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Abstract
Recent decades have seen increasing concerns regarding air quality in housing locations.

This study proposes a predictive continuum dynamic user-optimal model with combined choice
of housing location, destination, route, and departure time. A traveler’s choice of housing loca-
tion is modeled by a logit-type demand distribution function based on air quality, housing rent,
and perceived travel costs. Air quality, or air pollutants, within the modeling region are gov-
erned by the vehicle-emission model and the advection-diffusion equation for dispersion. In
this study, the housing-location problem is formulated as a fixed-point problem, and the predic-
tive continuum dynamic user-optimal model with departure-time consideration is formulated
as a variational inequality problem. The Lax-Friedrichs scheme, the fast-sweeping method,
the Goldstein-Levitin-Polyak projection algorithm, and self-adaptive successive averages are
adopted to discretize and solve these problems. A numerical example is given to demonstrate
the characteristics of the proposed housing-location choice problem with consideration of air
quality and to demonstrate the effectiveness of the solution algorithms.
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1 Introduction

The choice of a housing, or residential, location for individuals and households is funda-

mental in determining the demand locations that are crucial for the development of various

types of transport (e.g., road pricing, transit design) and land-use planning (e.g., allocation of

housing developments, locating community facilities) models. Owing to its importance and

usefulness, the choice of housing location has long been a primary concern of researchers,

planners, and decision makers (Schirmer et al., 2014).

In the literature, studies of housing location have widely been modeled via the trade-off be-

tween housing rent and transportation cost (Wheaton, 1977; Diamond, 1980; Giuliano, 1989).

Wheaton (1977) adopted a utility-maximization approach that was also considered by Alonso

(1964) and by Muth (1969) to determine housing locations in a monocentric city in which

all places of employment were at the sole city center. Wheaton (1977) showed analytically

that housing location is dependent upon the elasticities of land/housing demand and marginal

travel cost with respect to individual or household income. Although these studies (Alonso,

1964; Muth, 1969; Wheaton, 1977; Diamond, 1980) could provide an analytical solution for

the optimal housing location, most criticisms fall on their assumption of a monocentric model

in which all places of employment and destinations of travel trips are located in the sole city

center (Giuliano, 1989).

To resolve this problem, Owawa and Fujita (1980) and Gordon et al. (1986) developed

housing-location models for polycentric cities with support from empirical examples. One of

the key inputs in these housing-location models is the housing rent/cost at various locations.

The hedonic prices theory (Rosen, 1974), which explains the price equilibrium between the

buyer and producer, has been widely used to study housing rent. Orford (2000) proposed a

multilevel modeling approach to handle the discrepancy between the theoretical and empir-

ical application of the hedonic housing pricing model, whereas Hawkins and Habib (2018)

proposed a spatiotemporal hedonic housing-price model for empirical application in Toronto.

However, Ellickson (1981) suggested that the estimated hedonic price function, and thus the
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aforementioned housing-location models (Wheaton, 1977; Diamond, 1980; Giuliano, 1989),

could not fully and comprehensively represent the housing location choice behavior of con-

sumers, which is substantially influenced by various factors (e.g., housing market, transporta-

tion, community facilities). To more flexibly and comprehensively model the factors that affect

consumers’ choice of housing location, the focus has recently been put on the use of discrete

choice models, especially various types of logit-based choice models, to model the housing lo-

cation choice (Ben-Akiva and Bowman, 1998; Bhat and Guo, 2004; Sener et al., 2011; Haque

et al., 2019). n these studies, a large variety of factors—such as housing rent, unit size, housing

type, household characteristics, built environment, amount of open space, community facili-

ties, transportation facilities, and accessibility (Schirmer et al., 2014) — have been considered

in the utility function for the housing location choice, and the trade-offs between these factors

have been specifically modeled. These discrete-choice–based housing location choice mod-

els have also been successfully implemented in various empirical studies (Pinjari et al., 2011;

Zolfaghari et al., 2012).

In housing location models, the transportation cost has always been the key aspect that

consumers/travelers must consider/trade-off with other aspects (e.g., housing rent) in mak-

ing their housing-location choice. In the aforementioned housing-location models, which are

mainly choice models, the transportation time/cost is typically exogenously defined (Sener et

al., 2011; Pinjari et al., 2011). To model the transportation cost in greater detail (e.g., to ex-

plicitly consider the travel time/cost of each link, or the route choice behavior of travelers),

various types of traffic equilibrium model have been used to evaluate the component of trans-

portation cost (Boyce and Mattsson, 1999; Yim et al., 2011; Li et al., 2017). Some of these

housing-location models have been formulated as bilevel models (Chang and Mackett, 2006)

in which housing location and traffic equilibrium are formulated as the upper- and lower-level

models, respectively. However, most studies have adopted an integrated approach in which

the transportation and housing equilibrium are formulated in a single lower-level model, with

the upper-level model focused on various design aspects such as allocation of housing units
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(Boyce and Mattsson, 1999) and optimal toll design (Li et al., 2017).

To realistically model travel cost and choice, traffic equilibrium models adopted for hous-

ing location studies are advanced from the standard user equilibrium model (Boyce and Matts-

son, 1999) to user equilibrium model with stochastic route and/or housing location choice (Li

et al., 2014; Ying, 2015; Ng and Lo, 2015; Li et al., 2017) and user equilibrium model with

stochastic supply (link capacity) and demand (Yim et al., 2011). The above traffic equilibrium

models are discrete modeling approaches, in which the transportation network is modeled as

links and nodes, and demand is assumed to be concentrated at hypothetical zone centroids.

In contrast, a continuum modeling approach, in which the dense transportation network is

approximated as a continuum and travel demand is distributed in a continuous manner in the

modeling region, has also been used to evaluate the transportation cost for determination of the

housing location choice (Ho and Wong, 2007, 2005; Yin et al., 2013). In the continuum model-

ing approach, model quantities (e.g., travel cost, demand flows) can be represented by a smooth

mathematical function (Vaughan (1987)) and are more suitable for macroscopic-level studies

(e.g., initial phase of planning/modeling) and for modeling environmental factors/effects (e.g.,

air pollutants) (Ho and Wong, 2007; Yang et al., 2019). Thus, Ho and Wong (2007) and Yin

et al. (2013) adopted a logit-based location choice model that is continuously defined over the

modeling region and, is dependent upon transportation and housing rent to model travelers’

housing-location choice.

Comparing to the discrete modelling approach, the continuum model approach has the fol-

lowing benefits (Blumenfeld, 1977; Taguchi and Iri, 1982; Sasaki et al., 1990; Gwinner, 1998;

Ho and Wong, 2006; Yin et al., 2013, 2017). First, the continuum modeling approach reduces

the problem size in modeling a dense transportation network as it approximates the region as a

continuum instead of modeling each of the links/nodes as in the discrete modeling approach.

Second, as it is not required to defines each of the links/nodes in the modeled region as for the

discrete modeling approach, the continuum approach requires less data for model building and

is more suitable for initial-stage planning as data availability is limited. Third, as no links and
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nodes are considered, the continuum modeling approach focus more on the trends and patterns

that leads to a better understanding of various global characteristics (e.g., travel demand, land

development intensity, travel cost, etc.) of the modeling region. Fourth, in traffic analysis,

not all the analyzed quantities could be reasonably defined in links and nodes as required in

the discrete modeling approach. For example, despite the emissions of air pollutants are from

vehicles traveling on roads/links, the dispersions of these air pollutants are continuous over

the whole city (e.g., disperse to the residential/commercial area) (Stockie, 2011). In such case,

the continuum models could directly and precisely model those continuously varied quantities

(e.g., concentration of air pollutants) and incorporate them into the analysis.

In addition to the housing and transportation costs discussed in the previous paragraphs,

recently, there is increasing concerns in considering environmental factors, especially air qual-

ity, in determining the housing location-choices of consumers/travelers (Wardman and Bris-

tow, 2004; Wagner and Wegener, 2007; Bednar et al., 2011). Newman and Kenworthy (1989)

studied the land use, transport infrastructure, private transport, and public transport data for

1980 and 1990 in a global sample of cities (excluding the developing Asian cities), and found

that residential density is inversely proportional to traffic-related energy consumption. Sullivan

(2017) has provided evidence showing that clean air has a much higher social value than previ-

ously believed. Liu et al. (2018) studied the impacts of haze on housing prices, and found that

haze has significant negative impacts on both selling and rental prices of houses. It also found

that housing rental prices have a more significant response to the air quality than that for hous-

ing sale prices. Wagner and Wegener (2007) introduced the ILUMASS model that considers

the impact of transport-related emissions on the residential location and for workplace loca-

tion. Furthermore, Wardman and Bristow (2004) and Bednar et al. (2011) developed various

emission-sensitive location choice models for empirical and policy studies. Various emission

models have been considered for accurate estimation of transport-related emissions. Emission

factor models (CARB, 2006) and physical power-demand models (Scora and Barth, 2006)

are common approaches for modeling transport-related emissions. However, these approaches
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suffer from the deficiencies of neglecting vehicle-operating states and the driving environment,

and lack detailed information of vehicle operation characteristics for precise estimation of ve-

hicular emissions (Yin et al. (2013)). To resolve these problems, models based on acceleration

and speed, in which the emission rate depends upon the vehicle type and instantaneous speed

and acceleration, have been widely considered in the literature (Ahn et al., 1999; Rakha et al.,

2004). Owing to the continuous nature of the model parameters and variables, a continuum

modeling approach is required to model vehicular emissions in the transportation network and

their effect on the choice of housing location (Yin et al., 2013). As the emitted pollutants will

disperse, the use of an emission model alone is not sufficient to precisely model the spatial and

temporal variation in the pollutant concentrations. Thus, a Gaussian dispersion model (Yin et

al., 2017) and a three-dimensional advection-diffusion equation (Yang et al., 2019) have been

used in recent studies to model the concentration of air pollutants more realistically.

