equivalent to any dy-Cauchy sequence (y;); that is not a d-Cauchy sequence (see Lemma 2.3 for the existence
and uniqueness of such a sequence (y;);, which is denoted in this paper by o). Indeed, as (y;); is not Cauchy
with respect to d, it is not equivalent to (x;); with respect to the metric d. Hence thereis some 0 < ¢ < 1/(10Cy)
such that for sufficiently large j (perhaps after passing to a subsequence if necessary), we have that d(x;, y;) >
c. Now, if B is any curve in Q connecting x; to y;, we must then have that  starts from x; and leaves the ball
By(xj, ¢) C Qo, and so

(B = / ds > c/2.
ﬁde(Xj,C/z)

Taking the infimum over all such § gives us dy(x;, y;) > ¢/2. It follows that (x;); cannot be equivalent to (y;);
with respect to the metric dy, that is, (x;); cannot converge to oo in the metric d,.
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Moreover, if (x;); and (y;); are two non-equivalent d-Cauchy sequences in , converging to two distinct
points {, n € 00, then for sufficiently large j we have that d(x;, y;) > T = d({, n)/2 > 0. In this case, any curve
~ connecting x; to y; in Q must have length /4(v) > 7. If such  does not stay within Qo, then an argument as
above tells us that £,(+) > {5 when j is large. If  stays entirely within Qo, then £,(7) = £4(7) = 7. It follows
that dy(x;, y;) = min{r, 19—0} > 0, and thus the two sequences are not Cauchy-equivalent with respect to the
metric dy either. That is, 02 C 0Qy.

Now suppose that (;); is a Cauchy sequence in Q, that does not converge. Then, in particular, there is
some r > 0 such that for sufficiently large j we have that x; ¢ By(co, r). It follows then from Remark 2.5 that
there is some ko € N such that when j is sufficiently large, we have x; € U’,‘l‘;o Qpy. For such sufficiently large
j, k € N, let v be a curve in Q with end points x;, x; such that dy(x;, x;) < 15¢e(7), then we consider two

cases. Either ~ is entirely inside Ui’:(% Qn, in which case we have

lp(y) 2 p(27) £4(7) > 9(2°%)d(x;, X,
or else v intersects Q5. .1, in which case, we have that
lo() = P27 taly N Qy,) 2 2207 (2710).

This latter case is not possible for sufficiently large j and k, since by choice, lim; ;_,., dy(x;, x;) = 0. The
former case is therefore the only possibility for sufficiently large j, k, and hence (x;); is Cauchy with respect
to the original metric d. As this sequence does not converge with respect to dy, it follows that it does not
converge in Q with respect to d either; hence, 0Qy C 0Q.

The above argument also shows that if {, 1 € 0Q with d({, n) < 1—10, then d({, ) < dy({,n) < Cyd({, 1),
where we used the quasiconvexity of Q with respect to the metric d. Thus, the two metrics are locally bi-
Lipschitz. O

For x € Qy, we set
da, (x) :=disty(x, 0Qyp) :=inf{dp(x,{) : { € 0Qp}.
We now consider some preliminary lemmas that will be useful in showing that Q is uniform.
When m is a non-negative integer and + is a curve in Q that intersects both Q, and Q,», then

. 92™) (2™
C [

La(vy N Qi) 2 2™, 2.7)

2
)
Lemma 2.8. Let x € Q, for some integer m = 0. If y € Q is such that

de(x,y) < [min { ﬁgé 272, 2%25}} p™2",

then
P(2™ M) d(x,y) < 1 dy(x,y) < C4 (2™ d(x, y).

In particular, C;t (2™) d(x, y) < dp(x, y) < Cap(2™) d(x, y).
Here the constant Cy, is the reverse doubling constant, preventing uncontrolled decay of the dampening
function ¢. It follows from the above lemma that the two metrics are locally bi-Lipschitz equivalent in Q, and

generate the same topology there. This lemma is applicable even when Q is not a uniform domain, but we
need Q to be quasiconvex.

