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1. Introduction

Monge-Ampère metrics with singularities appear in a variety of contexts, including mirror
symmetry (in connection with the Strominger-Yau-Zaslow conjecture, see e.g., [6, 13, 14, 16, 17]) and
in the optimal transport of singular measures. By a Monge-Ampère metric we mean the Hessian of
a convex solution to det D

2
u = 1. In [19] a robust method was developed to construct examples of

such metrics with Y-shaped and polyhedral singular structures in three and four dimensions, based on
solving a certain obstacle problem. The extension of the main result in [19] to higher dimensions,
stated as a conjecture (Conjecture 1.4 in that paper), was hindered by the lack of a well-developed
regularity theory for the obstacle problem considered in that work. The purpose of this paper is to prove
Conjecture 1.4 from [19] using a simplified approach which avoids the use of delicate free boundary
regularity results, to analyze the stability of the singular structures appearing in these examples, and to
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suggest further research directions motivated by the connections of our examples to the aforementioned
areas.

Our main result is:

Theorem 1.1. Let P ⇢ Rn
be a compact convex polytope, and let �k denote its k-skeleton. Then there

exists a convex function u : Rn ! R such that

�d n

2�1e ⇢ {u = 0}, u 2 C
1
⇣
Rn\�d n

2�1e
⌘
, and det D

2
u = 1 +

X

q2�0

aq�q

for some coe�cients aq > 0.

In particular, u is singular on �d n

2�1e, and ru is in fact discontinuous there (see Remark 3.1). Here
dte denotes the smallest integer greater than or equal to t. In dimension n = 2 solutions to det D

2
u = 1

are locally strictly convex and smooth [1], so the examples proving Theorem 1.1 exhibit interesting
singular structures away from the vertex set �0 in dimensions three and larger.

In [19], the approach to Theorem 1.1 (which was successful in dimensions four and smaller) was
based on solving an obstacle problem by lowering super-solutions to the Monge-Ampère equation
det D

2
u = 1 while constraining them to lie above a polyhedral graph (the obstacle). In this paper we

instead consider a “dual” obstacle problem, where we raise sub-solutions to the equation from below
while constraining them to lie below prescribed values at the vertices of P. In this way we can avoid
using delicate regularity results from [21] which were necessary for carrying out the previous approach.

We then study the stability of the singular structures in the solutions from Theorem 1.1 from two
perspectives. First, global solutions on Rn to equations of the form

det D
2
u = 1 +

MX

i=1

ai�pi
(1.1)

are asymptotic to quadratic polynomials [5]. Modulo a�ne invariance, the space of solutions to (1.1)
can be identified with an explicit orbifold parametrized by the mass sizes ai and the mass locations pi

(see [13]). It is natural to ask about the geometry and topology of the set in this moduli space which
corresponds to solutions u that are singular away from {pi}Mi=1. Our proof of Theorem 1.1 shows that
this set is not small. In particular, it has nonempty interior:

Theorem 1.2. Let u be one of the examples constructed in the proof of Theorem 1.1, and assume that

it solves

det D
2
u = 1 +

MX

i=1

ai�pi

for some ai > 0 and pi 2 Rn
. If
P

M

i=1(|ãi � ai| + |p̃i � pi|) is su�ciently small, then the global solution ũ

to

det D
2
ũ = 1 +

MX

i=1

ãi� p̃i

which is asymptotic to the same quadratic polynomial as u is singular on the faces of the polytope with

vertices { p̃i}Mi=1 that have dimension smaller than n/2, and ũ is smooth elsewhere.
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Second, the Legendre transform u
⇤ of one of the examples u constructed in Theorem 1.1 can be

viewed as the potential of the optimal transport map (with quadratic cost) which pushes forward the
Lebesgue measure dx in a bounded domain ⌦⇤ ⇢ Rn to the measure

⌫ = dx +
X

q2�0

aq�q

on ⌦ := ru
⇤(⌦⇤). The dual optimal transport plan ru is discontinuous on �d n

2�1e, despite ⌫ being
regular away from �0. Since ⌦⇤ can be taken convex, the singularities are a result of the presence of
Dirac masses in ⌫ and not of the boundary geometry of ⌦⇤ (if ⌫ had a smooth positive density and ⌦⇤

were convex, then the optimal transport map from ⌫ in⌦ to dx in⌦⇤ would be smooth [4]). It is natural
to ask if the discontinuities persist when the data of the problem (the measures) are perturbed. Our last
result shows that they do:

