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Multitask Gaussian processes (MTGP) are the Gaussian process (GP) framework’s solution for multiout-
put regression problems in which the T elements of the regressors cannot be considered conditionally
independent given the observations. Standard MTGP models assume that there exist both a multitask
covariance matrix as a function of an intertask matrix, and a noise covariance matrix. These matrices
need to be approximated by a low rank simplification of order P in order to reduce the number of param-
eters to be learnt from T2 to TP. Here we introduce a novel approach that simplifies the multitask learning
process by reducing it to a set of conditioned univariate GPs without the need for any low rank approx-
imations, therefore completely eliminating the need to select an adequate value for hyperparameter P. At
the same time, by extending this approach with both a hierarchical and an approximate model, the pro-
posed extensions are capable of recovering the multitask covariance and noise matrices after learning
only 2T parameters, avoiding the validation of any model hyperparameter and reducing the overall com-
plexity of the model as well as the risk of overfitting. Experimental results over synthetic and real prob-
lems confirm the advantages of this inference approach in its ability to accurately recover the original
noise and signal matrices, as well as the achieved performance improvement in comparison to other state
of art MTGP approaches. We have also integrated the model with standard GP toolboxes, showing that it
is computationally competitive with state of the art options.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Gaussian processes (GP) [1] can be considered state of the art in
nonlinear regression, among other reasons, because they provide a
natural way of implementing a predictive posterior distribution.
This distribution has a clear advantage over non-Bayesian models
since it is a surrogate statistical model that provides not only the
predictive target means, but also a relevant measure of uncertainty
in the form of a predictive covariance function. While standard GPs
were initially designed to handle single scalar outputs, it is becom-
ing more and more common to have to face multi-task (MT) or
multidimensional output problems in which each individual out-
put cannot be considered conditionally independent from the rest
given the predictors. This can be found in many application exam-
ples, such as medical applications [2,3], air quality forecasting [4],
product design [5] and, particularly with multioutput GP models,
in multioutput time-series analysis [6], manufacturing applica-
tions [7], detection of damages in structures [8], forecast of multi-
scale solar radiation with application in photovoltaics [9], or
COVID-19 outbreak detection [10]. See also the extensive survey
on multi-output learning in [11]. In these cases, the use of ade-
quate approaches which are able to model the relationships among
the tasks can offer significant advantages [12].

The general MTGP formulation proposed in [13] can be consid-
ered the reference model and we will therefore refer to it in this
paper as the standard MTGP (Std-MTGP). Indeed, this model is
the one chosen in all the above mentioned MTGP applications. This
model assumes that the MT covariance matrix is expressed as the
Kroneker product of an inter-task matrix C and the input kernel
matrix. Specifying a full rank C requires a computational cost of
OðN3T3Þ and the inference of TðT � 1Þ=2 parameters, which
becomes computationally unwieldy when T is large. In order to cir-
cumvent these problems, the authors of the Std-MTGP use a low-
rank approximation of order P of C;C � UkU> þ r2I, so that the
number of parameters to be learnt is reduced from OðT2Þ to
OðTPÞ and the computational burden of the method is reduced
from OðN3T3Þ to OðN3T2PÞ. This model is reformulated as a linear
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model of coregionalization (LMC) in [14,15], where the model out-
puts are expressed as a linear combination of P latent functions
and, therefore, the multitask kernel function can be also expressed
as a linear combination of several covariance functions. In both
cases, parameter P must be cross validated in order to obtain
matrices that are representative of the process to be modelled,
but authors usually choose a low value for parameter P in order
to keep the model’s complexity low. In the particular case where
P ¼ 1, this model simplifies into the well-known intrinsic core-
gionalization model (ICM) [16], which results in significant compu-
tational savings. To obtain further computational savings in the
general MTGP formulation, [17] proposes an efficient inversion of
the MT covariance matrix by combining properties of the singular
value decomposition (SVD) and the Kronecker product, reducing
the computational cost from OðN3T2PÞ to OðN3 þ T3Þ.

All the approaches cited so far consider a noise model that is
independent and identically distributed across tasks, i.e., their
MT noise covariance matrices are of the form r2I. The approach
in [18] offers a more general solution by introducing a noise covari-
ance matrix which models inter-task noise dependencies. This
results in a more realistic model with improved performance com-
pared to the aforementioned alternatives. However, all of these
methods have an important drawback in the number of parame-
ters to be inferred. To mitigate this, the models presented in
[13,17,18] reduce the effective number of parameters of the
inter-task covariance matrix by approximating it with a sum of P
rank one matrices that are further regularized in the GP model
by the noise covariance term.

Additionally, several convolutional models [19–22] have
emerged, establishing a more sophisticated formulation that is
able to model blurred relationships between tasks by the general-
ization of the MT kernel matrix through a convolution. However,
adequate usage requires careful selection of the convolutional ker-
nel in order to make the integral tractable, and the number of
parameters must be limited to balance the model’s flexibility
against its complexity to avoid overfitting issues. Furthermore, this
complex design limits the model’s interpretability since the inter-
task covariance matrices are not explicitly estimated. Efficient ver-
sions of these models [22] introduce sparse GP formulations able to
select M inducing points to reduce the computational cost down to
OðM3TÞ.

The main challenge for all these approaches (sse also [23–25]),
lies in the fact that they have to fit a large number of parameters to
model all the task relationships and, despite the fact that we can
find many ad hoc implementations that use very accurate optimiz-
ers [26,27], all these approaches are prone to fail in local minima,
therefore resulting in suboptimal performance.

This work has been inspired by the MTGP probabilistic model
featured in [18], where the intertask and the noise covariances
are explicitly modelled. Our proposal however presents a number
of innovations and advantages that are summarized below.