Proof. Let ~ be a curve in Q connecting x, y such that £y () < }—(1, dy(x,y). Then
lp(7) < (2™ 2™/ C5,

and so by (2.7) we have that v does not intersect Q,,,. If m > 2 and ~ intersects Q,,_», then by (2.7) again, we
would have £y(y) 2 9(2™2) 2™2/C, > p(2™) 2™2/ 5, which again violates the above inequality. It follows
that v € Q-1 U Qm U Qy41, Where, for convenience, we set Q,, = () when n is a negative integer. Hence

Rdy(x,y) 2 Lo(y) 2 (2™ )04(7) 2 2™ Hd(x, y), 2.9)
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which proves the first inequality of the desired double inequality claimed in the lemma.

On the other hand, as Q is a quasiconvex space, we can find a curve 8 with end points x, y such that
£4(B) < Cqd(x, y) where Cq is the quasiconvexity constant of the metric d on Q. We consider two cases, Cq <
2Cp and Cq = 2Cy.

In the first case, Cq < 2Cy. Here we use that dy(x, y) < %(p(zm) 2™2 and so (2.9) implies that d(x, y) <
C,' 2™2. Hence, for each z in the trajectory of B,

do(z) < do(x) + £4(B) < 2™ + &2'""2 = <1 + &> M ¢ Ml
Co 4Cy
and c
do(z) = do(x) - £4(8) = 2™ - C—qz’"‘2 =A 2™,
[
Here, A1 =1- 2% > 0.

In the second case Cq = 2Cyp. Here we use that dy(x, y) < @(2™) 2™, and so it follows from (2.9) that

10
2202
d(x,y) < CoC4> 2™, Hence, for each z in the trajectory of j,

do(2) s dg(x) +£4(B) < 2™ + &2"’ = (1 + &> M < pmHl
Cq Cq
and c
do(z) = do(x) - 4(8) = 2™ - Ci’zm-1 =A,2m1,
q
Here, A, =1- ¢ > 0.
Let ko be the positive integer such that 27% < 4; < 217ko jf Cq < 2Cyp or the positive integer such that

27k < 4, < 2k if C4 > 2C,. In either case, it follows that 8 C UZ':,i_kO Qn, and so

dp(x, y) < tp(B) < (2" )14(B) < Cq CY™ (2™ (x, Y).
Weset Cy = Cq C’(;,O+1 to complete the proof. O

Note thatif x € Oy and d(x, y) < s 2"¢(2") for sufficiently small s > 0, then dy(x, y) satisfies the hypothe-
sis of Lemma 2.8. Hence the lemma also tells us that we should think of balls B;(x, s 2" ¢(2")) as Whitney-type
ballsin dy; note that the doubling property of ¢ guarantees that ¢ satisfies a Harnack-type condition on these
balls, as outlined in [4].

Lemma 2.10. Let x € Qn, for some integer m = ng + 2. Then

oo S

5
CyCyp Z 2"p(2") 2 dy(x, o0) = 11 Z 2"p(2M).

n=m-nop n=m+1

Here ny is the positive integer such that 2"~! < Cy; < 2™ with Cy the uniformity constant associated with the
uniform domain (Q, d).

Proof. Let (x;);>m be a sequence of points in Q such that x; € Q;. Then this sequence is not convergent in Q.
Let B; be a uniform curve in Q with end points x, x;. Note that £4(8;) < Cyd(x, x;) where Cy is the uniformity
constant of Q. Recall from Section 2 that we only consider Cy-uniform curves (with respect to the metric d)
whose each subcurve is also Cy-uniform, see [4] for more on this. It follows from the local compactness of Q
and the Arzela-Ascoli theorem that there is a locally uniformly convergent subsequence of the sequence of
curves f;, that converges to a curve  with one end point x and leaving each compact subdomain of Q; note
that each §; lies in Q \ Qo, and hence so does . We also have lim;_, d(x, B(t)) = oo, and so  connects x to
oo. For each positive integer n let B; = N Qy. By the uniformity of each f; we know that §; does not intersect



304 —— Ryan Gibara and Nageswari Shanmugalingam

DE GRUYTER
Qm-ny-1, and hence neither does 8. Then

dp(x,o0) < Le(B) =

n=m-no

€¢(/3An) < Z P21 14(Bn)

n=m-ng

< Z p(2" N Cydg(zn)

n=m-ng

SCUC(p Z (P(Zn)zn»

n=m-ng
where z, is a point in Z%; In particular, this also means that dy(x, o) is finite by (2.2).

