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1. Introduction

Monge-Ampere metrics with singularities appear in a variety of contexts, including mirror
symmetry (in connection with the Strominger-Yau-Zaslow conjecture, see e.g., [6,13,14,16,17]) and
in the optimal transport of singular measures. By a Monge-Ampere metric we mean the Hessian of
a convex solution to det D*u = 1. In [19] a robust method was developed to construct examples of
such metrics with Y-shaped and polyhedral singular structures in three and four dimensions, based on
solving a certain obstacle problem. The extension of the main result in [19] to higher dimensions,
stated as a conjecture (Conjecture 1.4 in that paper), was hindered by the lack of a well-developed
regularity theory for the obstacle problem considered in that work. The purpose of this paper is to prove
Conjecture 1.4 from [19] using a simplified approach which avoids the use of delicate free boundary
regularity results, to analyze the stability of the singular structures appearing in these examples, and to
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suggest further research directions motivated by the connections of our examples to the aforementioned
areas.
Our main result is:

Theorem 1.1. Let P C R” be a compact convex polytope, and let T’y denote its k-skeleton. Then there
exists a convex function u : R" — R such that

ryoClu=0,, ueC®(R\Ify_q), and detDu=1+ ) a0,

g€l
for some coefficients a, > 0.

In particular, u is singular on Ff%—‘]’ and Vu is in fact discontinuous there (see Remark 3.1). Here
[£] denotes the smallest integer greater than or equal to ¢. In dimension n = 2 solutions to det D*u = 1
are locally strictly convex and smooth [1], so the examples proving Theorem 1.1 exhibit interesting
singular structures away from the vertex set I'y in dimensions three and larger.

In [19], the approach to Theorem 1.1 (which was successful in dimensions four and smaller) was
based on solving an obstacle problem by lowering super-solutions to the Monge-Ampere equation
det D*u = 1 while constraining them to lie above a polyhedral graph (the obstacle). In this paper we
instead consider a “dual” obstacle problem, where we raise sub-solutions to the equation from below
while constraining them to lie below prescribed values at the vertices of P. In this way we can avoid
using delicate regularity results from [21] which were necessary for carrying out the previous approach.

We then study the stability of the singular structures in the solutions from Theorem 1.1 from two
perspectives. First, global solutions on R” to equations of the form

M
det D’u =1+ ) i, (1.1)

i=1

are asymptotic to quadratic polynomials [5]. Modulo affine invariance, the space of solutions to (1.1)
can be identified with an explicit orbifold parametrized by the mass sizes a; and the mass locations p;
(see [13]). It is natural to ask about the geometry and topology of the set in this moduli space which
corresponds to solutions u that are singular away from {p;}”,. Our proof of Theorem 1.1 shows that
this set is not small. In particular, it has nonempty interior:

Theorem 1.2. Let u be one of the examples constructed in the proof of Theorem 1.1, and assume that
it solves

M
detD*u =1+ Z a0y,
i=1

for some a; > 0 and p; € R". IfoZl(IZli —a;| + |p; — pil) is sufficiently small, then the global solution i
to

M
det D%t = 1+ )" @6,
i=1

which is asymptotic to the same quadratic polynomial as u is singular on the faces of the polytope with
vertices { p‘i}f‘i | that have dimension smaller than n/2, and ii is smooth elsewhere.
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Second, the Legendre transform u* of one of the examples u constructed in Theorem 1.1 can be
viewed as the potential of the optimal transport map (with quadratic cost) which pushes forward the
Lebesgue measure dx in a bounded domain Q* C R” to the measure

v:dx+2aq6q

g€l

on Q := Vy*(Q"). The dual optimal transport plan Vu is discontinuous on rf%—l]’ despite v being
regular away from I'y. Since Q" can be taken convex, the singularities are a result of the presence of
Dirac masses in v and not of the boundary geometry of Q* (if v had a smooth positive density and Q*
were convex, then the optimal transport map from v in Q to dx in Q" would be smooth [4]). It is natural
to ask if the discontinuities persist when the data of the problem (the measures) are perturbed. Our last
result shows that they do:

