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Abstract—In this article, we introduce a reinforcement learning-
based price-driven demand response management (DRM) mecha-
nism in smart grid systems consisting of prosumers. Qur proposed
approach accounts for the prosumers’ behavioral characteristics
and models the emerging interactions among all the involved actors
in the smart grid system, i.e., prosumers, energy management
system (EMS), and utility companies. In particular, an off-policy re-
inforcement learning is introduced enabling the EMS to determine
the optimal price that should be announced to the prosumers on an
hourly-basis toward minimizing the overall system’s cost. In this
process, the utility companies” hourly-based wholesale price and
the prosumers’ energy generation and consumption characteristics
are considered as input. At the same time, the prosumers’ optimal
amount of purchased energy is determined in a real-time manner.
The presented numerical results demonstrate the success of the
proposed DRM model to deal with the incomplete information
availability scenarios, regarding the prosumers’ energy selling and
purchasing patterns, compared to the state of the art. Also, the
detailed comparative evaluation against other price-based DRM
approaches, e.g., cap-based and day-ahead pricing, shows the ben-
efits of the proposed DRM model in terms of adapting in a real-time
manner to the prosumers’ energy demand, while jointly minimizing
the overall system’s long-term cost.

Index Terms—Decision-making, demand response management
(DRM), prosumers, reinforcement learning, smart grid systems,
system modeling.

I. INTRODUCTION

MART grid systems are novel power-grid systems which
are capable to sense and measure the consumer's power con-
sumption by exploiting a smart metering infrastructure enabled
by advanced communication and information technologies [1].
Smart grid systems are expected to orchestrate the energy
generation, consumption, and conservation by implementing
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intelligent demand response management (DRM) mechanisms.
The ultimate goal of DRM mechanisms is to efficiently balance
the energy supply and demand, thus leveling the energy con-
sumption during peak hours [2].

Current studies on DRM mechanisms have considered smart
grid systems consisting either of consumers [3] simply purchas-
ing energy from the smart grid system, or prosumers, who can
purchase energy from the grid and/or generate energy via using
renewable energy sources [4]. The existing DRM mechanisms
can be categorized as: 1) price-based, where the consumers’
energy consumption is controlled via the announced energy
prices by the utility companies [5], and 2) incentive-based,
where the prosumers’ energy consumption behavior is guided
via appropriate designed incentives [6]. Also, the main theoret-
ical tools that have been used to design DRM mechanisms are:
ecame theory, capturing the interdependencies among the con-
sumers’ energy consumption decisions [7], and learning-based
approaches enabling the grid operator to forecast the energy
consumption patterns [8].

In this article, we introduce a reinforcement learning-based
price-based DRM mechanism in a smart grid system consisting
of prosumers, while accounting for the prosumers’ charac-
teristics, and the interactions among all the involved entities
in the smart grid system. Two main markets are studied to
capture all the involved entities interactions in the smart grid
system, i.e., the wholesale market where the energy management
system (EMS) purchases energy from the utility companies,
and the retail market, where the prosumers purchase energy
from the EMS. Our ultimate goal is to minimize the overall
long-term smart grid system’s cost via determining the optimal
announced energy price by the EMS to the prosumers, while
the latter ones dynamically adapt and determine their optimal
energy consumption following the proposed price-based DRM
mechanism.

A. Related Work

Game theory has been widely used in the recent literature to
design DRM mechanisms [9]. In [10], the authors formulate the
interactions among the distributed power sources, the energy
storage devices, and the consumers as a noncooperative game
among them, where each entity aims at maximizing its profit
by determining its optimal energy generation or consumption,
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respectively. The authors prove that the game is an exact po-
tential game and show the existence and uniqueness of a Nash
equilibrium that enables the overall smart grid system to operate
at a stable poinl. An aggregate game among the consumers
is formulated in [11], enabling the consumers to collaborate
among each other in order to determine their optimal aggre-
gate energy consumplion following a price-based DRM model.
A price-based DRM mechanism following the hourly billing
model is introduced in [12]. The consumers’ optimal energy
consumption is derived as the Nash equilibrium of the noncoop-
erative game among the consumers who aim to maximize their
satisfaction by purchasing energy. A social pricing mechanism is
proposed in [13] that is derived from the overall energy demand
in the smart grid system. Toward determining the optimal en-
ergy consumption of each consumer, a noncooperative game is
formulated among them and a corresponding equilibrium is cal-
culated. Also, both cases of rational and risk-aware consumers
are studied based on the principles of expected utility theory
and prospect theory, respectively. Focusing on the multienergy
interactions, a trilayer multienergy day-ahead market structure
and operation mechanism is introduced in [14], to support the
trading of electricity, heat, and natural gas. In [15], a novel
evolutionary game model is proposed based on the bounded
rationality of bidders to support the consumers to determine the
optimal demand response bidding strategy under scenarios of
incomplete information.