First, we rely on a new formulation based on a decomposition of
the likelihood function into a set of conditional one-output GPs,
combined with a hierarchical extension of the conditioned GPs.
To our knowledge, this innovation has not been introduced before,
and it leads to the following advantages. In the first place, as
opposed to previous approaches, the one presented here does not
need to use a low rank approximation of the inter-task covariance
matrix. This avoids the need to select the corresponding hyperpa-
rameter (i.e: approximation rank parameter P in [18] and others).

This also means that the present methodology uses a full rank
expression of the intertask covariance matrix, with TðT � 1Þ=2
258
parameters. Despite this fact, the number of parameters to be
learnt is reduced to 2T , which is sufficient to recover the full noise
and intertask covariance matrices, while previous approaches
require PT parameters to recover an intertask covariance of rank P.

The complexity of our model is also reduced, which leads to a
reduction of the risk of overfitting and, hence, to an improvement
in overall predictive performance.

Secondly, this learning approach can be easily adapted to lever-
age efficient GP libraries, such as Pytorch [26] or MOGPTK [27],
allowing our method to be run on graphical processing units
(GPUs) with a computational burden of OðTN2Þ. In fact, this imple-
mentation is publicly available athttps://github.com/OGHinde/
Cool_MTGP. Additionally, in this case, the model also admits an
embarrasingly parallel implementation over the tasks to get a com-
putational cost per process of OðN2Þ.

2. Introduction to the Multitask Gaussian Processes

Given the set of observations xi 2 RD; i ¼ 1; � � � ;N and a transfor-
mation /ð�Þ into a reproducing kernel Hilbert space H [28], the
general expression for the MT regression problem of estimating T

regressors or tasks, y1:T;i ¼ y1;i � � � yT;i
� �>

; yt;i 2 R from /ðxiÞ ¼ /i,
results in the model

y1:T;i ¼ W>
1:T/i þ ei; ð1Þ

W1:T ¼ w1; � � � ;wT½ � being a mixing matrix where wt 2 H, and
ei 2 RT representing the model noise. To complete this probabilis-
tic model, the following inter-task noise distribution and weight
prior are assumed

pðeiÞ ¼ Nðeij0;R1:T;1:TÞ
pðvectðW1:TÞÞ ¼ NðvectðW1:TÞj0;C1:T;1:T � RpÞ;

ð2Þ

where vectð�Þ is a column-wise vectorization operator and � is the
Kronecker product. Matrix Rp models the covariances between the
elements of wt and it is common for all the tasks. This considers
that correlation between the noise elements of different tasks is
represented through the noise covariance R1:T;1:T , and relationships
between tasks are modelled with the intertask covariance C1:T;1:T .

In order to do Bayesian inference we define the multitask
likelihood

p vectðY1:TÞjU;W1:Tð Þ ¼
YN
i¼1

Nðy1:T;ij�y1:T;i;R1:T;1:TÞ

¼ NðvectðY1:TÞjvectð�Y1:TÞ;R1:T;1:T � IÞ
ð3Þ

where U ¼ /1; � � � ;/N½ �;Y1:T ¼ y1:T;1; � � � ; y1:T;N

� �
, and the bar notation

�u denotes the expectation of any random variable u; in particular,
�Y1:T ¼ W>

1:TU. Now, we can obtain the marginal likelihood
(marginalizing the influence of W):

p vectðY1:TÞjU;C1:T;1:T ;R1:T;1:Tð Þ ¼ NðvectðY1:TÞj0;C1:T;1:T

�U>RpUþ R1:T;1:T � IÞ ð4Þ
The estimation of matrices R1:T;1:T and C1:T;1:T is obtained through

the maximization of (4). Finally, the predictive posterior,

f�1:T ¼ f �1 � � � f �T
� �>, for test sample /� is constructed as:

pðf�1:T j/�; y1:T ;UÞ ¼ Nðf�1:T j�f�1:T ;C�Þ
�f�1:T ¼ C1:T;1:T � k>

�
� �

C1:T;1:T � Kþ R1:T;1:T � Ið Þ�1vectðY1:TÞ

C� ¼ C1:T;1:T � k�� � C1:T;1:T � k>
�

� �
C1:T;1:T � Kþ R1:T;1:T � Ið Þ�1 C1:T;1:T � k�ð Þ;

ð5Þ

https://github.com/OGHinde/Cool_MTGP
https://github.com/OGHinde/Cool_MTGP
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where vector k� ¼ U>Rp/
� contains the dot products between the

test sample /� and the training dataset U;K ¼ U>RpU is the matrix
of dot products between data, and k�� ¼ /�>Rp/

�.
So far, this formulation extends the model of [13,17] and is for-

mally identical to [18], which introduces the noise covariance. The
underlying limitation of these works lies in the fact that the num-
ber of parameters to be optimized grows with T2, and therefore a
rank-P approximation of the form

P
pkpupu>

p þ s2I is used to model
matrices C1:T;1:T and R1:T;1:T . This reduces the number of parameters
to 2TP, but imposes the need of selecting a suitable value for
parameter P.

3. Parameter learning through conditional one-output
likelihood for MTGPs

Here, we introduce a novel methodology based on a conditional
one-output likelihood MTGP (Cool-MTGP) where the previous
MTGP formulation is decomposed into a set of T conditioned
one-output GPs. This methodology reduces the number of param-
eters to be learnt to twice the number of tasks T without assuming
any low rank approximation and the adjustment of additional
hyperparameters.

