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We introduce a probabilistic modeling for a disaggregated Bottom-up simulation of residential energy
usage. Parametric probability distributions are modeled with parameters that have a natural explanation
in terms of usage and appliance power. Human behavior such as sleep and home occupancy variables are
considered too, with its corresponding trained probabilistic Models. Model parameters are adjusted by
the minimization of the Kullback–Leibler divergence from known appliance and behavior usage data.
Self-generated photovoltaic Energy is included in the simulation with a battery for storage and electric
vehicle usage. Simulations match individual and aggregated usage load profiles in the European
REMODECE and RSE Italian load data sets. Obtained Models are useful for residential disaggregated sim-
ulations allowing individual appliances to change from house to house. Probabilistic distributions can be
used as prior knowledge for energy management systems, risk management, and grid failure prediction
and can be adapted based on non-stationary real-time house behavior and appliance usage.
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1. Introduction

In 2021 the U.S. Energy Information Administration estimated
60.8% of the U.S. electricity generation comes from fossil fuels
and predicted a 21% increase in residential electricity by 2040
[1]. The U.S. electricity market is divided into three main electricity
sectors: residential, commercial, and industrial, distributed almost
equally [2]. The residential sector consists of about half of the peak
demand, and can strongly affect electricity pricing, transmission,
and minimal grid power requirements [3].

The residential sector is changing with the introduction of new
technologies such as photovoltaic panels, space heaters, heat
pumps, hybrid and electric vehicles. To integrate these fast-
growing technologies on the generation and load side, improve
the reliability of power distribution networks, implement
demand-side management and gain knowledge of the changing
load curve, detailed information on the new behavior of appliances,
residential consumption, and individual solar generation is
required.
1.1. State of the art

Power load forecasting has been an indispensable tool in the
operation, control, and planning of the power grid over decades
[4]. Residential power demand is strongly influenced by user
behavior as mentioned in [5], therefore analyzing the user’s pres-
ence in the house and sleep schedule can help us predict and dis-
aggregate the demand using single individual appliances, which
combined, can form the residential load profile.

Literature reports two different approaches to estimate residen-
tial loads as mentioned in [6]: Top-down and Bottom-up. The Top-
down approach estimates load profiles of the residential sector
based on measurements at mid voltage and low voltage level sub-
stations and national energy statistics. Then, energy consumption
patterns are assigned to households according to their
characteristics.

We focus on the Bottom-up approaches, since Top-down
approaches won’t allow disaggregating the residential load into
its different appliances. This bottom-up approach builds load pro-
files of statistically representative households exploiting informa-
tion on three different inputs: i) activities and behaviors of end
users as shown in [7] where occupancy and sleep probability dis-
tributions are defined based on the individual user activities
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obtained from the American Time User Survey (ATUS) dataset [8].
Also seen in article [9] where several occupancy profiles are
defined based on the number and age of occupants and days of
the week. ii) single appliance load consumption method used in
[10], where time use data and census data combined with appli-
ances load profiles are used for a complete house simulation. iii)
In article [11] a set of appliances are mathematically defined and
sampled, obtaining an entire house load simulation. A combination
of inputs is used in article [12], where four different demographic
clusters are defined (families, singles, couples and retired) and
information from focus groups and surveys is used to obtain
energy services use distributions to generate synthetic residential
loads.

There is an ongoing transition from natural gas, wood, and other
burning fuels to electric temperature-based appliances in an
attempt to increase self-generated electricity usage and minimize
non-renewable energy sources [13]. Air conditioning and heating,
if electrical, can form a big part of the daily residential electricity
consumption, therefore its modeling is crucial for a realistic and
accurate modern house simulation.

Temperature house modeling following thermodynamic laws is
a common solution to building a house temperature controller as
described in [14] or just to obtain a thermal Model of the house,
which can be later used as part of the house load modeling as
shown in [15], where inside and outside temperature and wall
temperature act as changing and measurable variables affected
by indoors energy sources, such as heating, ventilation, and air
conditioning controlled by the HVAC and outdoors heating sources
such as solar radiance as shown in article [16].

Article [17] estimates the residential load profile of the future
for the year 2040, where a high percentage of houses own an elec-
tric heat pump for residential temperature management and elec-
tric vehicles. Also, there is an increase in devices’ electricity
consumption and the inclusion of solar panel generation in most
houses. This article presents 3 different scenarios, for different
demand growth estimations. Scenario A is the base scenario where
load demand growth comes from the integration of these new
technologies. Scenario B also includes economic growth leading
to a 1.5% load demand growth from the normal residential electric-
ity demand. Scenario C assumes the integration of the new tech-
nologies but a decrease of 1% for the normal residential
electricity demand.
Table 1
Data sets location and purpose.

Name project Location Purpose

REMODECE Europe Appliance probability usage
ATUS USA Sleep schedule and house presence

EV data USA EV mileage consumption
Weather Albuquerque NM Solar generation and HVAC scheduling
1.2. Contribution

Rather than constructing prediction models, this paper is ori-
ented to construct interdependent probabilistic distributions of
the behavior of the household occupant, appliances, and electric
vehicle combined with a non-probabilistic standard thermody-
namic model for heating and cooling systems. These distributions
are used for simulating and modeling an entire house, the param-
eters of these distributions for appliances are taken from REMO-
DECE. Human behavior is obtained from the American Time Use
Survey (ATUS) data set and electric vehicle mileage consumption
comes from Ford’s electrical vehicles empirical measurements
found in article [18].

Unfortunately, there are no available data sets from the same
population. While it can be assumed that the behaviors of different
populations are similar, in the present work this assumption is not
necessary for what we want to show is that interpretable parame-
ters of the probabilistic distributions can be adjusted from these
measurements and later be used in simulation and modeling. The
parameters model appliance usage periods, appliance power, and
similar, and they have real values. The aggregation of household
simulations is very close to the measured curves.
2

Our simulated house includes solar generation from photo-
voltaic panels and an energy storage system. The appliance and
electric vehicle probabilistic models are dependent on the resi-
dent’s behavior models. In other words, for example, the probabil-
ity of turning an appliance on when the house is not occupied is
zero in all cases. If the house is occupied a 100%, the vehicle is
not in use. For simplicity, in all simulations only one electrical
vehicle per household is modeled, but the extension to several
vehicles is straightforward.

The load demand profile obtained with our probability models
using only REMODECE appliances is compared with the REMO-
DECE data set load profile, and also with the RSE Italian data set
load profile. A complete house simulation including all electrical
appliances and systems possibly found in the modern house of
the future is obtained by sampling all the probabilistic distribu-
tions. Since the addition of new technologies changes the load pro-
file curve, we also compare this final simulation with the estimated
load profile curves of the future found in article 19.

These adjusted Models can be combined with energy manage-
ment systems, increasing their accuracy and decreasing their pre-
dictions’ uncertainties. Models can learn from new house
observations combining prior knowledge with new observations,
and personalizing the system to the house appliances and resi-
dents’ behaviors.
2. Methodology

2.1. Data

A combination of different data sets is used for modeling the
appliance usage, human behavior, mileage consumption of the
electric vehicle, and weather variables for temperature and solar
radiance-related appliances and photovoltaic generation. Table 1
summarizes the data sets, their location, and purposes of use.