In the studies of housing-location choice with the continuum modeling approach, the dis-

persion of air pollutants is either not considered (Yin et al., 2013) or is only statically modeled

(Yin et al., 2017). However, the temporal dispersion of air pollutants is crucial in defining

the environmental index for housing location choice and should be precisely addressed. In

addition, the emission model (Ahn et al., 1999) used in previous studies (Yin et al., 2013,

2017; Yang et al., 2019) is only a microscopic emission model and should be extended to

macroscopic level to consist with the adopted continuum network model. To address these

issues, this study adopted a dynamic continuum-modeling version of the traffic equilibrium

problem to study the effects of the transportation cost, housing rent, and air quality on the

choice of housing location in an urban city with multiple central business districts (CBDs). In

this study, a macroscopic emission model and a time-dependent dispersion model were used

to realistically model the spatial and temporal variation in emitted pollutants. The traffic flows

and, thus, the transportation costs in this study were determined by the predictive continuum

dynamic user-optimal (PDUO-C) model with consideration of departure-time choice. Based

on the transportation cost (from PDUO-C), the perceived air quality (from PDUO-C and emis-

6



sion/dispersion model), and housing rent, a housing-location model was formulated and solved

to determine the housing location of the travelers in the continuum modeling area.

This study has the following three contributions. First, this study has adopted a dynamic

model (i.e., PDUO-C model) to study the housing location choice with consideration of the

impacts from air quality. Dispersion of the emitted air pollutants, which is highly time depen-

dent, could be more realistically modeled under this dynamic framework and provide a more

reasonable concentration of air pollutants (or air quality) for travelers/citizens in deciding their

housing locations. Second, this study extends the microscopic emission model adopted in Yang

et al. (2019) to macroscopic emission model to ensure the consistence with the macroscopic

nature of the adopted PDUO-C model. Third, this study extends the PDUO-C model (Du et

al., 2013; Lin et al., 2018) to incorporate the complete day demands (or traffic flows), which

includes trips from home to CBD in the morning and trips from CBD back to home in the

evening, within the modeling region. This extension aims to provide a complete evaluation of

travel costs considered in housing location choice.

The paper is organized as follows. Section 2 gives the formulation of the housing-location

choice problem based on the PDUO-C model with consideration of departure-time choice and

the emission/dispersion of air pollutants. Solution algorithms to solve the PDUO-C model

and housing location choice model are introduced in Section 3. Section 4 uses a numerical

example to demonstrate the characteristics of this model and the effectiveness of the solution

algorithm. Finally, conclusions of this study are given in Section 5.

2 Model formulation

To facilitate the presentation of essential ideas, the following assumptions are adopted in

this paper:

A1. The proposed model falls in the category of continuum modeling approach for network

equilibrium problem. Road network considered in this study is relatively dense and is

approximated as a continuum. Travelers (or vehicles) are free to travel in both x and y
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direction within the modeling region (Ho and Wong, 2005, 2007; Du et al., 2013; Yang

et al., 2019).

A2. Travelers have perfect information about traffic conditions (e.g., flows, travel times, etc.)

over time and is familiar with the modeling region (Du et al., 2013; Lin et al., 2018).

A3. Only trips from travelers’ home location to CBDs, or from the CBDs back to their home

location, are considered in this study (Lin et al., 2018; Yang et al., 2019). Other trips

(e.g., trips between home locations of different travelers) are ignored in this study.

A4. The modeling period (T ) covers a complete day and is divided into 2 sub-periods: T1 and

T2. During T1, all travelers travel from their home locations to CBDs and there are no

traveler leaving the CBDs. During T2, all travelers travel from CBDs back to their home

locations and there are no traveler traveling to the CBD (Yang et al., 2019).

A5. Variations of topography within the modeling region are negligible and the ground sur-

face (i.e., z = 0) can be taken as the plane (Stockie, 2011; Yang et al., 2019).

A6. Air pollutants from transport-related emission are emitted from a surface source at ground

surface (i.e., z = 0) (Stockie, 2011; Yang et al., 2019).

In this study, an urban city of arbitrary shape and with multiple CBDs (Figure 1) is consid-

ered as the modeling region, and the road network outside the CBDs is assumed to be relatively

dense and able to be approximated as a continuum. Let the modeling region be Ω and the outer

boundary be Γo. The boundary of each CBD is denoted by Γm
c ,∀m ∈ {1, ...M}, which M is the

number of CBDs in the modeling region. Then, let Γ = Γo ∪ (∪mΓm
c ) be the boundary of Ω.

In this study, travelers are classified into M groups depending on the CBD to which they are

traveling. Note that for group m travelers, CBDs other than their destination (i.e., the m-th

CBD) are considered as obstacles around which they must detour.

Let vm = (vm
1 (x, y, t), vm

2 (x, y, t)) be the velocity vector of group m travelers at location

(x, y) ∈ Ω at time t ∈ T j, which vm
1 (x, y, t) and vm

2 (x, y, t) are respectively the speeds in the x
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Fig. 1: An example of a modeling domain

and y directions. T j = [t j
beginning, t

j
end] denotes the j-th modeling period with t j

beginning and t j
end are

respectively the time for modeling period j to begin and end, and J is the number modeling

period. In this study, J = 2 (i.e., j ∈ {1, 2} ) and denotes T = T 1 ∪ T 2 , which T 1 and T 2 are

respectively the modeling period for traffic traveling from home locations to CBDs and from

CBDs back to home locations, to represent the complete time period for modeling. Define

Vm(x, y, t) as the speed (in km/h) of group m travelers at location (x, y) ∈ Ω at time t ∈ T j,

which is the norm of the corresponding velocity vector (i.e., Vm = |vm|), and is defined as:

Vm(x, y, t) = Vm
f e
−ζ(

M∑
m=1

ρm)2

, ∀(x, y) ∈ Ω, t ∈ T j, (1)

where Vm
f (x, y) (in km/h) is the free-flow speed of group m travelers at location (x, y) ∈ Ω,

ρm(x, y, t) (in veh/km2) is the density of group m travelers at location (x, y) ∈ Ω at time

t ∈ T j, ζ(x, y) (in km4/veh2) is a positive scalar at location (x, y) ∈ Ω and should be ex-

ogenously defined based on the corresponding road condition. As different groups of travelers

are traveling in different directions to their destination, there would be different speeds, which

depends on the direction of travel (or traveler’s group), at the same location (x, y) and time

(t). Flow vector of group m travelers at location (x, y) ∈ Ω at time t ∈ T j is denoted by

fm = ( f m
1 (x, y, t), f m

2 (x, y, t)) with f m
1 (x, y, t) and f m

2 (x, y, t) are respectively the flow fluxes in

the x and y directions. This flow vector is depended on the density and velocity vector of the
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corresponding location and time, and is defined by the following equation:

fm = ρmvm, ∀(x, y) ∈ Ω, t ∈ T j (2)

With Equation (2) and the definition of velocity vector, the corresponding flow intensity (i.e.,

norm of the flow vector) is defined as |fm| = ρmVm . The local travel cost per unit distance

of travel (in $/km) at location (x, y) ∈ Ω at time t ∈ T j for group m travelers is denoted by

cm(x, y, t) and has the following functional relationship:

cm(x, y, t) =
κ

Vm + π

 M∑
m=1

ρm

 , ∀(x, y) ∈ Ω, t ∈ T j (3)

where κ is the value of time. The first term on the RHS of Equation (3) represents the cost

related to travel time. The second term in Equation (3) represents other costs that depend

on vehicle density, for example, congestion pricing (Ho and Wong, 2005) and the cost of

discomfort due to crowding (Hoogendoorn and Bovy, 2004). The total travel cost of group m

travelers at location (x, y) ∈ Ω traveling to/from the m-th CBD, lm(x, y, t) , is defined as:

lm(x, y, t) = pm(x, y, t) + φm(x, y, t) (4)

where φm(x, y, t) is the actual travel cost potential (or simply actual travel cost) of group m

travelers depart from their home location (x, y) at time t ∈ T 1 and use the constructed path-

choice strategy to the m-th CBD (i.e. going to work). For departure time t ∈ T 2 , φm(x, y, t)

denotes the actual travel cost potential of group m travelers depart from m-th CBD to travel to

their home location (x, y) (i.e. back to home). pm(x, y, t) is the schedule delay cost of group

m travelers departing from location (x, y) at time t and traveling to the m-th CBD (or in the

reverse direction). Such schedule delay cost is defined as penalty for late and early arrival,

and is determined by the arrival time: t + Im(x, y, t) , which Im(x, y, t) denotes the travel time

of group m travelers departing from location (x, y) at time t and traveling to the m-th CBD (or

in the reverse direction). The details of schedule delay cost, pm(x, y, t) , will be discussed in

Section 2.2. With the cost potential φm(x, y, t) , average transportation cost between location

(x, y) and the m-th CBD (group m travelers), Φm(x, y, t) , is defined as:

Φm(x, y) =
1
|T 1|

∫
T 1
φm(x, y, t)dt +

1
|T 2|

∫
T 2
φm(x, y, t)dt. (5)

10



The average transportation cost in Equation (5) is used to defined the total perceived travel cost

between location (x, y) and the m-th CBD (group m travelers), Pm(x, y) :

Pm(x, y) = θm + S m(Qm) + Φm(x, y) (6)

where θm is the parameter representing travelers’ preference for the m-th CBD; S m(Qm) is the

internal operating cost of traffic (e.g., parking cost, local circulation cost, etc) within the m-th

CBD and is depended on the total travel demand attracted to that CBD, Qm:

Qm =

∫
T j

∫
Ω

q̄m(x, y, t)dΩ.dt (7)

which qm(x, y, t) (in veh/km2/h) is the travel demand of group m travelers at location (x, y)

at time t. Based on qm(x, y, t) , the travel demand of group m travelers at location (x, y) in

modeling period j is defined as qm j(x, y) =
∫

T j qm(x, y, t)dt .

With the above fundamental definitions, the formulation of various models adopted in this

study are introduced in the following sub-sections. The Figure 2 shows the interrelationship

of the models introduced in Section 2. With a given distribution of travel demands, the dy-

namic user-optimal model with departure-time consideration (Section 2.3), which make use

of the PDUO-C model (Section 2.1) and schedule delay cost (Section 2.2), will solve for to-

tal perceived travel cost and time-dependent speeds over the modeling region. The estimated

time-dependent speeds will be used in the emission model (Section 2.4) for determining the

amount of emitted air pollutants. The dispersion of these emitted air pollutants will be mod-

eled in Section 2.5 for determining the corresponding concentrations over the modeling region.