Theorem 1.3. Let u be one of the examples constructed in the proof of Theorem 1.1, and assume that

it solves

det D
2
u = dx +

MX

i=1

ai�pi
:= ⌫

for some ai > 0 and pi 2 Rn
. Let ⌦⇤ be a bounded convex domain containing ru(P), and let ⌦ =

ru
⇤(⌦⇤). If

P
M

i=1(|ãi � ai| + | p̃i � pi|) is su�ciently small and

⌫̃ := dx +

MX

i=1

ãi� p̃i

satisfies the mass balance condition ⌫̃(⌦) = ⌫(⌦) (that is,
P

M

i=1 ãi =
P

M

i=1 ai), then the Legendre

transform ũ of the potential ũ
⇤

of the optimal transport from the Lebesgue measure in ⌦⇤ to ⌫̃ in ⌦

satisfies that rũ is discontinuous on the faces of the polytope with vertices { p̃i}Mi=1 that have dimension

smaller than n/2, and ũ is smooth elsewhere in ⌦.

The intuition for Theorems 1.2 and 1.3 is that if the mass locations pi are close to one another and
the masses ai are large, then the masses “communicate” and singularities are generated between them
in optimal transport maps (in dimensions three and higher, at least). If on the other hand the masses
are far from one another in comparison to the mass sizes, they do not communicate and the transport
maps are smooth away from the masses (see Example 4.3).

The paper is organized as follows. In Section 2 we recall the notion of Monge-Ampère measure,
solve an obstacle problem, and recall a family of useful Pogorelov-type singular solutions. In Section 3
we prove Theorem 1.1. In Section 4 we prove Theorems 1.2 and 1.3. Finally, in Section 5 we list and
discuss some open questions motivated by this work.

2. Preliminaries

In this section we recall the notion of Monge-Ampère measure, solve an obstacle problem for the
Monge-Ampère equation, define a family of Pogorelov-type singular solutions to the Monge-Ampère
equation, and recall a regularity result from [3] which bounds the dimension of a singularity in a
solution to the Monge-Ampère equation.
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2.1. Monge-Ampère measure

To a convex function v on a domain ⌦ ⇢ Rn we associate a Borel measure Mv on ⌦, called the
Monge-Ampère measure of v. It satisfies

Mv(E) = |@v(E)|

for any Borel set E ⇢ ⌦, where @v denotes the subgradient of v. When v 2 C
2 we have Mv = det D

2
v dx.

Given a Borel measure µ on ⌦, we say that v is an Alexandrov solution to the Monge-Ampère equation
det D

2
v = µ if Mv = µ.

Alexandrov solutions are closed under uniform convergence: if convex functions vk converge locally
uniformly in ⌦ to v, then their Monge-Ampère measures Mvk converge weakly to Mv.

Finally, given a bounded convex domain ⌦ ⇢ Rn and a finite Borel measure µ on ⌦, the Dirichlet
problem 8>><

>>:
Mv = µ in ⌦,
v|@⌦ = '

is solvable in C

⇣
⌦
⌘

provided e.g. ' is linear, or ⌦ is strictly convex and ' is continuous. For proofs of
these results see [10].

2.2. Obstacle problem

We now solve an obstacle problem. The data are a bounded strictly convex domain U ⇢ Rn,
boundary data ' 2 C

⇣
U

⌘
, an obstacle g : U ! R [ {+1} which is lower semicontinuous and satisfies

g > ' on @U, and a finite Borel measure µ on U. We define the class of functions F by

F :=
n
v : v 2 C

⇣
U

⌘
convex, v  g in U, v|@U = ', Mv � µ

o
.

We show:

Proposition 2.1. The set F is non-empty, the function

u := sup
F

v

is in F , and

Mu = µ in {u < g} \ U.

Proof of Proposition 2.1. Let u0 be the solution in C

⇣
U

⌘
to

8>><
>>:

Mu0 = µ in U,

u0|@U = 0,

and let '0 be the convex envelope of min{', g}. Then u1 := u0 + '0 2 F . Let '1 be the convex
envelope of the boundary data of ' (the supremem of a�ne functions that are lower than ' on @U),
which satisfies '1 2 C

⇣
U

⌘
, '1|@U = ', and M'1 = 0 in U (see e.g., [10]). Using that F is closed under

taking maxima and under uniform convergence, it is not hard to construct an increasing sequence of
functions uk 2 F which satisfy

u1  uk  '1
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for all k and tend uniformly to u 2 F .
To conclude we show that for any x in the open set {u < g}, there exists rx > 0 such that Mu = µ in

Br(x) for all r < rx. Since such balls generate the Borel �-algebra, this will complete the proof. Let w

be the solution to 8>><
>>:

Mw = µ in Br(x),
w|@Br(x) = u.