2.1.1. REMODECE
This data set comes from the European project REMODECE [19],

whose objective was to contribute to the understanding of the
energy consumption for different types of equipment, consumer
behavior, and comfort levels and identify demand trends in a wide
variety of houses from 12 different European countries. The data
collection occurred from 2006 to 2008, analyzing existing studies,
surveys, and metering campaigns, conducting household question-
naires done by expert interviewers, detail audits focusing on
demand load profiles, and conducting own measurements for a
series of residential appliances.

The results are averaged hourly load diagrams, that present the
measured average power load PM of each one of the appliances in a
household, as shown in the examples of Fig. 1.

2.1.2. Human behavior data obtained from ATUS
American Time Use Survey [8] measures the fraction of time

people spend doing various activities such as sleeping, working,
child caring, and socializing. The data files include information
from nearly 219,000 interviews conducted from 2003 to 2020.
We are mostly interested in sleep data from 2013–2015.



Fig. 1. Examples of REMODECE appliance hourly average power consumption. The left pane corresponds to the average hourly load of a dishwasher, while the right pane
shows the average hourly load of a washing machine.
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Presence profiles or occupancy data are obtained from article
[7], which uses activities studied on the ATUS data categorized into
‘‘at home” or ‘‘away from home” to map to the presence or non-
presence of occupants in the home differentiating between week-
days and weekends.

2.1.3. EV data
Our house has an electric vehicle that follows the mileage con-

sumption behavior from data captured in article [18]. Data cap-
tured in Fig. 10 shows average miles per day for plug-in hybrid
vehicles (PHEV) and battery electric vehicles (BEV).

2.1.4. PVGIS Solar radiation and weather database
This European solar generation database [20] has expanded and

has data from the Americas and Africa. We used hourly solar radi-
ance and weather parameters from Albuquerque, NM from 2013–
2015. The measurements recorded in this database are:

� Power W
� Direct irradiance W

m2

� Diffuse irradiance W
m2

� Reflected irradiance W
m2

� Total irradiance W
m2

� Temperature (Celsius)
� Wind speed m

s

2.2. Probabilistic modeling of appliances and human behavior

For a given appliance, it is assumed that it may be used at dif-
ferent time instants resulting in different clusters defined with
the letter j for different times of use. For example, from the REMO-
DECE collected data, a washing machine can be modeled as an
appliance used either in the morning or in the afternoon. A dish-
washer is more likely to be used in the morning, afternoon, or eve-
ning, resulting in different clusters. The total energy consumption E
of a given appliance can be modeled as:

PMðtÞ ¼ P � Pu

X
j

pjðonjtÞPjdt ð1Þ

where P is the nominal power of the appliance; Pu is the frequency
of usage of the appliance, in other words, the probability that an
appliance is used in a given day; pjðonjtÞ is the probability that
the appliance is at ON state at instant t given that t belongs to clus-
ter j and Pj is the posterior probability of cluster j, i.e. Pj ¼ pðjjonÞ, or
the probability of time belonging to cluster j provided that the
machine is on.

The Model for the conditional probability pjðonjtÞ is, straightfor-
wardly, the probability that instant t is higher than instant ton
when the appliance is switched on and lower than the instant toff
when the appliance is switched off. Therefore
3

pðonjtÞ ¼ pðt > ton; t < toff Þ ¼R Tf
t

R t
0 pðtonÞpðtoff jtonÞdtondtoff

ð2Þ

In this expression, pðtonÞ represents the probability density of
switching on at instant ton, and pðtoff jtonÞis the probability density
of switching off at instant toff , which is, in general, dependent on
the switch on time instant. Tf represents the time length of a day.

The goal of this modeling is to find parametric Models for these
two probabilities, whose parameters are explanatory of the usage
of the appliances or the human behavior inside the household.
These parameters can be adjusted by finding analytic expressions
for pðonjtÞ and adjusting them to match the observed usage graphs
presented in SubSection 2.1. The criterion to be used for the opti-
mization is the minimization of the Kullback–Leibler divergence
between the theoretical expression (1) and each one of the empir-
ical graphs. The adjustment must include not only the parameters
of each one of the conditional probabilities but also the posteriors
pj, while the nominal power P of the appliance and the frequency of
usage pu are assumed to be known.

2.3. Appliance and user behavior models

This section presents the Models for the common appliances
and the human behavior of a household. These Models are repre-
sented through probability distributions of the observed events,
for example, turning on and off a device or leaving the house and
returning.

2.3.1. Sigmoid-sigmoid probability model
This Model is proposed for those behaviors that can be modeled

as a binary variable that changes its state at a given time and then
it changes back to the previous one at a later time but where both
events can be approximated as independent. For example, the
occupancy of the house is ‘‘1” in the morning up to a given instant,
where it switches to ‘‘0”. In the afternoon or evening, the house
starts being occupied again (the state switches to ‘‘1” again). It is
assumed in this Model that these instants are independent. There-
fore, the state probability with respect to time can be expressed
with a product of probabilities as
pðonjtÞ ¼ pðt > ton; t < toff Þ ¼ Pðt > tonÞ � Pðt < toff Þ. Therefore, the
Model can be written as:

pðonjtÞ ¼ Pðt > tonÞ � Pðt < toff Þ ¼R Tf
t pðtonjtÞdton �

R t
0 pðtoff jtÞdtoff

ð3Þ

Suitable cumulative probability density functions
Pðt > tonÞ; Pðt < toff Þare sigmoid functions with slope parameters
c1 and c2 and mean parameters l1 and l2 and with approximate
expressions:

Pðt > tonÞ ¼
Z Tf

t
pðtonÞdton � 1

1þ ec1ðl1�tÞ ð4Þ
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Pðt < toff Þ ¼
Z t

0
pðtoff Þdtoff � 1

1þ ec2ðt�l2Þ
ð5Þ

In order to use this approximations, we assume that
pð0 > tonÞ ¼ 1

1þec1l1 � 0 and pðTf > tonÞ ¼ 1
1þe

c1ðl1�Tf Þ � 1, and similarly

for the PMF pðt < toff Þ. This approximation is valid if c1 and c2 are
sufficiently large. The Model is then written as

pðonjtÞ ¼ 1
1þec1 ðl1�tÞ � 1

1þec2 ðt�l2 Þ ð6Þ
2.3.2. Gaussian-uniform probability model
A Gaussian-Uniform probability Model is suitable for those

appliances modeled as having a probability density of switching
on around a mean, that can be approximately represented by a
Gaussian distribution, and where the probability of switching off
is distributed between a minimum and a maximum value and that
can be approximately represented by a uniform distribution Uð�Þ
with width T2 between T1 þ ton and T1 þ ton þ T2. The distributions
are, respectively:

pðtonÞ ¼ 1
r
ffiffiffiffi
2p

p e�
ðton�lÞ2

2r2

pðtoff jtonÞ ¼ U½T1þton ;T1þtonþT2 �ðtoff Þ
ð7Þ

The Gaussian assumes that the instant when the appliance is
connected has a mean l and a variance r2. We make the
approximation that, for suitable values of the mean and the vari-
ance, the Gaussian is approximate by zero if ton 6 0. The uniform
distribution assumes that the appliance will be disconnected at a
time instant toff distributed uniformly from T1 þ ton and
T1 þ Ton þ T2.

