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Abstract—Application domains like big data and IoT require
a lot of user data collected and analyzed to extract useful
information, and those data might include user’s sensitive and
personal information. Hence, it is strongly required to ensure the
privacy of user data before releasing them in the public space.
Since the fields of IoT and big data are constantly evolving with
new types of privacy attacks and prevention mechanisms, there
is an urgent need for new research and surveys to develop an
overview of the state-of-art. We conducted a systematic mapping
study on selected papers related to user privacy in IoT and big
data, published between 2010 to 2021. This study focuses on
identifying the main privacy objectives, attacks and measures
taken to prevent the attacks in the two application domains.
Additionally, a visualized classification of the existing attacks is
presented along with privacy metrics to draw similarities and
dissimilarities among different attacks.

Index Terms—Big Data, IoT, privacy, attack

I. INTRODUCTION

The concept of smart environment introduced a novel
paradigm, Internet of Things (IoT), which is a rapidly grow-
ing network of interconnected physical objects (the things).
According to the report of Statistica, the worldwide number
of the total installed base of connected IoT devices will be
approximately 75.44 billions by 2025 [1]. All these inter-
connected devices collect, store, process and exchange an
enormous amount of information with each other. Big data
and its analysis, associated with IoT, have drawn a lot of
attention in recent years, and the characteristics of big data
are defined by the three V’s: volume, velocity and variety.
Volume indicates the amount of data which is received in real-
time or in batches. On the other hand, velocity is the rate of
data received. Since data is collected from various sources,
the heterogeneous nature of data is referred as variety. Ben-
efited from those characteristics, the IoT data collection and
analysis can be used for many purposes such as autonomous
suggestions and business analytics. Since the collected data
may contain sensitive user data, releasing these kinds of data
should be done with the utmost caution for privacy reasons.

Identifying privacy goals and the types of attacks that affect
them can help us to better understand how sharing private
data hinders privacy. Several surveys have been conducted
on IoT and big data in the past since both fields are very
popular [2, 3, 4]. Nevertheless, both fields are still evolving
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with new types of attacks and prevention mechanisms, so new
research and surveys are urgently required to develop a com-
prehensive overview. In this paper, we performed a systematic
mapping study to identify the main privacy objectives, attacks
and measures taken to prevent the attacks in IoT and big
data domains. Specifically, we developed the following key
research questions to study different topics and methods for
our mapping study:
1) What are the user privacy objectives in big data and 1oT?
2) What type of attacks were there to breach each privacy
objective?
3) Is there any categorical approach to classify the attacks?
4) What kind of measures are taken to prevent these
attacks?

In our mapping study, we aim to understand what are the
privacy objectives with respect to IoT and Big Data, the types
of privacy attack that violate those objectives and the existing
solutions to prevent these attacks.

This paper is organised as follows : In Section II we
discuss background and related work. Section III describes our
research methodology. Results and analysis of our study are
presented in Section IV. In Section V we discuss different
types of privacy attack. Finally we conclude our paper in
Section VI.

II. BACKGROUND

Privacy can be described as the right of an entity to be secure
from unauthorized disclosure of sensitive information from
any unwanted party. A privacy attack leverages seemingly
benign data to deduce personal information. By combining
anonymized data from one dataset with non-anonymized data
from another dataset, an attacker can violate user privacy.
Since a huge amount of user data is gathered for various
purposes in IoT and big data, it is easier to connect the dots and
comprehend present behaviors of a user, predict subsequent
behaviours, and create deep and complete profiles of the user’s
lives and interests.

A better understanding of privacy and privacy metrics can
help the data owner to be more aware of these attacks.
However, there are no general rules to decide on privacy
metrics. In [5, 6, 7], researchers tried to identify privacy
metrics, but in our research perspective those metrics are
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unhelpful. In this paper, the term privacy metric will be used
as a standard of privacy criterion in whole/partial. Since one
single metric can not cover all the aspects of privacy thus we
will use a combination of multiple metrics. For rest of our
paper, we will use the followings as privacy metrics:

o Anonymity - Within a system, it is impossible to identify
an item of interest (Iol). For example, the anonymity
of a sender requires that the other users are unable to
determine the identity of the sender within a set of
potential senders.

