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ABSTRACT
Ablowitz and Ladik discovered a discretization that preserves the integrability of the nonlinear Schrödinger equation in one dimension. We
compute the generalized free energy of this model and determine the generalized Gibbs ensemble averaged fields and their currents. They
are linked to the mean-field circular unitary matrix ensemble. The resulting hydrodynamic equations follow the pattern already known from
other integrable many-body systems. The discretized modified Korteweg–de-Vries equation is also studied, which turns out to be related to
the beta Jacobi log gas.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0075670

I. INTRODUCTION
A famous integrable classical field theory in 1 + 1 dimensions is the nonlinear Schrödinger equation (NLS). In the defocusing case, the

wave field, ψ(x, t) ∈ C, is governed by

i∂tψ = −∂2
xψ + 2∣ψ∣

2ψ. (1.1)

While many properties of this equation have been studied,1 given the more recent interest in generalized hydrodynamics,2–5 our goal is to
investigate the Euler type spacetime scale for this nonlinear wave equation.

In hydrodynamics, one considers random initial data with an energy far above the ground state energy. The resulting physical picture
is based on the notion of local equilibrium. In a small cell, still containing many particles, the system is in one of its equilibrium states.
In approximation, the equilibrium parameters are changing slowly on the scale set by the inter-particle distance and evolve according to a
system of coupled hyperbolic conservation laws. In a conventional strongly interacting fluid in one dimension, equilibrium is labeled by three
parameters. In strong contrast, for integrable systems, the time-stationary states require an extensive number of parameters. Thus, the first
step in any derivation of hydrodynamic equations consists of a detailed study of stationary states.

For the NLS, the densities of the locally conserved fields are known (see Ref. 6 and references therein). The beginning of the list reads

Q[0](x) = ∣ψ(x)∣2, Q[1](x) = −iψ̄(x)∂xψ(x), Q[2](x) = ∣∂xψ(x)∣2 + ∣ψ(x)∣4. (1.2)
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For a given bounded interval Λ ⊂ R, the total conserved quantities then become

Q[n]Λ = ∫Λ
dxQ[n](x), n = 0, 1, . . . . (1.3)

Formally, the time-stationary generalized Gibbs ensembles (GGE) are of the form

exp[−
∞

∑
n=0

μnQ[n]Λ ]∏
x∈Λ

d2ψ(x), (1.4)

where μn’s are suitable chemical potentials. For the thermal case, n = 0, 1, 2, much work has been invested to construct a proper probability
measure (see Refs. 7–10 for a very partial account). The basic idea of the construction is easily explained. Obviously, the Lebesgue measure
makes sense upon lattice discretizing Λ. However, the limit of zero lattice spacing is ill-defined within standard measure theory. Multiplying
lattice Lebesgue with exp(−β ∫ ∣∂xψ(x)∣

2
), the normalized limit converges to a R2-valued Brownian motion over Λ. Now, x ↦ ∣ψ(x)∣4 is a

somewhat singular function on path space. The technical challenge is to prove that its exponential is integrable with respect to Brownian
motion. As a separate issue, one has to show that the so-constructed measure is invariant under the NLS dynamics. Recently, such a method
has been extended to a much larger class of generalized Gibbs measures.11 While the precise statement in Ref. 11 is more complicated, the
sum in (1.4) is restricted to some highest even n, and as a priorimeasure, Brownian motion is replaced by the well-defined Gaussian measure
with energy,

Q[0]Λ +∫Λ
dx∣∂n/2

x ψ(x)∣2. (1.5)

As for n = 2, the technical part is to establish that for an appropriate choice of chemical potentials, the exponential of all lower order terms
can be integrated with respect to this Gaussian measure. Very roughly, the such constructed measure is concentrated on (n − 2) times
differentiable paths. Time-stationarity is established separately. To go beyond such an existence result seems to be a difficult problem.

In numerical simulations of NLS, one discretizes the equation. While generically this would break integrability, surprisingly enough, in
many cases, there is one very specific discretization for which integrability is maintained. For NLS, such a discretization was discovered by
Ablowitz and Ladik.12–14 For convenience, we will use here AL as acronym [rather than, integrable nonlinear Schroedinger equation, as in
Ref. 1], and our contribution is focused on the Ablowitz–Ladik system.

A further example in the same spirit is the classical sinh-Gordon equation,

∂2
t ϕ − ∂

2
xϕ + sinh ϕ = 0, (1.6)

with ϕ(x, t) being a real-valued wave field. In Ref. 15, the hydrodynamic equations of this nonlinear wave equation are derived and studied.
The reported numerical simulations are based on an analytic continuation of the discretized sine-Gordon equation discovered in Ref. 16. A
further case is the integrable Landau–Lifshitz model of a one-dimensional magnet. Here, the spin field is a three-vector, S⃗(x, t), with ∣S⃗∣ = 1,
and the equations of motion are

∂t S⃗ = S⃗ × ∂2
x S⃗ + S⃗ × JS⃗, J = diag(0, 0, δ). (1.7)

The naive discretization is non-integrable. For recent investigations, we refer to Refs. 17 and 18 and references therein. The integrable
discretization was discovered in Refs. 19 and 20 (see also Ref. 21). A numerical simulation of the integrable chain is reported in Ref. 22.

As we will see, the AL lattice equations are structurally rather similar to the classical Toda lattice, for which fairly detailed notes are
available.23 When pointing out such similarity, we merely refer to these notes. However, our text is essentially self-contained and the reader
may as well just ignore the cross links.

As other integrable wave equations, the NLS admits soliton solutions. Rather than assuming an initial state that is locally GGE, random
initial conditions can be imposed in the form of a solitons gas, meaning that the location and velocity of a soliton are random, similar to
a classical gas of point particles. In approximation, on large scales, the time evolution of such a gas can be described by a coupled set of
hyperbolic conservation laws. For more details, see a very recent review article by El,24 who used the Korteweg–de-Vries equation as his most
prominent example.

II. THE PERIODIC AL SYSTEM
Upon discretization, the wave field is over the one-dimensional lattice Z, ψj(t) ∈ C, and is governed by

i
d
dt
ψj = −ψj−1 + 2ψj − ψj+1 + ∣ψj∣

2
(ψj−1 + ψj+1). (2.1)
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Hence,

i
d
dt
ψj = −(1 − ∣ψj∣

2
)(ψj−1 + ψj+1) + 2ψj. (2.2)

Setting αj(t) = e2itψj(t), one arrives at the standard version

d
dt
αj = iρ2j (αj−1 + αj+1), ρ2j = 1 − ∣αj∣

2. (2.3)

Clearly, the natural phase space is αj ∈ D with the unit disk D = {z∥z∣ ≤ 1}. In principle, whenever αj(t) hits the boundary of D, it freezes and
thereby decouples the system. As we will discuss, a conservation law ensures that, if initially away from the boundary, the solution will stay so
forever.

Our main focus is the generalized free energy, for which the standard setup is a finite ring ofN sites, labeled j = 0, . . . ,N − 1 with periodic
boundary conditions, αj+N = αj. While the periodic system is integrable, there seems to be no method for obtaining its generalized free energy
in the limit N →∞. However, employing a judicious choice of boundary conditions, such a task becomes feasible. Therefore, we have to
separately discuss the ring and a segment with boundary conditions.