By plugging Eq.(7) into Eq. (2) we see that the integral has to be
solved separately for three cases, namely for t 6 T1, for
T1 6 t 6 T1 þ T2, and t P T1 þ T2, as follows:

Case1: t 6 T1.

pðonjtÞ ¼ 1
2
erf

t � l
r

ffiffiffi
2

p
� �

þ 1
2
erf

l
r

ffiffiffi
2

p
� �

ð8Þ

Case2: T1 6 t 6 T1 þ T2.

pðonjtÞ ¼ r
ffiffi
2

p
2T2

ffiffiffi
p

p e�
l2

2r2 � r
ffiffi
2

p
2T2

ffiffiffi
p

p e�
ðt�T1�lÞ2

2r2

þ 1
2 erf

t�l
r
ffiffi
2

p
� �

þ T1þT2þl�t
2T2

erf l
r
ffiffi
2

p
� �

� t�T1�l
2T2

erf t�T1�l
r
ffiffi
2

p
� � ð9Þ

Case3: t P T1 þ T2.

pðonjtÞ ¼ t�T1�T2�l
2T2

erf t�T1�T2�l
r
ffiffi
2

p
� �

� t�T1�l
2T2

erf t�T1�l
r
ffiffi
2

p
� �

þ 1
2 erf

t�l
r
ffiffi
2

p
� �

� r
ffiffi
2

p
2T2

ffiffiffi
p

p e�
ðt�T1�lÞ2

2r2 þ r
ffiffi
2

p
2T2

ffiffiffi
p

p e�
ðt�T1�T2�lÞ2

2r2

ð10Þ

The complete derivation of these expressions can be found in
the Appendix.

2.4. Parameter adjustment, Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence measures the dissimilar-
ity between two density distributions [21]. This divergence is also
known as information divergence and relative entropy. If densities
p and q exist with respect to a Lebesgue measure, the Kullback–Lei-
bler divergence is given by:

KLðpðxÞjqðxÞÞ ¼
Z
IRd

pðxÞ logpðxÞ
qðxÞ dx >¼ 0 ð11Þ
4

This divergence is finite whenever pðxÞ is continuous with
respect to qðxÞ and it is only zero if qðxÞ ¼ pðxÞ. To approximate
the given parametric distributions to the empirical appliance loads
and human behavior, we minimize the Lebesque measure between
the distributions. We use a Nelder-Mead simplex algorithm [22] to
obtain the optimal parameters.

2.4.1. Sigmoid-sigmoid probability Model parameters
The sigmoid-sigmoid probability Model represented in Eq. (6),

used for occupancy and sleep human behaviors has 4 parameters
to be optimized using KL divergence. Parameters l1 defines the
mean and c1 is proportional to the precision of the first sigmoid.
Namely, the variance of the distribution is r2

1 ¼ p2=3c21. This sig-
moid models the waking up moment for sleep or leaving the house
moment for occupancy. Parameters l2 and c2 define the same
statistics for the second sigmoid, which models the going to bed
moment for sleep or arriving back to the house moment for
occupancy.

2.4.2. Gaussian-uniform parameters
The Gaussian-uniform Probability Model in Eqs. (8)–(10), is

used for simulating appliances whose turning off time depends
on its turning on time and its individual usage characteristics.
Parameters l and r define the mean and standard deviation of
the Gaussian used for modeling the turning-on time of the appli-
ance. Parameters T1 and T2 are optimized and they define the time
of the shortest interval and the time of the longest interval of usage
of the specific appliance. These probabilities are multiplied by a C
parameter which allows our probability distribution, which has a
value between 0 and 1, to be adjusted to the original appliance
power curve PMðtÞ.

2.5. House thermodynamic modeling

A non-probabilistic dynamic modeling of the temperature
behavior of the house based on known forecast weather variables
allows us to simulate the electrical thermal appliance usage
defined as a heat input Qh. Similarly to article [16], heat input
comes from the electrical consumption of the HVAC Qelec and the
temperature difference between the HVAC core temperature
defined with sub-index h and the temperature of the indoor air
defined with sub-index a divided by a thermal resistance Rh defin-
ing the efficiency of the heater. The higher the thermal resistance,
the more heat it generates from electricity, therefore the higher the
efficiency and vice versa. For this example, this resistance is con-
sidered very high, making the difference between temperatures
insignificant and therefore converting all the electrical consump-
tion into heat energy. The electrical consumption of the HVAC
can be defined by how many watts are needed to change a degree
of temperature to the HVAC core.

Qh ¼ Qelec � Th�Ta
Rh

Qelec ¼ Ch
dTh
dt

ð12Þ

Similarly to how the HVAC electrical consumption Qelec affects
the temperature of the HVAC, the heat input Qh can affect the tem-
perature of the air and therefore can be included in our thermody-
namic Eq. 14

Ca
dTa
dt ¼ Qh ð13Þ
Human presence and equipment use can increase the indoor

temperature. To avoid adding more degrees of complexity and
since the main focus of the article is to find probabilistic paramet-
ric Models for appliance usage, these small temperature variations
due to the occupancy and appliance heat dissipation are ignored.
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Light heating is ignored since modern lighting, such as LEDs, is
more efficient than old incandescent lamps, and has low power
consumption and lower heat output. In article [14], thermody-
namic equations are used for a Model-based predictive control of
the house temperature, and house parameters defining house floor
area, orientation, and physical properties are introduced. We use
these equations and parameters for our non-probabilistic thermal
modeling including solar irradiance.

Ca
dTa
dt ¼ CaðTaðtÞ � Taðt � 1ÞÞ ¼ Qhðt � 1Þ

�KiðTaðt � 1Þ � Twðt � 1ÞÞ � Kf ðTaðt � 1Þ � Toðt � 1ÞÞ ð14Þ

Cw
dTw
dt ¼ CwðTwðtÞ � Twðt � 1ÞÞ ¼ Qsðt � 1Þ

þKiðTaðt � 1Þ � Twðt � 1ÞÞ � KoðTwðt � 1Þ � Toðt � 1ÞÞ ð15Þ

where Ta is the indoor air temperature (C), Tw is the mean wall tem-
perature (C), To is the outside air temperature (C); Qh (kW) is the
heat input to the air node. The Model uses five parameters: Ca

(kJ/K) is the thermal capacity of the indoor air, Cw (kJ/K) represents
the thermal capacitance of the wall, kf (kW/K) is the conductance
ascribed to ventilation and elements with little thermal capaci-
tance, e.g. windows, Ki (kW/K) is the conductance between the
indoor air and the wall, Ko (kW/K) is the conductance between
the wall and the outside air, Qs (kW) is the heat from the sun
radiance.