With these concentrations of air pollutant and total perceived travel costs from Section 2.3, the

housing location choice model (Section 2.6) will determine the housing location choices of the

travelers and, thus, the distribution of travel demands.

2.1 Predictive continuum dynamic user-optimal model

In this study, for modeling the emission and dispersion of air pollutants in a more realistic

manner, the predictive continuum dynamic user-optimal model (PDUO-C) is adopted. PDUO-

C governs the route-choice behavior of the multiple-group travelers, which will lead to the
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Fig. 2: The flowchart of the proposed housing location choice model.

emission and dispersion of air pollutants, in the various modeling periods. For a more-detailed

discussion of the formulation of PDUO-C models, readers are referred to Du et al. (2013) and

Lin et al. (2018). To further extend the previous PDUO-C models to incorporate demands in

complete day, the PDUO-C model adopted in this study is separately defined for: i) travelers

traveling to the CBDs ( j = 1 ) and ii) travelers traveling from the CBDs ( j = 2 ). For the first

modeling period (i.e., j = 1 ) the conservation laws, which govern the densities of travelers

(ρm(x, y, t) ), and the Hamilton-Jacobi equation, which governs the cost potentials (φm(x, y, t)

), are defined in Equations (8) and (9) below:
ρm

t (x, y, t) + ∇ · fm(x, y, t) = qm(x, y, t) ∀(x, y) ∈ Ω, t ∈ T 1,m ∈ {1, . . . ,M}
fm(x, y, t) = −ρm(x, y, t)Vm(x, y, t) ∇φ

m(x,y,t)
|∇φm(x,y,t) ∀(x, y) ∈ Ω, t ∈ T 1,m ∈ {1, . . . ,M}

fm(x, y, t) · n(x, y) = 0 ∀(x, y) ∈ Γ\Γm
c , t ∈ T 1,m ∈ {1, . . . ,M}

ρm
(
x, y, t1

beginning

)
= ρm

0 (x, y) ∀(x, y) ∈ Ω,m ∈ {1, . . . ,M}

(8)


1

Vm(x,y,t)φ
m
t (x, y, t) − |∇φm(x, y, t)| = −cm(x, y, t) ∀(x, y) ∈ Ω, t ∈ T 1,m ∈ {1, . . . ,M}

φm(x, y, t) = φm
CBD ∀(x, y) ∈ Γm

c , t ∈ T 1,m ∈ {1, . . . ,M}
φm

(
x, y, t1

end

)
= φm,1

0 (x, y) ∀(x, y) ∈ Ω,m ∈ {1, . . . ,M}
(9)
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where ρm
t (x, y, t) = ∂ρm(x, y, t)/∂t , ∇ · fm(x, y, t) =

(
∂ f m

x (x, y, t)/∂x
)

+
(
∂ f m

y (x, y, t)/∂y
)

, and

φm
t (x, y, t) = ∂φm(x, y, t)/∂t ; n(x, y) is the unit normal vector pointing outward from the bound-

ary; φm
CBD is the value of φm on the boundary of the corresponding CBD (i.e., the m-th CBD);

φm,1
0 is the initial value of φm(x, y, t) in the first modeling period (i.e., T 1). As only the travelers

traveling to a CBD are considered in this study, the densities will be zero at the beginning

of the modeling period (i.e., ρm(x, y, t1
beginning) = 0 ). φm,1

0 could be solved by considering the

following 2D Eikonal equation (Du et al., 2013) (Equation (10)):
∣∣∣∇φm,1

0 (x, y)
∣∣∣ = cm

(
x, y, t1

end

)
∀(x, y) ∈ Ω,m ∈ {1, . . . ,M}

φm,1
0 (x, y) = φm

CBD ∀(x, y) ∈ Γm
c ,m ∈ {1, . . . ,M}

(10)

Based on the formulation of PDUO-C model for travelers traveling to a CBD above and the

transformation of the index/variables (i.e., time index, density of travelers, travel demands,

flow vectors, actual travel cost potentials, and local travel costs) for travelers traveling back

from a CBD as defined in ?, the corresponding conservation law, Hamilton-Jacobi equation,

and 2D Eikonal equation for the second modeling period (i.e., j = 2 ) are defined as follows

(Equations (11) and (12)):
ρm

t (x, y, t) + ∇ · fm(x, y, t) = qm(x, y, t) ∀(x, y) ∈ Ω, t ∈ T 2,m ∈ {1, . . . ,M}
fm(x, y, t) = ρm(x, y, t)Vm(x, y, t) ∇φ

m(x,y,t)
|∇φm(x,y,t)| ∀(x, y) ∈ Ω, t ∈ T 2,m ∈ {1, . . . ,M}

fm(x, y, t) · n(x, y) = 0 ∀(x, y) ∈ Γ\Γm
c , t ∈ T 2,m ∈ {1, . . . ,M}

ρm
(
x, y, t2

end

)
= 0 ∀(x, y) ∈ Ω,m ∈ {1, . . . ,M}

(11)


1

Vm(x,y,t)φ
m
t (x, y, t) − |∇φm(x, y, t)| = −cm(x, y, t) ∀(x, y) ∈ Ω, t ∈ T 2,m ∈ {1, . . . ,M}

φm(x, y, t) = φm
CBD ∀(x, y) ∈ Γm

c , t ∈ T 2,m ∈ {1, . . . ,M}
φm

(
x, y, t2

begining

)
= φm,2

0 (x, y) ∀(x, y) ∈ Ω,m ∈ {1, . . . ,M}
(12)

φm,2
0 could be solved by considering the following 2D Eikonal equation (Equation (13)):

∣∣∣∇φm,2
0 (x, y)

∣∣∣ = cm
(
x, y, t2

begining

)
∀(x, y) ∈ Ω,m ∈ {1, . . . ,M}

φm,2
0 (x, y) = φm

CBD ∀(x, y) ∈ Γm
c ,m ∈ {1, . . . ,M}

(13)

2.2 Schedule delay cost

In this study, travelers will consider the schedule delay cost, which is determined by their

desired arrival time, when making their departure time and route choice. Following Du et al.
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(2013), the travel time of group m travelers departing from location (x, y) at time t and traveling

to the m-th CBD (Im(x, y, t) ) is defined as (Equation (14)):

|∇Im(x, y, t)| =
1

Vm(x, y, t)
, ∀(x, y) ∈ Ω, t ∈ T j, j ∈ {1, . . . , J},m ∈ {1, . . . ,M} (14)

It is assumed that the desired arrival time period for the m-th group travelers in modeling period

j is defined by
[
tm j∗ − ∆, tm j∗ + ∆

]
, in which tm j∗ denotes the middle of this desire arrival time

period and ∆, which is a positive scalar, is a measure of arrival time flexibility. With this desired

arrival time period, the schedule delay cost (pm(x, y, t) ) is defined as follows (Equation (15)):

pm(x, y, t) =


γ1

[(
tmv∗ − ∆

)
− (t + Im(x, y, t))

]
t + Im(x, y, t) < tm∗ − ∆,

0 tm∗ − ∆ ≤ t + Im(x, y, t) ≤ tm∗ + ∆,

γ2

[
(t + Im(x, y, t)) −

(
tmy∗ + ∆

)]
t + Im(x, y, t) > tm∗ − ∆,

(15)

where γ1 and γ2 are both positive scalar and are respectively the values of time for early and

late arrival. According to previous empirical studies, it is assumed that γ2 > κ > γ1, which κ is

the value of time as used in Equation (??). With the above definition of schedule delay cost (

pm(x, y, t)), the total travel cost (lm(x, y, t) ) could be calculated by Equation (4).

2.3 Dynamic user-optimal model with departure time consideration

With the PDUO-C model (Section 2.1), the traffic flow (fm(x, y, t) ) and thus the total travel

cost (lm(x, y, t) ) within the modeling region could be obtained with a given the distribution of

travel demand, qm(x, y, t) . As the total travel cost is dependent on the travel demands, de-

note lm(x, y, t) = lm(x, y, t, q j) with q j =
{
qm(x, y, t),∀(x, y) ∈ Ω, t ∈ T j,m = 1, . . . ,M

}
. Let

l̂m j(x, y, q j) be the minimum of total travel cost of group m travelers at location (x, y) in mod-

eling period j and is defined by the following equation (Equation (16)):

l̂m j
(
x, y, q j

)
= ess inf

{
lm

(
x, y, t, q j

)
, ∀t ∈ T j

}
, (16)

Definition 2.1. The dynamic user-optimal with departure-time consideration is satisfied in the

modeling period j if the following equation is satisfied (Equation (17)): lm
(
x, y, t, q j

)
= l̂m j

(
x, y, q j

)
, if qm(x, y, t) > 0

lm
(
x, y, t, q j

)
≥ l̂m j

(
x, y, q j

)
, if qm(x, y, t) = 0

(17)
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where Λ j =
{
q j : qm(x, y, t) ≥ 0,

∫
T j qm(x, y, t)dt = qm j(x, y)∀(x, y) ∈ Ω, t ∈ T j,m = 1, . . . ,M

}
denotes the feasible set of travel demand q j.

The dynamic user-optimal condition defined in Equation (17) is to ensure that the total

travel cost incurred by travelers who depart at any time is equal and minimized and that no

traveler in the system can reduce his or her total travel cost by changing his or her departure

time and route choice. With this definition, the variational inequality formulation of dynamic

user-optimal with simultaneous consideration of departure time and route choice are defined

by the following theorem.

Theorem 2.1. The dynamic user-optimal condition in Definition 2.1 is equivalent to the fol-

lowing variational inequality problem (Equation (18)) in modeling period j: Find q j∗ ∈ Λ j so

that for all q j ∈ Λ j ,

∑
m∈{1,...,M}

"
Ω

∫
T j

lm
(
x, y, t, q j∗

) (
qm(x, y, t) − qm∗(x, y, t)

)
dtdΩ ≥ 0 (18)

proof. See Appendix A.

Similar to various studies on traffic equilibrium problems (Lin et al. (2018); Long et al.