Conserved fields.We consider a ring ofN sites. The evolution equations are of Hamiltonian form by regarding α and its complex conjugate
ᾱ as canonically conjugate variables and introducing the weighted Poisson bracket,

{ f , g}AL = i
N−1

∑
j=0

ρ2j (
∂ f
∂ᾱj

∂g
∂αj
−

∂ f
∂αj

∂g
∂ᾱj
). (2.4)

The Hamiltonian of the AL system reads

HN = −
N−1

∑
j=0
(αj−1ᾱj + ᾱj−1αj). (2.5)

One readily checks that indeed

d
dt
αj = {αj,HN}AL = iρ2j (αj−1 + αj+1). (2.6)

The next step is to find out the locally conserved fields. Guided by other integrable models, the convenient tool is a Lax matrix, if
available. Nenciu25,26 discovered that this role is played by a Cantero–Moral–Velázquez (CMV) matrix.27–30 The basic building blocks are the
2 × 2 matrices, which requires N to be even because of periodic boundary conditions. One defines

Ξj =
⎛
⎜
⎝

ᾱj ρj

ρj −αj

⎞
⎟
⎠

(2.7)

and forms the N ×N matrices

LN = diag(Ξ0,Ξ2, . . . ,ΞN−2), (MN)i,j=1,...,N−2 = diag(Ξ1,Ξ3, . . . ,ΞN−3), (2.8)

together with (MN)0,0 = −αN−1, (MN)0,N−1 = ρN−1, (MN)N−1,0 = ρN−1, and (MN)N−1,N−1 = ᾱN−1. More pictorially, LN corresponds to the
blocking (0, 1), . . . , (N − 2,N − 1), while MN uses the by 1 shifted blocking (1, 2), . . . , (N − 1, 0). The CMV matrix associated with the
coefficients α0, . . . ,αN−1 is then given by

CN = LNMN . (2.9)

Obviously, LN ,MN are unitary and so is CN . The eigenvalues of CN are denoted by eiϑj , ϑj ∈ [0, 2π], j = 1, . . . ,N. Of course, the eigenvalues
depend on N, which is suppressed in our notation.
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Next, for a general matrix, A, we define the + operation as

(A+)i,j =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ai,j if i < j,
1
2
Ai,j if i = j,

0 if i > j.

(2.10)

Then, one version of the Lax pair reads

{CN , tr(CN)}AL = i[CN , (CN)+], {CN , tr(C∗N)}AL = i[CN , (CN+)
∗
]. (2.11)

Since the Poisson bracket acts as a derivative, one deduces

{(CN)
n, tr(CN)}AL =

n−1

∑
m=0
(CN)

mi[CN ,CN+](CN)
n−m−1

= i[(CN)
n,CN+], (2.12)

and similarly,

{(CN)
n, tr(C∗N)}AL = i[(CN)

n, (CN+)
∗
]. (2.13)

Hence, the locally conserved fields are given by

Q[n],N = tr[(CN)
n
]. (2.14)

By a similar argument, it can be shown that the mutual Poisson brackets vanish,

{Q[n],N ,Q[n
′
],N
}AL = 0. (2.15)

The fields Q[n],N are complex-valued. Physically real-valued phase functions are preferred, which are achieved through taking real and
imaginary parts,

Q[n,+],N =
1
2
tr[(CN)

n
+ (C∗N)

n
] = tr[cos((CN)

n
)],

Q[n,−],N = −
1
2
i tr[(CN)

n
− (C∗N)

n
] = tr[sin((CN)

n
)], (2.16)

with n = 1, . . . ,N/2. These fields have a density, respectively, given by

Q[n],Nj = Q[n,+],Nj + iQ[n,−],Nj = ((CN)
n
)j,j. (2.17)

Although the matrices LN ,MN have a basic 2 × 2 structure, the densities of the conserved fields are shift covariant by 1. Let us introduce the
left shift, τ, of the sequence α = (α0, . . . ,αN−1) by (τα)j = αj+1. Then, as established in the Appendix,

Q[n,σ],Nj+1 (α) = Q[n,σ],Nj (τα) (2.18)

with the convention σ = ±.
Later on, we will consider the infinite volume limit, N →∞. This will always be understood as a two-sided limit. For example, the

infinite volume limit of LN , denoted by L, is L = diag(. . . ,Ξ−2,Ξ0,Ξ2, . . .) and correspondinglyM = diag(. . . ,Ξ−1,Ξ1,Ξ3, . . .). L,M are unitary
operators on the Hilbert space ℓ2(Z), and so is C = LM. The traces in (2.10) have no limit, but densities do. The matrix elements of Cn can be
expanded as the sum

(Cn
)i,j = ∑

j1∈Z
. . . ∑

j2n−1∈Z
Li,j1Mj1 ,j2 . . .Lj2n−2 ,j2n−1Mj2n−1 ,j, (2.19)
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which consists of a finite number of terms only. For the infinite system, the index n runs over all positive integers. The infinite volume
densities, Q[n,σ]j , are strictly local functions of α with support of at most 2n sites. The sum in (2.19) can be viewed as resulting from a nearest
neighbor 2n step random walk from left to right (see Fig. 1). For this purpose, one considers a checkerboard on [0, 2n] ×R. The unit square
with corners (0, 0), (1, 0), (1, 1), (0, 1) is white. Single steps of the walk are either horizontal, j↝ j, or up-down, j↝ j ± 1. Such diagonal steps
are permitted only on white squares. The matrix element (Cn

)i,j is then the sum over all 2n step walks starting at i and ending at j. Each walk
represents a particular polynomial obtained by taking the product of local weights along the walk. The weights are

ρj for the diagonal steps j↝ j + 1 and j + 1↝ j,
ᾱj for the horizontal step j↝ j in case its lower square is black, and
−αj−1 for the horizontal step j↝ j in case its upper square is black.

As examples, Cj,j = −αj−1ᾱj, Hj = Cj,j + C̄j,j, and (C2
)j,j = α2j−1ᾱ2j − ρ2j−1αj−2ᾱj − ρ2j αj−1ᾱj+1. Note that densities are not unique, in general,

while the total conserved fields, Q[n],N , are unique. To illustrate, in the previous formula, an equivalent density would be α2j−1ᾱ2j − 2ρ2j αj−1ᾱj+1.
The CMVmatrix misses one physically very important field, namely,

Q[0],N = −
N−1

∑
j=0

log(ρ2j ). (2.20)

To simplify notation, we set [0] = [0, σ] and 0 = 0σ. The time-derivative of Q[0],N yields a telescoping sum, which vanishes on a ring. In lack
of a common name, we call Q[0],N the log intensity. The log intensity vanishes for small amplitudes ∣αj∣2 and diverges at the maximal value,
∣αj∣2 = 1. Note also that

exp(−Q[0],N) =
N−1

∏
j=0

ρ2j (2.21)

is conserved. Thus, if initially exp(−Q[0],N) > 0, it stays so for all times, guaranteeing that the phase space boundary is never reached.
Generalized Gibbs ensemble. Hydrodynamics is based on the propagation of local equilibrium. For the micro-canonical equilibrium

measure, the statistical mechanics rule is to adopt the uniform measure on the hypersurface defined through fixing the values of all conserved
fields. For nonintegrable chains of N sites, its codimension would be 1, 2, 3, depending on the model. As claimed by the integrable systems
community, the statistical mechanics rule applies even in case of an extensive number conservation laws. In fact, in favorable situations, one
can control the Hamiltonian written in terms of action variables. If this function has no flat pieces, then the uniformmeasure on invariant tori
is approached in the long-time limit, almost surely. The AL system has a phase space of dimension 2N. Q[n,σ],N ’s constitute N conservation
laws. Together with Q[0],N , such a rule means the uniform measure on an invariant torus of dimension N − 1. As for other problems in
statistical mechanics, more accessible is the grand-canonical version, a route also adopted here. One would expect that for large N, this hardly
makes any difference, provided only averages of local observables are considered. In our context, to prove such an equivalence of ensembles
stays as one open problem.