The special category of Stackelberg games has been exten-
sively used in the literature to study DRM given the inherent
property of those games to handle the hierarchical relation-
ship between the electricity market and the prosumers [16]. A
Stackelberg game is formulated among the utility companies
(leaders) and the consumers (followers) aiming at maximizing
the utility companies’ profit and the consumers’ welfare, under
several different underlying goals. Such objectives include the
following.

1) Determining the unique optimal number of utility compa-

nies to maximize their profit [17].

2) Enabling the prosumers to select the most beneficial utility
company based on a reinforcement learning mechanism in
order to optimize their long-term welfare [ 18].

3) Maximizing the utility companies’ trading probability
with the consumers, while the latter ones optimize their
flexible loads during the day [19].

4) Using the price-based DRM mechanism as an incentiviza-
tion scheme to motivate the consumers to participate in
the DRM program and determine the optimal reduction of
energy consumption [20].

5) Coordinating the renewable energy share among the pro-
sumers who aim at maximizing their welfare by selling or
buying a corresponding amount of renewable energy [21].

6) Optimizing the number of transactions with the pro-
sumers [22].

7) Minimizing the cost both for the microgrid operator
(MGO) and the consumers [23].

Learning mechanisms have recently attracted the interest of
the academic community in order to deal with DRM problems
in smart grid systems. A price-based DRM mechanism is intro-
duced in [24] viadesigning a deep reinforcement learning model
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based on a dueling deep Q network structure. The proposed
model optimizes the energy exchange regarding interruptible
loads considering the time of use tariff and different energy
consumption patterns for the consumers. Also, in[25],alearning
model is proposed to enable the MGO to learn the prosumers
energy consumption patterns regarding the home heating, ven-
tilation, and air conditioning energy needs. Then, the MGO can
design the optimal demand response policies to maximize its
profit and satisfy the consumers’ energy prerequisites. A deep
reinforcement learning approach is introduced in [26] in order
to jointly optimize the charging scheduling, order dispatching,
and vehicle rebalancing for large-scale shared electric vehicles
fleet operator.

B. Contributions and Outline

Following the above discussion and analysis, we should stress
that the problem of incomplete information availability and
scenarios, regarding the prosumers’ energy selling or purchasing
patterns, has not been properly addressed and still remains
an open and unresolved issue [27]. Even the recently adopted
and applied learning mechanisms mainly focus on learning the
prosumers’ energy exchange patterns, and do not consider the
MGO’s long-term optimal announced price while accounting
for the prosumers’ characteristics. Moreover, the game-theoretic
DRM mechanisms though offering interesting results, still suf-
fer from the drawback of excessive communications overhead
between the MGO and the prosumers in order to conclude to an
optimal announced price for the MGO and an optimal energy
exchange pattern for the prosumers.

In this research work, we strive exactly to tackle these issues
and drawbacks, by proposing a reinforcement learning-based
price-driven DRM mechanism in smart grid systems consisting
of prosumers. In a nutshell, an electricity management sys-
tem (EMS) coordinates the energy exchange among the utility
companies and the prosumers aiming at minimizing the overall
system cost, including both the prosumers’ and the EMS’s cost.
The minimization of the overall system's cost is achieved by
determining the optimal retail price announced by the EMS per
hourof the day, thus, introducing a price-based DRM mechanism
accounting for the prosumers’ characteristics, and the interac-
tions among all the involved entities in the smart grid system, i.e.,
utility companies, EMS, and prosumers. A thorough evaluation
of the proposed framework is performed by using real data
for the years of 2020-2021 from the U.S. Energy Information
Administration. The main contributions of this research work
that differentiate it from the rest of the existing literature are
summarized as follows.

1) A novel model and architecture of a smart grid system is
introduced consisting of the utility companies, the energy
management systems (EMS), and the prosumers, while
identifying and properly reflecting all the interactions
among the actors of the involved markets. The utility
companies set their wholesale energy selling price to the
EMS, and the latter one determines the optimal retail
energy selling price to the prosumers in order to minimize
the overall system’s cost and bring the overall smart grid
system into a stable operation point.
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2) Theprosumers’ and the EMS’s characteristics are captured
in order to define, determine, and update in a real-time
manner, their experienced cost from the energy exchange.
Specifically, the prosumers’ cost for buying energy from
the EMS, as well as its experienced dissatisfaction from
postponing its energy purchase to a future time due to the
increased price, are captured in realistic functions. Also,
the EMS’s cost for purchasing energy from the utility
companies in the wholesale market, and its profit from
selling energy to the prosumers in the retail market, are
represented in properly formulated cost functions.

3) A reinforcement learning-based price-based DRM mech-
anism is designed to determine the EMS retail energy
price per hour of the day toward minimizing the over-
all cost experienced in the smart grid system. The pro-
posed mechanism considers as input the utility companies’
hourly-based wholesale price, and the prosumers’ energy
generation and consumption characteristics. The latter
information can be derived from national catalogues. In
our case, we have used real data from the U.S. Energy
Information Administration online available datasets.