(2015, 2016); Huang et al. (2002)), this study also adopted a gap function to evaluate the

equality of numerical solution throughout the solution procedures. In this study, the gap func-

tion was taken as follows (Equation (19)):

GAP =
∑

m∈{1,...,M}

"
Ω

∫
T j

qm(x, y, t)(lm(x, y, t, q̄ j) − l̂m(x, y, q̄ j))dt (19)

Similar to Lin et al. (2018), the above gap function has the properties of i) GAP ≥ 0 and

ii) GAP = 0 ⇔ q j is a solution of the variational inequality (VI) problem (Equation 18)

and the dynamic user-optimal problem (Equation 17), of the corresponding time period. As

the gap function provides a convergence measure of the VI problem (dynamic user-optimal

problem), the following relative gap function was adopted as the stopping criterion of the
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solution algorithm (Equation (20)):

RGAP =

∑
m∈{1,...,M}

!
Ω

∫
T j qm(x, y, t)(lm(x, y, t, q̄ j) − l̂m j(x, y, q j))dtdΩ∑

m∈{1,...,M}

!
Ω

qm j(x, y)l̂m j(x, y, q j)dΩ
(20)

2.4 Emission model

In this study, the residents’ housing location choice depended not only on transportation

costs, which are determined by the PDUO-C model in the previous section, but also on the

air quality of the housing locations. Transport-related emissions are among the major sources

of air pollutants that directly affect air quality. Typically, emission models of vehicles are

at the microscopic level (i.e., individual vehicle) and are assumed to be dependent on the

instantaneous acceleration and speed (Ahn et al. (1999); Yang et al. (2019)) of that vehicle

(Equation (21)):

ψm(x, y, t) = ψm(Um(x, y, t), sm(x, y, t)) exp

 3∑
k=0

3∑
k=0

ωi,k
[
Vm(x, y, t)

]i [sm(x, y, t)
]k

 (21)

where ψm(x, y, t) (in kg/(veh h)) is the amount of air pollutants generated per hour per vehicle

used by traveler group m at location (x, y) at time t; Um(x, y, t) (in km/h) is the instantaneous

speed of the vehicle used by traveler group m at location (x, y) at time t; sm(x, y, t) (in km/h2)

is the instantaneous acceleration of vehicle used by traveler group m at location (x, y) at time

t; ωik is the model regression coefficient for speed power i and acceleration power k and dif-

fers for various kinds of emissions (e.g., HC, CO, or NOx). To ensure the consistency of

adopted emission model with the PDUO-C model – which defines traffic flows, speeds, and

accelerations of vehicles at macroscopic level – a macroscopic emission model will be de-

rived from the above microscopic emission model (Equation (21)). To derive the macroscopic

emission model, it is first assumed that the instantaneous speed (Um(x, y, t) ) and instantaneous

acceleration (sm(x, y, t) ) are random variables that follow certain normal distributions (i.e.,

Um(x, y, t) ∼ N(Vm(x, y, t), σm
V ) and sm(x, y, t) ∼ N(am(x, y, t), σm

a )) (Leong, 1968; McLean,

1989; Dey and Gangopadhaya, 2006; Viti et al., 2008). Vm(x, y, t) and am(x, y, t) ( σm
V and σm

a )

are the mean (standard deviation) of the distributions of instantaneous speed and instantaneous
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acceleration, respectively, at the corresponding location and time. Application of the Taylor

series expansion to Equation (21) up to the second-order term could show that (Equation (22)):

ψm(Um, sm) ≈ ψ(Vm, am) +
∂ψ(Vm, am)

∂Um (Um − Vm) +
∂ψ(Vm, am)

∂sm (sm − am)

+
1
2
∂2ψ(Vm, am)
∂(Um)2 (Um − Vm)2 +

1
2
∂2ψ(Vm, am)
∂(sm)2 (sm − am)2 (22)

+
∂2ψ(Vm, am)
∂Um∂sm (Um − Vm)(sm − am)

where the x, y, and t indices of variables Um , sm , Vm and am are omitted for simplicity.E(Um−

Vm) = 0 , E(sm−am) = 0 , E((Um−Vm)2) = (σm
V )2 , E((sm−am)2) = (σm

a )2 and E((Um−Vm)(sm−

am)) = 0 , with E(·) denotes the expected value, and the fact that ψm(Vm, am) is independent on

Um and sm , the expected value of ψm(Um, sm) , Ψm(x, y, t) , is defined as (Equation (23)):

Ψm(x, y, t) = E(ψm(Um, sm)) ≈ ψ(Vm, am) +
1
2
∂2ψ(Vm, am)
∂(Um)2 (σm

V )2 +
1
2
∂2ψ(Vm, am)
∂(sm)2 (σm

a )2 (23)

where ∂2ψ(Vm,am)
∂(Um)2 (σm

V )2 and ∂2ψ(Vm,am)
∂(sm)2 (σm

a )2 could be determined by direct differentiation from

Equation (22). Note that Ψm(x, y, t) defined in Equation (23) is the macroscopic emission

model group m travelers. Vm and am in Equation (23) could be obtained from the PDUO-C

model, while σm
V and σm

a are externally determined. Under PDUO-C route choice behavior,

travelers’ vehicles will accelerate or decelerate along their chosen route based on the traffic

conditions. Acceleration ( am(x, y, t) ) is defined as follows (Equation (24)):

am(x, y, t) =
am

1 (x, y, t)φm
x (x, y, t) + am

2 (x, y, t)φm
y (x, y, t)√[

φm
x (x, y, t)

]2
+

[
φm

y (x, y, t)
]2

(24)

where am
1 (x, y, t) and am

2 (x, y, t) are the accelerations in the x and y directions, respectively, at

location (x, y) at time t, φm
x (x, y, t) = ∂φm(x, y, t)/∂x and φm

y (x, y, t) = ∂φm(x, y, t)/∂y . am
1 (x, y, t)

and am
2 (x, y, t) are further defined as (Equations(25) and (26)):

am
1 (x, y, t) =

∂vm
1 (x, y, t)
∂t

+ vm
1 (x, y, t)

∂vm
1 (x, y, t)
∂x

+ vm
2 (x, y, t)

∂vm
1 (x, y, t)
∂y

∀(x, y) ∈ Ω, t ∈ T j, j ∈ {1, . . . , J},m ∈ {1, . . . ,M} (25)

am
2 (x, y, t) =

∂vm
2 (x, y, t)
∂t

+ vm
1 (x, y, t)

∂vm
2 (x, y, t)
∂x

+ vm
2 (x, y, t)

∂vm
2 (x, y, t)
∂y
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∀(x, y) ∈ Ω, t ∈ T j, j ∈ {1, . . . , J},m ∈ {1, . . . ,M} (26)

Although there are no single representative measures for traffic-related air pollution, this study

adopts NOx as the indicative measure given its infamous adverse health effects (Wardman

and Bristow (2004)). To define the NOx emissions through Equation (21), the required coeffi-

cients (ωik ) were given by Ahn et al. (1999) and Yang et al. (2019). For other pollutants, the

corresponding coefficient could also be found in Ahn et al. (1999).

2.5 Dispersion model

Air pollutants from transport-related emissions, which are defined in Section 2.4, and other

sources (e.g., pollutants emitted from power plants and from residents’ activities in the CBD),

will disperse via turbulent diffusion and wind advection. Concentration of any air pollutant,

C(x, y, z, t) , is defined by the following three-dimensional advection-diffusion equation (Equa-

tion (27)):

∂C(·)
∂t

+ ∇ ·
(
C(·)u f (·)

)
=

∂

∂x

(
Kx
∂C(·)
∂x

)
+
∂

∂y

(
Ky
∂C(·)
∂y

)
+
∂

∂z

(
Kz
∂C(·)
∂z

)
+ Ŝ (·) (27)

where Ω̂ is the dispersion region; C(·) = C(x, y, z, t) (in kg/km3) is the concentration of any

air pollutant at location (x, y, z) at time t with z represents the height about ground. Kx(·) =

Kx(x, y, z, t),Ky(·) = Ky(x, y, z, t),Kz(·) = Kz(x, y, z, t) (in km2/h) are respectively the eddy diffu-

sivities in x, y and z directions. These eddy diffusivities are assumed to be location and time de-

pendent to account for the different dispersion characteristics due to built environment and time

(Pasquill, 1961; Whaley, 1974; Stockie, 2011). Ŝ ()̇ = Ŝ (x, y, z, t) = Ŝ 0(x, y, z, t) + Ŝ t(x, y, z, t)

(in kg/km3h) is the source term defining the source of air pollutant (i.e., C(x, y, z, t) ) at location

(x, y, z) at time t, where Ŝ t(x, y, z, t) represents the air pollutants from traffic, and Ŝ 0(x, y, z, t)

represents air pollutants from other sources (e.g., power plants, residents’ activities). The

source term, Ŝ 0(x, y, z, t) and Ŝ t(x, y, z, t) is defined as (Equations (28) and (29)):

Ŝ t(x, y, z, t) = δ(z)
∑

m∈{1,...,M}

ρm(x, y, t)Ψm(x, y, t) ∀(x, y, z) ∈ Ω̃, t ∈ T j, j ∈ {1, . . . , J} (28)

18



Ŝ 0(x, y, z, t) = δ(z)ψ̃(x, y, t) (29)

where δ(z) (in km−1) is the Dirac delta function, and ψ̃(x, y, t) (in kg/(km2 h)) is the emission

rate of sources other than traffic.

2.6 Housing location choice model

This study, in addition to the housing rent and travel costs that have been considered in

most previous studies, also considers the externalities of CBDs and local air quality as the

criteria for travelers in making their housing (home) location choice. The housing location

choice problem of travelers is governed by the following travel demand distribution function

(Equation (30)):

q(x, y) = Q
exp(−γ̂σ(x, y))!