Because of the Hamiltonian structure, the volume measure∏N−1
j=0 d2αj is stationary under the AL dynamics. Structurally, it turns out to

be more convenient to also include exp(−PQ[0],N) in the a priorimeasure, which then becomes the product measure

N−1

∏
j=0

d2αj(ρ2j )
P−1
=

N−1

∏
j=0

d2αj(ρ2j )
−1 exp(−PQ[0],N) (2.22)

FIG. 1. An admissible walk from (0, 1) to (4,−1). According to the rules, its weight is given by ρ0(−α−1)ᾱ0ρ−1.
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on DN . To normalize the measure, P > 0 is required. The log intensity is controlled by the parameter P, which, in analogy to the Toda lattice,
is called pressure. Small P corresponds to the maximal log intensity, i.e., ∣αj∣2 → 1, and large P corresponds to low log intensity, i.e., ∣αj∣2 → 0.
In the grand-canonical ensemble, the Boltzmann weight is constructed from a linear combination of the conserved fields, which is written as

∑
n∈Z
μntr[(CN)

n
] = tr[V̂(CN)], V̂(z) =∑

n∈Z
μnzn. (2.23)

The chemical potentials, μn, are assumed to be independent of N. To have the trace real-valued, one imposes μn = μ̄−n. The normalization
μ0 = 0 is also adopted. Combining (2.22) and (2.23) then yields the generalized Gibbs ensemble (GGE) as

ZN(P,V)−1
N−1

∏
j=0

d2αj(ρ2j )
P−1 exp(−tr[V̂(CN)]), P > 0. (2.24)

ZN(P,V) is the normalizing partition function. As label, the more natural object turns out to be the Fourier transform of the sequence
{μn,n ∈ R},

V(w) =∑
n∈Z
μneinw = V̂(eiw). (2.25)

V is a real-valued function on [0, 2π]. For the Toda lattice, the corresponding object lives on R and is called confining potential because it
confines the eigenvalues of the Lax matrix. For the CMV matrix, the eigenvalues are on the unit circle and there is nothing to confine. To
distinguish from other potentials, for convenience, we still stick to “confining.” If V̂ is given by a finite sum, then the interaction of the Gibbs
measure in (2.24) is of finite range. In this case, the infinite volume limit can be controlled through transfer matrix methods. In particular, the
limit measure is expected to have a finite correlation length. Presumably, a larger set of confining potentials could be allowed, as studied in
Ref. 31 for the Toda lattice. Finite volume expectations with respect to the measure in (2.24) are denoted by ⟨⋅⟩P,V ,N and their infinite volume
limit is denoted by ⟨⋅⟩P,V . The GGE is labeled by the pressure P and some smooth function on the unit circle.

The generalized free energy, FAL, is defined through

lim
N→∞

−
1
N

log ZN(P,V) = FAL(P,V). (2.26)

In the hydrodynamic context of particular interest is the empirical density of states (DOS),

ρQ,N(w)dw =
1
N

N

∑
j=1
δ(w − ϑj)dw (2.27)

with eiϑj ’s eigenvalues of CN . ρQ,N is a probability measure on [0, 2π] and has an almost sure limit as

lim
N→∞

ρQ,N(w) = ρQ(w). (2.28)

To see the significance of the DOS, we first introduce the trigonometric functions Ϛ0(w) = 1, Ϛn−(w) = sin(nw), and Ϛn+(w) = cos(nw),
n = 1, 2, . . .. They span the Hilbert space L2([0, 2π], dw). Then, for the trigonometric moments of ρQ,N(w),

⟨ρQ,NϚnσ⟩ = N−1⟨Q[n,σ],N⟩P,V ,N , lim
N→∞

N−1⟨Q[n,σ],N⟩P,V ,N = ⟨Q[n,σ]0 ⟩P,V = ⟨ρQϚnσ⟩. (2.29)

Here, ⟨⋅⟩ is simply a short hand for the integration over [0, 2π]. The limit value can also be expressed as a variational derivative of the
generalized free energy per site,

d
dκ

FAL(P,V + κϚnσ)∣κ=0 = ⟨Q
[n,σ]
0 ⟩P,V . (2.30)

In addition, one introduces for the average log intensity, denoted by ν, for which

ν = ⟨Q[0]0 ⟩P,V = ∂PFAL(P,V). (2.31)
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For V = 0, one readily obtains FAL(P, 0) = log(P/π) with log intensity ν(P) = P−1 > 0. Hence, there is no high pressure phase as known
for the Toda lattice [see Ref. 23 (Sec. 8) and Ref. 32]. Thermal equilibrium corresponds to V(w) = β cosw, with β being the inverse tem-
perature. Then, the Gibbs measure in (2.24) has nearest neighbor interactions and explicit expressions seem no longer to be available; see,
however, the note at the end of Sec. V.

While the existence of the infinite volume limit is reassuring, more computable expressions are needed so to write down the hydrody-
namic equations. In demand would be the joint probability density for the eigenvalues and the resulting DOS. This looks difficult. Fortunately,
Killip and Nenciu33 discovered that through a suitable modification of the boundary conditions, the corresponding volume element can be
transformed to only depend on the eigenvalues.

III. CIRCULAR MATRICES WITH SLOWLY VARYING PRESSURE RAMP
Following Ref. 33, we modify the CMV matrix at the two boundaries. As before, the number N of sites is even. LN remains unchanged,

andMN is modified toM◇N , where (M
◇
N)0,0 = 1, (M

◇
N)0,N−1 = 0, (M

◇
N)N−1,0 = 0, and (M

◇
N)N−1,N−1 = e

iϕ, ϕ ∈ [0, 2π]. This leads to the particular
CMVmatrix,

C◇N = LNM
◇
N . (3.1)

For the a priori measure (2.22), the pressure P is constant, which is now modified to a linearly changing pressure with arbitrary slope − 1
2β,

β > 0, as

N−2

∏
j=0

d2αjdϕ
N−2

∏
j=0
(ρ2j )

−1
(ρ2j )

β(N−1−j)/2. (3.2)

Surprisingly, relative to this measure, the joint distribution of eigenvalues of C◇N can be computed in a concise way.33 We define the
Vandermonde determinant as

Δ(z1, . . . , zN) = ∏
1≤i<j≤N

(zj − zi). (3.3)

Denoting the eigenvalues of C◇N by eiϑ1 , . . . , eiϑN , their joint (un-normalized) distribution under the measure in (3.2) is given by

ζ◇N(β)∣Δ(e
iϑ1 , . . . , eiϑN )∣β

N

∏
j=1

dϑj, ζ◇N(β) = 2
(1−N) 1

N!
Γ(β/2)N

Γ(Nβ/2)
. (3.4)

Since β is a free parameter, one can choose specifically

β =
2P
N

. (3.5)

Now, the ramp has slope −P/N, and in the limit N →∞, close to the lattice point (1 − u)N, 0 < u < 1, the measure of (3.2) will converge to
the product measure of (2.22) with pressure uP. Since

tr[V̂(C◇N)] =
N

∑
j=1

V(ϑj), (3.6)

the Boltzmann weight can be naturally included in (3.2). Hence, the partition function of the system with boundary conditions is defined by

Z◇N(P,V) = ∫
[0,2π]N−1

N−2

∏
j=0

d2αj∫
2π

0
dϕ

N−2

∏
j=0
(ρ2j )

−1
(ρ2j )

P(N−1−j)/N exp(−tr[V(C◇N)])

= ζ◇N(P)∫
2π

0
dϑ1 . . .∫

2π

0
dϑN exp

⎛

⎝
−

N

∑
j=1

V(ϑj) + P
1
N

N

∑
j,ℓ=1,j≠ℓ

log ∣eiϑℓ − eiϑj ∣
⎞

⎠
. (3.7)
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In statistical mechanics, the probability distribution

(Zlog,N)
−1 exp

⎛

⎝
−

N

∑
j=1

V(ϑj) + P
1
N

N

∑
j,ℓ=1,j≠ℓ

log ∣eiϑℓ − eiϑj ∣
⎞

⎠
(3.8)

is known as a circular unitary ensemble (CUE) or circular log-gas.34 Since the coupling strength is proportional to 1/N, it is the much studied
mean-field version of the log-gas (see Refs. 35 and 36 and references therein). In the statistical mechanics interpretation, β is the inverse
temperature and the regime defined through (3.5) can be viewed as high temperature.