4) A detailed set of numerical results stemming from real
datasets show the performance and operation of the pro-
posed reinforcement learning price-based DRM mecha-
nism. In addition, the reaction of the prosumers to the retail
energy price is studied considering different prosumers’
behavioral patterns regarding the postponement of their
energy consumption for a future time. Finally, a detailed
set of comparative results to alternative existing DRM
mechanisms, reveals the benefits and tradeoffs of our
proposed framework.

The rest of this article is organized as follows. Section II
describes the introduced smart grid system’s architecture and
the considered system model, while Section III captures the
EMS and the prosumers” characteristics. Subsequently, in Sec-
tion IV the proposed reinforcement learning price-based DRM
mechanism is introduced and its operation is analyzed. Detailed
numerical and comparative results, obtained via modeling and
simulation, are provided and discussed in Section V. Finally,
Section VI concludes this article.

II. PROSUMERS-BASED SMART GRID SYSTEM OVERVIEW

A smart grid system is considered, consisting of the utility
companies, the EMS, and the prosumers. Those three different
types of entities create an energy market, while a simplified
illustration of the wholesale energy market and the retail energy
market components are presented in Fig. 1. Each prosumer is
equipped with an advanced metering infrastructure (AMI) and
an energy management controller (EMC). The EMC enables the
scheduling of the energy usage for the corresponding prosumer
given its energy needs and its personal flexibility to postpone
part of its needs. The AMI is used to support the bidirectional
communication between the prosumer and the EMS, where the
latter one provides energy to the prosumers through a retail
energy market. Specifically, the EMS buys energy from the
utility companies through a wholesale energy market, where

the utility companies sell energy at an hourly dynamic whole-
sale price. Then, the EMS sells energy to the prosumers by
using an hourly dynamic retail price. We study the interactions
among the utility companies, the EMS, and the prosumers at
each time slot. Toward capturing the time-dependency in the
involved entities’ interactions, we introduce the set of periods
H=1{0,1,...,H — 1}, where each period represents a real
time (i.e., hour) of the day. Practically, without loss of generality,
we can consider that the periods represent the actual hours
of the day, i.e., H = 24. Then, we map each time slot ¢ to a
corresponding period based on h* = mod(t, H), ¢ > 0.

Focusing on the prosumers, their corresponding set is denoted
asN = {1,...,n,...,|N|}.Each prosumer's energy consump-
tion can be divided into two categories: 1) shiftable, i.e., elastic
needs, such as water heating, electric vehicle charging, etc.,
and 2) nonshiftable, i.e., nonelastic needs, such as refrigerator,
alarm system, etc. [28]. The corresponding set of appliances
of each prosumer = that consume energy is denoted as A, =
{1,...,an,...,|An]}. At time slot ¢, an appliance can be on,
ie, 6y =1, oroff, ie., 6.‘]'" = (. Thus, the cumulative energy
demand at time slot ¢ is given as follows:

dy= Y & E;, [kWh] (n

Van €A,

where E; [kWh] is the energy consumption of the appliance
a,, in time slot £. Given the retail price announced by the EMS
in a given period h, where time slot ¢ belongs to a corresponding
period h* the prosumer determines the amount of energy that it
will purchase in order to minimize its cost, the latter consisting
of the monetary cost, as well as its experienced dissatisfaction
by postponing part of its energy needs for a future time. Simulta-
neously, the prosumer is capable of producing energy based on
renewable sources of energy, such as solar photovoltaic panels.
The prosumer’s energy generation in time slot ¢ is denoted
as g% [kWh). The prosumer’s energy generation and demand
characteristics can be extracted from available national datasets.
In our article, we have used real data for the years of 20202021
from the U.S. Energy Information Administration [29].

At each time slot ¢, each prosumer decides whether or not to
enter the retail energy market in order to purchase energy from
the EMS based on its energy generation and demand character-
istics. It is noted that each prosumer is equipped with an energy
storage device, e.g., Lithium-ion batteries, where b, [kWh] de-
notes the available stored energy at time slot £. We also assume
that, in the realistic scenarios considered here, the storage de-
vices suffice to store the prosumers’ energy surplus, without
exceeding their physical limits. Therefore, if g& + b%! = dt,
then the prosumer can cover its energy needs based on its own
generated energy and its already available energy at its storage
devices. In this scenario, the prosumer does not enter the retail
energy market. Also, the prosumer’s energy surplus is stored
for future usage, ie., b5F! = b, + (gf — d%). In the opposite
scenario, if g, + b%! < d&, then the prosumer needs to buy
energy from the EMS in order to cover part or all of its energy
needs. Let us denote as e}, [kWh] the amount of purchased energy
from the EMS.
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It is highlighted that the prosumer will actually purchase an
amount of energy ef, that minimizes its experienced monetary
cost and dissatisfaction from postponing part of its energy needs
for a future time slot, based on the retail energy price announced
by the EMS. Let us denote as

I8 =df — b1 — gt [KWh] )

the total amount of energy that the prosumer » may potentially
purchase from the EMS. Then, for the actual amount of energy
that the prosumer purchases, it holds true that e; o o8

In the next section, we capture the prosumers’ and the EMS's
characteristics, while appropriately defined cost functions from
the energy exchange are introduced in order to capture the inter-

actions of the utility companies, the EMS, and the prosumers.