Theorem 1.3. Let u be one of the examples constructed in the proof of Theorem 1.1, and assume that
it solves

M
det D*u = dx + Z a0, ==V
i=1
for some a; > 0 and p; € R". Let Q" be a bounded convex domain containing Vu(P), and let Q) =
Vu*(QQ"). I]‘Zf‘il(léi —a;| + |p; — pil) is sufficiently small and

satisfies the mass balance condition ¥()) = v(Q) (that is, Zf‘;’l a; = Zf‘;’l a;), then the Legendre
transform @t of the potential " of the optimal transport from the Lebesgue measure in Q* to v in Q
satisfies that Vii is discontinuous on the faces of the polytope with vertices {p;}), that have dimension
smaller than n/2, and it is smooth elsewhere in Q.

The intuition for Theorems 1.2 and 1.3 is that if the mass locations p; are close to one another and
the masses @; are large, then the masses “communicate” and singularities are generated between them
in optimal transport maps (in dimensions three and higher, at least). If on the other hand the masses
are far from one another in comparison to the mass sizes, they do not communicate and the transport
maps are smooth away from the masses (see Example 4.3).

The paper is organized as follows. In Section 2 we recall the notion of Monge-Ampere measure,
solve an obstacle problem, and recall a family of useful Pogorelov-type singular solutions. In Section 3
we prove Theorem 1.1. In Section 4 we prove Theorems 1.2 and 1.3. Finally, in Section 5 we list and
discuss some open questions motivated by this work.

2. Preliminaries

In this section we recall the notion of Monge-Ampere measure, solve an obstacle problem for the
Monge-Ampere equation, define a family of Pogorelov-type singular solutions to the Monge-Ampere
equation, and recall a regularity result from [3] which bounds the dimension of a singularity in a

solution to the Monge-Ampere equation.
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2.1. Monge-Ampere measure

To a convex function v on a domain Q C R" we associate a Borel measure Mv on €2, called the
Monge-Ampere measure of v. It satisfies

Mv(E) = |0v(E)|

for any Borel set E C Q, where dv denotes the subgradient of v. When v € C? we have Mv = det D*v dx.
Given a Borel measure ¢ on Q, we say that v is an Alexandrov solution to the Monge-Ampere equation
det D*v = uif Mv = p.

Alexandrov solutions are closed under uniform convergence: if convex functions v, converge locally
uniformly in Q to v, then their Monge-Ampere measures Mv; converge weakly to Mv.

Finally, given a bounded convex domain Q C R" and a finite Borel measure p on €, the Dirichlet
problem

{Mv = pin Q,

Voo = ¢
is solvable in C (ﬁ) provided e.g. ¢ is linear, or € is strictly convex and ¢ is continuous. For proofs of
these results see [10].
2.2. Obstacle problem

We now solve an obstacle problem. The data are a bounded strictly convex domain U C R”,
boundary data ¢ € C (U ), an obstacle g : U — R U {400} which is lower semicontinuous and satisfies
g > ¢ on dU, and a finite Borel measure ¢ on U. We define the class of functions ¥ by

F = {v:veC(ﬁ) convex, v < gin U, vy = ¢, Mvz,u}.
We show:
Proposition 2.1. The set ¥ is non-empty, the function

u:=supv
T

isin ¥, and
Mu=pinf{u<ginU.

Proof of Proposition 2.1. Let i, be the solution in C (ﬁ) to

Muy = pin U,
uoloy = 0,
and let ¢, be the convex envelope of min{y, g}. Then u; := uy + ¢o € ¥. Let ¢, be the convex

envelope of the boundary data of ¢ (the supremem of affine functions that are lower than ¢ on 9U),
which satisfies ¢, € C (U) , ©1lov = ¢, and My, = 0in U (see e.g., [10]). Using that ¥ is closed under
taking maxima and under uniform convergence, it is not hard to construct an increasing sequence of
functions u; € ¥ which satisfy

Uy < up <
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for all k£ and tend uniformly tou € F.