The AL model with boundary conditions has the free energy per site defined through

F◇(P,V) = lim
N→∞

−
1
N

log Z◇N(P,V). (3.9)

Because the pressure ramp has slope 1/N, in the limit, the free energies merely add up as

F◇(P,V) = ∫
1

0
duFAL(uP,V). (3.10)

Before studying the infinite volume free energy, we remark that the CMV matrix C◇N is still linked to a suitably modified AL dynamics
governed by the Hamiltonian

H◇N = tr[C
◇
N + C

◇
N
∗
]. (3.11)

Working out the Poisson brackets leads to the evolution equation

d
dt
αj = iρ2j (αj−1 + αj+1), ρ2j = (1 − ∣αj∣

2
), (3.12)

j = 0, . . . ,N − 2, with the boundary conditions α−1 = −1 and αN−1 = eiϕ. As before, tr[(C◇N)
n
] is preserved under the dynamics. However, the

a priorimeasure (3.2) is no longer stationary. The long time dynamics with tied down boundary conditions differs qualitatively from the one
on the ring.

The prefactor in (3.7) can be easily handled with the result

lim
N→∞

−
1
N

log ζ◇N(2P/N) = log(2P). (3.13)

For the main term of (3.7), one notes that the exponential can be written in terms of the empirical density as

𝜚N(w) =
1
N

N

∑
j=1
δ(w − ϑj). (3.14)

The term reflecting the confining potential V is linear in 𝜚N , while the interaction term is quadratic up to the diagonal contribution. Thus, the
limiting free energy is determined by a variational principle. We first define the mean-field free energy functional

FMF
(𝜚) = ∫

2π

0
dw𝜚(w)V(w) − P∫

2π

0
dw∫

2π

0
dw′ log ∣eiw − eiw

′

∣𝜚(w)𝜚(w′) +∫
2π

0
dw𝜚(w) log 𝜚(w). (3.15)

This functional has to be varied over all densities 𝜚, with the constraints 𝜚(w) ≥ 0 and ⟨𝜚⟩ = 1. The minimizer is known to be unique37 and
will be denoted by 𝜚⋆. One then arrives at

F◇(P,V) = log(2P) +FMF
(𝜚⋆), (3.16)
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and hence, using (3.10),

FAL(P,V) = ∂P(PFMF
(𝜚⋆)) + log(2P) + 1. (3.17)

It turns out to be more convenient to absorb P into 𝜚 by setting ρ = P𝜚. Then, PFMF
(P−1ρ) = F(ρ) − P log P with the transformed free

energy functional

F(ρ) = ∫
2π

0
dwρ(w)V(w) −∫

2π

0
dw∫

2π

0
dw′ log ∣eiw − eiw

′

∣ρ(w)ρ(w′) +∫
2π

0
dwρ(w) log ρ(w). (3.18)

F has to be minimized under the constraint

ρ(w) ≥ 0, ∫

2π

0
dwρ(w) = P (3.19)

with the minimizer denoted by ρ⋆. Then,

FAL(P,V) = ∂PF(ρ⋆) + log 2. (3.20)

The constraint (3.19) is removed by introducing the Lagrange multiplier μ as

Fμ(ρ) = F(ρ) − μ∫
2π

0
dwρ(w). (3.21)

A minimizer of Fμ(ρ) is denoted by ρμ and determined as a solution of the Euler–Lagrange equation,

V(w) − μ − 2∫
2π

0
dw′ log ∣eiw − eiw

′

∣ρμ(w′) + log ρμ(w) = 0. (3.22)

The Lagrange parameter μ has to be adjusted such that

P = ∫
2π

0
dwρμ(w). (3.23)

To obtain the Ablowitz–Ladik free energy, we differentiate as

∂PF(ρ⋆) = ∫
2π

0
dw∂Pρ⋆(w)V(w) − 2∫

2π

0
dw∫

2π

0
dw′ log ∣eiw − eiw

′

∣ρ⋆(w)∂Pρ⋆(w′)

+ 1 +∫
2π

0
dw(∂Pρ⋆(w)) log ρ⋆(w). (3.24)

Integrating (3.21) against ∂Pρ⋆, one arrives at

∂PF(ρμ) = μ + log 2, (3.25)

and thus,

FAL(P,V) = μ(P,V) + log 2. (3.26)

Sharing with other many-body integrable models, the Ablowitz–Ladik lattice has the property that its free energy is determined through an
explicit variational problem.

Added note. Independently,Mazzuca andGrava38 discovered the construction just presented. In the case of a confining potential specified
by a finite polynomial, for the Ablowitz–Ladik model, they prove the existence of the infinite volume limit DOS and its connection to the
minimizer of the generalized free energy as in (4.6). For thermal equilibrium, they show that the minimizer is a solution of the double
confluent Heun equation.
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In a follow-up, Mazzuca and Memin39 proved the almost sure limit of the Lax density of states, its relation to the variational problem,
and the uniqueness of the corresponding minimizer. These results hold for any continuous confining potential V , which from the perspective
of generalized hydrodynamics is a most welcome advance: the confining potential and the associated DOS is the natural characterization of a
GGE.

IV. DENSITY OF STATES
For the derivation of the hydrodynamic equations, the GGE average of the conserved fields, ⟨Q[n,σ]0 ⟩P,V , is required for which purpose

there are two equivalent methods. One can start from the microscopic definition and use that Q[n,σ],N depends only on the eigenvalues of
the CMV matrix. The other method, employed here, is to simply differentiate the free energy per site. We start with n = 0 and note that the
average log intensity

ν = ⟨Q[0]0 ⟩P,V = ∂PFAL(P,V) = ∂Pμ(P,V) = (∫
2π

0
dw∂μρμ(w))

−1
, (4.1)

where the last equality results from differentiating Eq. (3.19) as 1 = (∫ ∂μρμ)μ′(P). For n ≥ 1, we perturb V as Vκ(w) = V(w) + κϚnσ(w) and
differentiate the free energy at κ = 0. Then,

⟨Q[n,σ]0 ⟩P,V = ∂κFAL(P,Vκ)∣κ=0 = ∂P∂κF(ρ
⋆
(P,Vκ))∣κ=0, (4.2)

and first introducing the linearization of ρ⋆ as

∂κ ρ⋆(P,Vκ)∣κ=0 = ρ
∗′, (4.3)

one obtains

∂κF(ρ⋆(P,Vκ))∣κ=0 = ∫
2π

0
dwρ⋆(w,P,V)Ϛnσ +∫

2π

0
dwV(w)ρ∗′(w) (4.4)

−2∫
2π

0
dw∫

2π

0
dw′ log ∣eiw − eiw

′

∣ρ∗′(w)ρ∗(w′,P,V) +∫
2π

0
dwρ∗′(w) log ρ⋆(w,P,V)

using that ∫
2π
0 dwρ∗′(w) = 0. Integrating the Euler–Lagrange equation (3.22) at μ = μ(P) against ρ⋆′, the terms on the right-hand side of (4.4)

vanish and

⟨Q[n,σ]0 ⟩P,V = ∫

2π

0
dw(∂Pρ⋆(w,P,V))Ϛnσ(w). (4.5)

Thus, in the limit N →∞, the density of states is given by

ρQ(w) = ∂Pρ⋆(w). (4.6)

Naively one might have guessed that the DOS equals 𝜚⋆. However, the linear pressure ramp in the Killip–Nenciu identity amounts to a slightly
deviating result.