o Unlinkability - Within a system, it is impossible to
identify if two or more entities are related or not. If
two events occur within a set, i.e., sending messages,
unlinkability refers that an attacker will not be able to
differentiate if the messages were sent by the same sender
or different senders.

o Undetectability - Within a system, the attacker cannot
adequately recognize whether an Iol exits or not. If we
consider messages as lols, then undetectability means that
these messages are indiscernible from random noises.

o Unobservability - Within a system, the same type of
IoIs are indistinguishable. From the perspective of send-
ing/receiving messages, unobservability refers that it is
sufficiently undetectable whether any sender has sent any
messages to a set of could-be recipients.

To preserve sensitive information, several countermeasures
have been proposed in the past. We can classify these tech-
niques into following categories:

« Statistical techniques that apply perturbation based on
probability distribution. Differential privacy, k-anonymity
are examples of few popular heuristic-based approach.
Most of the recent aggregated data protection mecha-
nisms use this approach.

« Cryptographic techniques that apply different encryption
algorithms such as blockchain, multi-party computation
e.t.c. This approach is mainly designed for distributed
scenario.

III. RESEARCH METHODOLOGY

In order to conduct our mapping study, we have defined the
research questions, planned search strategy, screened relevant
sources, and finally analyzed the results. In this section, we
will discuss designing research questions, planning the search
strategy and filtering sources. Result will be presented in the
next section.

A. Research Questions

To determine the state of the literature, we have identified
the following research questions showed in Table I.

B. Search Strategy

We have designed our search string (shown in Table II)
in such manner so that the resulting papers can answer our
research questions. Since the primary focus of this study is
user privacy in the field of IoT and big data, the papers
must contain the phrase “privacy” as author keywords and

[R0F |

Question

Rationale

RQI1 | What are the user privacy objec- | The answer delivers an overview
tives in big data and ToT? of main goals in our filed of
interest
RQ2 | What type of attacks are performed | This question answers the ways
to breach each privacy objective? user privacy is compromised
RQ3 | Is there any existing categorical | This answer will help to gain an
approach to classify attacks that | overview of classification of ex-
hamper those objectives? isting attacks and their similarity
with each other.
RQ4 | What kind of privacy measures are | This answers the most important
taken to prevent these attacks? question about the available ap-
proaches to protect user privacy

TABLE T
RESEARCH QUESTIONS OF OUR STUDY

either “iot” or “big data” must be found within the abstract
of the paper. Other words are used to make sure that the
resulted paper answers at least one of the research questions.
Additionally, as IoT and big data is a vast research field, we
have applied filter to trim down any paper that dated back than
2010. The main digital libraries that were used to search for
primary studies were: IEEEXplore, ACM Digital Library etc.
Unfortunately, the search facility provided by those database
differs in many ways, hence the search string had to be
transformed according to the native syntax of each database.

Search String

(”Author Keywords”:”’privacy”) AND

(”Abstract”:"iot” OR “Abstract”:"big data”) AND

(”Abstract”:"attack” OR ”Abstract”:"threat” OR ”Abstract”:”challenge”) AND

(”Abstract”:”solution” OR ”Abstract”:”method” OR ”Abstract”:”technique” OR ”Abstract”:”’mechanism”)

TABLE 1T
SEARCH STRING

C. Screening

After applying our search string on digital databases, we
skimmed through the resulted papers to further filter out
irrelevant sources. We excluded the sources that were:

« either mapping study or survey paper

« not relevant to information technology

« full-text not available or incomplete paper

o written in languages other than English
Moreover, we screened the bibliography of resulting papers to
identify other possible relevant sources to our research.

IV. RESULT

A total of 580 papers resulted after applying the search
string over several digital libraries. However, after screening
process, the number of useful papers scaled downed to a
smaller number. Table IIT shows the overall number of papers
returned from each digital library, as well as the number of
papers that were relevant following screening. We have applied
filter to trim any publication that dated back than 2010 to
perceive a most recent overview of the literature.