Ω
exp(−γ̂σ(x, y))dΩ

, ∀(x, y) ∈ Ω (30)

where q(x, y) is the total travel-demand at location (x, y). As this study considers only two

modeling periods during which travelers travel from their home locations to CBDs ( j = 1

) and from CBDs back to their home locations ( j = 2 ), the travel demands of these two

modeling periods (i.e., q j(x, y) ) are the same and should equal its total travel-demand (i.e.,

q1(x, y) = q2(x, y) = q(x, y) ). Q is the fixed total travel-demand of modeling region Ω; σ(x, y)

is the housing utility at location (x, y) ; γ̂ is a positive scalar parameter that measures travelers’

sensitivity to housing utilityσ(x, y). The housing utility functionσ(x, y) is defined by Equation

(31):

σ(x, y) = Π(x, y) + τ(x, y) + r(x, y), ∀(x, y) ∈ Ω (31)

where Π(x, y) is the log-sum of total perceived travel costs of location (x, y) to all CBDs and is

defined as follows (Equation (32)):

Π(x, y) = −
1
χ

ln

 ∑
m∈[1,...,M}

exp (−χPm(x, y))

 , ∀(x, y) ∈ Ω (32)

where χ is the sensitivity parameter of the traveler to the total perceived travel cost. τ(x, y) is

the travelers’ perception of air quality, which is assumed to have a linear relationship with the
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average local pollutant concentration ( C̄(x, y, 0) ), and is defined by Equation (33):

τ(x, y) = ξC(x, y, 0), ∀(x, y) ∈ Ω (33)

where ξ is the unit cost of pollutant concentration, and C(x, y, 0) = 1
|T |

∫
T

C(x, y, 0, t)dt is the

average local pollutant concentration at location (x, y) and height equals to zero. r(x, y) is the

housing rent at location (x, y) and is defined by Equation (34):

r(x, y) = α(x, y)
(
1 +

β(x, y)q(x, y)
H(x, y) − q(x, y)

)
, ∀(x, y) ∈ Ω (34)

where H(x, y) is the total housing-supply density at location (x, y) and should be greater than

q(x, y) ; α(x, y) is the perception of housing rents at location (x, y) ; β(x, y) is the scalar param-

eter that represents the demand-dependent components of the rent function at location (x, y).

With the current formulation, it is flexible to adopt different functional form (e.g., higher order

polynomial) as the utility function of the logit-based housing location choice model (Equation

(31)). Without any further study on the performance of different functional from, this study

adopted the simplest and previously adopted (Yin et al., 2013, 2017) functional form (i.e., lin-

ear) for combining the impacts of transportation cost, air quality and rent in housing location

choice. Equation (30) defines the travel demand at location (x, y) , q(x, y) , the corresponding

proportion of travelers in choosing CBD m (i.e., group m travelers), qm j(x, y) , is governed by

the following logit-type distribution (Equation (35)):

qm j(x, y) = q(x, y)
exp (−χPm(x, y))∑

i∈{1,m} exp (−χPi(x, y))
, ∀(x, y) ∈ Ω, j ∈ {1, 2},m ∈ {1, . . . ,M} (35)

with q(x, y) =
∑

m∈{1,...,M} qm j(x, y) . In addition to the choice of housing location, travel demand

( qm(x, y, t) ) is also dependent upon the choice of departure time and could be defined by

Equation (36):

qm(x, y, t) = qm(x, y)gm(x, y, t), ∀(x, y) ∈ Ω, t ∈ T j, j ∈ {1, 2},m ∈ {1, . . . ,M} (36)

where gm(x, y, t) is the departure-time distribution at (x, y) within period j and
∫

T j gm(x, y, t)dt =

1 . In Section 2.3, qm j(x, y) is fixed to find a gm(x, y, t) , or qm(x, y, t) , that satisfies the dynamic

user-optimal condition with departure-time consideration. In contrast, this section aims to find

a desired qm j(x, y) for a fixed gm(x, y, t) .
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3 Solution algorithm

3.1 A projection method for the PDUO-C model with departure-time
consideration

In this study, the Lax-Friedrichs scheme is adopted as the numerical approach to discretize

and solve the conservation laws (Equations (8) and (11)) and Hamilton-Jacobi equation (Equa-

tions (9) and (12)) defined for the PDUO-C model with consideration of departure time. In

contrast, the fast-sweeping method is adopted to solve the 2D Eikonal equation (Equations (10)

and (13)), which is used to solve for the boundary condition of cost potential (e.g., φm,1
0 (x, y)

). The details of using the Lax-Friedrichs scheme and the fast-sweeping method to solve the

conservation laws, Hamilton-Jacobi equation, and 2D Eikonal equation could be found in (Du

et al., 2013). With the above spatial and temporal discretization, the VI problem (Equation

(18)) could be transformed into its discrete form defined by the following equation (Equation

(37)): ∑
1≤m≤M

∑
1≤i≤Nx

∑
1≤ j≤Ny

∑
1≤n≤Nt

lmm
ik

(
q̃ j∗

) (
qmn

ik − qmn∗
ik

)
∆x∆y∆t ≥ 0 (37)

where Nx and Ny are the number of grid points in the x and y directions, respectively, under the

proposed discretization; N j
t are the number of grid points in t direction for modeling period j;

lmm
ik

(
q̃ j∗

)
( qmn

ik and qmn∗
ik ) represents the value of lm(x, y, t, q j∗) ( qm(x, y, t) and qm∗(x, y, t) ) for

grid point (i, k, n) ; q̃ j∗ =
{
qmn∗

ik ∀i = 1, . . . ,Nx, k = 1, . . . ,Ny, n = 1, . . . ,N j
t ,m = 1, . . . ,M

}
; ∆x

and ∆y are the grid size in the x and y directions, respectively; ∆t is the time step and should be

chosen to satisfy the Courant–Friedrichs–Lewy condition. Noted that under the discretization

in Equation (37) the feasible set of travel demand ( Λ̃ j ) will also adopt its discrete form

(Equation (38)):

Λ̃ j = {q̃ : qmn
ik ≥ 0,

∑
n∈{1,...,Nt}

qmm
ik = qm

ik

∀i = 1, . . . ,Nx, k = 1, . . . ,Ny, n = 1, . . . ,N j
t ,m = 1, . . . ,M} (38)

where qm
ik is the total travel-demand of group m travelers at grid point (i, k) . In this study, the

projection method is adopted to solve the discretized VI problem (Equation (37)) by consider-
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ing the following theorem.

Theorem 3.1. Let λ > 0, q̃ j is a solution to the discretized VI problem (equation (37)) if and

only if (Equation (39))

q̃ j∗ = PΛ̃(q̃ j∗ − λĨ j(q̃ j∗)), (39)

where Ĩ j(q̃ j∗) =
{
lmn
ik

(
q̃∗
∗
)
∀i = 1, . . . ,Nx, k = 1, . . . ,Ny, n = 1, . . . ,N j

t ,m = 1, . . . ,M
}
, PΛ̃(x) is

the unique projection of x ∈ Λ̃ and is defined as PΛ̃(x) = Argmin{‖ y − x ‖: y ∈ Λ̃}

Proof. See Appendix B.

With Equation (39), this study adopted the Goldstein-Levitin-Polyak projection algorithm

(Goldstein (1964); Levitin and Polyak (1966)) to solve the discretized VI problem. For a given

initial travel demand ( q̃ j
0 ), the subsequent sequence of travel demand ( q̃ j

w ) could be generated

by the following equation (Equation (40)):

q̃ j
w+1 = PΛ̃

(
q̃ j

w − λwĨ
j
(
q̃ j

w

))
(40)

where λw is a given positive step-size of iteration w, which should be set in accordance to the

specific problem. To adopt Equation (40), PΛ̃

(
q̃ j

w − λwĨ
j
(
q̃ j

w

))
should first be known. Based

on its definition, PΛ̃

(
q̃ j

w − λwĨ
j
(
q̃ j

w

))
could be found by solving an equivalent convex quadratic

program with the Frank-Wolfe algorithm (Lin et al., 2018).

3.2 Fixed-point formulation for housing location choice problem

To solve for the pollution concentrations (C(x, y, z, t) ) that are used in the housing-location

choice model, the numerical method for solving the advection-diffusion equation (Equation

(27)) with Dirac-type source function (Equation (28) and (29)) should first be established.

In this study, the Lax-Friedrichs scheme and standard central finite difference are adopted to

approximate the first and second derivatives, respectively, of the advection-diffusion equation.

Due to the singularity of the Dirac delta function, the following approximation is adopted

(Tornberg and Engquist (2004); ?) (Equation (41)):

δ(z) =

{
1

4∆z min
(

z
∆z + 2, 2 − z

∆z

)
, |z| ≤ 2∆z

0, |z| > 2∆z
(41)

22



Here, ∆z is the grid size in z direction

For a given q̂ j =
{
qm j

ik ∀i = 1, . . . ,Nx, k = 1, . . . ,Ny,m = 1, . . . ,M
}

, which qm j
ik denotes the

values of qm j(x, y) at grid point (i, k) , PDUO-C model with departure time consideration (Sec-

tion 2.3) is solved. By Equations (31) ∼ (34), σ̃ =
{
σik∀i = 1, . . . ,Nx, k = 1, . . . ,Ny

}
, which

σik denotes the values of σ(x, y) at grid point (i, k) , could be found. This could be represented

by the following abstract form (Equation (42)):

σ̃ = Θ1

(
q̂ j

)
(42)

With σ̃ in Equation (42), an updated travel demand ( q̂ j ) could be determined by Equation (30)

and (35), and could be represented by the following abstract form (Equation (43)):

q̂ j = Θ2(σ̃) (43)

Considering Equation (42) and (43) the following fixed-point problem could be defined as

(Equation 44)):

q̂ j = Θ2

(
Θ1

(
q̂ j

))
= Θ3

(
q̂ j

)
(44)

3.3 Solution procedure for housing location choice problem

With the fixed-point problems defined in Equation (44), the following solution procedure

is adopted to solve the housing location-choice problem.

Step 1. Assume an initial travel demand q̂ j
w based on Q and set w = 1,

Step 2. Solve the PDUO-C model with departure-time consideration

Step 2a Assume an initial travel demand q̃ j
w1 ∈ Λ̃ based on q̂ j

w and set w1 = 1.

Step 2b Compute the travel cost φm(x, y, t) and travel time cost Im(x, y, t) by solving

the PDUO-C model defined in Section 2.1 (see Lin et al. (2018) for details).