To conclude we show that for any x in the open set {# < g}, there exists r, > 0 such that Mu = u in
B,(x) for all r < r,. Since such balls generate the Borel o-algebra, this will complete the proof. Let w
be the solution to

Mw = pin B,(x),
Wl(’)Br(x) = u.

For r small we have w < g in B,(x), and from the maximum principle we have u < w. Replacing u by
w in B,(x) we obtain a function in ¥, hence u = w in B,(x) and we are done. O

Remark 2.2. We can also write u as the supremum of functions in

F :={p:7veC(U) convex, ¥ < g in U, #lay < ¢, M¥ 2 p}.

between ¥ and the function u; € ¥ defined in the proof of Proposition 2.1.

Indeed, for any function ¥ € ¥ there is a function v € ¥ such that v > ¥, given by the maximum

2.3. Barriers
We now define a useful family of Pogorelov-type barriers constructed in [3]. We denote points in
R”" by (x, y) with x e R"* and y € R¥. Forn > 3 and 1 < k < %, define the function w,, ; on R" by
Wi k(X y) = COla> (1 + |yP), 2.1
For C(n) sufficiently large we have
det D*w, ; > 1

(in the Alexandrov sense) in the slab {|y| < p,} for some p, > 0. We omit the calculation, which is
straightforward using coordinates that are polar in x and y.

Forn > 1 we also let

W,(x):= | 1+ ds, 2.2)

which solves
det D*°W,, = 1 + |By|6, (2.3)
in the Alexandrov sense. It also satisfies
O(x)), n=1

Wo(x) - §|X|2 =40(log|xl), n=2 (2.4)
c(n) + O(x>™), n=>3

for some constants ¢(n) > 0, and
Wa(x) = |x| (2.5)

on R”".
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2.4. A regularity result

To conclude the section we recall a useful bound on the dimension of a singularity appearing in a
solution to the Monge-Ampere equation ( [3], see also [18] for a short proof).

Proposition 2.3. Assume that det D*u > 1 in the Alexandrov sense in a domain U C R", and let L be a
supporting linear function to u. Then

dim{u = L} <

NS

The examples w,, ; show that this bound is optimal.
3. Proof of Theorem 1.1

Below we will use the following observation: there exists some 6 > 0 depending on P such that, for
any face F € I'; with k < n, there is an affine function L that satisfies

IVL| =1, LI =0, and L < =6 onI['o\F.

We also assume that n > 3, in view of the local regularity theory for the Monge-Ampere equation in
two dimensions mentioned in the introduction.

Proof of Theorem 1.1. After a translation we may assume that 0 € P. By quadratic rescaling we may
replace P with P for ¢y > 0 small depending on n, P to be chosen. Let uy be the solution to the
obstacle problem from Section 2.2 with

U=Bg, o=W,+ 1, u=dx,

and

0, x € gl
g(x) = .
+00, otherwise.

By the maximum principle and the fact that ugx(0) < O we have ug < ¢. Here and below, we will let C
denote a large constant depending on n and P. By the definition of ug, provided C is chosen sufficiently
large we have that

6P C {Wn —Cg < O},

hence
Wn - CEO < ug

in By for all R (see Remark 2.2).
For k < 7 and any face F € I';, choose an affine function L such that

IVL| =1, L|,r =0, and L < —d¢€
at all points in €1\ F. Let zg € € F. For some rotation O, the function

B(x) := wy 1(O(x = 29))
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vanishes on € F. Fixing p(n) small, we have that
B-L/2<W,-Ceg
on B, provided ¢ is small, using that W,(x) > |x| and that
B(x) < C(m)lx — zo|"*'"
for |x — zo| < 1. Finally, taking €, smaller if necessary, we have
B-L/2<Ce™"~66/2<0

at all points in Io\&F. We conclude that the function obtained by replacing W,, — Ce, by max{W,, —
Ce, B— L/2}in B, is in the class F defined in Remark 2.2, hence ug = B — L/2 =0on gfF.