Now let v : [0, o) — Q be any curve in Q such that v(0) = x and limp—e. d(x, ¥(t)) = oo and £y (y) <
dy(x, o0). Letting yn = v N Qn, we see that

S oo

%dw(’(» 00) 2 n:ZMfw(%) > ;1 Q"M talm) = > M 2"

O

n=m+1
Thanks to the above lemma, we know that Q is a bounded domain. Indeed, when x, y € Q, we have that

dp(x,y) < dp(x,o0) + dy(y, o) < 2CyCy Z 2"p(2M).
n=0
Lemma 2.11. Let x € Qpn for some non-negative integer m. If m > 0, then

m+ng

50 m-1
CyCyp Z 2"p(2") > dg, (x) 2 <ﬁ) Zz"(p(Z").
n=0 n=0

Ifm =0, then dg,(x) = do(x). Here, as usual, no is the positive integer such that 2071 < €y < 2™ with Cy the
uniformity constant associated with the uniform domain (Q, d).

Proof. By Lemma 2.6 we know that 0Q, = 0Q. Let { € 0Q be such that do(x) = d(x,{), and let 8 be a
Cy-uniform curve (with respect to the metric d) with end points x and ¢. Then,

2™ < dg(x) < £4(B) < Cyd(x, ) < Cy 2™ < 2™,

It follows that the trajectory of B lies in [ J;_"° Qn. Therefore,

m+ng m+ng

lo(B) < Z @2")e4(B N Q) < Cy Z e(2™ Cydg(zn)
n=0 n=0

m+ng

< CyCy Z p(2") 2"
n=0
m+ng

=CyCy Y p2M2",

n=0
where zj, is a point in § N Q. Hence,

dg, () < Le(B) < CyCyp > @2 2".

n=0

If m = 1, then let { € 0Q such that de (x) = %d<p(x, {), and let v be a curve in Q connecting x to { such
that £y (7) < 15dy(x, ). Then

m-1 m-1 m-1
lo() 2> lp(yN Qn) =Y 92Meg(y N Q) 2 Y~ p(2M2" .
n=0 n=0

n=0
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It follows that
1 2 m-1
n n
da,0>3(17) WCES

If m =0, then @(t) = 1 for O < t < 1 tells us that dgw(x) > dg(x). O

3 Uniform domain property of Q,,.

This section is devoted to the proof of Theorem 1.1, the main theorem of this note.

Lemma 3.1. Suppose thatx € Qm andy € Q, withO < m < k. If

5 m m
dp(x,y) < 44 cZ,O”cchcAz »2"),

then any Cy-uniform curve with respect to the original metric d with end points x, y is a C‘f-uniform curve with
respect to the metric dy, where

cf = max {CaCip* Cy, 250}

Here Cy is the constant from Lemma 2.8, which depends only on Cy and the quasiconvexity constant Cq.

Proof. We first consider the case m > 1. By Lemma 2.8, we have that ¢(2™) d(x, y) < C4 dy(x, y). It follows
that

d(x,y) < dp(x,y) s ——-—2",

44 cRcacy

(2’")
and so

2" < dg(y) < dx,y) + do(x) < 2™+ 2™ < C 2™,

5
44 Ctc2cy
It follows that if § is a Cy-uniform curve with respect to d with end points x, y that § € ]+ Qn, where
no is the positive integer such that 2"~ < Cy < 2™, see Remark 2.4, and ky, is the positive integer such that

2ko-1 < ¢, < 2% Hence,

m+ko+no m+ko+no
WB- > [ eda@Ondts > B0 0
n=m—n0ﬁﬁgn n=m-ng

< (2™ 14(B)
< CZ"” (2™ Cy d(x, y).