To use the Model represented by Eqs. (14) and (15), these equa-
tions must be rewritten in a numerical form defining a sampling
period T, expressed in seconds, and obtain our approximation:

TaðtÞ ¼ Taðt � 1Þþ
T�ðQhðt�1Þ�KiðTaðt�1Þ�Twðt�1ÞÞ�Kf ðTaðt�1Þ�Toðt�1ÞÞÞ

Ca

ð16Þ

TwðtÞ ¼ Twðt � 1ÞÞþ
T�ðQsðt�1ÞþKiðTaðt�1Þ�Twðt�1ÞÞ�KoðTwðt�1Þ�Toðt�1ÞÞÞ

Cw

ð17Þ
2.5.1. Parameter identification
In this subsection, we introduce a method to identify the phys-

ical parameters of the house avoiding the need of knowing the
house area, materials, and orientation. Substituting Eq. 15 into 14
we can get an equation that depends only on Ta and To, which
are known, and the unknown variable TwðtÞ.

TðKiþKf Þ
Ca

� 1þ T2K2
i

CaðCw�TKi�TKoÞ

� �
Taðt � 1Þ

þTaðtÞ � T
Ca
Qhðt � 1Þ þ T2KiKo

CaðCwþTKiþTKoÞ �
TKf

Ca

� �
Tcðt � 1Þ

þ T2Ki
CaðCw�TKi�TKoÞQsðt � 1Þ

¼ TKi
Ca

Cw
Cw�TKi�TKo

TwðtÞ

ð18Þ

We can use the same equation from (14) to obtain the next time
instant t þ 1 equation.

Ca
dTa
dt ¼ CaðTaðt þ 1Þ � TaðtÞÞ

¼ QhðtÞ � KiðTaðtÞ � TwðtÞÞ � Kf ðTaðtÞ � ToðtÞÞ
ð19Þ

Substituting TwðtÞ from 18 into 19, we get a final equation for
time instants t; t þ 1 and t � 1 that only depends on Ta; To;Q and
Qs at different time instants, which are known.

TaðtÞ � Taðt þ 1Þ þ T
Ca
QhðtÞ þ T2KiKo

CaCw
� TKf ðCw�TKi�TKoÞ

CaCw

� �
Toðt � 1Þ

� TðCw�TKi�TKoÞ
CaCw

Qhðt � 1Þ þ Cw�TKi�TKo
Cw

TaðtÞ
þ TðCw�TKi�TKoÞðKiþKf Þ

CaCw
� Cw�TKi�TKo

Cw
þ T2K2

i
CaCw

� �
Taðt � 1Þ

� TKi
Ca

TaðtÞ � TKf

Ca
TaðtÞ þ TKf

Ca
ToðtÞ þ T2Ki

CaCw
Qsðt � 1Þ ¼ 0

ð20Þ
5

Using five equations like 20 for different time instants
t; t þ 1; t þ 2; t þ 3; t þ 4; t þ 5 and known variables Ta; To;Qh;Qs

for all those time instants, we can obtain the physical parameters
Ca;Cw;Ki;Kf ;Ko.

2.6. Electric vehicle consumption modeling

Looking at the EV data shown in Fig. 10, we can see that it fol-
lows a Gamma distribution. Using average mileage usage values
and minimizing the KL divergence defining the dissimilarity
between our gamma function and the original data, we can find
the optimal parameters for the distribution that models the daily
EV traveled distance.

x � pðk; hÞ ¼ xk�1e�
x
h 1
CðkÞhk ð21Þ

where x is the distance, k > 0 is the shape parameter, h > 0 is the
scale parameter and Cð�Þ is the Gamma function.

2.7. Solar power generation modeling

In our PVGIS data set [20] we can see that solar irradiance and
power generated simulated on the database are almost the same,
therefore we can assume that solar irradiance captured by a pyra-
nometer or solar device used for data capturing is almost the same
as power generated by the photo-voltaic cell applying an efficiency
factor of 15%.

3. Experiments

3.1. System architecture

Our experimental house consists of non-shiftable appliances,
which form a base load, shift-able appliances, solar power genera-
tion with photovoltaic panels connected to a residential battery for
extra energy storage, and an electric vehicle which usually charges
in the evening/night with a level 2 EV charger.

3.1.1. Non shiftable appliances
These appliances are always on or turn on when the residents

need them and cannot be changed because the comfort level of
the resident would be strongly disrupted. The refrigerator and free-
zer are unshiftable constant appliances. AC, electric heater, lights,
cooker, TVs, and a tank-less water heater, which heats water on-
demand, turns on at different moments of the day, and shouldn’t
be shifted.

3.1.2. Shiftable and power regulated appliances
The washing machine, dishwasher, and dryer are time shiftable

within a range defined by the user, this would give us flexibility
and allow us to minimize peak demand and savings. The electric
vehicle can be time-shifted and power regulated.

3.1.3. PV panels and battery
Solar generation decreases the amount of energy bought from

the grid decreasing electricity cost and the use of grid non-
renewable energy. We have a battery pack, which can store left-
over generated electricity and use it whenever needed instead of
buying it from the grid, decreasing costs, peak demand, and indi-
rectly the effect on climate change.

3.2. Awake probability parameters

We use the probabilistic Models from Eq.(4) and (5) to model
the probability of being awake obtained from the ATUS data (see
2.1.2), which, among other curves, shows the probability of that
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the occupants are awake in residential buildings in the USA. The
Probability Model is a combination of two sigmoid-sigmoid Mod-
els, one for the probability of awakening and another one for the
probability of falling asleep. We separately calculate the wake-up
time and bedtime of each individual in the house assuming they
are independent of each other by minimizing the KL distance
between the probabilistic Model and the data (see SubSection 2.4).
Fig. 2 shows the original data and our sigmoid-sigmoid adjusted
model.

Parameters l1 and l2 represent the average time residents
wake up and go to bed. Parameters c1 and c2 express its variability
respectively, where a higher c represents less variability and smal-
ler c more variability, we could say that the Model’s variance is
inversely related to c. Table 2 shows the optimized parameters
The means l1 and l2 are expressed in hours and the values for
c1 and c2 are expressed in hours�1. C1 and C2 are adimensional.

We can see that the average time when people wake up is 6:22
AM and go to bed at 9:46 PM, going to bed has a smaller variability
in time shown with a bigger c and waking up has a higher variabil-
ity in time shown with a slightly smaller c.