For r small we have w < g in Br(x), and from the maximum principle we have u  w. Replacing u by
w in Br(x) we obtain a function in F , hence u = w in Br(x) and we are done. ⇤

Remark 2.2. We can also write u as the supremum of functions in

F̃ :=
n
ṽ : ṽ 2 C

⇣
U

⌘
convex, ṽ  g in U, ṽ|@U  ', Mṽ � µ

o
.

Indeed, for any function ṽ 2 F̃ there is a function v 2 F such that v � ṽ, given by the maximum
between ṽ and the function u1 2 F defined in the proof of Proposition 2.1.

2.3. Barriers

We now define a useful family of Pogorelov-type barriers constructed in [3]. We denote points in
Rn by (x, y) with x 2 Rn�k and y 2 Rk. For n � 3 and 1  k < n

2 , define the function wn, k on Rn by

wn, k(x, y) = C(n)|x|2�2k/n(1 + |y|2). (2.1)

For C(n) su�ciently large we have
det D

2
wn, k � 1

(in the Alexandrov sense) in the slab {|y| < ⇢n} for some ⇢n > 0. We omit the calculation, which is
straightforward using coordinates that are polar in x and y.

For n � 1 we also let

Wn(x) :=
Z |x|

0
(1 + s

n)
1
n ds, (2.2)

which solves
det D

2
Wn = 1 + |B1|�0 (2.3)

in the Alexandrov sense. It also satisfies

Wn(x) � 1
2
|x|2 =

8>>>>><
>>>>>:

O(|x|), n = 1
O(| log |x||), n = 2
c(n) + O(|x|2�n), n � 3

(2.4)

for some constants c(n) > 0, and
Wn(x) � |x| (2.5)

on Rn.
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2.4. A regularity result

To conclude the section we recall a useful bound on the dimension of a singularity appearing in a
solution to the Monge-Ampère equation ( [3], see also [18] for a short proof).

Proposition 2.3. Assume that det D
2
u � 1 in the Alexandrov sense in a domain U ⇢ Rn

, and let L be a

supporting linear function to u. Then

dim{u = L} < n

2
.

The examples wn, k show that this bound is optimal.

3. Proof of Theorem 1.1

Below we will use the following observation: there exists some � > 0 depending on P such that, for
any face F 2 �k with k < n, there is an a�ne function L that satisfies

|rL| = 1, L|F = 0, and L  �� on �0\F.

We also assume that n � 3, in view of the local regularity theory for the Monge-Ampère equation in
two dimensions mentioned in the introduction.

Proof of Theorem 1.1. After a translation we may assume that 0 2 P. By quadratic rescaling we may
replace P with ✏0P for ✏0 > 0 small depending on n, P to be chosen. Let uR be the solution to the
obstacle problem from Section 2.2 with

U = BR, ' = Wn + 1, µ = dx,

and

g(x) =

8>><
>>:

0, x 2 ✏0�0

+1, otherwise.

By the maximum principle and the fact that uR(0)  0 we have uR  '. Here and below, we will let C

denote a large constant depending on n and P. By the definition of uR, provided C is chosen su�ciently
large we have that

✏0P ⇢ {Wn �C✏0 < 0},
hence

Wn �C✏0  uR

in BR for all R (see Remark 2.2).
For k < n

2 and any face F 2 �k, choose an a�ne function L such that

|rL| = 1, L|✏0F = 0, and L < ��✏0

at all points in ✏0�0\✏0F. Let z0 2 ✏0F. For some rotation O, the function

B(x) := wn, k(O(x � z0))
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vanishes on ✏0F. Fixing ⇢(n) small, we have that

B � L/2 < Wn �C✏0

on @B⇢ provided ✏0 is small, using that Wn(x) � |x| and that

B(x)  C(n)|x � z0|1+1/n

for |x � z0| < 1. Finally, taking ✏0 smaller if necessary, we have

B � L/2  C✏1+1/n
0 � �✏0/2 < 0

at all points in ✏0�0\✏0F. We conclude that the function obtained by replacing Wn � C✏0 by max{Wn �
C✏0, B � L/2} in B⇢ is in the class F̃ defined in Remark 2.2, hence uR = B � L/2 = 0 on ✏0F.