A. Research Question 1

Our first research question deals with user privacy objectives
in big data and IoT. Individual privacy can be protected by
anonymizing personal information, shifting attribute values
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Source I. Number F. Number
IEEE Xplore 87 41
ACM Digital Library 12 11
Elsevier ScienceDirect 271 0
Semantic Scholar 23 3
arXiv 174 5
AIS eLibrary 13 0
TABLE TIT

SEARCH RESULTS FROM DIGITAL REPOSITORIES

across people, or introducing random noise. When disclos-
ing information, the definition of privacy must specify what
information is sensitive and needs to be safeguarded, how
disclosure occurs, and when privacy disclosure occurs [8]. In
this mapping study, we categorized the privacy goals stated in
the resulted papers. Depending on the findings, we observed
that there are three privacy objectives described as followings

« Data Privacy - Data privacy refers to keeping the private
and sensitive data safe from any adversary. Nowadays, a
large amount of data is available in the public domain
for research and other purposes, which can be misused
by malicious parties.

o Location Privacy - With the rapidly growth of location
based services, many people share their location in the
public domains. These information could be used by
malicious parties to harm the user.

« Identity Privacy - An individual’s identity privacy refers
to protecting all their attributes from adversaries, like

[ Attack [ Count | Reference
Linkage Attack 6 [8, 10, 11, 43, 46, 47]
Database linking Attack 1 [13]
Graph Matching Attack 2 [12, 48]
Inference Attack 12 [8, 14, 15, 16, 17, 18, 19, 20, 41, 50, 52, 54]
Differencing Attack 1 [8]
Membership Inference Attack 7 [24, 25, 26, 27, 57, 56, 58]
Reconstruction Attack 4 [8, 9, 21, 22]
Location Attack 4 [34, 37, 55, 56]
Correlation Attack 1 [8]
NILM Attack 2 [38, 59]
Collusion Attack 10 [28, 29, 30, 31, 32, 33, 35, 39, 40, 41]

TABLE V

ATTACKS COVERED IN SOURCES

violate user privacy. However, there is no existing catego-
rization of attacks based on privacy in our study resources.
According to the types of data, we classified privacy attacks
into two major branches: aggregated data attacks and single
stream data attacks. Furthermore, aggregated data attacks can
be divided into two sub-branches; sufficient public information
and compulsatory auxiliary information. Figure 1 shows our
approach to categorize privacy attacks including the privacy
metrics which were violated by those attacks.

D. Research Question 4

Our last research question answers the most important
question about the available privacy measures to protect user
privacy. Table VI represents the solutions along with count
and reference sources.

[ Solution [ Count ] References |

. Differential Privac 13 [ [11, 13, 15, 17, 18, 21, 22, 25, 26, 27, 31, 49, 51]
their name, address, health card number, etc. o 5 T
. k-anonymity variation 6 [10, 12, 13, 34, 52, 53]
Table IV presents the reference of the papers that discussed | iaton and Randomizaton T3 0,20, 23 37431
the above privacy goals. Trust model _ 2 29, 33]
Cryptographic techniques 4 [35, 39, 40, 41]
Others 3 [14, 16, 28, 36, 38, 42, 47, 54]
‘ Privacy Goal ‘ Count ‘ Reference ‘ TABLE VI
Data ori 55 | .9 1011 12,13, 14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 23] PRIVACY SOLUTIONS COVERED IN SOURCES
ata privacy > [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]
Identity privacy 7 [43, 44, 45, 46, 47, 48, 49]
Location privacy 8 [50, 51, 52, 53, 54, 55, 56, 57]

TABLE IV
PRIVACY GOALS COVERED IN SOURCES

B. Research Question 2

Our second research question deals with the type of attacks
performed to breach user privacy. There exists a variety
of attacks which aim to compromise user privacy. In this
section, organized different types of attacks mentioned in
the resulted sources. Table V shows the attacks along with
reference source. From the table it is visible that Inference
attack, Membership inference attack (MIA), Linkage attack
and Collusion attacks are the most popular privacy attacks.
All the attacks are discussed in Section V.