This estimation gives an accurate Model according to the
observed data. Nevertheless, the wake-up and sleep time estimates
are not consistent with other published statistics. For example,
Sleep cycle is a downloadable application for mobile devices which
tracks sleeping behavior. In post [23], the app determines that the
average American wakes up at 7:09 AM and goes to sleep at 11:39
PM. Sleep cycle data seems to be biased based on age and other
characteristics, while ATUS data is a non-weighted nor biased aver-
age of different wake-up and going to bed times from Americans of
all ages, work schedules, and characteristics. We also believe Sleep
cycle data could be naturally biased given that many of its users
are young adults and teenagers who are prone to the use of tech-
nological applications.
3.3. Occupancy probability parameters

We can use the same equations Eq. (4) and (5) to model the
occupancy of the house, where the time of leaving the house and
time of coming back are assumed independent from each other,
just as done with awake probability. Weekdays have a higher total
probability of leaving the house while on the weekends there is a
smaller probability of leaving the house as shown in Fig. 3.

We can see the fitted Model parameters in Table 3. Means l1

and l2 represent the average time people leave the house and
come back. Parameters c represent the variability of the leaving
time or coming back expressed in hours �1. For weekdays and
weekends, we can see a bigger variability in the time of coming
back with a small c and a smaller variability in the time of leaving
the house with a bigger c. Parameters C1 and C2 are mainly used to
Fig. 2. Measured probability of being awake during weekdays as reported in [7] (in
red), and adjusted probability Model. of being awake.

6

adjust the probability density to the original curve and are
adimensional.

We end up finding out that on average, people leave their house
at 7:09 AM and come back at 5:51 PM, which fits with our average
waking up time and usual time when people leave their jobs.

3.4. Appliance modeling

Using Eqs. ()()()(8)–(10)minimizing Kullback–Leibler diver-
gence we can find the parameters that make our function fit the
original data. These parameters also have a physical meaning of
the appliance such as minimum cycle time as T1, maximum cycle
time as T2, and nominal power P. Parameter C is directly related
to the nominal power of the appliance times the probability of
belonging to the specific cluster, times the frequency of usage of
the appliance, as shown in the following equation, obtained from
(1).

Cj ¼ P � Pu � pjðonjtÞ ð22Þ
When modeling appliances with Eqs. ()()()(8)–(10), parameters

li model the average time when appliances turn into on state, and
ri model standard deviation of this time instant, for each different
cluster i.

To find the optimal number of clusters, we compare the cost
function values achieved with different numbers of clusters and
find the number that minimizes the cost function without increas-
ing too much the complexity of the total Model similar to the k-
means clustering selection elbow method [24].

3.4.1. Dishwasher modeling
Using the appliance Model and parameter optimization

explained above, we find that the dishwasher Model has 3 clusters,
one for the morning, one after lunch, and one after dinner. A man-
ually selected probability of daily usage Pu of 0.8, meaning it’s used
most of the days, and a nominal power of 790 W obtained from
(22) after fitting the model.

In Fig. 4 we can see the fitting of the three clusters to the orig-
inal data and the following Table 4 shows means and variance of
the different clusters which match with breakfast, lunch, and din-
ner times. We can see that minimum cycles for the different clus-
ters are values between 0.25 and 0.3 h and maximum cycles T2 are
between 1.38 and 1.58 h for the different clusters.

3.4.2. Washing machine modeling
For the case of the washing machine model, 2 clusters fit better

the original data, a probability of daily usage Pu of 0.55 is chosen
and a nominal power Pof 1196 W is obtained after fitting.

Fig. 5 shows the morning cluster and the evening one, and we
can see on Table 5 parameters defining means and variances of
the different clusters. Also minimum and maximum cycles. Its
minimum cycle goes between 0.25–0.29 h or around 15 min. T2

maximum cycle for weekdays is 0.96 h and for the weekend is a
longer cycle of 1.3 h.

3.4.3. Dryer modeling
The dryer Model has 3 clusters, a morning cycle from the previ-

ous day’s washing machine’s night cycle, a short midday cycle to
dry the morning washing machine cycle, and a late night cycle
after evening washing machine cycles. Manually chosen probabil-
ity of daily usage Pu of 0.55 similar to the washing machine, gives
us a nominal power Pof 1749 W after fitting the Model depicted in
Fig. 6.

Weekdays cycles are shorter, probably due to smaller loads,
with a minimum cycle T1 of 0.25–0.3 h and a maximum cycle T2

of 1.58–1.67 with a short midday cycle of 0.25 to 0.8 h as depicted



Table 2
Parameters of the distributions of being awake

l1 c1 C1 l2 c2 C2

6.37 0.928 1 21.76 1.188 0.95

Fig. 3. Probability of being outside the house. Left pane: modeling probability of being away for weekdays. Right pane: modeling probability of being away for weekends.

Table 3
Parameters of the distributions of being outside the house for weekdays and weekends.

Week days

l1 c1 C1 l2 c2 C2

7.15 1.088 0.94 17.9 0.64 0.96

Weekends
l1 c1 C1 l2 c2 C2

7.17 0.784 0.88 19.37 0.48 0.69

Fig. 4. Dishwasher usage modeling. Left pane: weekdays, right pane: weekend days.

Table 4
Dishwasher parameters for different clusters for week and weekends

Week days

Cluster l r T1 T2 C

1 8.22 1.47 0.25 1.44 124
2 13.29 1.09 0.27 1.38 174
3 20.50 3.34 0.26 1.49 353

Weekends
Cluster l r T1 T2 C

1 9.28 1.71 0.285 1.58 147
2 13.3 1.37 0.27 1.36 152
3 19.8 3.45 0.3 1.32 381
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in Table 6. During weekends, minimum cycles increases to 0.35 h
and maximum cycle T2 can be as long as 2 h on late weekend days.

3.4.4. Cooker
The cooker Model has 3 clusters. Fig. 7 shows for weekdays, a

morning and an evening cluster are predominant since few people
have lunch at home and for the weekends, we can see a late break-
fast and lunch cluster and a smaller but still important dinner clus-
7

ter. It is assumed that the cooker is used more than once a day with
a frequency of daily usage Pu of 1.6 and a nominal power Pof 600W
is obtained.

Weekdays have a minimum cycle T1 of 0.25 h and a longer
morning maximum cycle T2 of 2 h and an afternoon maximum
cycle T2 of 1.68 h. There is a midday cluster with a small C value,
meaning a small probability of happening, with a very short cycle
of around 0.3–0.34 which is around 20 min.



Fig. 5. Left pane: weekday, Right pane: weekend days.

Table 5
Parameters for washing machine for weekdays and weekends.

Week days

Cluster l r T1 T2 C

1 9.06 2.15 0.36 0.96 310
2 17.49 4.2 0.49 0.97 425

Weekends
Cluster l r T1 T2 C

1 9.8 1.81 0.48 1.25 193
2 16.51 4.55 0.57 1.31 219

Fig. 6. Dryer data and Models for weekdays (left) and weekends.

Table 6
Parameters for dryer for weekdays and weekends

Week days

Cluster l r T1 T2 C

1 9.98 3 0.25 1.67 359
2 15.83 1.62 0.256 0.8 244
3 20 2.07 0.31 1.58 374

Weekends
Cluster l r T1 T2 C

1 10.33 1.44 0.34 1.54 309
2 14.21 1.20 0.37 1.30 69
3 18.60 3.10 0.35 2.00 508
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On the weekends, the minimum cycle T1 is 0.25 h, and the max-
imum cycle T2 is 1.41–1.58 h. Results and parameters are shown in
Fig. 7 and Table 7.