Using Lemma 2.8 again, we conclude that

de(x,y) 2 Cillo(2™d(x,y) = Lo (B);

C Cn0+1 C

that is, f is a quasiconvex curve with respect to the metric dy.
Next, if z is a point in the trajectory of 8, then by Lemma 2.11,

m-1
do,(2) > dg, () - dylx, 2) > T3 Z 2"p(2") - Ly(B)

. 15201 2m lq)(zm—l) _ CA Cno+1 CUd(p(X, y)

50 Jm-1 m-1y _
=572 Q™)

50
>
121

_ 45
242

44C2 2"2")

zm 1 ( m 1) 2m—1(p(2m—1)

zzc2
zm 1 (Zm 1)



306 —— Ryan Gibara and Nageswari Shanmugalingam DE GRUYTER

As

to(B) = CaCp*' Cy dy(x, y) < "p™) < 2" 2™,

44C2 22C2

it follows that B is a C?-uniform curve with respect to the metric dy.

Now we consider the case m = 0; that is, x € Qq. Then, by the assumption on y, we must have that
y € Qp U Q1. If not, then any curve in Q that connects x to y must have a segment in Q; with length at least
2, and therefore the d,-length of all such curves are at least 2 ¢(2) = 2/C, which is larger than the assumed
bound on dy(x, y). Moreover, by Lemma 2.8 we have that d(x, y) < 1/(4Cy). Hence any Cy-uniform curve (in
the metric d) with end points x, y must lie in U"°+1 Qn. Let B be such a curve. We have that 4, (B) < £4(B). This
implies, by Lemma 2.8, that

dp(x,y) 2 Ca*d(x,y) = C4' Ci*£4(B) = C4' Ci 4y (B),

meaning that § is quasiconvex with respect to the metric d,.

For z in the trajectory of B, consider the segment B[x, z] of 8 with end points x, z. As we require that
subcurves of chosen uniform curves (with respect to the metric d) also be uniform, 8 has no loops, and so
there is only one such segment. If z € Qq, then

do,(2) = do(2) > Cy' ta(Blx, 2]) > Cy't(Blx, 2]).
Ifz € Qj forsome 0 < j < ng + 1, then

j j
B, 2D =Y / PldaBO) dt <> 9(2")(Blx, 21N 2n)
n=0

n=0ﬁ[x,z]r‘1.Q,,

j n
< Z (2", (Uﬂ[x,z] N Q,-)

n=0 i=1
J
<Cy Z p(2M2".
n=0

Thus, noting that 21 @(2"1) + 2/p(2)) < 3(2 (2™ 1)), from Lemma 2.11 it follows that

dg, (2) > 12122" @M= % 22"<p(2")+2' (@)

n n
§ 363 Zz o)

50
> 363 ¢ Lo Bre):

This shows that B is a C? -uniform curve with respect to dy. O

From equation (2.2) it follows that we can fix a positive integer mq > ng + 2 such that

[eS)

n n 1
Z 2"p(2") < 8CyCy- (3.2)

n=mo—nop

Lemma 3.3. Suppose that x € Qm andy € Q; with mg < m < k. If v is a curve in Q with end points x and y

such that £y(y) < 15dy(x, y), then v is a 22321 -uniform curve with respect to the metric dy.

Proof. Suppose that x € Qm and y € Q with k = m = mp. Then by Lemma 2.10, dy(x,y) <
2CyCy Z;imfno 2"p(2") < L, and moreover, by Lemma 2.11 we also have
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Similar statement holds also for d Q (y). Let y be a curve in Q with end points x, y such that £,(v) < % de(x,y).
Then ¢y () < ;5. Let z be a point in the trajectory of ~y; then,

50 11 _ 669

do,(2) 2 dg,(x) - d¢&'2)>——f—€¢() 131 40 ~ 4840°
It follows that
0,(2) 2 1331 &p(v),
that is, v is a 2321 -uniform curve with respect to the metric dy. O

In what follows, we denote by A and A the numbers

A= min 2"9(2") and A= max 2"@_2"). (3.4)

O<nsmo+no O<nsmo+no

Lemma 3.5. Suppose that x € Qm andy € Q, with0 < m < k < mg, and

5
22C3

2Mp(2™) < dp(x,y) < C2"@(2™).