C. Research Question 3

Following the answer to the second research question, one
can ask whether there is any existing approach to categorizing
privacy attacks. A proper categorization of privacy attacks will
provide a better understanding of similar attacks and how they

Differential privacy (DP) is one of the most popular privacy
preserving methods that allows to share aggregated data by
adding noise with the promise that no one will be able to
distinguish if a dataset contains data of a specific user [60].
Multiple authors proposed personalized DP solutions to pre-
vent attacks, i.e., inference attack, database linking attack,
collusion attack etc. k-anonymity is another popular privacy-
preserving method. The basic idea of k-anonymity is that
each released record should be indistinguishable from at least
(K-1) others in a block. To provide better privacy, multiple
variants has been proposed by extending the concept of k-
anonymity such as I-diversity, t-closeness etc. k-anonymity
based solutions can be used to prevent background knowledge
attack, inference attack, database linking attack etc. Other than
these two, different cryptographic techniques, data sanitization
and randomization, etc., are also adopted by the researchers
to prevent privacy attacks.

V. PRIVACY ATTACKS

In this section, we briefly discuss some of the important
privacy attacks identified in the previous section.
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Fig. 1. Privacy attack categorization tree

A. Aggregated data attack

Aggregated data is a collection of data that come from
multiple sources. Based on the requirement of auxiliary in-
formation, we can sub-divide aggregated data attacks into two
categories.

1) Sufficient public information: Publicly available infor-
mation is sufficient to reveal individual information.

e Linkage attack - Linkage attack aims to re-identify people
by linking data from one dataset with the data of another
one [8]. The ‘linking’ employs indirect identifiers, also
known as quasi-identifiers, such as zip or postcode,
gender, salary etc [10, 11, 43].

e Graph attack - Graph attack extracts a collection of char-
acteristics from the encoded and plain-text databases by
creating two similarity graphs. This is done by identifying
groups of comparable feature vectors and building a bi-
partite graph connecting nodes based on their similar
feature vectors using locality sensitive hashing [12], and
an one-to-one matching uncovers sensitive information.

e Database linking attack - Database linking attack allows
an attacker to join two datasets and obtain additional
information for a specific row without knowing a person’s
identity [13].

2) Compulsatory auxiliary information: Adversaries re-
quire additional information i.e., background information or
location information to reveal individual information.

o Inference attack - Different data mining techniques such
as bayesian reasoning and association rules are used to
launch attack in order to obtain private information from
publicly available information added with some other
auxiliary information.

o Difference attack - Differencing attack leverages the dif-
ferences between multiple statistical queries or aggregate
queries across datasets to identify people [8].
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Membership inference attack(MIA) - MIA leverages the
fact that machine learning models perform differently
on training and test data [27]. Based on the output of
the target model for the supplied record, MIA predicts
if a particular record was utilized in training a target
model [24, 25, 26].

Reconstruction attack - Adversaries usually have lim-
ited access to private datasets, but can access aggregate
statistics. If the statistics are not sufficiently skewed, it is
possible to reconstruct an accurate probabilistic version
of the original dataset using multiple queries [8].
Location attack - In location attack, an adversary uses lo-
cation information to predict a user’s private information,
such as social affiliations, personal activities, or future
physical location [34, 37, 55, 56].

Correlation attack - An adversary with background
knowledge or auxiliary information on correlation i.e.,
interactive links in social networking data and spatio-
temporal correlations in position trajectories, has a sig-
nificant possibility of getting private information and thus
infringing on privacy [8].

B. Single stream data attack

A collection of data from a single source is referred as
single stream data. Single stream data attacks are mostly
monitoring based. A monitoring attack involves tracking down
a single data source, leading to classification and identification
of sensitive information.

e Non intrusive load monitoring(NILM) attack - A NILM

attack is a load prediction approach that employs energy
disaggregation on smart meters via false data injec-
tion [59, 38].

Collusion attack - Two or more adversaries with a shared
interest can initiate collusion attacks. Each attacker has
a piece of raw data with varied injected noise from the
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same source. As a result, launching a collusion assault in
a fog computing situation is optimal [31, 32, 33].

VI. CONCLUSION

In this systematic mapping study, we studied different types
of user privacy attacks in IoT and big data and classified
them to better understand the nature of those attacks, thereby
promoting further research in this important and interest-
ing field of information security. Additionally, this research
made a contribution to the development of privacy preserving
techniques by providing a reference for their threat model
development. Our immediate future work will focus on the
development of a formal computing model to evaluate or
compare various privacy preserving techniques used in the IoT
and big data environments.
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