3.4.5. Water heater
For this appliance, we found that the optimal number of clus-

ters varies between weekdays and weekends seen in Fig. 8. The
water heater Model has 3 clusters on weekdays, the biggest one
in the morning and then the other two are for the afternoon
straight when people get home or late at night. During the week-
8

end we only find 2 important clusters, one for the morning and
another for the late afternoon since many activities happen on
the weekend.

Water heaters are used more than once a day with a frequency
of daily usage Pu of 1.7 and a nominal power Pof 4500 W.

Weekday minimum cycle T1 are similar around 0.25 h and
morning and night maximum cycle T2 are longer 1.45–1.75 h.
Weekend days have a longer minimum cycle T1 of 0.5–0.55 h
and a shorter maximum cycle T2 of 1.2–1.25 h. The values are sum-
marized in Table 8.



Fig. 7. Cooker.

Table 7
Parameters for the cooker for weekdays and weekends

Week days

Cluster l r T1 T2 C

1 7.42 2.89 0.25 2.02 187
2 11.09 0.65 0.30 0.34 70
3 16.65 2.80 0.25 1.68 631

Weekends
Cluster l r T1 T2 C

1 10.06 1.97 0.25 1.41 584
2 15.3 0.99 0.25 1.58 288
3 18.95 2.05 0.26 1.48 415

Fig. 8. Water heater.

Table 8
Parameters for the water heater for weekdays and weekends

Week days

Cluster l r T1 T2 C

1 6.85 1.53 0.27 1.75 1989
2 11.11 3.02 0.25 1.45 1432
3 20.25 5.1 0.27 1.68 4832

Weekends
Cluster l r T1 T2 C

1 10.71 3.14 0.5 1.2 2341
2 19.54 5.12 0.55 1.25 3896
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3.4.6. Temperature based appliances
We simulate a house that has an electric heater of 7 kW of nom-

inal power and air conditioning with a nominal power of 6 kW. The
default temperature is set to 18 �C. We simulate temperature data
for two consecutive days with Eq. (16) and (17) using initial
parameters that represent the house physical behavior used in arti-
cle [14] and a sampling rate (T) of 900 s (15 min) and results are
shown in Fig. 9 for a winter day and a summer day.

We can obtain the previously manually selected physical
parameters of the house using 5 different time instants from
the temperature data and minimizing Eq. (20) for each time
instant. We use the Basin-Hopping method [25] implemented
9

in Python in the scipy.optimize package, with a step size of 10
and 200 iterations, to avoid local minimums and find a global
minimum and the optimal parameters. Calculating the parame-
ters 100 times for different days and time instants and averaging
the results from all the iterations we estimate the parameter val-
ues in Table 9 including parameter value variation with its stan-
dard deviation.

We can see that the wall thermal capacity Cw has the highest
variation, I believe this is caused because the solar radiance affects
directly its temperature. Cloudy days don’t see a strong change in
wall temperature while sunny days do, making this variable
change for different days.



Fig. 9. Left pane: Cooling for a summer day, Right pane: Heating for a winter day.

Table 9
Parameters manually selected

Parameters Ca Cw Ki Kf Ko

Original 1700 2100 0.35 0.035 0.02
Obtained 1711.7 2169 0.364 0.034 0.0228

r 13.18 154.92 22.06 28.5 15.33

Fig. 10. Left: Gamma distribution for PHEV, Right: Gamma distribution for EV.
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3.4.7. Electric vehicle
Most electric cars in the market get around 4 miles of autonomy

for every kW of charge as mentioned in article [26]. The rated
power of a level 2 Electric vehicle charger [26] is 7.4 kW at
230 V, where different levels of charging can be used.

Sampling the number of miles used during the day from our
Gamma distributions adjusted to the original data from [18] and
shown in Fig. 10 and knowing the charging rate we can obtain
the power needed for a full charge. For our simulation, we’ll
assume the charge starts when the resident gets back home shown
with the occupancy variable from Fig. 3.
3.4.8. House load profile
REMODECE load curve for a typical European household comes

from its appliances’ electricity consumption, excluding water hea-
ters and space heaters and the use of electric vehicles. We obtained
the weights Pu of the appliance’s use from the REMODECE article
[27] that studies the disaggregated electricity consumption.
REMODECE monitors energy in 12 European countries including
some colder countries such as Denmark or the Czech Republic,
whose AC consumption is low. Considering that AC is only used
during summer months, its daily probability of use for the entire
year is low as shown in Table 10.

To test our probability Models combined accuracy, we can
obtain a simulated daily load profile and compare it to other stud-
Table 10
REMODECE appliance’s Pu

Cooker AC Fridge Lights

0.75 0.045 0.9 7.6

10
ies and data sets. To obtain our load profile, we run 1000 simula-
tions for individual appliances with the probabilities of use from
Table 10 and average their power consumption to obtain the
resulting load profile. We ignore some low-power non-
controllable or shiftable appliances included in the REMODECE
data set since their impact on the load profile is small and can’t
be scheduled for energy savings purposes or electricity peak man-
agement. We compare our resulting load profile with daily load
profiles from REMODECE data set [19] and RSE [28]. Article [10]
uses a bottom-up approach based on Monte Carlo Non-
Homogeneous Semi-Markov for appliance simulations combined
with household end-user behaviors to simulate daily household
load profiles. It compares its individual appliance simulations with
REMODECE’s hourly load diagrams and obtains an average daily
load profile which it’s also used as a benchmark. Most of the other
bottom-up disaggregated simulation approaches lack some of the
inputs considered in our article and are not directly comparable.

We can see in Fig. 11 that our simulation curve follows the same
trend and has similar peak demand values as the other benchmark
load profiles. Our curve differentiates slightly from the REMODECE
load profile from the exclusion of the low power non-controllable
or shiftable appliances and differentiates from the other data sets’
load profiles due to different appliances’ nominal power consump-
tion rates and different daily probabilities of use. Table 11 shows 2
similarity metrics (MAPE, MRSE) between our simulation curve
TV Washing machine dishwasher

0.35 0.75 0.7



Fig. 11. Comparison of our house simulation with only REMODECE appliances load
profile and the benchmark from different data sets including benchmark from
Bottaccioli et al. [10].

Table 11
Caption.

Benchmark MAPE RMSE

REMODECE 7.789 24.429
RSE 12.17 41

Article [10] 13.86 54.33
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and benchmark load profiles(REMODECE, RSE and article [10]),
quantifying the visual difference mentioned previously. Just to
clarify, these accuracy measures aren’t as strict as needed for a pre-
diction algorithm, since we are looking for simulations that follow
a similar trend and maximum and minimum values frequently
seen in typical house load profiles.
3.5. Simulation of a house in different scenarios

Before running a complete house simulation, the user needs to
initialize parameters defining the house architecture and behavior
such as the number of residents, area covered by solar panels (m2),
efficiency of the solar panels, battery capacity(kWh), type of car
(electric/hybrid) and thermostat temperature set (�C).