III. PROSUMERS' AND ELECTRICITY MANAGEMENT SYSTEM’S
CHARACTERISTICS AND INTERACTIONS

The prosumer’s dissatisfaction from postponing par of its
energy needs for a future time slot is denoted as Dy, (1E, — ef,),
where Dy, : Rt — Rt and is called dissatisfaction function.
The dissatisfaction function is a strictly increasing function with
respect to the amount of energy requirement, that the prosumer
decides to postpone for a future time slot. For presentation
purposes in this article, we capture the dissatisfaction function,
as follows:

Da(ly, — ep) = sp(lf, — ef )™ 3)
where =, € R*, s € R+. The sensitivity parameters s and
y, capture the prosumer’s level of dissatisfaction by postponing
part of its energy consumption, reflecting and offering for a more
personalized perspective. Specifically, a prosumer is more sensi-
tive in terms of its experienced dissatisfaction by postponing part
of its energy consumption for greater values of the sensitivity
parameters. Also, the time-dependent sensitivity parameter s
captures the variability of the prosumer’s dissatisfaction based
on the peak (or low) energy demand hours of the day. Specifi-
cally, a prosumer is more sensitive regarding its dissatisfaction
if it postpones its energy demand during a peak hour, where it
may have greater need to purchase and use the necessary energy.

Furthermore, as highlighted before, the prosumer is charged
for the amount of energy e, that it decides to purchase for
covering its needs, which is also another factor affecting its

Appliances
Retail Market

Illustration of the interactions among the utility companies, the energy management system (EMS), and the prosumers.

perceived experience. Therefore, the overall cost that the pro-
sumer experiences by postponing part of its energy usage and/or
purchasing an amount of energy, is given as follows:

Pcrt!(le en) - Dﬂ(lmen) i3 Sz(en) 4

where St(el,) = k" - ¢!, denotes the EMS selling function of
energy to the prosumers and k" € R+ [$/kWh] denotes the retail
price of energy, as announced by the EMS at a specific period
(i.e., hour) of the day. The selling function S*(e!,) represents the
profit that the EMS makes by selling energy to the prosumers in
the retail market. Itis highlighted that, without loss of generality,
we consider an hourly-based pricing model, where the EMS can
dynamically announce a different retail price at every hour of the
day in order to optimize its profit and minimize its experienced
cost.

The goal of each prosumer is to minimize its experienced
cost while accounting for the monetary cost to purchase energy
and the dissatisfaction cost to postpone part of its energy needs.
Thus, given the announced retail energy price by the EMS,
each prosumer's goal is to determine its optimal amount of
purchased energy ef; in order to minimize its experienced cost,
while considering its nonshiftable and shiftable energy needs.
The optimal solution of the corresponding optimization problem
is given as follows:

el (I%) = argmin PCY (18, k). (5)

O<el <lf

Following, and focusing on the characteristics of the EMS, we
study the EMS interactions with the utility companies and the
prosumers. As explained before, the EMS buys the energy from
the utility companies in a wholesale market and sells energy to
the prosumers in a retail market. The utility companies announce
an hourly-based wholesale price of the energy based on collected
data and statistics on the energy demand and a cap-based price
accounting for the energy demand to improve their profit and
avoid peaks of energy demand. Therefore, the wholesale billing
function announced by the utility companies to the EMS is given
as follows:

b‘(z e:;((,a)) =a' ) el
¥YneN

VneN

0

ei,‘(lil))

(6)

:.>+ﬁz‘(z

YneN
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where af € R*[§/kWh] denotes the wholesale hourly-based
price and S}, denotes the cap-based energy price, which is a
random variable, whose expected value changes in an hourly-
basis following the total energy demand. In practical scenarios,
the wholesale hourly-based price and the cap-based energy price
are announced by the utility companies at the point of the energy
exchange among them and the EMS, in the wholesale market.
Our proposed model could be easily extended by introducing a
different wholesale billing function per utility company selling
energy to the EMS, for any corresponding amount of requested
energy.

The EMS collects revenue by selling energy to the prosumers
at a retail price k", where the price as explained before issetina
dynamic manner following an hourly-basis pricing model. Thus,
the overall cost experienced by the EMS is derived as follows:

EC(It,b,k) = bt ( Y e (i) ) > SHekUE) D
YnelN VYneN

where 1¢ is the prosumers’ vector of the amount of needed energy
at time slot ¢, b denotes the ulility companies’ wholesale price
vector, and k is the EMS’s retail price vector. It is noted that
the overall cost experienced by the EMS, as expressed in (7),
depends on the EMS’s retail price vector k, given that the selling
function S*(e; (I%)) depends on the retail energy price k"

Considering the prosumers’ cost (4) and the EMS cost (7), the
overall cost experienced in the smart grid system at each time
slot £ is determined as follows:

SC'(e', k) = wy EC'(I*,b,k) + ua Z PCLE(EE, &) (B)
VReN

where wy,ws € RY, w; + wa =1 denote the corresponding
weight to value more the EMS cost (system-centric approach)
or the prosumers’ cost (prosumer-centric approach). It is noted
that the weights 1wy, w» are introduced to provide the enhanced
flexibility to the smart grid system to weigh more the EMS cost
orthe prosumers’ cost based on the examined use case scenarios.
In the general case, where those costs are treated with the same
importance, these weights are assumed equal. Also, e! denotes
the vector of purchased energy by the |N'| prosumers at time
slot .