Using that W, — Cey < ug < W, + 1 for all R, we may take a sequence of radii R; tending to infinity
such that the corresponding ug; converge locally uniformly to a global convex function u which solves
det D*u = 1 away from I’y and vanishes on €, for all k < n/2. We claim that u is smooth otherwise.
Outside the polytope this follows from results in [5], which say that u is strictly convex (hence smooth)
outside the convex hull of €I (that is, P). To finish, we claim that {# < 0} contains the interiors of
all faces of P of dimension n/2 or larger. Indeed, if u vanishes at an interior point of such a face,
then u vanishes in the whole face by convexity, which contradicts Proposition 2.3. Since det D*u = 1
in {u < 0}, the function u is smooth in {u < 0} by classical results ( [8,20]) and the proof is thus
complete. m|

Remark 3.1. It is in fact true that Vu is discontinuous on Ff%—l]' Indeed, in the proof of Theorem 1.1
we can replace w,, ; by appropriate rescalings of different Pogorelov-type sub-solutions of the form

~ n—k+1 2
Wik = x| + x| =T (1 + [y]%),

which also vanish on the k-dimensional subspace {|x| = 0} and have a Lipschitz singularity on this
subspace.

4. Proofs of Theorems 1.2 and 1.3

The barrier arguments in the proof of Theorem 1.1 show that the presence of singularities is robust
under C° perturbations. By this we mean:

Proposition 4.1. Let u be an example constructed in the proof of Theorem 1.1, and assume that u
solves

M
detD’u =1+ Za,-dpi.
i=1
If it is a convex function defined in a neighborhood N of P such that det D*ii = 1 away from points
{[9,-}?11 with ZZI |pi — Dil sufficiently small, and furthermore ||u — @t||coy is sufficiently small, then i is
singular on the faces of the polytope P with vertices { ﬁ[}?ﬁ , of dimension smaller than n/2, and it is
smooth otherwise in a neighborhood N' N of P.
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(13 2

Below we sketch the proof, suppressing the “gy” from the proof of Theorem 1.1 for simplicity of
notation.

Proof. By perturbing the barriers B — L/2 from the proof of Theorem 1.1 and applying the maximum
principle, we see that i is singular on each face F of P that has dimension smaller than 1/2. More
precisely, the convex envelope of the values that i takes on the vertices of F is linear on sub-regions
that partition F' (see Example 4.2 below). For each such sub-region, we can perturb B — L/2 by a small
translation, rotation, and addition of an affine function to get a new barrier B + L that agrees with the
envelope on this sub-region, where B is a rotation and translation of w, ; that is linear when restricted
to the affine subspace containing F and L is linear and vanishes on F. The maximum principle and the
convexity of # imply that i agrees with B + L (in particular, is linear) on this sub-region. Key points
are that B + L < i1 at all vertices of F by construction, and B + L is close to B — L/2 which is less than
it at the remaining vertices of P and on the boundary of the “large” domain N.

As for regularity, assume another singularity happens in i. Its only extremal points can be some
subset of the vertices { ﬁi}fz ,» thus it is a polytope of dimension smaller than n/2 whose vertices are
contained in { ﬁi}?ﬁ .- (Recall that a singularity has no extremal points on N\ Uf‘;’ , Pi [2]. To rule out
the case of a singularity that extends from N’ to N, use that u is strictly convex outside of P and that
|l — ullcocyy 1s small). There is some u > 0 such that each such polytope which is not contained in
a face of P of dimension smaller than n/2 intersects {u < —u}, provided Z?ﬁl |p; — pil is small. Then
it < —p/2 at such points provided |lu — if||coyy 1S small, giving a contradiction (on the singularity, i is
bounded between its values at the vertices which are small). O

Proofs of Theorems 1.2 and 1.3. In view of Proposition 4.1, it suffices to show that & is close to u in
a neighborhood of P. Indeed, in the context of Theorem 1.2, i is smooth outside the convex hull of
{ ﬁ,-}f‘i , by results in [5], and in the context of Theorem 1.3 the function i is smooth outside the convex
hull of { ﬁi}f‘i , by a small modification of the arguments in [4].