Any Cy-uniform curve with respect to the original metric d with end points x, y lying entirely in Um°+"° Qjisa
C‘p -uniform curve with respect to the metric d.

If the uniform curve is not entirely contained in Um"*"" Qj, then with z1, z, two points in the trajectory of
the curve with the segment between x and z,, and the segment between z, and y lying in Um°+"° Q;, we can
replace the segment between z, and z, by a 11/10-quasiconvex curve with respect to d, with end points z1, z;
to obtain a C%-uniform curve with respect to the metric d.

Here

9 T A 201
Moreover, in both cases, for each point z in the trajectory of B (resp. ), we have that C% dq,(2) is minorized by
the length of the entire curve with respect to the metric dy.

Proof. Let B be a Cy-uniform curve (with respect to d) with end points x, y with arclength (with respect to d)
parametrization 8 : [0, L] — Q. Wecanfind ¢4, t5, ..., t;_1 € (0, L) such that

O=to<ty<ty<---<ty<ty=1L

andforj=1,...,]J,

dy(B(t)), B(tj-1)) < 2Mip(2™) = T2 p(2™)

ch
with
do(B(t)), B(tj-1)) = T2 p(2™).

Here m; is chosen such that either B(t,-) € Qm; or ﬁ(t]-,l) € OQm;. With z; = B(t]-), note by the hypotheses of the
lemma that when m; < mg + no,

_ _ 225
dgg(Zj,Z]',l) < sz}(p(zm}) < TAST(p(Zm)d(p(X, y)
22c2 A
1= dfp(X y).

5

The remaining proof is split into two cases.
Case 1:  C Uy Q;. It follows that O < m; < mg + no. Then by the Cy-uniformity of 8 with respect to the
metric d, we have that for the midpoint z € f3,

164@B) 1 .
*Co 2 20,

V),
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that s, d(x, y) < 2™+ ;. Hence

a(B) _ Cyd(x,y) _ 2™ Cy
T4 T TA

Applying Lemma 3.1 to each subcurve §; connecting z; = (t;) and z;_; = B(t;_1), we have that

J <

2
22(,,

Lo(B) = Z&P(ﬁ] = C(p Zd§0(z]’zj 1) < C(p]

j=1 j=1

T3 de(x,y)

22C2 A 2m0+no+1C2
sc? 5"’T/1 T Udy(x,y).

We set 5 L
22C% A 2MotTo* CU.

5 A A
Moreover, any z in the trajectory of g is in the trajectory of §; for some j and so, applying Lemma 3.1 to this
curve,

TO = C(f

1T, 1

c? 2" camp2m)
T A

2CC“’A
T A1

2 2CC(pA T ‘P(B)

qu, (Z) = ‘glp(ﬁ]) = ‘P d(P(Zj) Z]'fl) 2 d(P(Xa )’)
1

de(x,y)

Case 2: There is some z in the trajectory of 8 such that do(z) > 2™, Let z1, z, be two points in the trajectory
of Bsuch that dg(z1) = dg(z;) = 2™0*" and B[x, z1], Blz2, y] lie entirely in U].":"(’;'"" 0;. In this case, we replace
Blz1, zo] with a curve ﬁ with end points z1, z, such that ¢, (E) < %d(p(Zl, z,). By Lemma 2.10 and by (3.2), we

have that

~ 11 11 11 22C(p
Ew(ﬁ) s 10 [dtp(zl, o) + d(p(zz, °°)] 40 %40

Considering the subdivisions of B[x, z;1] and f[z>, y] as before, we get

dy(x,y).