In the literature, an Euler–Lagrange equation of the type (3.22) is written differently by formally introducing a Boltzmann weight through

ρμ(w) = e−ε(w) (4.7)

with quasi-energy ε(w). Then,

ε(w) = V(w) − μ − 2∫
2π

0
dw′dw′ log ∣ sin(

1
2
(w −w′))∣e−ε(w

′
). (4.8)

In fact, comparing with (2.25), one could absorb μ into V . In general, one has to obtain the solution numerically. As discussed in Ref. 40, the
most efficient method appears to use the nonlinear Fokker–Planck equation related to Dyson’s Brownian motion on the circle. If V = 0, the
solution is uniform on the interval [0, 2π].
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We pause for a while to collect a number standard identities, together with their notations. The Hilbert space of square integrable
functions on [0, 2π] is denoted by L2([0, 2π], dw) with the scalar product

⟨ f , g⟩ = ∫
2π

0
dwf̄ (w)g(w). (4.9)

There will be many integrals over [0, 2π] and a convenient shorthand is

⟨ f ⟩ = ⟨1, f ⟩ = ∫
2π

0
dw f (w). (4.10)

Let us define the integral operator

Tψ(w) = 2∫
2π

0
dw′ log ∣ sin(

1
2
(w −w′))∣ψ(w′), w ∈ [0, 2π]. (4.11)

Then, the Euler–Lagrange equation (4.8) can be rewritten as

ε(w) = V(w) − μ − (Te−ε)(w). (4.12)

One introduces the dressing of a function ψ through

ψdr
= ψ + Tρμψdr, ψdr

= (1 − Tρμ)−1ψ, (4.13)

where ρμ is regarded as multiplication operator, i.e., (ρμψ)(w) = ρμ(w)ψ(w). With our improved notation, the DOS in (4.6) can be written
as

ρQ = ∂Pρμ = (∂Pμ)∂μρμ = νρp, ∂μρμ = ρp, ν⟨ρp⟩ = 1. (4.14)

Differentiating (4.13) with respect to μ, we conclude

ρp = (1 − ρμT)−1ρμ = ρμ(1 − Tρμ)−1Ϛ0 = ρμϚdr0 . (4.15)

For later purposes, we also state

qnσ = ⟨Q[n,σ]0 ⟩P,V = ν⟨ρpϚnσ⟩. (4.16)

Of physical relevance are ν and νρp, since they encode the GGE average of the conserved fields.

V. AVERAGE CURRENTS AND HYDRODYNAMIC EQUATIONS
GGE averaged currents. Returning to a ring of N sites with periodic boundary conditions, for the conserved field with index [n, σ], the

current from j − 1 to j is denoted by J[n,σ],Nj and the current from j to j + 1 by J[n,σ],Nj+1 . Then, the conserved fields satisfy a continuity equation
of the form

d
dt
Q[n,σ],Nj = J[n,σ],Nj − J[n,σ],Nj+1 = {Q[n,σ],Nj ,HN}, J[n],Nj = J[n,+],Nj + iJ[n,−],Nj . (5.1)

As explained in more detail in Appendix, the current densities are local and shift invariant in the sense that

J[n],Nj+1 (α) = J
[n],N
j (τα). (5.2)
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The lowest index current densities are

J[0],Nj = 2Q[1,−],Nj , J[1],Nj = i(−ρ2j−1αj−2ᾱj + ∣αj−1∣
2
). (5.3)

For higher currents, one has to rely on an abstract argument (see the Appendix). Actually, such expressions are not so helpful when trying to
compute the GGE averaged currents. Fortunately, there is a generic argument23,41 that applies also to the AL system.

We start with the fields and define the infinite volume correlator

Cmσ,nσ′(j − i) = ⟨Q
[m,σ]
j Q[n,σ

′
]

i ⟩
c
P,V , (5.4)

where the superscript c denotes truncation or connected correlation, ⟨g f ⟩c = ⟨g f ⟩ − ⟨g⟩⟨ f ⟩. Truncated correlations decay rapidly to zero, and
the field–field susceptibility matrix is given by

Cmσ,nσ′ =∑
j∈Z

Cmσ,nσ′( j) = ⟨Q[m,σ];Q[n,σ
′
]
⟩P,V , (5.5)

where the right-hand side is merely a convenient notation for the sum. Cmσ,nσ′ is the matrix of second derivatives of the generalized free
energy. Correspondingly, we introduce the field–current correlator

Bmσ,nσ′(j − i) = ⟨J
[m,σ]
j Q[n,σ

′
]

i ⟩
c
P,V , Bmσ,nσ′ =∑

j∈Z
Bmσ,nσ′( j). (5.6)

Despite its apparently asymmetric definition, B satisfies

Bmσ,nσ′( j) = Bnσ′ ,mσ(−j). (5.7)

To prove, we employ the conservation law and spacetime stationarity to arrive at

∂j⟨J[m,σ]
j (t)Q[n,σ

′
]

0 (0)⟩cP,V = −∂t⟨Q
[m,σ]
j (t)Q[n,σ

′
]

0 (0)⟩cP,V

= −∂t⟨Q[m,σ]
0 (0)Q[n,σ

′
]

−j (−t)⟩cP,V = ∂j⟨Q
[m,σ]
0 (0)J[n,σ

′
]

−j (−t)⟩cP,V , (5.8)

denoting the difference operator by ∂ j f ( j) = f ( j + 1) − f ( j). Setting t = 0, the difference ⟨J[m,σ]
j Q[n,σ

′
]

0 ⟩
c
P,V − ⟨J

[n,σ′]
−j Q[m,σ]

0 ⟩
c
P,V is constant in j.