Step 2c Compute the schedule delay cost pm(x, y, t) by using Equation (15).

Step 2d Compute the total travel cost lm(x, y, t) by using Equation (5).
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Step 2e Compute q̃ j
w1+1 by using Equation (40).

Step 2f Compute the relative gap functions. If
|q̃

j
w1+1−q̃

j
w1 |

q̃
j
w1

≤ ε1 and RGAPdiscrete ≤ ε2 ,

go to Step 3; Otherwise set w1 = w1 + 1 and go to Step 2b.

Step 3. Solve the housing location-choice problem:

Step 3a Set w2 = 1 and q̂ j
w2 = q̂ j

w .

Step 3b Compute σ̃w2 by using Equation (31) ∼ (34).

Step 3c Compute y j
1,w2

= Θ3

(
q̂ j

w2

)
by using σ̃w2 and Equation (44).

Step 3d Compute the step size λw2 using the method described in Du et al. (2013).

Step 3e Compute q̂ j
w2+1 = (1 − λw2)q̂

j
w2 + λw2y

j
1,w2

Step 3f If |q̂ j
w2+1 − q̂

j
w2 | ≤ δ , go to Step 4; Otherwise set w2 = w2 + 1 and go to Step

3b.

Step 4. Set y j
2,w = q̂ j

w2+1 .

Step 5. Compute the step size λw using the method described in Du et al. (2013).

Step 6. Compute q̂ j
w+1 = (1 − λw)q̂ j

w + λwŷ
j
2,w .

Step 7. If |q̂ j
w+1 − q̂

j
w| ≤ δ , stop; Otherwise set w = w + 1 and go to Step 2.

Noting that RGAPdiscrete in Step 2 f is the discrete form of the relative gap function (Equation

(20)) and is defined as follows (Equation (45)):

RGAPdiscrete =

∑
m∈{1,...,M}

∑
i∈{1,...,Nx}

∑
k∈{1,...,Ny}

∑
n∈

{
1,...,N j

t

} qmn
ik

(
lmn
ik

(
q̃ j

)
− l̂m

ik

(
q̃ j

))
∑

m∈{1,...,M}
∑

i∈{1,...,Nx}

∑
k∈{1,...,Ny} q

m j
ik l̂m

ik (q̃ j)
(45)

4 Numerical experiments

In this section, numerical experiments are set up to demonstrate the proposed models and

solution algorithms in the previous sections. In this study, a rectangular modeling region 35
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km long and 25 km wide with two CBDs (Figure 3) is adopted as the numerical example. The

centers of CBD 1 and 2, respectively, are located at (6 km, 10 km) and (30 km, 15 km). In the

modeling region, a 1 km × 1 km power plant, where traffic is not allowed to enter or leave, is

located at (18.5 km, 4.5 km).

Fig. 3: The rectangular modeling region

In this numerical example, it is assumed that no traffic is present at the beginning of the

modeling period (i.e., ρm
0 (x, y) = 0,∀(x, y) ∈ Ω,m ∈ {1, . . . ,M} ) and a zero travel cost at the

boundary of CBDs (i.e., φm
CBD = 0,∀(x, y) ∈ Γm

c , t ∈ T,m ∈ {1, . . . ,M} ). The modeling period

is from 6:00 AM on the first day to 6:00 AM the following day (i.e., T = [0, 24 h] ), with period

1 from 6:00 AM to 5:00 PM (i.e., T 1 = [0, 11 h] ) and period 2 from 5:00 PM to 6:00 AM in

the following day (i.e., T 2 = [11, 24 h] ). It is considered that travelers, regardless of their resi-

dent location, will have a similar desired arrival time as they head to, or return from, the CBDs.

Thus, the desired arrival times (period 1) and desired departure times (period 2) for this numer-

ical example are defined as:
{
t11∗ , t21∗ , t12∗ , t2∗

}
= {2.8h, 2.3h, 12.5h, 13.0h} . For the schedule-

delay cost function, the parameters ∆ is taken as 0.2 h, whereas γ1 and γ2 are taken as 48 $/h

and 108$/h, respectively. In the speed function, the function ζ(x, y) = 2 × 10−6km4/veh2,

and the free-flow speed of group m travelers is defined as Vm
f (x, y) = 56

[
1 + 4 × 10−3d(x, y)

]
, with d(x, y) = 0.75 min

{
d1(x, y), d2(x, y)

}
+ 0.25 max

{
d1(x, y), d2(x, y)

}
, which d1(x, y) and
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d2(x, y) are respective the distance of location (x, y) from the center of CBD 1 and 2. Vm
f (x, y)

and d(x, y) are chosen such that the free-flow speed in the domain further from the CBDs is

higher due to fewer junctions. In this numerical example, the standard deviation of speed (σm
V )

and acceleration (σm
a ) is assumed to be 0.2. For the local travel cost function ( cm(x, y, t) ), κ

is taken as 90$/h, and π(ρ) is taken a functional form of 9 × 10−7ρ2 . For the total perceived

cost function, θ1 and θ2 are taken as 12 and 15, respectively, and the internal operating cost of

traffic in CBD 1 and 2, respectively, are defined as S 1
(
Q1

)
= 8 × 10−11

(
Q1 − 150000

)2
and

S 2
(
Q2

)
= 10 × 10−11

(
Q2 − 100000

)2
.

In this numerical example, the convergence thresholds are taken as: ε1 = 0.005, ε2 = 10−9

, and δ = 0.01, it is assumed that the emission rates are: a) ψ̃(x, y) = 20(kg/(km2h)) within the

1 km × 1 km region of the power plant , and b) ψ̃(x, y) = 0.5 × Lm(t)
Qm (kg/(km2h)) at the m-th

CBD with Lm(t) denotes the cumulative number of vehicles in the m-th CBD at time t. The

dispersion of pollutants is modeled within the 1 km space over the rectangular modeling region

(i.e., Ω̂ = [0, 35] × [0, 25] × [0, 1] ). It is also assumed that the wind velocity u f (x, y, z, t) =

(5
√

2, 5
√

2, 0) (in km/h) and eddy diffusivities are both 0.01 km2/h (i.e., Kx = Ky = Kz = 0.01

). The fixed total travel demand ( Q ) is taken as 350,000. Travelers’ sensitivity to housing

utility in housing location choice (γ̂ ) and travelers’ sensitivity to perceived cost in destination

choice (χ ) are respectively taken as 0.0015 and 0.012. The unit cost of pollutant concentration

(ξ) is taken as 10 $km3/kg. These parameters could all be estimated based on the survey

results of travelers’ choices (e.g., stated preference survey on housing location choice). Details

on these estimations are not included as this is not the scope of this study. For housing rent

function ( r(x, y)), α(x, y) and β(x, y) is respectively taken as 5 and 8. The total housing supply

density adopted in r(x, y) is defined by:

H(x, y) = 1000
(
1 − exp

(
−

(
0.5d1(x, y)

))) (
1 − exp

(
−

(
0.5d2(x, y)

)))
(46)

To verify the convergence of the proposed solution algorithms, three grids (Grid 1: 35 ×

25 × 50; Grid 2: 70 × 50 × 100; Grid 3: 140 × 100 × 200) are considered. Figure 4 shows a

typical convergence curve of the proposed algorithm under Grid 3: 140 × 100 × 200. Figure 4
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Fig. 4: A typical convergence curve of the proposed solution algorithm.

also shows that the error (|q̂ j
w+1− q̂

j
w| ) substantially deceases in the first few iterations, whereas

such a decrease becomes extremely small after the 12-th iteration. In general, the proposed

algorithm converges in solving the housing-location problem proposed in this study. Figure

5, which shows the variation in demand in various locations of x and y, are typical examples

of the grid convergence of different discretization schemes (i.e., Grids 1–3). Compare to the

other two grids, Grid 3 (140 × 100 × 200) shows good convergence in numerical solution and

is thus adopted in the remainder of this numerical example.

Figure 6 shows the temporal variation in travel demand and the total travel cost (6:00

AM–12:00 PM) for each group of travelers at different points within the modeling region. A

comparison of the peak demand for each group of travelers with the corresponding total travel

cost shows that the peak is always located at the time when the total travel cost reaches its

minimum. It could be concluded that all travelers will choose a departure time such that the

total travel costs are equal and minimized, and thus the simultaneous dynamic user-optimal

and departure-time principle will be satisfied. As the desired arrival time of the group 1 trav-

elers (2.8 h) is later than that of the group 2 travelers (2.3 h), their departure times (i.e., the

time having the peak) are always later than those of the group 2 travelers. Each subfigure of
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(a) x=3 (b) x=10

(c) x=24 (d) x=33

(e) y=3 (f) y=10

(g) y=12 (h) y=20

Fig. 5: The grid convergence of the demand. (unit: veh/km2).
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(a) x=5, y=5 (b) x=10, y=5

(c) x=10, y=20 (d) x=15, y=10

(e) x=25, y=20 (f) x=34, y=24

Fig. 6: The travel demand and total travel cost for traveling to the CBD ( j = 1).
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(a) x=5, y=5 (b) x=10, y=5

(c) x=10, y=20 (d) x=15, y=10

(e) x=25, y=20 (f) x=34, y=24

Fig. 7: The travel demand and total travel cost for traveling from the CBD ( j = 2) .
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(a) 8:00 AM, Group 1 (b) 8:00 AM, Group 2 (c) 8:00 AM, Total density

(d) 8:24 AM, Group 1 (e) 8:24 AM, Group 2 (f) 8:24 AM, Total density

(g) 8:48 AM, Group 1 (h) 8:48 AM, Group 2 (i) 8:48 AM, Total density

(j) 9:12 AM, Group 1 (k) 9:12 AM, Group 2 (l) 9:12 AM, Total density

Fig. 8: The density plots for travelers traveling to CBDs (unit: veh/km2).
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(a) 6:18 PM, Group 1 (b) 6:18 PM, Group 2 (c) 6:18 PM, Total density

(d) 6:30 PM, Group 1 (e) 6:30 PM, Group 2 (f) 6:30 PM, Total density

(g) 6:54 PM, Group 1 (h) 6:54 PM, Group 2 (i) 6:54 PM, Total density

(j) 7:18 PM, Group 1 (k) 7:18 PM, Group 2 (l) 7:18 PM, Total density

Fig. 9: The density plots for travelers returning from CBDs (unit: veh/km2).
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(a) Group 1

(b) Group 2

(c) total travelers in the CBD

Fig. 10: The total demand and total inflow plot.