To see this in the setting of Theorem 1.2, assume that i, are the unique global solutions to

M
det D’u; = 1 + Z afép/_c

i=1

that are asymptotic to the same quadratic polynomial as u (after performing an affine change of variable
and adding a linear function we may assume this is [xI?/2), with 3./, (|a* — a;| + |p* — p:l) tending to 0 as
k — oo. (See [13] for a discussion of the existence and uniqueness of solutions to this global problem).
As shown in [13], the functions

1 M
V= o0 D AW = ph/a.
i=1

where
A = M(df/IB,)'",

are, up to adding quadratics with uniformly bounded (in k) coeflicients, sub-solutions to the problem
solved by u;. These satisfy that v, > |x|*/2 — K for some K > 0 and all k, and |v; — |x[>/2| < K|x[*™". By
the maximum principle we have that u; < |x|*/2 for all k. We conclude from the inequality v, < 1 <
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|x|?/2 that any subsequence of {u;} has itself a locally uniformly convergent subsequence whose limit
must (by uniqueness) be u.

In the optimal transport setting, one can use use the stability of optimal transport maps, applied to
the Legendre transform. More precisely, let af and p¥ be as above satisfying in addition the balance

condition
M M
k _
>i=Ya

i=1 i=1

and let Vu; be the optimal transport maps from the Lebesgue measure dx in Q* to the measure

M
Vi =dx + Zafépg
i=1

in Q. Then the maps Vu; converge in measure to Vu" (see [9] Theorem 1.14), which along with their
uniform boundedness in Q* implies the C° convergence of u; to u”, up to adding constants to u;. Since
uniform convergence is preserved under Legendre transform (see e.g., [7]), the proof is complete. O

Example 4.2. Consider for example the case of a two-dimensional face in R> that is a square, such
that @i takes the value 0 at three of the vertices and € > 0 at the last. Then ii vanishes on the triangle
formed by the three vertices where it = 0, and on the other triangle agrees with the linear function that
vanishes on the long edge and takes value € at the remaining vertex.

Example 4.3. Consider the solutions u, on R? to
det D*u = 1 + €(8,y + 0_e,)

that are asymptotic to |x|*/2. As € tends to zero these converge uniformly to |x|*/2 by reasoning similar
to that used in the proof of Theorem 1.2, thus they cannot be linear on the segment connecting —e; to
es for € small.

5. Open questions

In this final section we list several open problems and discuss their significance.

(1) Theorem 1.2 shows that in the space of global solutions on R” to

M
detD’u =1+ ) ais,,

i=1

that are asymptotic to |x|*/2, which can be identified with points on an explicit orbifold
parametrized by a; and p; ( [13]), the set of “maximally singular” solutions is not small (it has
nonempty interior). It is thus natural to ask about the boundary of this set. In particular, are
there sharp algebro-geometric conditions on the masses a; and their locations p; that guarantee
the absence of singularities?
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(2) What are the asymptotics of D*u near the vertices of P in our examples? In the case of a single
point mass, the smoothness of the tangent cone to the graph of u away from its vertex was recently
established in [11] (the solution is not required to be global for this result). A reasonable first goal
would be to consider the case of two point masses (P is a line segment) and axisymmetry in R,
and to study the regularity of the tangent cone to u at a mass. In particular, is the tangent cone
smooth away from a ray?

(3) The approach of generating singular Monge-Ampere metrics by solving an obstacle problem
is quite flexible, and may give a useful perspective on metrics that arise in the large complex
structure limit in the study of the Strominger-Yau-Zaslow conjecture. For example, choosing
an obstacle that is quadratic when restricted to three rays from the origin and infinity otherwise
seems to yield metrics with a singular structure similar to that appearing in [17]. It would be
interesting to clarify this connection, and to find other singular structures that can be obtained
with our approach, with an eye towards developing intuition for SYZ.

(4) Our examples can also be viewed as solutions to certain geometric optics problems. Generalized
versions of such problems correspond to more complicated Monge-Ampere type equations known
as prescribed Jacobian equations (see e.g., [12,15,22]). It could be interesting to find analogues
of our examples for such problems.
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