Since truncated correlations decay to zero, this constant has to vanish, which yields (5.7). In particular, the field–current susceptibility matrix
is symmetric,

Bmσ,nσ′ = Bnσ′ ,mσ. (5.9)

Using this symmetry, we consider the P-derivative of the average current,

∂P⟨J[n,σ]0 ⟩P,V = −Bnσ,0 = −B0,nσ = −2⟨Q[1,−];Q[n,σ]⟩P,V , (5.10)

since J[0] = 2Q[1,−] by (5.3).We easily arrived at a very surprising identity. The P-derivative of the average current equals a particular covariance
of the eigenvalue fluctuations. In Ref. 23 (Sec. IV), the fluctuations of eigenvalues for the GUEmean-field log-gas are handled. To switch from
GUE to CUE in essence amounts to a notational change. The joint distribution of eigenvalues is stated in (3.8). Their asymptotic density is
𝜚⋆, as a minimizer of the variational problem (3.15). The corresponding fluctuation field is defined through

ϕN( f ) =
1
√
N

N

∑
j=1
( f (ϑj) − ⟨ρ⋆ f ⟩) = ∫

2π

0
dw f (w)ϕN(w), (5.11)
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with f being some smooth test function on the circle [0, 2π]. As N →∞, ϕN converges to a Gaussian field with covariance,

⟨f̃ ,C♯ f ⟩ = ⟨f̃ , (1 − P𝜚⋆T)−1𝜚⋆ f ⟩ − νP⟨f̃ , (1 − P𝜚⋆T)−1𝜚⋆⟩⟨(1 − P𝜚⋆T)−1𝜚⋆, f ⟩, (5.12)

where 𝜚⋆ is regarded as a multiplication operator. The subtraction arises because the number of eigenvalues does not fluctuate.
As in the case of the free energy, since the pressure is varying as 1/N, the fluctuation covariance is adding up, resulting in

∫

1

0
du⟨Q[1,−];Q[n,σ]⟩uP,V = ⟨Ϛ1−,C♯Ϛnσ⟩. (5.13)

Therefore, using identity (5.10), one arrives at

∂P(⟨J[n,σ]0 ⟩P,V + 2P⟨Ϛ1−,C♯Ϛnσ⟩) = 0, (5.14)

implying that the round bracket has to be independent of P, in particular, equal to its value at P = 0. Since ⟨Ϛ1−,C♯Ϛnσ⟩ is bounded in P, the
second summand vanishes at P = 0. For the first summand, one notes that in the limit P → 0, for each j, the a priorimeasure (2.22) becomes
uniform on the unit circle and the CMVmatrix turns diagonal, since ρ2j → 0. Denoting αj = eiϕj , ϕj ∈ [0, 2π], in the limit P → 0, the GGE (2.19)
converges to

(ZN)
−1

N−1

∏
j=0

dϕj exp
⎛

⎝
−
N−1

∑
j=0

V(ϕj+1 − ϕj)
⎞

⎠
, ϕN = ϕ0. (5.15)

Using (5.3), one observes that ⟨J[1]0 ⟩0,V = i. By a direct computation, ⟨J[2]0 ⟩0,V = 0. To extend the average to general n seems to be difficult, since
a sufficiently explicit formula for J[n]0 is missing. We assume that ⟨J[n]0 ⟩0,V = dn with some constant dn independent of V . Next, we substitute
P𝜚∗ = ρμ with the result

P⟨Ϛ1−,C♯Ϛnσ⟩ = ⟨Ϛ1−, (1 − ρμT)−1ρμϚnσ⟩ − ν⟨Ϛ1−, (1 − ρμT)−1ρμ⟩⟨Ϛnσ , (1 − ρμT)−1ρμ⟩. (5.16)

Noting that (1 − ρμT)−1ρμ is a symmetric operator, one finally arrives at

⟨J[n,σ]0 ⟩P,V − dn = −2(⟨ρμϚdr1−Ϛnσ⟩ − q1−⟨ρpϚnσ⟩), q1− = ν⟨ρpϚ1−⟩. (5.17)

In the conventional scheme of generalized hydrodynamics, the average currents are written somewhat differently. First, by linearity,
there is some function ρJ(w) on [0, 2π] such that

⟨J[n,σ]0 ⟩P,V − dn = ⟨ϚnσρJ⟩. (5.18)

For the currents, ρJ plays the same role as ρQ for the conserved fields. However, ρJ cannot have a definite sign. Second, one writes

ρJ = −2ρp(veff − q1−), q1− = ⟨Q1,−
0 ⟩P,V , (5.19)

with veff being the effective velocity. The effective velocity can be written more concisely as

veff =
Ϛdr1−
Ϛdr0

, (5.20)

(see Ref. 23, Sec. VI).
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Hydrodynamic equations.On the hydrodynamic scale, the local GGE is characterized by the log intensity ν and the CMV density of states
νρp, both of which now become spacetime dependent. Merely inserting the average currents and since dn has been assumed to be a constant,
one arrives at the Euler type hydrodynamic evolution equations,

∂tν(x, t) + 2∂xq1−(x, t) = 0,

∂t(ν(x, t)ρp(x, t; v)) − 2∂x((veff(x, t; v) − q1−(x, t))ρp(x, t; v)) = 0. (5.21)

This equation is based on the assumption of local GGE. To actually establish such an equation from the underlying AL model seems to be a
difficult task.

As a most remarkable feature of generalized hydrodynamics, the equations can be transformed explicitly to a quasilinear form (see
Ref. 23, Sec. VI). For this purpose we rewrite the identity in (4.15) as

ρμ = ρp(1 + (Tρp))−1, (5.22)

now regarded as the nonlinear mapping ρp ↦ ρμ. Then, Eq. (5.21) assumes the normal form

∂tρμ − 2ν−1(veff − q1−)∂xρμ = 0. (5.23)

Thus, the linearization operator is, in fact, merely multiplication by −2ν−1(veff − q1−); in other words, the operator is diagonal.
In (2.1), we followed a standard convention, which amounts to the free dispersion relation E(p) = 2(1 − cos p). Upon adopting

E(p) = 1 − cos p, the extra factors of 2 in (5.21) and (5.23) would be removed.

VI. MODIFIED KORTEWEG–dE-VRIES EQUATION
Instead of the Hamiltonian HN of (2.5), one can choose

H̆N = −i
N−1

∑
j=0
(αj−1ᾱj − ᾱj−1αj) = −i tr[CN − C∗N]. (6.1)

Then,

d
dt
αj = {αj, H̆N}AL = ρ2j (αj+1 − αj−1), (6.2)

which is known as Schur flow.42 Through a formal Taylor expansion, in Ref. 13, it is argued that the continuum limit of Eq. (6.2) yields the
modified Korteweg–de-Vries equation,

∂tu = ∂3
xu − 6u

2∂xu, (6.3)

which is a good reason to briefly touch upon (6.2).
As before, αj ∈ D and the conservation laws remain unchanged. However, the currents have to be modified from J[n] to J̆[n]. For the

log intensity current, one finds

J̆[0],Nj = 2Q[1,+],Nj = HN,j. (6.4)

The arguments of Sec. V can be repeated, ad verbatim. In the hydrodynamic equation (5.21), q1− is replaced by q1+ and the effective velocity
turns to

veff =
Ϛdr1+
Ϛdr0

. (6.5)

Such interchange of the roles of momentum and energy is already familiar from the relativistic sinh-Gordon quantum field theory.2
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Such a discussion misses, however, an interesting point. The wave field of the modified Korteweg–de-Vries equation is real-valued, a
feature that is maintained in the discrete approximation. If in (6.2) one chooses initially a real field α, then it stays real throughout time.
From the perspective of GGE, such initial conditions amount to a set of measure zero and one has to reconsider the analysis. Fortunately, the
relevant transformation formula is already proved in Ref. 33. To avoid duplication of symbols, in the remainder of this section, αj ∈ R, and
hence, ᾱj = αj everywhere. The equations of motion read

d
dt
αj = ρ2j (αj+1 − αj−1), αj ∈ [−1, 1], ρ2j = 1 − α

2
j . (6.6)

While an obvious Hamiltonian structure is lost, one readily checks that the a priorimeasure

N−1

∏
j=0

dαj(ρ2j )
P−1
=

N−1

∏
j=0

dαj(ρ2j )
−1 exp(−PQ[0],N) (6.7)

is still stationary under the dynamics. As before, the densities of the conserved fields are