Figure 6 shows that in the beginning (ending) period, the total travel cost (lm(x, y, t) ) decreases

(increases) at a constant rate of 48 $/h (108 $/h) because in the beginning (ending) period, the

modeling region is uncongested and, thus, the actual travel cost (φm(x, y, t) ) should be rela-

tively constant in this period. Therefore, the changes in the total travel cost are affected only by

the schedule-delay cost (i.e., the early- and late-arrival penalties) that has a linear relationship

with the departure time with respect to the value of time for early or late arrival (γ1 = 48$/h

and γ2 = 108$/h).

Figure 7 shows the temporal variation in travel demand and the total cost (5:00 PM–12:00

AM) for each group of travelers traveling from the CBDs to various locations (i.e., their own

housing location) within the modeling region. Similar to the period during which the travelers

are traveling to the CBDs (Figure 6), the dynamic user-optimal and departure-time principles
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(a) Group 1 (b) Group 2 (c) The log-sum cost

Fig. 11: Total perceived travel costs to CBDs in modeling period 1.

are also satisfied. As the desired departure time of the group 2 travelers (13.0 h) is later than

that of the group 1 travelers (12.5 h), their departure times (i.e., the time with the peak demand)

are always later than those of the group 2 travelers. Each subfigure of Figure 7 shows that in the

beginning (ending) period, the total travel cost (lm(x, y, t) ) decreases (increases) at a constant

rate of 108 $/h (48 $/h) because the modeling region is uncongested during the period, and

thus the actual travel cost should be relatively constant in this period. Therefore, the changes in

the total travel cost are affected only by the schedule-delay cost (i.e., the early- and late-arrival

penalties), which has a linear relationship with the departure time with respect to the value of

time for early or late departure (γ1 = 48 $/h and γ2 = 108 $/h).

Figure 8 shows the temporal and spatial distribution of density (ρm(x, y, t) ) for the two

groups of travelers within the modeling region as they travel to the CBDs in modeling period

1 ( j = 1 ). Figure 8a, 8b, and 8c shows that most travelers are from group 2 and are traveling

to CBD 2 (i.e., the CBD on the right). The density of group 2 travelers around CBD 2 is lower

because: 1) the travelers who reside further away and have departed have not yet arrived in

this area; and 2) the travelers who reside in this area have not yet departed due to their shorter

required travel time. At 8:00 AM, there are very few group 1 travelers (Figure 8a) because this

group of travelers has a desired arrival period of 8:48 AM–9:12 AM; thus, they will not depart

at this time (or earlier) to avoid the early-arrival penalty. At 8:24 AM, the group 1 travelers

begin to depart for their destination (Figure 8d) while the group 2 travelers, who have a desired

34



Fig. 12: Average pollutant concentrations (unit: kg/km3).

arrival period of 8:36 AM–9:00 AM, have nearly reached their destination, resulting in a high

density of this type of traveler in the vicinity of CBD 2 (Figure 8e). At 8:48 AM, the group

1 travelers have nearly reached their destination, resulting in a high density of this type of

traveler in the vicinity of CBD 1 (Figure 8g). The density of group 2 travelers is lower at 8:48

AM (Figure 8h) than at 8:24 AM (Figure 8e) because they have arrived at their destination and

have left the transportation system. At 9:12 AM, all group 2 travelers have left the system, but

some group 1 travelers remain (Figure 8j and Figure 8k).

Figure 9 shows the temporal and spatial distributions of density (ρm(x, y, t) ) for the two

groups of travelers within the modeling region as they return from the CBDs. Figure 9(a),

9(b), and 9(c) shows that most travelers from group 1 are returning from CBD 1 (i.e., the

CBD on the left). The density of group 1 travelers is relatively high in the vicinity of CBD 1

because these travelers, who reside further away from CBD 1, have just departed and have not

yet arrived at their housing location. At 6:18 PM, very few group 2 travelers remain (Figure

9(b)) because this group of travelers has a desired departure period of 6:48 PM–7:12 PM, so

they will not depart at this time (or earlier) to avoid the early-departure penalty. At 6:30 PM,
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(a) Not consider air quality (b) Consider air quality

Fig. 13: Housing rent (unit: $).

(a) With considering air quality (b) Without considering air quality

Fig. 14: Total travel demand plot (unit: veh/km2).
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the group 2 travelers start to depart CBD 2 (Figure 9(e)), whereas the group 1 travelers, who

have a desired arrival period of 6:18 PM–6:42 PM, have nearly departed CBD 1, resulting in

a high density of this type of traveler in the vicinity of CBD 1 (Figure 9(d)). At 6:54 PM, the

group 2 travelers have nearly departed CBD 2, resulting in a high density of this type of traveler

in the vicinity of CBD 2 (Figure 9(h)). The density of group 1 travelers at 6:54 PM (Figure

9(g)) is lower than at 6:30 PM (Figure 9(d)) because they have reached their destinations and

left the transportation system. At 7:18 PM, all group 1 travelers have left the system, and some

group 2 travelers remain (Figure 9(j) and Figure 9(k)).

Figure 10 shows the temporal relationship between the inflows of CBDs and the corre-

sponding demand within the modeling region. Noted that the inflows of CBDs ( Fm
CBD(t) )

and the corresponding total demand within the modeling region ( Qm
Ω

(t) ) are defined by the

following equations:

Fm
CBD(t) =

∫
Γn

c

fm(x, y, t) · ñ(x, y)dΓ, ∀m ∈ {1, . . . ,M}, t ∈ T (47)

Qm
Ω(t) =

"
Ω

qm(x, y, t)dΩ, ∀m ∈ {1, . . . ,M}, t ∈ T (48)

where ñ is the unit normal vector pointing toward the CBD that gives fm(x, y, t) · ñ(x, y) is

larger (smaller) than zero to represent the inflow (outflow). Numerical integration shows that

the area under these two curves (i.e., red and blue) in modeling period 1 (also period 2) are

the same for each group of travelers (Figure 10 (a) and 10(b)). Taking the group 1 travelers

in modeling period 1 as an example, this indicates that all travelers have arrived at the CBD

by 9:00 AM (i.e., the time the inflow curve drops to zero). In modeling period 1 (i.e., 6:00

AM–5:00 PM), the curves for total inflow (Fm
CBD(t) ) always lag behind the total demand (Qm

Ω
(t)

) because it takes time for the travelers to travel to the CBD (Figure 10 (a) and 10(b)). This

sequence is reversed in modeling period 2 as travelers flow out of the CBDs and back to their

homes. The number of travelers/vehicles in the modeling region increases (decreases) when

the cumulative total demand is greater (less) than the cumulative inflow. Figure 10(c) shows

the temporal distribution of travelers/vehicles in CBDs and indicates that all group 1 (group
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2) travelers/vehicles remained in CBD 1 from 9:00 AM to 6:00 PM (CBD 2 from 8:30 AM to

6:30 PM), which makes the emission rate within the CBD the highest in this period.

Figure 11 shows the total perceived travel cost for various groups of travelers and the over-

all log-sum costs. Figure 11(a) and 11(b) shows that the total perceived travel cost increases

with the distance to the destination. For the log-sum cost (Figure 11(c)), it can be seen that the

area between CBD 1 and 2 has the lowest value, which indicates that this area is a relatively

convenient housing (home) location for those who travel to both CBDs. Figure 12 shows the

spatial distribution of the average air pollutant (NOx) concentration at ground level (C̄(x, y, 0)

). This figure shows that the downwind locations (i.e., the upper-right corner of the modeling

region) are much more polluted than the upwind locations. In particular, the severe emissions

from the power plant make the corresponding downwind locations the most polluted area. In

addition to this area, the vicinity around CBD 2 is also highly polluted because it is downwind

from the modeling region and the high intensity of traffic flow. The vicinity around CBD 1 is

less polluted than the area around CBD 2 because the emitted pollutants are dispersed by the

wind to the northeast. Figure 13 shows the spatial distribution of housing rent (r(x, y) ) with

and without considering the air quality. Comparing these two figures, it could be seen that the

housing rent is extremely high near the CBDs, which could be explained by the limited hous-

ing provision ( H(x, y)) and high demand (q(x, y) ) in these areas. For the downwind locations

of the power plant, the housing rent is relatively lower than in the surrounding areas, which

can be explained by the fact that the high concentration of pollutants in this area (Figure 12)

lowers its attractiveness (Equation 30) and, thus, reduces the housing rent.

Figure 14 shows the spatial distribution of total travel demand within the modeling region

(q(x, y) ) with (Figure 14(a)) and without (Figure 14(b)) considering air quality in the hous-

ing location choice (Equation 29 and 30). Both figures show that the travel demands attain

a maximum at a certain distance from the CBDs (i.e., the demand decreases as it gets closer

to the CBDs), which could be explained by the travelers’ trade-off in choosing their housing

location. For Figure 14(a), this trade-off is between travel cost, housing rent and air quality,
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while it is between travel cost and housing rent for Figure 14(b). From figure 14(a), moving

from the outer boundary of the modeling region to the CBDs, the housing utility (σ(x, y) )

increases because the decrease in the log-sum of the perceived travel cost (Π(x, y) ) outweighs

the increase in housing rent ( r(x, y)) and the lower air quality (τ(x, y) ). Thus, as the housing

utility increases, the demand increases nearer the CBDs. As it moves toward the CBDs, hous-

ing rent will continuously increase (due to the limited housing provision) and air quality will

continue to worsen (due to the more congested traffic), while the travel costs are reduced due

to the shorter distance to travel. Thus, it will come to a point where the decrease in travel costs

can no longer cover the increase in housing rent and worsening of air quality. Beyond this

point, the housing utility and thus also the housing demand will decrease. Compared Figure

14(a) and 14(b), it could be seen that, in general, travel demands are more concentrated in the

south-western region (upwind region) for the case of considering air quality in housing loca-

tion choice model (Figure 14(a)) than that air quality is not considered (Figure 14(b)). This

could be explained by the fact that air pollutants are less concentrated at the upwind location

due to the dispersion along the wind direction (i.e., towards northeast). Such observation also

exists in the upwind (south-western) and downwind (north-eastern) region around the CBDs

(especially CBD 1) and the power plant (comparing Figure 14(a) and 14(b)). Despite the travel

demand pattern is similar in these regions, the major source of air pollutants for these regions

are different. For the region around power plant, the major source of air pollutants is from the

power plant, while for the region around CBD, the major source is from traffic emission due

to the high congestion in these areas (Figure 8 and 9).