IV. REINFORCEMENT LEARNING ENABLING DEMAND
RESPONSE MANAGEMENT

In this section, capitalizing on the above presented model-
ing and formulation, we introduce and design a reinforcement
learning price-based DRM approach. In particular, the proposed
DRM mechanism exploits the theory of reinforcement learning
in order to enable the EMS to determine the optimal price k"
per hour of the day toward minimizing the overall cost in the
smart grid system, as defined in (8). At the same time, the
prosumers also determine their optimal amount of purchased
energy e';¥n € NVt, by responding to the announced retail
price by the EMS in order to minimize the overall system’s cost.
Toward achieving this goal, an off-policy reinforcement learning
algorithm is used to enable the EMS learn the optimal prices in
order to minimize the long-term system’s cost. Specifically, the

EMS executes the proposed off-policy reinforcement learning
algorithm and announces the retail price to the consumers at
each iteration of the algorithm.

Specifically, we formulate the system’s cost minimization
problem as a Markov decision process (MDP) problem. The
MDP problem is defined by the decision maker's actions, a set
of states for the smart grid system, and the overall system’s cost
function. In our examined problem, the decision maker is the
EMS, and its actions are the announced retail prices k" in an
hourly-basis. In the smart grid system under consideration, the
state ! of the system at time slot ¢ is defined as a combination of
the current period A%, the amount of energy that the prosumers
can potentially purchase 1, and the wholesale pricing function
b, as follows:

st = (ht, 15, bt). )]

Focusing on a realistic smart grid system implementation
we consider H = 24 hours. Also, we quantize the maximum
feasible intervals of the total amount of energy that the prosumers
can potentially purchase and the wholesale prices into L and B
levels, respectively. This information can be derived by historical
statistical data without requesting to reveal any sensitive infor-
mation from the prosumers’ side [29], as only their total amount
of purchased energy influences the retail market price. Given that
the transition of the total amount of energy that the prosumers
can purchase and the wholesale prlce from the one period to
the next one depend on the state s¢ and the action k", then the
sequence of the states s*,¢ = 0,1,2,... follows an MDP with
action k. Specifically, based onthe aclion (i.e., announced retail
price k" by the EMS to the prosumers) taken at each iteration of
the proposed reinforcement learning algorithm, the prosumers
determine their optimal amount of purchased energy [based on
(5)] and the EMS is driven to a new state s* (9).

Based on the previous analysis, we develop an off-policy
reinforcement learning algorithm, based on the principles of
Q-learning, by focusing on the effect of performing an action
k™ in the state s*. We define the Q value based on the following
relation:

Q(s,k) = Q(s,k) + a(r + ymaxQ(s", k) — Q(s, k)) (10)

where a denotes the learning rate of the algorithm capturing how
thoroughly our proposed model explores the available states of
the examined system, and « is the discount factor capturing
the importance of future rewards. The factor r is the reward
from moving from one state s° to the next one s**! and it is
formulated as being inversely proportional to the experienced
system cost. To determine the optimal prices announced by the
EMS per period A, and the corresponding optimal amount of
energy purchased by each prosumer per time slot £, we follow
the subsequent steps.

1) First, we initialize the Q function (10) at some arbitrary
values.

2) Second, we select an action k" using the e-greedy pol-
icy and move to the new state. Based on the e-greedy
policy, we select the action that gives the maximum Q
value with probability (1 — €), and we explore a randomly
selected action with probability . Following this process,
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we enable the EMS to probabilistically select actions
that provide low overall cost in the system, while also
allowing the EMS to explore pricing actions that could
potentially lead to a decrease in the overall system’s cost
in the long-term. Furthermore, in order to keep a balance
between exploration of new actions and the convergence
time to an optimal strategy, we adopt a decaying e-greedy
policy. Following this learning policy, our algorithm starts
exploring the available actions with high e values, e.g.,
e = 0.9, to aggressively learn the possible actions and cor-
responding outcomes. Then, as the iterations proceed, the
e value follows a decaying rule to balance the exploration
and convergence time.

3) Third, we update the Q value of a previous state according
to the Q-learning update rule, as presented in (10).

4) Finally, we repeat the second and the third step in our
algorithm until we reach a terminal state and the algorithm
has converged.

It is highlighted that at the second step of our algorithm, the
EMS selects an action A" and announces the retail price to the
prosumers. Then, the latter ones determine their optimal amount
of purchased energy ! by solving the optimization problem
presented in (5).