J1
Lo (Blx, z1]) < Z dy(zj, zj-1) < To dp(x, y)

j=1

and
J

lo(Blza, YD) <Y " dy(zj, 2j-1) < To dg(x, y).
j=l2
Here we used the fact that both J; and J — J, satisfy the estimates given in Case 1 for J. Thus, with ~ the
concatenation of the three curves B[x, z11, 8, and B[z, y], we obtain

121C
200 )d‘P(X y).

Let z € 7. If z € Blx, z1] or if z € B[z3, y], then as in Case 1 above, we obtain

-1
T A T A 121C5,
qu,(Z) 2 Wzd(p(&}/) 2 2CC<fZ (2T0+ 20/1) &p(ﬂ.

&p(y) < <2T0 +

Ifz e ﬁ, then by Lemma 3.3,

do, (@) = 136391&”(’3)

Hence ~
do,(2) 2 dg,(z1) - dy(2, z1) 2 dg, (z1) - Lp(B)
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and so, by the inequality above, we have

-1
669 T A 121C2
(z1)2 0 —— = <2T0 + ‘p> Lo(y). O

da,(z) > 2000 2¢ C? A 200

2000 d"w
Recall the definition of A and A from (3.4) above.

Lemma 3.6. Suppose that x € Qm andy € Qj with0 < m < k < mg. Then,

mo+np+1 CZ
U

d(p(x, y) < 1 Zm(P(Zm)-

Proof. Suppose that x, y are as in the hypothesis of the lemma, and that

mo+np+1 C
U

dpl,y) > =L 2"p(2").

Let B be a Cy-uniform curve (with respect to d) with end points x, y. By the above supposition, there is some
point z in the trajectory of 8 such that d(z) > 2™*™, Let z;, z, be two points in the trajectory of 8 such that
do(z1) = dol(z2) = 2™ and Blx, z1], Blz2, y] lie entirely in Uj'ﬁ% 5, We replace B[z1, z,] with a curve E with
end points z1, z, such that é(p(ﬁ) < %d¢(zl, Z,). By the supposition assumed at the beginning of the proof

2m0+n0+1 CZ

again, with C = T2, we have

£o(Blx, 21]) < £4(Blx, 21]) < Cod(z1)=Cy2™ < CU27 4, (x, ).

Similarly, we get

Cy2

to(Blza, Y1) s == d<p(x y).

Moreover, by Lemma 2.10 and (3.2),
11 11 1
g(p(ﬁ) < d(p(Zl’Zz) = E %40 CAd(p(X )’)

It follows that _—

2motle, 11

o) = (25050 + 2ot ) detrey) < dotey),

which is not possible. O

Lemma 3.7. Suppose thatx € Qmandy € Q; withO < m < mg < k. If

5A

de(x,y)2 —————
o) 441 C2CyCy

then with B a Cy-uniform curve (with respect to the metric d) with end points X,y and with z, a point in the
trajectory of B such that do(z1) = 2™ and B[x, z1] contained in U] Oo Q,, and ﬁ a curve with end points z, and
y such that £, (B) < %dﬂzh y), the concatenation ~ of B[x, z,] and B isa C?—umform curve with respect to the
metric dy with end points x, y.

Here Cf is the larger of the two following numbers:

. 44CHMCECYCy < c? 11)
9 209 a-UA

57 2C,

11 1 \ 2000cCY
9 11 1) 200063
! [1+<40c§+2c¢> 6691 }
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Proof. Let B, z1, E, and ~ be as in the statement of the lemma. Then by Lemma 2.10, equation (3.2), and
Lemma 3.5,

lo(y) = Lo(Blx, z1]) + Ly(B) < C¥ dy(x, z1) + Z%
< C? [d(p(X, y) + d(p(Zl, Y)] + =
@
< CYdyx,y) + (2% + 11)

cy 44CR*CICHCY
P ~
< [C + <2C(p + ) 51 d<p(X,)/),

showing that - is quasiconvex with respect to dy,.
Now, if z is a point in the trajectory of 8[x, z1], then by Lemma 3.5 we have that

do, (@) > fw(ﬁ[x z1)).