3.1. MT likelihood as a product of conditional one-output distributions

Let us consider a model whose output corresponding to input /i

in the t-th task is given by a linear combination of both the input
data and the output of the previous tasks, y1:t�1;i, i.e.,

yt;i ¼ />
i wx;t þ y>

1:t�1;iwy;t þ �t;i ð6Þ

where �i;t � Nð0;r2
t Þ is the noise process for task t and the weight

of each factorized task is split into two components: weight
wx;t 2 H for the input data and weight wy;t 2 Rt�1 for the previous
tasks. This model is closely related to the original MTGP described
in Section 2 since, given the values of wx;t and wy;t , one can recur-
sively recover the original weights wt as:

wt ¼ wx;t þW1:t�1wy;t: ð7Þ
We can now apply the chain rule of probability to the original

joint MT likelihood to factorize it into a set of conditional probabil-
ities, each associated to a conditional one-output GP:
Fig. 1. Graphical model for the conditiona
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p vectðY1:TÞjU;W1:Tð Þ ¼ pðyT jY1:T�1;U;wx;T ;wy;TÞ�
�pðyT�1jY1:T�2;U;wx;T�1;wy;T�1Þ � � � pðy2j; y1;U;wx;2;wy;2Þ�
�pðy1j;U;wx;1Þ;

ð8Þ

where the likelihood for each of these conditioned GPs is given by:

pðyt jY1:t�1;U;wx;t;wy;tÞ ¼ NðytjU>wx;t þ Y>
1:t�1wy;t;r2

t IÞ: ð9Þ
And the prior over the input weight components wx;t is defined

as:

pðwx;tÞ ¼ Nðwx;tj0; btRpÞ; ð10Þ
where Rp assumes a common prior for all tasks scaled by a task-
dependent factor bt .

This approach assumes that wx;t are latent variables modelled
with a prior distribution, whereas previous task weights wy;t are
defined as model parameters (see the graphical model in Fig. 1
(a)); this way, for each task we generate a conditioned one-
output likelihood GP (Cool-GP) with meanw>

y;ty1:t�1 and covariance
btK:

Cool� GPt � GP w>
y;ty1:t�1; btK

� �
ð11Þ

This guarantees that the model remains Gaussian, allowing us
to recover the original MTGP joint likelihood from the set of
Cool-GP likelihoods, as defined in (9).

3.2. Parameter learning and model inference

In order to optimize the model in Fig. 1(a), we need to learn the
input prior factors b1:T ¼ b1; . . . ; bT½ �, the noise covariances
r2

1:T ¼ r2
1; . . . ;r2

T

� �
, the common kernel parameters h and, addition-

ally, the weights of the previous tasks wy;1; . . . ;wy;T . To reduce the
number of parameters to be learnt we propose two approaches to
infer the values of wy;1; . . . ;wy;T with a closed expression instead of
having to learn their values with gradient descent approaches; in
this way, the model complexity is reduced to 2T parameters plus
the kernel parameters to be learnt.

3.2.1. A hierarchical approach for Cool-MTGP learning
This first approach proposes to solve the Cool-GP, depicted in

Fig. 1(a), by means of a hierarchical methodology based on a two
step learning process.
l one-output likelihood MTGP model.
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In the first step, we consider the model introduced in Fig. 1b)
and define a prior distribution for each wy;t with the form

pðwy;tÞ ¼ Nðwy;tj0; IÞ: ð12Þ
that will be used, together with the independent prior assigned to
wx;t ,

pðwx;tÞ ¼ Nðwx;tj0; btRpÞ; ð13Þ
to infer a joint posterior probability of both sets of parameters. This
joint posterior distribution can be found as an extension of the
inference applied to the standard GP [1] as

p wx;t ;wy;t
� �jU;Y1:t
� � ¼ N wx;t ;wy;t

� �j �wx;t ; �wy;t
� �

;A�1
t

� �
ð14Þ

where the inverse At of the posterior covariance is

At ¼ r�2
t

U

Y1:t�1

� 	
U

Y1:t�1

� 	>
þ btRp 0

0 I

� 	�1

ð15Þ

Its mean value provides the MAP estimation of the weight vec-
tor wy;t , given by

�wy;t ¼ r�2
t A�1

t Y1:t�1yt : ð16Þ
Alternatively, the solution for the dual vector of wy;t has the

same formal expression as those of a standard GP [1], but using a
composed kernel matrix Kxy;t ¼ btKþ Y>

1:t�1Y1:t�1 þ r2
t I:

ay;t ¼ K�1
xy;tyt ; ð17Þ

Eq. (16) can be redefined as:

�wy;t ¼ Y1:t�1ay;t : ð18Þ
Note that this process is equivalent to training a GP with zero

mean and covariance matrix btKþ Y>
1:t�1Y1:t�1 (as depicted in the

model in Fig. 1(b)); this way �wy;t has the formal expression of a
standard GP [1], where the input data kernel K matrix is rescaled
by factor bt plus a linear kernel matrix for the previous tasks
outputs.

In the second step of the hierarchical model, we learn the
remaining parameter values (b1:T ;r2

1:T and h) by going back to the
original cool-GP of Eq. (11) and Fig. 1(a), where wy;t is substituted
by its MAP estimation.