It is noted that our proposed reinforcement learning price-
based DRM mechanism enables the interactions among the
utility companies, the EMS, and the prosumers in an autonomous
and distributed manner, without the need of a centralized entity
taking optimal decisions about the examined system. The devel-
oped DRM model can dynamically adapt to the conditions of the
smart grid system, and appropriately conclude to the optimal an-
nounced hourly-based prices by the EMS and the corresponding
optimal amount of purchased energy by each prosumer.

V. NUMERICAL RESULTS

In this section, a detailed numerical evaluation is presented
to study the performance and the inherent characteristics of the
proposed reinforcement learning price-based DRM model for
smart grid systems with prosumers. Initially, in Section V-A, the
pure operation and the performance of the proposed framework
is presented. Section V-B studies the operation of the smart grid
system and the effectiveness of the proposed DRM mechanisms
under different scenarios of the prosumers’ behavioral charac-
teristics. Section V-C focuses on a scalability analysis scenario,
and Section V-D demonstrates a detailed comparative analysis
of the proposed approach against alternative DRM strategies.

Throughout our evaluation, unless otherwise explicitly stated,
we consider a smart-grid system with the following parameters:
|[N| =30, [H| =24, y=0.95 a = 0.1, w; = 0.4, ws = 0.6,
initial value ¢ = 0.9, and final value e = 0.001, a* = O.OZ,IB;N €
(0.1,0.6], sk =0.12, x, =2, k" € [0,1), d!, € [0.14,0.23],
gr € [0.13,0.20]. The values of parameters considered in our
simulations have been extracted from the real data for the years
0f2020-2021 from the U.S. Energy Information Administration
considering the Southwest region of USA [29]. The proposed
framework’s evaluation was conducted using a Dell XPS desktop
with 11th Gen Intel core i9-11900 K 5.3 GHz processor, and
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64 GB available RAM. In the rest of the analysis, the system
cost, EMS cost, and prosumer’s cost (reflected in the vertical axis
of the corresponding figures) are presented in relative monetary
units, while the purchased energy in relative energy units. It is
noted that the prosumer’s dissatisfaction is a unitless metric.

A. Pure Operation and Performance

In this section, we study the pure operation and performance
of our proposed framework. We consider three different learning
scenarios adopting three different decaying e-greedy policies,
i.e., decreasing the e value every 100, 200, and 300 iterations
of the proposed reinforcement learning algorithm (Section IV).
Figs. 2{a)-{(c) and 3(a) and (b) present the overall system’s
cost, the total prosumers’ dissatisfaction, the total amount of
purchased energy, the EMS cost, and the total prosumers’ cost,
respectively, as a function of the real execution time of the
proposed reinforcement learning price-based DRM mechanism
for the three considered scenarios. It is noted that the demon-
strated execution time consists of the reinforcement learning
algorithm’s execution time in order to determine the EMS’s
pricing and the prosumers’ execution time in order to determine
the prosumers’ optimal amount of purchased energy (5). It is
highlighted that the optimization problem in (5) is solved in a
distributed manner by each prosumer.

The results reveal that under the scenario where the EMS
thoroughly explores its optimal actions (decay cycle = 300),
i.e., optimal announced price, the minimum cost is achieved
[Fig. 2(a)]. Also, under this scenario, the prosumers’ cost is
minimized [Fig. 3(b)] via enabling the prosumers to buy a large
amount of energy [Fig. 2(c)], thus, minimize their experienced
dissatisfaction [Fig. 2(b)], as the prosumers cover their energy
needs. Consequently, a thorough exploration of the EMS avail-
able actions favors the prosumers, while the EMS achieves an
almost zero cost [Fig. 3(a)]. The exact opposite observations are
derived for the other two scenarios, i.e., decay cycle = 100 or
200, where the EMS performs less exploration of its optimal
actions. Furthermore, the results demonstrate that the proposed
DRM mechanism converges fast to an optimal announced price
and purchased amount of energy, making it suitable for realistic
implementation in a real-life scenario.

B. Prosumers Behavioral Characteristics

In this section, we assess the effectiveness of our proposed
DRM mechanism to adapt to the prosumers’ behavioral charac-
teristics and their sensitivity in postponing part of their energy
needs to a future time slot. Initially, we consider four, scenarios
regarding the prosumers’ behavioral characteristics, namely: 1)
Homogeneous, 2) Random, 3) Clustered, and 4) Heterogeneous.
The four scenarios are differentiated based on the sensitivity
parameter s,'; (3). Under the homogeneous scenario, all the
prosumers have exactly the same sensitivity s?Vn € N, with re-
spect to their dissatisfaction. Under the heterogeneous scenario,
half of the prosumers’ population has a very low sensitivity,
while the remaining half of the population demonstrates a very
high sensitivity to the dissatisfaction. Under the clustered sce-
nario, three equal-sized clusters of prosumers are considered,
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characterized by low, medium, and high sensitivity. Under the
random scenario, each prosumer is characterized by a random
sensitivity with reference to its experienced dissatisfaction. It
is highlighted that under the three comparative scenarios, the
average prosumer sensitivity to dissatisfaction, considering all
the prosumers, is the same for fairness in the comparison.
Figs. 4(a)-(c) and 5(a) and (b) present the overall system’s
cost, the total prosumers’ dissatisfaction, the total amount of
purchased energy, the EMS cost, and the total prosumers’ cost,
respectively, as a function of the real execution time of our
proposed mechanism for the three considered scenarios.