Using that Wn �C✏0  uR  Wn + 1 for all R, we may take a sequence of radii Rj tending to infinity
such that the corresponding uR j

converge locally uniformly to a global convex function u which solves
det D

2
u = 1 away from ✏0�0 and vanishes on ✏0�k for all k < n/2. We claim that u is smooth otherwise.

Outside the polytope this follows from results in [5], which say that u is strictly convex (hence smooth)
outside the convex hull of ✏0�0 (that is, ✏0P). To finish, we claim that {u < 0} contains the interiors of
all faces of ✏0P of dimension n/2 or larger. Indeed, if u vanishes at an interior point of such a face,
then u vanishes in the whole face by convexity, which contradicts Proposition 2.3. Since det D

2
u = 1

in {u < 0}, the function u is smooth in {u < 0} by classical results ( [8, 20]) and the proof is thus
complete. ⇤

Remark 3.1. It is in fact true that ru is discontinuous on �d n

2�1e. Indeed, in the proof of Theorem 1.1
we can replace wn, k by appropriate rescalings of di↵erent Pogorelov-type sub-solutions of the form

w̃n, k = |x| + |x|
n�k+1

k+1 (1 + |y|2),

which also vanish on the k-dimensional subspace {|x| = 0} and have a Lipschitz singularity on this
subspace.

4. Proofs of Theorems 1.2 and 1.3

The barrier arguments in the proof of Theorem 1.1 show that the presence of singularities is robust
under C

0 perturbations. By this we mean:

Proposition 4.1. Let u be an example constructed in the proof of Theorem 1.1, and assume that u

solves

det D
2
u = 1 +

MX

i=1

ai�pi
.

If ũ is a convex function defined in a neighborhood N of P such that det D
2
ũ = 1 away from points

{ p̃i}Mi=1 with
P

M

i=1 |pi � p̃i| su�ciently small, and furthermore ku � ũkC0(N) is su�ciently small, then ũ is

singular on the faces of the polytope P̃ with vertices {p̃i}Mi=1 of dimension smaller than n/2, and ũ is

smooth otherwise in a neighborhood N
0 ⇢ N of P̃.
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Below we sketch the proof, suppressing the “✏0” from the proof of Theorem 1.1 for simplicity of
notation.

Proof. By perturbing the barriers B � L/2 from the proof of Theorem 1.1 and applying the maximum
principle, we see that ũ is singular on each face F̃ of P̃ that has dimension smaller than n/2. More
precisely, the convex envelope of the values that ũ takes on the vertices of F̃ is linear on sub-regions
that partition F̃ (see Example 4.2 below). For each such sub-region, we can perturb B� L/2 by a small
translation, rotation, and addition of an a�ne function to get a new barrier B̃ + L̃ that agrees with the
envelope on this sub-region, where B̃ is a rotation and translation of wn, k that is linear when restricted
to the a�ne subspace containing F̃ and L̃ is linear and vanishes on F̃. The maximum principle and the
convexity of ũ imply that ũ agrees with B̃ + L̃ (in particular, is linear) on this sub-region. Key points
are that B̃ + L̃  ũ at all vertices of F̃ by construction, and B̃ + L̃ is close to B � L/2 which is less than
ũ at the remaining vertices of P̃ and on the boundary of the “large” domain N.

As for regularity, assume another singularity happens in ũ. Its only extremal points can be some
subset of the vertices { p̃i}Mi=1, thus it is a polytope of dimension smaller than n/2 whose vertices are
contained in { p̃i}Mi=1. (Recall that a singularity has no extremal points on N\ [M

i=1 p̃i [2]. To rule out
the case of a singularity that extends from N

0 to @N, use that u is strictly convex outside of P and that
kũ � ukC0(N) is small). There is some µ > 0 such that each such polytope which is not contained in
a face of P̃ of dimension smaller than n/2 intersects {u < �µ}, provided

P
M

i=1 |pi � p̃i| is small. Then
ũ < �µ/2 at such points provided ku � ũkC0(N) is small, giving a contradiction (on the singularity, ũ is
bounded between its values at the vertices which are small). ⇤

Proofs of Theorems 1.2 and 1.3. In view of Proposition 4.1, it su�ces to show that ũ is close to u in
a neighborhood of P. Indeed, in the context of Theorem 1.2, ũ is smooth outside the convex hull of
{ p̃i}Mi=1 by results in [5], and in the context of Theorem 1.3 the function ũ is smooth outside the convex
hull of {p̃i}Mi=1 by a small modification of the arguments in [4].