Then, we can learn the model parameters (b1:T ;r2
1:T ; h) by max-

imizing the joint log-likelihood over all the tasks, given by

logp Y1:T jU; �wy;1; . . . ; �wy;T ;b1:T ;r
2
1:T ; h

� �

¼
XT
t¼1

logp ytjU;Y1:t�1; �wy;t ; bt;r2
t ; h

� � ð19Þ

To obtain each one of the conditional one-output likelihoods at
the right side of Eq. (19), we consider the prior Nðwx;t j0; btRpÞ for
parameterswx;t and marginalize the likelihood with respect towx;t ,
resulting in a Gaussian distribution with the expression

pð~yt jU; bt;r2
t ; hÞ ¼ N ~ytð j0; btU

>RpUþ r2
t IÞ ¼ N ~ytð j0;Kx;tÞ; ð20Þ
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where we make use of the notation ~yt ¼ yt � �w>
y;tY1:t�1 and

Kx;t ¼ btKþ r2
t I, which takes advantage of the fact that term

�w>
y;tY1:t�1 is considered constant and can then be used as a mean

subtracted from the random variable yt .
Replacing this expression into (19), we obtain the joint log-

likelihood over all the tasks

logp Y1:T jU; �wy;1; . . . ; �wy;T ;b1:T ;r2
1:T ; h

� �

¼
XT
t¼1

logp ~ytjU; bt;r2
t ; h

� � ¼

¼
XT
t¼1

� 1
2
~y>
t K

�1
x;t
~yt � 1

2 log jKx;tj � N
2 log 2p

ð21Þ

The criterion for the inference of the parameters consists of the
maximization of this log likelihood through gradient ascent with
respect to them. The derivatives with respect to each one of the
common parameters h are

@

@hj
logp Y1:T jU; �wy;1; . . . ; �wy;T ;b1:T ;r

2
1:T ; h

� �

¼
XT
t¼1

�1
2
~y>
t K

�1
x;t

@Kx;t

@hj
K�1

x;t ~yt � 1
2
trace K�1

x;t
@Kx;t

@hj


 �
 �
ð22Þ

For the task dependent parameters, b1:T and r2
1:T , these deriva-

tives are

@

@bt
logp Y1:T jU; �wy;1; . . . ; �wy;T ;b1:T ;r

2
1:T ; h

� � ¼
¼ �1

2
~y>
t K

�1
x;t

@Kx;t

@bt
K�1

x;t
~yt � 1

2
trace K�1

x;t
@Kx;t

@bt


 �
ð23Þ

@

@r2
t
logp Y1:T jU; �wy;1; . . . ; �wy;T ;b1:T ;r

2
1:T ; h

� �

¼ �1
2
~y>
t K

�1
x;t

@Kx;t

@r2
t
K�1

x;t ~yt � 1
2
trace K�1

x;t
@Kx;t

@r2
t


 �
ð24Þ

Note that the derivatives of the common parameters h are the
sum of the partial derivatives for each task, which implies maxi-
mizing the joint multitask likelihood; whereas the derivatives of
task dependent parameters, b1:T and r2

1:T , only depend on their
associated factorized likelihoods. The algorithm for the inference
of the parameters consists of the estimation of parameters ay;t

and wy;t with Eqs. (17) and (18) and, later, the optimization of
the log likelihood in Eq. (21) with respect to parameters
h;b1:T ;r2

1:T through gradient ascent with the use of gradients ()()()
(22)–(24). The process must be repeated until some convergence
criterion has been reached.

Finally, the dual parameters corresponding to the MAP estima-
tion of the input related parameter vector can be computed as

�wx;t ¼ Uat ð25Þ

where at ¼ K�1
x;t yt � �w>

y;tY1:t�1

� �
. This process is summarized in

Algorithm1.
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The algorithm developed above needs a matrix inversion for the
computation of ay;t and another inversion of Kx;t for the gradient
descent and the computation of at . To reduce this computational
cost, in the next section we introduce an approximated inference
approach that only uses a single learning step, requiring a single
matrix to be inverted.

3.2.2. An approximate approach for Cool-MTGP learning
To simplify the hierarchical learning approach described above,

we can assume a prior for both wx;t and wy;t to learn the model
parameters and infer their variables wx;t and wy;t with a common
model. In fact, considering that wy;t and wx;t are given by (10)
and (12) the model for each Cool-MTGP would consist of a Gaus-
sian Process with zero mean and covariance btKþ Y>

1:t�1Y1:t�1 (the
same GP defined by the first step of the hierarchical model as it
is shown in Fig. 1(b)).

So, with this scheme, the joint marginalized MT likelihood
would be approximated by the following set of conditional one-
output likelihoods1
1 Note that each cool likelihood is Gaussian, but their covariance is depending on
Y1:t�1, so their products do not return the equivalent marginalized MT likelihood
Gaussian distribution but an approximation to it.
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XT
t¼1

log p yt jU;Y1:t�1; bt;r2
t ; h

� �

¼ �
XT
t¼1

1
2
y>
t K

�1
xy;tyt þ

1
2
log jKxy;t j þ N

2
log2p


 �
ð26Þ

where Kxy;t is the full kernel matrix that combines the information
of the input data with that of the previous tasks. We can learn the
model parameters by maximizing them using the following deriva-
tives with respect to the common parameters h:

@

@hj

XT
t¼1

logp yt jU;Y1:t�1; bt;r2
t ; h

� �

¼
XT
t¼1

�1
2
y>
t K

�1
xy;t

@Kxy;t

@hj
K�1

xy;tyt �
1
2
trace K�1

xy;t
@Kxy;t

@hj


 �
 �
ð27Þ

and for the task dependent parameters:

@

@bt

XT
t¼1

logp yt jU;Y1:t�1; bt;r2
t ; h

� �

¼ @

@#j
logp ytjU;Y1:t�1; bt ;r2

t ; h
� �

¼ �1
2
y>
t K

�1
xy;t

@Kxy;t

@bt
K�1

xy;tyt �
1
2
trace K�1

xy;t
@Kxy;t

@bt


 �
ð28Þ
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@

@r2
t

XT
t¼1

log p yt jU;Y1:t�1; bt;r2
t ; h

� �

¼ @

@r2
t
logp yt jU;Y1:t�1; bt ;r2

t ; h
� �

¼ �1
2
y>
t K

�1
xy;t

@Kxy;t

@r2
t

K�1
xy;tyt �

1
2
trace K�1

xy;t
@Kxy;t

@r2
t


 �
ð29Þ

Once the model parameters are learnt, we can use the joint pos-
terior distribution ofwx;t andwy;t (see (14) and (15)) to obtain their
MAPs estimations as:

�wx;t ¼ Uat ð30Þ

�wy;t ¼ Y1:t�1at ð31Þ
where the dual variables at are

at ¼ K�1
xy;tyt ð32Þ

The difference between this approach and the hierarchical approach
is how wy;t is treated. In the hierarchical model two inference steps
Algorithm2: Approximate_Cool_GPs
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are used, one to estimate the mean of wy;t (see Eq. (17)–(18)) and
another to obtain the cool-GP; but in the approximate Cool-
MTGP, each cool-GP models wy;t as a random variable with a single
inference step. The disadvantage of this approach relies in the fact
that the conditional likelihoods are no longer Gaussian and there-
fore we cannot ensure that the original marginalized MTGP likeli-
hood can be exactly recovered. For this reason, this approach is
called approximate.

However, assuming that this criterion is valid, we get several
advantages. First, this optimization only requires the inversion of
matrix Kxy;t in both parts of the hierarchic process described in
the paper, whereas the exact procedure requires the additional
inversion of matrix Kx;t in the first level of the hierarchic process.
Besides, if the kernel is linear, the approximate procedure can be
implemented with the use of standard univariate GP libraries, and
amore sophisticatedwrapper thatmodifies the common parameter
inference or a simple cross validation can be used for the common
parameters. Both procedures have been compared in the experi-
ments, showing similar results, albeit slightly better for the exact
process. Algorithm2 summarizes the main steps of this process.



Ó. García-Hinde, M. Martínez-Ramón and V. Gómez-Verdejo Neurocomputing 509 (2022) 257–270
3.3. Recovering the multitask model

Despite the fact that intertask and noise covariance matrices
C1:T;1:T and R1:T;1:T are not explicit in the conditioned model, they
can be recovered from parameters b1:T ;r2

1:T and the MAP estima-
tion of the weights, �wy;1; . . . ; �wy;T and Wx;1:T ¼ �wx;1; . . . ; �wx;T½ �. The
general MTGP formulation considers that the joint MT likelihood,
which contains the noise matrix R1:T;1:T , is given by

pðvectðY1:TÞjU;W1:TÞ ¼ Nðy1:T j�y1:T ;R1:T;1:T � IÞ: ð33Þ
Considering the factorization given by (8), the factorized likeli-

hoods of (9), and applying the properties of the products of condi-
tional Gaussians (see, e.g. [29]), we can recursively recover the
mean �y1:T and the covariance terms, which leads us directly to
the MT noise covariance R1:T;1:T , as:

�yt ¼ U> �wt ¼ U>wx;t þ �y>
1:t�1

Rt;t ¼ r2
t þ �w>

y;tR1:t�1;1:t�1 �wy;t

Rt;1:t ¼ R>
1:t;t ¼ �w>

y;tR1:t�1;1:t�1

ð34Þ

where it is assumed that R1;1 ¼ r2
1 and �y1 ¼ U>wx;1.

For the purpose of recovering covariance matrix C1:T;1:T , two ele-
ments are needed: (1) An expression relating the multitask
weights W1:T to the input related weights wx;t; and, (2) the joint
prior of all wx;t parameters. We assume here that the values of
b1:T and the MAP value of the previous task weights �wy;1; . . . ; �wy;T

have been already learnt using any of the MTGP approaches pro-
posed above.

To obtain an expression of W1:T as a function of the input
parameters wx;t , we use

�yt ¼ U> �wt ¼ U>wx;t þ �y>
1:t�1 �wy;t ð35Þ

to get:

wt ¼ wx;t þW>
1:t�1 �wy;t; ð36Þ

that extended for t ¼ 1; . . . ; T , leads to the following equation
system

W>
1:T ¼ I� �Wy

� ��1
W>

x;1:T ð37Þ
where Wx;1:T ¼ wx;1; � � � ;wx;T½ � and

�Wy ¼

0 0 � � � 0 0
�wy;2½1� 0 � � � 0 0

..

. ..
. . .

. ..
. ..

.

�wy;T�1½1� �wy;T�1½2� � � � 0 0
�wy;T ½1� �wy;T ½3� � � � �wy;T ½T � 1� 0

2
66666664

3
77777775
; ð38Þ

where �wy;t ½k� is component k of vector �wy;t .
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In order to identify the joint prior of all wx;t parameters, we for-
mulate it as the following distribution

p vectðWx;1:TÞð Þ ¼ N vectðWx;1:TÞj0;B1:T;1:T � Rp
� � ð39Þ

with matrix B1:T;1:T being a cross correlation between tasks. Taking
into account that the diagonal terms of B1:T;1:T are btt ¼ bt (they
have been already learnt – see Sections 3.2.1 and 3.2.2), the
remaining cross terms can be expressed through the correlation
coefficient

btt0 ¼
ffiffiffiffiffiffiffiffiffiffi
btbt0

p
q̂t;t0 ð40Þ

where q̂t;t0 can be estimated as:

q̂t;t0 ¼
w>

x;twx;t0

jj wx;t jjjj wx;t0 jj ð41Þ

Since this computation depends on variables wx;t and wx;t0 , we
can carry it out by either generating samples from their posterior
distribution and obtaining the values of B1:T;1:T with a Monte Carlo
approximation, or by directly considering that Wx;1:T are given by
their MAP estimations. In fact, if we consider the latter approach,
the calculation of the terms of B1:T;1:T can be expressed in a more
compact form as:

btt0 ¼
ffiffiffiffiffiffiffiffiffiffi
btbt0

p
q̂t;t0 ¼

ffiffiffiffiffiffiffiffiffiffi
btbt0

p
a>
t Kat0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a>
t Kata>

t0Kat0
p : ð42Þ

where at ¼ K�1
x;t yt � �w>

y;tY1:t�1

� �
with �wy;t given by (16) in the hier-

archical Cool-MTGP method, or at ¼ K�1
xy;tyt in the approximate

approach.
Finally, the knowledge of matrix B1:T;1:T together with Eq. (37)

leads to the expression of the multitask covariance matrix

C1:T;1:T �Rp ¼E vectðW1:TÞvectðW1:TÞ>

 �

¼E vect ðI�WyÞ�1W>
x;1:T

� �
vect ðI�WyÞ�1W>

x;1:T

� �>� �

¼ I�Wy
� ��1

E vectðW>
x;1:TÞvectðWx;1:TÞ

n o
I�Wy
� ��1

� �>

ð43Þ
where, by Eq. (39), we see that

C1:T;1:T � Rp ¼ I�Wy
� ��1 B1:T;1:T � Rp

� �
I�Wy
� ��1

� �>
ð44Þ

and, finally, using the Kronecker product properties, it reduces to

C1:T;1:T ¼ I� �Wy
� ��1

B1:T;1:T I� �Wy
� ��1

� �>
ð45Þ

The summary of the process is in Algorithm3.
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One might be concerned that this reconstruction process, and
therefore the overall performance of the model depends on the
order in which the tasks are assigned to the Cool-GPs. However,
experimental results show that the reconstruction of the matrices
is consistent for any random permutation of the tasks, confirming
that task order shows no impact.
Algorithm4: Cool_MTGP_Predictive
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4. Predictive multitask model

Once the noise R1:T;1:T and intertask C1:T;1:T covariance matrices
have been obtained using any of the described methods, we are
ready to apply the general predictive model of the multitask Gaus-
sian process from Eqs. (5) (see Section 2) to obtain the predictive
model as describes the Algorithm4.



Ó. García-Hinde, M. Martínez-Ramón and V. Gómez-Verdejo Neurocomputing 509 (2022) 257–270
5. Experimental Results

5.1. Synthetic benchmark

We have carried out a synthetic data experiment to compare
the performance of all the considered MTGP algorithms against a
ground truth model. Following the general model of Section 2, a
data set has been drawn from likelihood function
pðyjXÞ ¼ Nðyj0;C1:T;1:T � Kþ R1:T;1:T � IÞ, where K ¼ X>X and the
intertask and noise covariance matrices follow the low rank form
C1:T;1:T ¼ PR

r¼1crc
>
r (and similarly for R1:T;1:T). We have created data-

sets for three scenarios in which the C1:T;1:T and R1:T;1:T matrices
were generated with R values of ¼ 5;10 and 15. In all cases,
T ¼ 15 tasks, N ¼ 200 samples and 10 iterations were run with
randomly split training and test partitions with 100 samples each.

We compare both the hierarchical (HCool-MT) and approximate
(�Cool-MT) versions of the proposed model to the standard MTGP
(Std-MT) of [13] and the extension introduced in [18], which
includes a noise matrix (R-MT). Since these methods require the
selection of parameter P, we have analyzed three values: one equal
to R (the ideal case), a value of P smaller than R and, where possi-
ble, a value of P greater than R. Additionally, a ground-truth model
that uses the true intertask and noise covariance matrices is
included, as well as a set of T independent GPs. Predictive perfor-
mance is measured with the mean square error (MSE) averaged
over all the tasks.

Fig. 2 shows that R-MT has the highest sensitivity to the choice
of P, and its performance degrades when the scenario complexity
(defined by matrix rank R) increases. Std-MT shows more robust-
ness with respect to both the selection of P and the value of R. As
Fig. 2. MSE for all models of the synthetic experiment and different values of the m

Fig. 3. Estimated intertask, C1:T;1:T , and noise, R1:T;1:T , covariance matrices vs. true on
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was expected, both models show their best performances when
P ¼ R, and thus a cross validation of P is paramount for these meth-
ods to perform optimally. This sensitivity depends on the number
of the parameters to be inferred, which is TP þ 1 in the case of Std-
MT and 2TP for R-MT, while it is only 2T for both Cool-MTs. This
allows our model to perform closer to the ground truth indepen-
dently of the scenario complexity R.

Experimentally, it can be seen in Fig. 3 that, while all models are
capable of inferring the intertask covariance, the noise matrix is
not properly inferred by the R-MT when scenario complexity (R
value) is high. Besides, comparing both versions of the Cool-MT
model, the hierarchical approach is unsurprisingly slightly better
at estimating the true parameters and reconstructing the noise
matrix, leading to a higher consistency in its predictions as was
already shown in Fig. 2.

Finally we address the possibility that the model is sensitive to
task ordering during the training of the Cool-MTs. As can be seen in
Fig. 4, the model is also consistent with regard to the order of the
tasks.

5.2. Predictive variance assessment

One of the most important benefits of using a GP model is the
ability to obtain the confidence for each prediction from the pre-
dictive distribution as well as the predicted value. In this section
we study the integrity of these predictive distributions for the dif-
ferent MTGP models under study.

For this purpose, we have generated a simple benchmark in
which a synthetic dataset is generated with the following
likelihood
atrix rank R of the generative model and parameter P for Std-MT and R-MT.

es (Ground-Truth) when R = 10. Std-MT and R-MT were trained for P ¼ R ¼ 10.