If z is a point in ﬁ, then

do,(2) 2dg,(z1) - dp(z,z1) 2 &o(ﬂ[x z1]) -

cy
1 Z(ﬁ) 1
>7’ ()_<¢ 2C¢>

2 Tpew(v)— ( 11(,, + L) .
[ 40Cy  2Cy

Also, by Lemma 3.3,

669
do, (@)= 1357 6o (B),
and so 1 2Mop(2™Mo) 1331
2 ¢
40, (@)= cpto(Ble ) - tpB) 2 G - e do, @,
from whence we obtain
2000 do () 2
669 %" P
Thus, we finally get
11 1\ 2000C?
C(pg‘P('Y) = |: <40C§’ + m) W} dQ{p(Z),
implying that v is a C? -uniform curve with respect to dy. O

Lemma 3.8. Suppose that x € Q and y = oo. Then, there exists a Cf-uniform curve with respect to dy with end
points x, y. Here

Proof. Letx € Qpn for some non-negative integer m.If m = mg, then as in the proof of Lemma 2.10wecanfinda
curve  beginning from x and with lim;_,.. B(t) = oo, such that £,(f) < d(p(x 00) < 2 Here B:[0,00) = Q.
By considering x, (t), and |}y ;) in Lemma 3.3, we see that §[0, t] isa 1636391 -uniform curve with respect to the
metric dy for each ¢ > 0. It follows that B is a 122! -uniform curve with respect to dy, as well.

Now we consider the case that m < myg. Let 8 be a Cy-uniform curve (with respect to the metric d) as
constructed in Lemma 2.3 such that 8 : [0, o0) — Q with lim;_, B(f) = . We fix k = mg + ng such that

for each z € Q; we have dy(z, X) = W as in Lemma 3.7. If no such k exists, then we can directly
¢ q-UTA
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apply Lemma 3.7 to § to see that Bisa C f-uniform curve. With the choice of such k, let T = inf{t > 0 : B(¢t) €
U}’Zk Q;}, and we set v to be the concatenation of f|j, ,; with a curve E with end points B(7) and oo such that
Ly (ﬁ) < %d(p(ﬁ(r), o). An application of Lemma 3.7 now tells us that yis a C f-uniform curve with respect to
the metric dy.
By combining the above two cases, we obtain a Cf-uniform curve with respect to the metric d, and con-
necting x to oo; here
Cf =max {224, ¥} . O

Now we are ready to prove the main theorem of this note.

Proof of Theorem 1.1. The second claim of the theorem was established in Section 2, and so we now focus on
proving that Qy is a uniform domain. To this end, let x,y € Q¢ with x # y.If x = cc Oor y = oo, then by
Lemma 3.8 we have a Cf-uniform curve with respect to dy connecting x to y. So it only remains to consider
when x,y € Qp \ {oo} = Q.

Let m, k be two non-negative integers such that x € Qi andy € Q.. Without loss of generality, we assume
that m < k.

With ng and mq positive integers such that 2"7! < Cy < 2™ and mg = ng + 2 with Z‘r’;mrno 2Mp(2™M) <
(8C UC<,,)‘1 as in (3.2), we consider three cases.

1. mg < m < k. In this case, by Lemma 3.3 we have a 122! -uniform curve with respect to d,, connecting x to

y.

2. 0 < m < k < my. In this case, Lemma 3.6 we know that dy(x,y) < 2M*0*1c2 171 2mp(2™), Hence, by
Lemma 3.1 and by Lemma 3.5 (with C = 2™*"0*1¢Z A1), there is a max{C¥, C¥}-uniform curve, with
respect to the metric dy, connecting x to y.

3. 0 < m < mg < k. Then by Lemma 3.1 and Lemma 3.7 there is a max{C?, C;”}-uniform curve with respect
to the metric d, with end points x and y.

Since the above cases exhaust all the possibilities of x,y € Q, it follows that Qy is Ap-uniform with
respect to the metric d, with

Ay =max{C{,C¥,cq,cy, B3 -
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