Using Python’s Pandas library to load calendar data for the dates
of interest (2013–2015), we can classify days into week working
days or weekends/holidays having different occupancy and appli-
ance Models respectively. Hourly electricity prices used for calcu-
lating the total cost, come from the ISO NE Regional transmission
Organization public database which can be found athttps://www.
iso-ne.com.
Fig. 12. Appliances profiles
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Using the aforementioned data, we simulated in 15-min inter-
vals individual appliances and their power consumption. The
results can be seen in the top pane of Fig. 12. The bottom pane
of the figure shows sleeping and occupancy indicators for a house-
hold with only one resident for a winter day. Human behavior such
as wake-up time, sleep time, and time to leave the house and come
back are shown. Sleep values of 1 mean that the resident is awake
and occupancy values of 1 mean that the user is outside the house.
The figure also shows times when residents are at home and awake
with a variable named ‘‘available”. At this time some appliances for
example lights are turned on and limit the use of the rest appli-
ances depending on human interaction. Some appliances such as
washing machines and dishwashers only need human availability
for the ON moment, while others like the cooker or the water hea-
ter require an awake person during the ON and the OFF moment.
Most of the simulations will happen during times when residents
are awake and in the house, ignoring the ones that happen outside
the available period and re-simulating the appliance until the ON
or OFF moment happens when residents are available. We intro-
duce a limited number of re-simulations (N = 50), which is rarely
needed, for rare availability cases such as very early morning wake
up or late night sleeps where appliances have a low probability of
usage.

House power consumption, sources, and battery data are shown
in Fig. 13, where we can see how much electricity comes from the
solar panels and how much is bought from the grid. The top left
plot shows the total power production. A positive sign means that
the produced power is higher than the used power, and hence the
energy can be stored in the battery or the power can be injected
into the grid. The top right plot shows the photovoltaic production
of the house. The bottom left graph shows the energy stored in the
battery and the power signal measured by the battery. A positive
power value corresponds to a charging process, thus the slope of
the battery energy is positive. The battery energy reaches a maxi-
mum value in this example at around 2 pm. The bottom right pane
shows the grid power behavior. A negative value indicates that the
grid is injecting power into the house, and a positive value means
that the house is selling the leftover power (that is not used or that
cannot be stored in the battery) to the grid.

We can see on the lower right plot of Fig. 13 that grid energy is
used in the early morning for cold days to heat up the house with
the electric heating system and the solar power generation covers
part of the afternoon load and even sells some extra energy that
can’t be stored, to the grid shown as a positive power in the power
grid graph.

Figs. 14 and 15 show the simulation of a house with 2 residents
and different occupancy schedules, therefore different appliance
and human behavior.

https://www.iso-ne.com
https://www.iso-ne.com


Fig. 13. Power usage.

Fig. 14. Profiles of usage of an experiment similar to one of Figs. 12 and 13, with the difference that in this house the number of occupants is changed to 2.

Fig. 15. Power usage for the experiment shown in Fig. 15. As can be seen, in this particular example, the battery is fully charged for about two hours and there is power left f.
or the next day.
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usage. We can see in this simulation how the battery is not fully
discharged by the end of the day and it has some energy left for
the next day.
12
In Fig. 16 and 17 we find a house simulation with 3 residents for
a summer day when air conditioning is used mainly during day-
light hours. For this specific hot day, solar power generation covers



Fig. 16. Appliances profiles and human behavior on a simulation with three users in a summer scenario.

Fig. 17. Power usage for the simulation of Fig. 16.
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almost all the house AC power consumption but the charging of the
electric vehicle later afternoon drains the battery making the sys-
tem buy grid electricity and leaving it with no more energy for
the next day.

In the above simulations, the daily frequency of usage of all
appliances is the same through all the scenarios in spite of the
number of occupants. Indeed, the usage of most appliances is inde-
pendent of the number of household members present in the
house. For example, washing machines will be used the same num-
ber of times a week with a low dependency on the number of users,
but in the case of a low number of users, the clothes loads will be
simply lower. A similar situation is encountered in the case of TV or
stove usage.
4. Discussion

The simulations in SubSection 3.4 show an accurate modeling of
the behavior of appliances and household members, and a reason-
able interpretation of the parameters of the probabilistic Models in
terms of the appliance and human behavior and a simulation of a
household with the same appliance usage frequency produces
results very similar to the ones measured in the REMODECE and
RSE benchmarks.
13
Nevertheless, the simulated households presented in SubSec-
tion 3.5 will not produce profiles similar to the ones in REMODECE
and RSE. The reason for this is that many old houses use gas for
space and water heating and the PV generation and EV usage are
not significant in the aggregated loads. These kinds of scenarios
were simulated in Fig. 11. In particular, EVs are big electricity con-
sumers, and they usually consume most of the afternoon battery’s
energy leaving it depleted and having to buy electricity from the
grid for upcoming house appliance usage.

In the Fig. 18 we compare the benchmark profile load curves
with our simulated house load curve. Our simulated house uses
electrical space and water heaters, electrical air conditioning, and
electric vehicles both running on the grid or solar electricity gener-
ation affecting and changing the total daily load demand curve for
the next upcoming years, which could leave old load profiling
methods obsolete. Indeed, running our house Model with all the
electrical appliances mentioned shows a new different load profile
curve. Increasing the total electricity consumption from the single
household’s typical daily consumption of 7.2 kWh to 32 kWh.

In the article, [17] future residential demand load curves for
2040 are estimated. This future residence includes electricity-
powered heat pumps, Photovoltaic generation, and electric vehi-
cles. 3 future scenarios are presented in this article. Scenario A is
the average scenario where demand growth in normal residential



Fig. 18. Comparison of benchmark house load profile with the simulated load profile generated from hour house with all electrical appliances.

Fig. 19. Comparison of our house simulation load profile with the future load profiles estimated for 3 different scenarios in article [17]. The difference between scenarios is
explained in the pre.vious paragraph.
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electricity use is 0%, 40% of vehicles are electric and 50% of houses
use heat pumps. Scenario B considers an increase in electricity
demand and assumes 75% of vehicles are electric and 80% of houses
use heat pumps. Scenario C considers a decrease in normal residen-
tial electricity, but still considers a high percentage of electric vehi-
cles and heat pumps (75%). In Fig. 19 we compare our simulated
load curve with the load profiles estimated in the article men-
tioned for all three different scenarios. Due to the lack of articles,
modeling appliance usage and simulating load profiles for houses
including EV, PV, and electric thermal appliances, we compare
our simulation results with the previous article which gives us a
futuristic load profile with different data sources and methodology,
therefore curves are not expected to exactly match. With that said,
we can see that our simulated load profile follows the residential
future curve estimations closely, proving our simulation methodol-
ogy with probability distributions including the appliances soon
seen in modern houses.
5. Conclusion

The obtained results assume that electricity consumption is
going to increase dramatically in the upcoming years, supporting
The Energy Information Administration (EIA) estimation of a 40%
increase in residential electrical usage by 2040. Energy manage-
14
ment systems could be the solution to distributing energy con-
sumption during the day and lowering our electricity costs.
modeling morning electricity consumption, buying low-cost/low-
demand night electricity, and storing it in the battery could sub-
stantially reduce electricity costs caused by morning heating sys-
tems and lower the morning peak demand. For this purpose, this
work presents a comprehensive methodology to model individual
home appliances, human behavior, temperature-regulating appli-
ances (AC and space heating), and electric vehicle consumption
for a complete house simulation. All Models but the
temperature-regulating appliances are probabilistic. Thermal
appliances are based on a physical Model which follows thermody-
namic equations and use indoor and outdoor temperature values
to control the desired temperature.