Fig. 4. Estimated C1:T;1:T and R1:T;1:T covariances for four random permutations of the task order for 15 tasks with R = 15.

Fig. 5. Predictive mean and confidence interval (vertical axis) with respect to the different input values (horizontal axis) for both tasks and over the different models under
study..
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pðyÞ ¼ N y
cosð2pxÞ
sinð2pxÞ


 ����� ;
0:1 0:05
0:05 0:1


 �
 �
ð46Þ

where x 2 ð0;1Þ. Specifically, we have generated a training set in
which the input data is clustered into two groups to force the pres-
ence of areas of lower training sample density.

For this study we have considered the Std-MTGP, the convolu-
tional model (Conv-MT) proposed in [30] and the two proposed
versions of the Cool-MT. The R-MT model was left out due to the
lack of a non-linear kernel implementation. For the reference mod-
els (Std-MT and Conv-MT), we have found that their libraries only
provide an estimation of the confidence interval task-by-task.
Therefore, we start by analyzing these intervals. As can be seen
in Fig. 5, we observe that all models arrive at similar task-wise con-
fidence intervals.

Going deeper into this analysis, we have recovered the com-
plete predictive distribution for the Cool-MT and for the Std-MT
(this can be easily done using their learnt C1:T;1:T and R1:T;1:T

matrices); however, we have not been able to obtain this distri-
bution for the Conv-MT due to the complexity of this model
and the black-box nature of its implementation, which has
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made it difficult to recover the hyperparameters. To analyse
the complete predictive posterior for these models we have
selected three test samples: x� ¼ 0; x� ¼ 0:25 and x� ¼ 0:5. This
way we cover regions with high and low predictive confidence.
The results, depicted in Fig. 6 allow us to appreciate clear
differences:

	 While Std-MT does offer a full predictive distribution, it consid-
ers the noise to be independent among tasks. This prevents the
method from modelling the relationships among the tasks in
the predictive distribution. Therefore its predictive distribution
covariance matrix tends to be diagonal.

	 Both versions of Cool-MT produce predictive posteriors that
adequately model the correlation among tasks with a full
covariance matrix.

	 In regions where the confidence is lower, the distribution for
the Cool-MT model widens yet it adequately retains its shape.
This isn’t the case for Std-MT, which seems to be insensitive
to the level of confidence for a particular region.

	 There are no appreciable differences between the predictive dis-
tributions obtained by HCool-MT and �Cool-MT.



Fig. 6. Level curves of the joint predictive distribution in the output space, represented by f 1ðx�Þ in the horizontal axis and f 2ðx�Þ in the vertical axis for different values of x�

(x� ¼ 0 (top), x� ¼ 0:25 (center) and x� ¼ 0:5 (bottom)).

Table 1
Real world datasets used in this work.

Dataset Samples Features Tasks

andro 49 30 6
enb 768 8 2
edm 154 16 2
slump 103 7 3
oes10 403 298 16
oes97 334 263 16
atp1d 337 411 6
atp7d 296 411 6
scm1d 9803 280 16
scm20d 8966 61 16
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5.3. Real data benchmarks

In this experiment we use ten real world scenarios to compare
the Cool-MT model’s capabilities to those of the Std-MT and Conv-
MT models2.

To accomplish this, we have made use of the collection of data-
sets featured in [31], which can be found online athttp://mu-
lan.sourceforge.net/. These datasets offer a good variety in
sample size, input dimensionality and number of tasks, as can be
seen in Table 1. Due to the small performance differences seen in
the previous section between the hierarchical and approximate
versions of the Cool-MT, for the real world benchmarks we have
only used the approximate model.

In all cases a standard normalization of the data was applied
to both the input variables and output targets. The normalization
parameters were obtained using the training partition only. Ten
iterations were run with a random 80%/20% training/test parti-
tioning of the data. In larger datasets (# samples > 1000) we
dedicated 800 samples to the training set and 200 to the test
set, limiting the number of total samples. All models were
2 We have been unable to include R-MT in this part of our study due to
convergence issues with the available implementation, as well as the lack of a non-
linear kernel version.
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trained with both a linear kernel and a squared exponential
(SE) kernel.

Regarding to hyperparameter setting, Cool-MT doesn’t need
validation of any hyperparameters since they are all inferred
by the algorithm. The kernel objects require the definition of
an exploration region for their relevant parameters, so a suffi-
ciently wide value range of ð10�10;103Þ was used to ensure good
convergence of the optimizers. The Std-MT model requires the

http://mulan.sourceforge.net/
http://mulan.sourceforge.net/


Table 2
Real dataset benchmark results using a linear kernel: RMSE averaged over tasks. Best results in bold.

Dataset Indep. GPs Std-MT Conv-MT Cool-MT

andro 0:74
 0:14 0:81
 0:15 0:77
 0:10 0:75
 0:10
enb 0:31
 0:02 0:31
 0:03 0:31
 0:02 0:31
 0:02
edm 0:79
 0:05 0:78
 0:05 0:78
 0:05 0:78
 0:05
slump 0:68
 0:07 0:68
 0:07 0:68
 0:07 0:67
 0:07
oes10 0:47
 0:17 0:38
 0:14 0:35
 0:13 0:35
 0:13
oes97 0:56
 0:18 0:41
 0:12 0:39
 0:11 0:39
 0:11
atp1d 0:50
 0:05 0:49
 0:05 0:42
 0:07 0:42
 0:07
atp7d 0:70
 0:12 0:64
 0:11 0:56
 0:07 0:56
 0:07
scm1d 0:29
 0:02 0:27
 0:02 0:24
 0:02 0:24
 0:02
scm20d 0:36
 0:03 0:36
 0:02 0:36
 0:02 0:36
 0:02

Table 3
Real dataset benchmark results using a squared exponential kernel. RMSE averaged over tasks. Best results in bold.