Q[m]j = (Cm
)j,j, (6.8)

m = 1, 2, . . .. In particular,

Q[0]j = − log ρ
2
j , Q[1]j = −αj−1αj, Q[2]j = α

2
j−1α

2
j − ρ

2
j−1αj−2αj − ρ

2
j αj−1αj+1. (6.9)

There is no longer a distinction of ±. For the log intensity current, J[0]j = 2Q
[1]
j . Thus, J[0] is conserved and the indirect method for computing

the average currents is still in place (see Sec. V).
Since nowCN is a real matrix, its eigenvalues come in pairs. If eiϑj is an eigenvalue, so is e−iϑj . For a system of sizeN, there are only n = N/2

independent eigenvalues. Rather than using a DOS reflecting such symmetry, it is more effective to restrict the eigenvalues as 0 ≤ ϑj ≤ π,
subsequently setting yj = cos ϑj. The empirical DOS is given by

ρQ,n(w)dw =
1
n

n

∑
j=1
δ(w − yj)dw, w ∈ [−1, 1], (6.10)

where the more convenient n as the size parameter is used. In the limit n→∞, ρQ,n(w) converges to the deterministic limit ρQ(w). The GGE
expectations are then

⟨Q[m]0 ⟩P,V = 2∫
1

−1
dwρQ(w)Ϛm(w), Ϛm(w) = cos(mϑ), w = cos ϑ, (6.11)

i.e., being themth Chebyshev polynomial. The confining potential transforms to

Vkdv(w) =
∞

∑
m=1

μmϚm(w) (6.12)

with real chemical potentials μm.
As proved in Ref. 33, under the measure

2n−2

∏
j=0
(1 − α2j )

−1
(1 − α2j )

β(2n−j−1)/4
(1 − αj)a+1−(β/4)(1 + (−1)jαj)b+1−(β/4)dαj (6.13)

on [−1, 1]2n−1, β > 0, and a, b > −1 + (β/4), the joint (un-normalized) distribution of the eigenvalues of CN , imposing α2n−1 = 1, is given by

ζ◇n (β)2
κ
∣Δ(2y1, . . . , 2yn)∣β

n

∏
j=1
(1 − yj)a(1 + yj)bdyj (6.14)

J. Math. Phys. 63, 033305 (2022); doi: 10.1063/5.0075670 63, 033305-15

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

on [−1, 1]n. One notes β times the energy of the repulsive log gas with the single site a priori weight given by the Jacobi polynomial on [−1, 1].
The normalization ζ◇n is defined in (3.4) and κ = (n − 1)(− 1

2β + a + b + 2). To achieve a pressure ramp of slope −P/2n, one has to set

β =
2P
n
, a = b = −1 +

1
4
β. (6.15)

Thus, as before, one has to study the high temperature regime, this time for the β Jacobi ensemble. Since κ = 0, (6.14) becomes

ζ◇n (β)∣Δ(2y1, . . . , 2yn)∣
β

n

∏
j=1
(1 − yj)−1+(β/2)(1 + yj)−1+(β/2)dyj, (6.16)

while (6.13) turns to
2n−2

∏
j=0
(1 − α2j )

−1
(1 − α2j )

P(2n−j−1)/2ndαj. (6.17)

Now, the strategy of Sec. III is in force.We add a confining potential. Then, the asymptotic DOS is obtained byminimizing themean-field
free energy,

FKdV
(𝜚) = ∫

1

−1
dw𝜚(w)Vkdv(w) +∫

1

−1
dw𝜚(w) log(1 −w2

)

−P∫
1

−1
dw∫

1

−1
dw′ log(2∣w −w′∣)𝜚(w)𝜚(w′) +∫

1

−1
dw𝜚(w) log 𝜚(w). (6.18)

FKdV has to be minimized over all ρ ≥ 0 with ∫ dw𝜚(w) = 1 and the boundary condition ρ(−1) = ρ(1).
Actually, our mean-field limit is somewhat singular, since at a = −1 = b the a priorimeasure is not integrable. The quadratic energy term

is repulsive at short distances, but the linear term with log(1 −w2
) pushes the eigenvalues toward the two end points. It is not so obvious

whether and how the two terms balance. Fortunately, the particular case Vkdv = 0 has been studied in the recent contributions on the β-Jacobi
ensemble.43,35 The asymptotic DOS (6.10) with parameters β = 2α/n is studied, and hence, α = P, while the parameters a > −1 and b > −1.
The exact density of states in terms of the hypergeometric function 2F1 is obtained. As communicated by Trinh, their proof works also for the
limiting cases of interest here. Simply inserting the values a = −1, b = −1 in the general formula, a well-defined DOS is obtained. A confining
potential will modify the DOS, but the balance between terms should persist.

Surprisingly, the confining potential Vkdv is corrected by the log(1 −w2
) potential, which is attractive and favors the accumulation of

eigenvalues near the two boundary points ±1. The prior computation of the average currents is carried out for fixed V , which has now to be
corrected to by Vcor(w) = Vkdv(w) + log(1 −w2

). ρμ and ρp depending on Vcor. In addition, the dressing operator T is changed to

Tψ(w) = ∫
1

−1
dw′ log(2∣w −w′∣)ψ(w′), w ∈ [−1, 1]. (6.19)

With these modifications, the hydrodynamic equations are derived along the standard route. In particular, the effective velocity is still given
by

veff =
Ϛdr1
Ϛdr0

, (6.20)

where now the dressing operator T from (6.19) has to be used. In addition, q1 is modified to

q1 = 2ν∫
1

−1
dwρp(w)w. (6.21)

VII. DISCUSSION
For the defocusing discrete NLS in one dimension, we established the form of the hydrodynamic equations. As a novel feature, their

structure is determined by the mean-field version of the log gas corresponding to CUE random matrices. Our analysis is pretty much on the
same level as the one for the Toda lattice. Only the handling of average currents in the limit P → 0 is incomplete. We hope to return to this
point in the future.
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The Toda lattice is linked to the β-GUE ensemble at small β, i.e., high temperatures, such that the energy and entropy balance. Our
results explain how the Ablowitz–Ladik system is connected to the β-CUE ensemble at small repulsion. Thus, one might wonder whether
other classical matrix ensembles are linked to yet to be identified integrable dynamics. For the discrete modified Korteweg–deVries (KdV)
equation, as an unexpected feature, the TBA equations pick up a correction to the confining potential Vkdv.

The reported results leave me with a puzzle. In generalized hydrodynamics, the accepted expression for the effective velocity is

veff =
[E′]dr

[p′]dr
(7.1)

with the parametrically given dispersion relation (p,E).2 For the Toda lattice, E(p) = 1
2p

2 and E′(p) = p, p′ = 1. The kernel defining the dress-
ing transformation is the two-particle scattering shift, which for Toda is 2 log∣w −w′∣. Hence, what is the scattering shift for the discretized
nonlinear Schrödinger equation and how is the rule (7.1) connected to (5.20), (6.5), or (6.20)?
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connection between the high temperature limit of beta CUE and the Ablowitz–Ladik discretized version of the nonlinear Schrödinger equation
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APPENDIX: THE GENERAL ABLOWITZ–LADIK SYSTEM

The defocusing AL model is studied in Refs. 25 and 26. In particular, it is proved that the CMV matrix CN determines the local
conservation laws. Here, we remark that the algebra in Ref. 25 actually holds at greater generality.