The results show that a great heterogeneity regarding the
prosumers’ behavioral characteristics, i.e., Heterogeneous sce-
nario, favors the operation of the smart grid system by achieving
lower cost [Fig. 4(a)], owing to the low cost achieved by the
EMS [Fig. 5(a)] and the prosumers [Fig. 5(b)]. Specifically,
under the scenario of high heterogeneity among the prosumers,
the EMS cannot learn the unique behavioral characteristics of
each prosumer, thus, it announces a holistic/generic price to all
of them. The latter phenomenon brings the prosumers in an
unfavorable situation, where they are not incentivized to buy
a lot of energy [Fig. 4(c)], as the price for many of them is
quite high. Thus, the highly heterogeneous prosumers tend to
postpone a larger amount of energy to be purchased in a future
time slot, and experience high dissatisfaction [Fig. 4(b)].

Further extending our analysis, we consider three comparative
scenarios of 1) low, 2) medium, and 3) high sensitivity of
all the prosumers regarding their dissatisfaction perceived by
postponing part of their energy needs for a future time slot.
Similarly, Figs. 6(a)-(b), and 7(a) and (b) present the overall
system'’s cost, the prosumers’ dissatisfaction, the total amount
of purchased energy, the EMS cost, and the total prosumers’ cost,

respectively, as a function of the real execution time of our DRM
mechanism for the three dissatisfaction sensitivity scenarios.

The results reveal that the more sensitive the prosumers are to
the dissatisfaction, the more energy they purchase [Fig. 6(c)]
in order to cover their energy needs, and thus, reduce their
dissatisfaction value [Fig. 6(b)]. Thus, given that they buy more
energy, their cost gets higher [Fig. 7(b)], mainly due to the
high cost that they incur for buying a large amount of energy.
Accordingly, taking into account the high energy demand, the
EMS makes more profit by selling the energy [Fig. 7(a)]. In a
nutshell, by jointly considering the prosumers’ and the EMS
cost, when the prosumers’ dissatisfaction sensitivity increases,
the overall system’s cost becomes high as well [Fig. 6(a)].

C. Scalability Evaluation

In this section, a scalability analysis of our proposed DRM
mechanism is provided for a large-scale system in terms of
the number of prosumers and for a different number of states
of the proposed reinforcement learning-based price-driven
DRM mechanism. Fig. 8(a) presents the system’s cost and the
execution time of our framework, for an increasing number of
states considered in the proposed reinforcement learning-based
price-driven DRM mechanism, i.e., the EMS announces a
retail price every 4, 2, and 1 h, respectively. The results
show that as the number of states increases, the system’s
cost decreases, as the EMS can more accurately adapt to the
prosumers’ energy demand characteristics, while the execution
time increases. Furthermore, the four comparative scenarios
introduced at the beginning of Section V-B are considered
regarding the heterogeneity of the prosumers with respect to
their dissatisfaction sensitivity (i.e., Homogeneous, Random,
Clustered, Heterogeneous). In particular, Fig. 8(b) presents
the execution time of our proposed reinforcement learning
price-based DRM mechanism as a function of the number of
prosumers residing in a large-scale smart grid system (up to
1000 prosumers) for the aforementioned four scenarios. First,
the results show that for a heterogeneous prosumers’ population
more time is required by the EMS to learn its optimal announced
hourly pricing in order to minimize the overall system’s cost.
Second, we observe that for all scenarios the execution time
grows in a much slower trend than linearly, thus overall remains
relatively low and appropriate for a real-life application.
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D. Comparative Evaluation

In the following, a detailed comparative evaluation of the
proposed reinforcement learning price-based DRM mechanism
against other price-based DRM models and alternative strate-
gies, is presented. Specifically, throughout evaluation we con-
sider six alternative comparative DRM models: (a)<(c) Low,
Medium, High: the EMS announces a low, medium, and high
fixed price during the day, respectively; (d) Day-ahead hourly
pricing: the EMS announces from the previous day the hourly
pricing for the day ahead; (e) Cap-based pricing: the prosumers
are charged in a cap-based manner based on their consumption;
and (f) Stackelberg Game (SG): the EMS announces a price
in order to minimize its cost (7), and the prosumers minimize
their cost function in order to determine their optimal amount of
purchased energy (5) [7].