Dataset Indep. GPs Std-MT Conv-MT Cool-MT

andro 0:62
 0:10 0:42
 0:07 0:46
 0:08 0:42
 0:07
enb 0:30
 0:02 0:15
 0:02 0:16
 0:02 0:13
 0:02
edm 0:70
 0:06 0:73
 0:06 0:71
 0:06 0:72
 0:05
slump 0:68
 0:11 0:67
 0:07 0:61
 0:08 0:63
 0:07
oes10 0:76
 0:51 0:85
 0:45 1:03
 0:43 0:57
 0:41
oes97 0:80
 0:56 0:81
 0:51 0:99
 0:49 0:63
 0:46
atp1d 0:49
 0:10 0:81
 0:12 0:90
 0:12 0:41
 0:07
atp7d 0:94
 0:15 0:88
 0:14 0:94
 0:15 0:56
 0:10
scm1d 0:26
 0:03 0:23
 0:02 0:99
 0:06 0:22
 0:02
scm20d 0:33
 0:03 0:27
 0:03 0:52
 0:28 0:28
 0:03
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selection of hyperparameter P; for this setting, after trying val-
ues 1; T=2 and T on a few datasets (where T is the number of
tasks) using a small validation partition, it became apparent that
the best value was consistently P ¼ 1; and the kernel parameters
were initialised using their default settings. The Conv-MT model
requires the user to set the number of inducing points. After a
brief exploration we settled on 50% of the size of the training
partition, achieving a good performance while avoiding conver-
gence issues.

Tables 2,3 show the benchmark results in terms of the root
mean squared error (RMSE) for the linear and SE kernels respec-
tively. In the linear case all models perform similarly, with a slight
advantage in favour of both the Conv-MT and Cool-MT. A strong
improvement in performance is obtained in all cases using a
non-linear kernel, where the Cool-MT comes clearly on top in most
datasets. After analysing the values for the SE kernel length-scale
parameter learnt by all the models, it is clear that Conv-MT and,
in some cases, Std-MT are unable to achieve a correct estimation.
Fig. 7. Runtime and accuracy comparison on the scm20d dataset with 4 tasks for differen
�Cool-MT scales much better with the number of data. Std-MT offers the smallest com
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We believe that this is due to our model’s reduced number of
parameters to be learnt, making its adjustment easier.

The linear algorithms show a low performance in the dataset
andro (Table 2), but slightly better for the independent GP and
the Cool-MTGP in spite of having to fit more parameters in the case
of the MTGP model. However, Table 3 shows that the performance
for this dataset is significantly increased if a nonlinear model is
used, and we can therefore conclude that none of the linear models
show a good performance. In this particular case, the Std-MTGP
and the Cool MTGP show similar performances, suggesting that
the problem is nonlinear and presents correlation between tasks,
but the noise model of the standard multitask GP seems to be
adequate.

5.4. Computational performance analysis

In this last section we evaluate the computational performance
of some of the methods under study when executed on both a CPU
t numbers of training samples. Conv-MT and �Cool-MT are competitive in MSE, but
putational burden, but has poor performance with a low number of data.



Ó. García-Hinde, M. Martínez-Ramón and V. Gómez-Verdejo Neurocomputing 509 (2022) 257–270
and a GPU. For this purpose, we have selected the Std-MT and
Conv-MT, since they are efficiently implemented over Pytorch
and TensorFlow, and we have designed a wrapper over the Pytorch
GP implementation for the proposed �Cool-MT approach in order
to run it on GPUs. We have measured the runtime and MSE perfor-
mances of each algorithm with a linear kernel for different sized
(N) training partitions of the scm20d dataset considering only 4
tasks. Computational times are averaged over 50 iterations. 50
optimization iterations were used for the Std-MT and �Cool-MT
methods, whereas Conv-MT needed 200 to obtain accurate results.
The experiment was carried out on an Intel Core i9 Processor using
a single core (3.3 GHz, 98 GB RAM) and a GeForce RTX 2080Ti GPU
(2944 Cuda Cores, 1.545 GHz, 10.76 GB VRAM).

Fig. 7 shows the evolution of the runtime and MSE with N.
Conv-MT and �Cool-MT show similar MSE, but the computational
time of Conv-MT grows much faster with the number of data. We
conclude that �Cool-MT presents the best trade-off between accu-
racy and computational burden.

Notably, while Std-MT’s implementation is specific to GPUs
using the optimizers provided by Pytorch, for now �Cool-MT only
uses a wrapper. Despite this, �Cool-MT achieves comparable per-
formance. Additional improvements can be expected with an
implementation tailored for parallelization.
6. Conclusions

In this paper we have proposed a novel solution for the MTGP
problem that, compared to previous formulations, eliminates the
need to validate any model hyperparameters and dramatically
reduces the number of parameters to be learnt. Similarly to other
existing models, this proposal assumes that an intertask and a
noise covariances exist. The novelty lies in the parameter infer-
ence, which is solved through the factorization of the joint MT like-
lihood into a product of conditional one-output GPs. Once these
parameters are learnt, with either a hierarchical or an approximate
approach, a recursive algorithm can be used to recover the MT
intertask and noise covariances. Experimental results show an
accurate estimation of the MT intertask and noise matrices, which
translates into an improved error performance. At the same time,
we have integrated the model with standard GP toolboxes, show-
ing that it is computationally competitive with the state of the art.
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