To see this in the setting of Theorem 1.2, assume that uk are the unique global solutions to

det D
2
uk = 1 +

MX

i=1

a
k

i
�

p
k

i

that are asymptotic to the same quadratic polynomial as u (after performing an a�ne change of variable
and adding a linear function we may assume this is |x|2/2), with

P
M

i=1(|ak

i
�ai|+ |pk

i
� pi|) tending to 0 as

k ! 1. (See [13] for a discussion of the existence and uniqueness of solutions to this global problem).
As shown in [13], the functions

vk =
1
M

MX

i=1

(�k

i
)2

Wn((· � p
k

i
)/�k

i
),

where
�k

i
= M(ak

i
/|B1|)1/n,

are, up to adding quadratics with uniformly bounded (in k) coe�cients, sub-solutions to the problem
solved by uk. These satisfy that vk � |x|2/2�K for some K > 0 and all k, and |vk � |x|2/2|  K|x|2�n. By
the maximum principle we have that uk  |x|2/2 for all k. We conclude from the inequality vk  uk 
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|x|2/2 that any subsequence of {uk} has itself a locally uniformly convergent subsequence whose limit
must (by uniqueness) be u.

In the optimal transport setting, one can use use the stability of optimal transport maps, applied to
the Legendre transform. More precisely, let a

k

i
and p

k

i
be as above satisfying in addition the balance

condition
MX

i=1

a
k

i
=

MX

i=1

ai,

and let ru
⇤
k

be the optimal transport maps from the Lebesgue measure dx in ⌦⇤ to the measure

⌫k = dx +

MX

i=1

a
k

i
�

p
k

i

in ⌦. Then the maps ru
⇤
k

converge in measure to ru
⇤ (see [9] Theorem 1.14), which along with their

uniform boundedness in ⌦⇤ implies the C
0 convergence of u

⇤
k

to u
⇤, up to adding constants to u

⇤
k
. Since

uniform convergence is preserved under Legendre transform (see e.g., [7]), the proof is complete. ⇤

Example 4.2. Consider for example the case of a two-dimensional face in R5
that is a square, such

that ũ takes the value 0 at three of the vertices and ✏ > 0 at the last. Then ũ vanishes on the triangle

formed by the three vertices where ũ = 0, and on the other triangle agrees with the linear function that

vanishes on the long edge and takes value ✏ at the remaining vertex.

Example 4.3. Consider the solutions u✏ on R3
to

det D
2
u✏ = 1 + ✏(�e3 + ��e3)

that are asymptotic to |x|2/2. As ✏ tends to zero these converge uniformly to |x|2/2 by reasoning similar

to that used in the proof of Theorem 1.2, thus they cannot be linear on the segment connecting �e3 to

e3 for ✏ small.

5. Open questions

In this final section we list several open problems and discuss their significance.

(1) Theorem 1.2 shows that in the space of global solutions on Rn to

det D
2
u = 1 +

MX

i=1

ai�pi

that are asymptotic to |x|2/2, which can be identified with points on an explicit orbifold
parametrized by ai and pi ( [13]), the set of “maximally singular” solutions is not small (it has
nonempty interior). It is thus natural to ask about the boundary of this set. In particular, are
there sharp algebro-geometric conditions on the masses ai and their locations pi that guarantee
the absence of singularities?
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(2) What are the asymptotics of D
2
u near the vertices of P in our examples? In the case of a single

point mass, the smoothness of the tangent cone to the graph of u away from its vertex was recently
established in [11] (the solution is not required to be global for this result). A reasonable first goal
would be to consider the case of two point masses (P is a line segment) and axisymmetry in R3,
and to study the regularity of the tangent cone to u at a mass. In particular, is the tangent cone
smooth away from a ray?

(3) The approach of generating singular Monge-Ampère metrics by solving an obstacle problem
is quite flexible, and may give a useful perspective on metrics that arise in the large complex
structure limit in the study of the Strominger-Yau-Zaslow conjecture. For example, choosing
an obstacle that is quadratic when restricted to three rays from the origin and infinity otherwise
seems to yield metrics with a singular structure similar to that appearing in [17]. It would be
interesting to clarify this connection, and to find other singular structures that can be obtained
with our approach, with an eye towards developing intuition for SYZ.

(4) Our examples can also be viewed as solutions to certain geometric optics problems. Generalized
versions of such problems correspond to more complicated Monge-Ampère type equations known
as prescribed Jacobian equations (see e.g., [12, 15, 22]). It could be interesting to find analogues
of our examples for such problems.
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