Already in the original contribution14 (see also Ref. 1), it was noted that an often more convenient formulation is the coupled system,

d
dt
qj = iρ2j (qj−1 + qj+1),

d
dt
rj = −iρ2j (rj−1 + rj+1), ρ2j = 1 − qjrj, (A1)

with qj ∈ C, rj ∈ C. (Following the quantum convention and Ref. 26, for us the Schrödinger equation reads i∂tψ = −∂2
xψ, which amounts to

reversing time when compared to Ref. 1.) As before, we consider a ring with N sites, N even. For better readability, we will drop the index
N. The defocusing case corresponds to setting qj = αj, rj = ᾱj, while the physically equally interesting focusing case corresponds to qj = αj,
rj = −ᾱj.

We introduce two classes of CMVmatrices. Their building blocks are

Ξj =
⎛
⎜
⎝

rj ρj

ρj −qj

⎞
⎟
⎠
, Ξ̃j =

⎛
⎜
⎝

qj ρj

ρj −rj

⎞
⎟
⎠
. (A2)
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The matrices L, L̃ andM, M̃ are constructed by the same scheme as before and the CMVmatrix is defined through

C = LM, C̃ = L̃M̃, (A3)

i.e., the tilde operation amounts to interchanging q and r. The pair (qj, rj) is viewed as canonical coordinates. Then, the weighted Poisson
bracket generalizes to

{ f , g} = i
N−1

∑
j=0

ρ2j (
∂ f
∂rj

∂g
∂qj
−

∂ f
∂qj

∂g
∂rj
). (A4)

The time evolution in (A1) is generated by the Hamiltonian

H = −
N−1

∑
j=0
(qjrj+1 + rjqj+1) = tr[C + C̃]. (A5)

As before, the log intensity field,

Q[0] = −
N−1

∑
j=0

log(ρj) = Q̃[0], (A6)

is conserved. The complete tower of conserved fields is of the form

Q[n] = tr[Cn
], Q̃[n] = tr[C̃n

] (A7)

with densities

Q[n]j = (C
n
)j,j, Q̃[n]j = (C̃

n
)j,j. (A8)

These densities are shift covariant in the sense that

Q[n]j+1(q, r) = Q
[n]
j (τq, τr), Q̃[n]j+1(q, r) = Q̃

[n]
j (τq, τr), (A9)

where (τq)j = qj+1 mod(N). To confirm, one introduces the unitary shift matrix S through (S∗AS)i,j = Ai+1,j+1 mod(N). Then, denoting by T

the transpose,

STC(q, r)S = STL(q, r)SSTM(q, r)S =M(τq, τr)L(τq, τr) = C(τq, τr)T, (A10)

which implies (A9).
To extend the Lax pair relations (2.11), one notes that (CN)i,j(α, ᾱ) is a polynomial in α = (α0, . . . ,αN−1) and ᾱ = (ᾱ0, . . . , ᾱN−1), which

in Ref. 25 are regarded as independent variables. The Poisson bracket generates some other polynomial and the operation (C̄N)i,j interchanges
the roles of α, ᾱ. Therefore, the algebra in Ref. 25 persists upon replacing αj by qj and ᾱj by rj and properly translating the operations ∗ and ¯ .
Thereby, one arrives at

{C, tr(C)} = i[C,C+], {C, tr(C̃)} = i[C, (C̃+)T]. (A11)

Since the Poisson bracket acts as a derivative, one deduces

{Cn, tr(C)} =
n−1

∑
m=0

Cmi[C,C+]Cn−m−1
= i[Cn,C+], (A12)
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and similarly,

{Cn, tr(C̃)} = i[Cn, (C̃+)T]. (A13)

As claimed, Q[n] and Q̃[n] are conserved. In addition, mutual Poisson brackets vanish,

{Q[n],Q[n
′
]
} = 0, {Q[n], Q̃[n

′
]
} = 0, {Q̃[n], Q̃[n

′
]
} = 0. (A14)

The densities (A8) can still be expanded as a sum over weighted random walks on a checkerboard. The matrix element (Cn
)i,j is then the

sum over all 2n step walks starting at i and ending at j. Each walk represents a particular polynomial obtained by taking the product of local
weights along the walk. The weights are

ρj for the diagonal steps j↝ j + 1 and j + 1↝ j,
rj for the horizontal step j↝ j in case its lower square is black, and
−qj−1 for the horizontal step j↝ j in case its upper square is black.

For Q̃[n], the roles of qj and rj are exchanged.
In Ref. 1 (Chaps. 3.2 and 3.4), also conserved fields are discussed and a recursion relation iteratively determining conserved fields is

determined. However, these fields are nonlocal and one still would have to follow the “logarithmic subtraction procedure” to arrive at their
local version (see Ref. 23, Sec. 11).

Of particular interest are the current densities. In (A14), the matrix C+ has nonvanishing matrix elements only for ( j, j + ℓ) with
ℓ = 0, 1, 2. The terms with ℓ = 0 cancel and

{(Cn
)j,j,H}

= ∑
ℓ=1,2

i(Cj−ℓ,j(C
n
)j,j−ℓ − Cj,j+ℓ(C

n
)j+ℓ,j + C̃j,j+ℓ(C

n
)j,j+ℓ − C̃j−ℓ,j(C

n
)j−ℓ,j). (A15)

This looks like a shift difference, but it is not, since the off-diagonal matrix elements are only two-periodic. For n = 1, one obtains

{Cj,j, tr(C)} = i(−ρ2j−1qj−2rj + ρ
2
j qj−1rj+1), (A16)

while
{Cj,j, tr(C̃)} = i(ρ2j qj+1rj+1 − ρ

2
j−1qj−2rj−2 + ρ

2
j ρ

2
j+1 − ρ

2
j−2ρ

2
j−1) = i(qj−1rj−1 − qjrj) (A17)

for even j and

{Cj,j, tr(C̃)} = i(ρ2j qj−1rj−1 − ρ
2
j−1qjrj) = i(qj−1rj−1 − qjrj) (A18)

for odd j. Therefore, the first current reads

J[1]j = i(−ρ
2
j−1qj−2rj + qj−1rj−1). (A19)

This computation illustrates the difficulties when taking the P → 0 limit. To reach Eq. (A19) still requires explicit cancellations to yield the
actual current. For general n, one has to rely on an abstract argument.

Existence of local currents. We want to establish that there is a local current local, J[n]j , such that

{(Cn
)j,j,H} = J[n]j − J

[n]
j+1 . (A20)

We fix n and choose N > 4n. {Q[n]0 ,H} is a polynomial of degree at most 2n + 2. This polynomial is decomposed into patterns consisting
of monomials and their spatial shifts, denoted by ωj. An example would be ωj = rj−1(qj+3)2. Then, {Q[n]0 ,H} is a sum of terms of the form

∑
∣ℓ∣≤2n

a(ℓ)ωℓ (A21)

with some complex coefficients a(ℓ), which may vanish. Since {Q[n]j ,H} is shift covariant, from the conservation law,

N−1

∑
j=0

∑
∣ℓ∣≤2n+2

a(ℓ)ωℓ+j = 0. (A22)
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Relabeling the sum over j, one arrives at
∑

∣ℓ∣≤2n+2
a(ℓ) = 0. (A23)

To have a one-shift covariant current density means

∑
∣ℓ∣≤2n+2

b(ℓ)(ωℓ − ωℓ+1) = J
ω
0 − J

ω
1 . (A24)

Using (A23), the coefficients b(ℓ) are uniquely determined through a(ℓ)’s. The total fields Q[n],N are unique, but the one-shift covariant local
densities Q[n],Nj are not. Once the densities are fixed, the corresponding one-shift covariant current density is determined.
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