Figs. 9(a){(c) and 10(a) and (b) present the system’s cost,
the prosumers” dissatisfaction, the total amount of purchased
energy, the EMS cost, and the total prosumers’ cost, respectively,
for all the state of the abovementioned alternative scenarios, as
well as for our proposed approach (referred to as RL-DRM). The
results clearly show that our proposed DRM model incentivizes
the prosumers to purchase energy [Fig. 9(c)], thus, keeping their
experienced dissatisfaction low [Fig. 9(b)], while at the same
time providing for a relatively low cost [Fig. 10(b)] compared
to the other models. Also, the achieved system cost remains low
as well [Fig. 9(a)]. It is highlighted that the cap-based pricing
and the day-ahead hourly pricing experience higher system
cost [Fig. 9(a)] compared to our proposed DRM model, as the
prosumers’ cost is higher [Fig. 10(b)], thus, those models mainly
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favor the EMS that achieves a higher profit [Fig. 10(a)]. The
Stackelberg game-theoretic model also achieves higher system
cost, mainly due to the higher cost experienced by the prosumers
[Fig. 10(b)], who are incentivized to purchase more energy
[Fig. 9(c)], resulting in lower levels of their personal dissat-
isfaction [Fig. 9(b)], and higher profit for the EMS [Fig. 10(a)].
The medium and high pricing scenarios are not favoring the
prosumers due to the static price, thus the prosumers experience
a high cost [Fig. 10(b)], resulting in a high cost for the overall
system [Fig. 9(a)]. The low pricing DRM model acts unfavorably
for the EMS, which experiences the highest cost compared to
all the other scenarios.

E. Guidelines and Discussion

Based on the results we obtained, we conclude to the following
outcomes and general guidelines regarding the reinforcement
learning-based price-based DRM in smart grid systems. These
observations account for the prosumer behavioral characteristics
and the involved interactions among the involved actors—utility
companies, the EMS, and the prosumers—while reflecting both
the prosumer and the system point of view and tradeoffs.

1) A heterogeneous prosumers’ population regarding their
behavioral characteristics in purchasing energy, decreases
the overall system cost, as the EMS collects the pro-
sumers’ budget surplus in a holistic/generic—and not
personalized—manner. However, this comes with a cost
for the prosumers, who either need to pay more to buy
energy or they decide to postpone part of their energy

needs, as the announced price is not considered beneficial
and affordable to buy the whole amount of necessary
energy.

2) A high system cost is experienced when the prosumers
are characterized by high dissatisfaction sensitivity. The
latter phenomenon is mainly observed due to the fact that
the EMS has less flexibility to vary the energy price and
collect higher revenue.

3) The proposed reinforcement learning price-based DRM
mechanism bridges the gap between the EMS and the
prosumers, who have competitive goals among each other
in terms of minimizing their experienced cost. Therefore,
the proposed DRM mechanism achieves a relatively low
cost for the overall system while keeping the prosumers’
dissatisfaction and cost at low levels as well. Also, our
DRM mechanism incentivizes the prosumers to purchase
energy when possible, thus enabling the EMS to still make
profit.

4) From an operational and implementation point of view, the
proposed reinforcement learning price-based DRM mech-
anism enables the EMS to adapt in a real-time manner to
the prosumers’ energy demand and announce a retail price
that minimizes the overall system’s long-term cost. The
latter outcome cannot be achieved with the existing cap-
based and day-ahead pricing models that are characterized
by a more static retail price announcement. Also, the
proposed approach alleviates the common drawback of the
Stackelberg game-theoretic pricing models, which is that
the game and the cost functions both for the EMS and the
prosumers must be carefully designed in order to conclude
to a Stackelberg equilibrium point. Moreover, the latter
one is not always guaranteed that it exists in large-scale
systems of heterogeneous nature (i.e., the prosumers and
the EMS have competing interests). '

VI. CONCLUSION

This article introduces a novel reinforcement learning price-
based DRM model and mechanism. This research work is mo-
tivated by the observation that the majority of the existing liter-
ature mainly adopts the Stackelberg game-theoretic approaches
in order to deal with the DRM problem, while limited research
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work has been performed to demonstrate the benefits of rein-
forcement learning in terms of devising an autonomous and dis-
tributed DRM method. Initially, the characteristics of the EMS
and the prosumers are reflected in appropriately designed cost
and dissatisfaction functions. An off-policy reinforcement learn-
ing is introduced enabling the EMS to learn the optimal price
that should be announced to the prosumers on an hourly-basis
toward minimizing the overall system’s cost. Respectively, the
prosumers’ optimal amount of purchased energy is determined
in a real-time manner. A detailed set of numerical results is
presented demonstrating not only the pure operation and perfor-
mance of the proposed mechanism but also its effectiveness in
accommodating prosumers’ populations of different behavioral
characteristics in terms of purchasing energy patterns. More-
over, adetailed comparative evaluation against other price-based
DRM models is presented showing the key benefits and tradeoffs
of our proposed model.

Part of our current and future work includes the extension
of the proposed DRM model in order to study the prosumers’
risk-aware behavior in terms of purchasing energy under dif-
ferent pricing models, as the ones presented in the comparative
evaluation. Toward this direction, we will explore the principles
of prospect theory and contract theory, respectively, to analyze
how the prosumers act and decide in terms of energy purchase,
under different customers' behavioral patterns and personas,
while also provide an economic/labor-driven methodology to
capture the involved actors interactions.
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