The appliance Models and the human behavior Models are
adjusted to the statistical data sets found in the REMODECE and
ATUS repositories through the use of a KL divergence criterion
and a gradient descent algorithm.

The appliance Models are constructed by using a combination
of a Gaussian distribution for modeling the turning on instant
and a uniform distribution which limits its shortest running cycle
and its maximum cycle. This distribution, named Gaussian-
uniform throughout the paper, is quite complex in its derivation
and formulation, but it has been demonstrated to be an accurate
approximation when adjusted to the REMODECE data set. The
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parameters of the distribution are interpretable and their values
are reasonable.

The human behavior Models are constructed with the use of
sigmoidal functions that model the cumulative density distribu-
tions of being home and being out of the house. We model the
probability of sleeping similarly. The parameters of the derived dis-
tributions are also interpretable. These parameters are adjusted
from the ATUS data.

The EV Models for the usage in terms of daily driven distance
are found to fit a Gamma function adequately when adjusted to
data obtained from article [18] for electric and hybrid vehicles.

The presented results show that running a simulation using the
obtained trained Models with only the REMODECE appliances
results in a load profile matching accurately the load profile curve
from the REMODECE data set and similar to the RSE data set. Our
individual appliance simulations fit more accurately the original
REMODECE appliance curves than in article [10].

Individual 15-min interval house simulations with different
scenarios are shown and analyzed showing the benefits of includ-
ing PV generation and battery in our system and the big impact on
energy consumption that electric vehicles bring.

A final house load profile including all appliances, electric space
and water heater, power generation systems, and electric vehicles
is compared to the REMODECE, RSE, and article [10] and later on to
article [17] curves showing how the transition from fossil fuel
sources to electric systems and vehicles is going to change the typ-
ical household load profile in the upcoming years.

Future work includes the usage of the presented Models in
decision-making methods for household energy management.
Indeed, the generated appliance Models give us prior information
on appliance usage and can be combined with adaptive optimiza-
tion algorithms for energy management systems to improve their
performance through the intrinsic capabilities of these probabilis-
tic and physical Models to estimate uncertainty.

These Models could become adaptive by combining prior
knowledge with changes obtained from new observations, thus
making the energy management systems a smart real-time learner
and fully personalized for each house and residents. This may be
useful to estimate the likelihood of the events observed in a house-
hold or a community, which makes these Models useful in tasks
related to fault or cyber-attack detection.
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Appendix A. Appendix

The mathematical path to obtaining our probability Model used
for modeling the appliances is shown below. There is an integra-
tion process that divides the solution into three different cases
based on the values of t, therefore three different equations. The
derivations are computed by using the equality

pðonjtÞ ¼ pðt > ton; t < toff Þ ¼R Tf
t

R t
0 pðtonÞpðtoff jtonÞdtondtoff

where the distributions are respectively

pðtonÞ ¼ 1
r
ffiffiffiffi
2p

p e�
ðton�lÞ2

2r2

pðtoff jtonÞ ¼ U½T1þton ;T1þtonþT2 �ðtoff Þ
ð23Þ

The following cases are considered.

A.1. Case1: t < T1

In this case, as illustrated in Fig. 20 the product of both func-
tions is nonzero for T1 6 toff 6 T1 þ T2 þ t, as depicted by the
striped area in the figure. This integral can be decomposed into
three integrals corresponding to the left triangle, the central
square, and the right triangle that form the stripe rhomboid of
the figure. Therefore, the computation is decomposed into the
three following integrals. The first one is the triangle between
0 and t in the ton axis and between T1 and T1 þ t in the toffn
axis.
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whose solution is a linear combination of error functions erfð�Þ and
square exponentials. The second one is the rectangle between
toff ¼ T1 þ t and toff ¼ T1 þ T2
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which has a similar solution. Finally, the triangle in
T1 þ T2 6 toff 6 T1 þ T2 þ t is integrated.
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Adding everything together, the probability can be expressed
as:

pðonjtÞ ¼ 1
2 erf
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þ 1
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l
r
ffiffi
2

p
� �
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A.2. Case2: T1 < t < T1 þ T2

In case2, the values of t seem to affect the mathematical solu-
tion of the double integrals creating two new subcases.

A.2.1. Case2A: t < T2

This situation is depicted in Fig. 21. We break the integral into
three intervals. The first one is for T1 6 toff 6 T1 þ t.



Fig. 20. Graphical illustration of the integral intervals for the computation of the probability distributions for Case1, where t 6 T1. The horizontal line corresponds to the
domain of toff , and the dotted line represents,pðtoff jt½on�Þ, this is, the probability of toff , which is dependent on ton. The gray area corresponds to the intersection of the Gaussian
function modeling pðtonÞ with the pulse modeling pðtoff jtonÞ. Variable ton is integrated between 0 and t and toff is integrated between t and 1. The area to be integrated is the
striped one.

Fig. 21. Area of integration of the case2A, where T1 6 t 6 T1 þ T2 and t 6 T2, where
T2 is the length of the rectangle representing the uniform pdf.

Fig. 22. Area of integration of the case2B, where T1 6 t 6 T1 þ T2 and t P T2.
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The second one is T1 þ t 6 toff 6 T1 þ T2.

1
T2

R T1þT2
T1þt

R t
0

1
r
ffiffiffiffi
2p

p e�
ðton�lÞ2

2r2 dtondtoff ¼
¼ T2�t

2T2
erf t�l

r
ffiffi
2

p
� �

þ T2�t
2T2

erf l
r
ffiffi
2

p
� � ð29Þ

The third one is T1 þ T2 6 toff 6 T1 þ T2.
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A.2.2. Case2B: t > T1 þ T2

Fig. 22 shows the case where t > T2, which modifies the way in
which the area must be divided for its integration. The first one is
now t 6 toff 6 T1 þ T2, the second one is T1 þ T2 6 toff 6 T1 þ t, and
the third one is T1 þ T2 6 toff 6 T1 þ T2 þ t. The solutions of the
three integrals are the following.
16
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The solution of this case is found by adding the six previous
integrals:
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A.3. Case3: t > T1 þ T2

The third case is solved similarly but in this case the limits for
toff are simply between t and t1 þ T2 þ t, and the result is
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Adding all terms, the result is
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