To measure the residents’ health risk, the following health cost (Υ ) is defined based on the

distribution of demand and pollution concentration:

Υ =

"
Ω

C̄(x, y, 0)q(x, y)dΩ (49)
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Table 1: Health risk Υ under three free-flow speeds.

Vm
f (km/h) Total travel time (h) Total emission (kg/km) Υ

46 1203 304 125697
56 1156 313 129244
66 1087 319 136872

Table 1 shows the health risk (Υ ) and other related quantities (total travel time and total

emission) for three free-flow speeds (Vm
f ). Table 1 shows that when the free-flow speed in-

creases the total travel time—or the total duration that pollutants are emitted—is decreased as

expected. In contrast, based on Equation (21) and (23), the emission rate increases as the free-

flow speed, or the speed of the vehicles, increases. As the reduction in the emission duration

(total travel time) cannot cover the increase in emission rate, the total emissions increase as

the free-flow speed increases (column 3 of Table 1). Finally, owing to the fixed demand of

the numerical example (i.e., 350,000), the increase in total emissions will cause an increase in

health risk.

5 Conclusions

In this study, a predictive continuum dynamic user-optimal model (PDUO-C) is presented

with combined housing location, destination, route, and departure-time choice in a polycentric

city. Travelers’ choice of housing location is modeled by a logit-type demand distribution

function with air quality, housing rent, and perceived travel cost as the selection criteria. In this

study, air quality is quantified by the concentration of air pollutants from vehicle exhaust and

other point sources (e.g., power plants). Vehicle exhaust is modeled with the vehicle emission

model, which depends on instantaneous acceleration and speed, and is dispersed based on the

three-dimension advection-diffusion equation, which depends on the turbulent eddy motion

and wind. PDUO-C with simultaneous route and departure-time choice is adopted to evaluate

the perceived travel cost to determine the destination and housing location choice.

The housing-location problem is formulated as a fixed-point problem, and the PDUO-C
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model with departure-time consideration is formulated as a VI problem. The Lax-Friedrichs

scheme is adopted to discretize/solve the conservation law, Hamilton-Jacobi equation and

advection-diffusion equation, and the fast-sweeping method is adopted to solve the Eikonal

equation. The Goldstein-Levitin-Polyak projection algorithm and self-adaptive successive av-

erages are adopted to solve the proposed fixed-point and VI problem. A numerical example

is given to demonstrate the characteristics of the proposed housing-location choice problem

with consideration of air quality and the effectiveness of the solution algorithms. In this study,

it is found that the housing location pattern (i.e., the demand location) could be substantially

changed if air quality is considered in the housing location choice model. Such consideration

of air quality will help to provide a more realistic and comprehensive modeling of housing

location choices that will directly affects the travel and congestion patterns. This will then

help to precisely model the responses – in housing location, destination, and route choice –

of citizens/travelers in the evaluation and design of various land-use and transport plans (e.g.,

housing policy).
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Appendix A Detailed proof of Theorem 1

Theorem A.1. The dynamic user-optimal condition in Definition 1 is equivalent to the follow-

ing variational inequality problem in modeling period j: Find q j∗ ∈ Λ j so that for all q j ∈ Λ j

41



(Equation (A.1)),∑
m∈{1,...,M}

"
Ω

∫
T j

lm
(
x, y, t, q j∗

) (
qm(x, y, t) − qm∗(x, y, t)

)
dtdΩ ≥ 0 (A.1)

Proof. (Necessity) Suppose that q j ∈ Λ j is any feasible travel demand and q j∗ ∈ Λ j is

the travel demand that satisfies the dynamic user-optimal condition (Equation (17)). For some

location (x, y) ∈ Ω and time t ∈ T j such that qm(x, y, t) − qm∗(x, y, t) < 0 , Equation (17) could

be used to prove that (Equation (A.2)):

0 ≤ qm(x, y, t) < qm∗(x, y, t)

⇒ lm
(
x, y, t, q j∗

)
− l̂m j

(
x, y, t, q j∗

)
= 0. (A.2)

With Equation (A.2) and the fact that lm
(
x, y, t, q j∗

)
− l̂m j

(
x, y, q j∗

)
≥ 0 from Equation (17), the

following equation is satisfied (Equation (A.3)):(
lm

(
x, y, t, q j∗

)
− l̂m j

(
x, y, q j∗

)) (
qm(x, y, t) − qm∗(x, y, t)

)
≥ 0, (A.3)

Integrating Equation (A.3) over space and time, and summing up for all groups of travelers, it

could be shown that (Equation (A.4)):∑
m∈{1,...,M}

"
Ω

∫
T j

(
lm

(
x, y, t, q j∗

)
− l̂m j

(
x, y, q j∗

)) (
qm(x, y, t) − qm∗(x, y, t)

)
dtdΩ ≥ 0, (A.4)

From Equation (A.4), because l̂m j
(
x, y, q j∗

)
is independent of time and from the definition of

qm(x, y, t) that
∫

T j (qm(x, y, t) − qm∗(x, y, t)) dt = 0 , Equation (A.1) follows.

(sufficiency) Suppose that q j∗ ∈ Λ j satisfies Equation (A.1) for all q j ∈ Λ j . Based on the

definition of l̂m j(x, y, q j) in Equation (16), it could be shown that (Equation (A.5)):

lm
(
x, y, t, q j∗

)
≥ l̂m j

(
x, y, q j∗

)
, (A.5)

Thus, based on the above equation, q j∗ satisfies the qm(x, y, t) = 0 case of Equation (17).

For the case qm(x, y, t) > 0, the proof will be completed by contradiction. Assume that

the qm(x, y, t) > 0 case of Equation (17) is not satisfied for traveller¡¯s group ma at location

(xa, ya) ∈ Ω at time ta ∈ T j , such that (Equation (A.6)):

qm∗a (xa, ya, ta) > 0, lma
(
xa, ya, ta, q

j∗
)
− l̂ma j

(
xa, ya, q

j∗
)
> 0, (A.6)
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With the continuity of qm∗a(x, y, t), lma
(
x, y, t, q j∗

)
and l̂ma, j

(
x, y, q j∗

)
, there exist positive values

δ > 0, ε > 0 and a neighbor (Ωa × T j
a ) around (xa, ya, ta) such that (Equation (A.7)):

qm∗a(x, y, t) > δ, lma
(
x, y, t, q j∗

)
− l̂ma, j

(
x, y, q j∗

)
> 2ε, ∀(x, y) ∈ Ωa, t ∈ T j

a, (A.7)

Note that the set Ωa and T j
a has a positive measure (i.e., |Ωa| > 0 and |T j

a | > 0 ). Then according

to the definition of l̂ma, j
(
x, y, q j∗

)
, there exist positive values ε1 > 0 and a non-empty set

T j
b ⊂ T j , such that(Equation (A.8)):

lma
(
xa, ya, t, q j∗

)
< l̂ma j

(
xa, ya, q

j∗
)

+ ε1, ∀t ∈ T j
b (A.8)

Again, with the continuity of lma
(
x, y, t, q j∗

)
and l̂ma j

(
x, y, q j∗

)
, there exist positive value ε

′

> 0

and a neighbor (Ωb × T j
b ) around (xa, ya, ta) such that (Equation (A.9)):

lma
(
x, y, t, q j∗

)
− l̂ma j

(
x, y, qj

∗
)
< ε′,∀(x, y) ∈ Ωb, t ∈ T j

b, (A.9)

Note that the set Ωb and T j
b has a positive measure (i.e., |Ωb| > 0 and |T j

b | > 0 ). Without loss

of generality, it could be assumed that Ωa = Ωb , T j
a ∩ T j

b = ∅ , |T j
a | = |T

j
b | and ε = ε

′

. Then, a

q j ∈ Λ j that contradicts the case of Equation (17) is constructed as follows (Equation (A.10)):

qm(x, y, t) =


qm∗(x, y, t) − δ,∀(x, y) ∈ Ωa, t ∈ T j

a,m = ma

qm∗(x, y, t) + δ,∀(x, y) ∈ Ωa, t ∈ T j
b,m = ma

qm∗(x, y, t), otherwise
(A.10)

If m = ma , (x, y) ∈ Ωa and t ∈ T j
a , by Equation (A.7) and Equation (A.9), it could be shown

that:

qm∗(x, y, t) > δ⇒ qm(x, y, t) = qm∗(x, y, t) − δ > 0, (A.11)

If m = ma , (x, y) ∈ Ωb and t ∈ T j
b , by Equation (A.6) and Equation (A.9), it could be shown

that:

qm∗(x, y, t) > 0⇒ qm(x, y, t) = qm∗(x, y, t) + δ > 0, (A.12)

otherwise by Equation (A.9),

qm(x, y, t) = qm∗(x, y, t) > 0 (A.13)
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Moreover, for m = ma∫
T j

qm(x, y, t)dt =

∫
T j\T j

a\T
j

b

qm(x, y, t)dt +

∫
T j

a

qm(x, y, t)dt +

∫
T j

b

qm(x, y, t)dt

=

∫
T j\T j

a\T
j

b

qm∗(x, y, t)dt +

∫
T j

a

[
qm∗(x, y, t) − δ

]
dt +

∫
T j
δ

[
qm∗(x, y, t) + δ

]
dt

(A.14)

= qm j(x, y)

Thus, qm(x, y, t) constructed in Equation (A.10) is within the feasible set Λ j . Then, with the

constructed qm(x, y, t) in Equation (A.10), consider:∑
1≤m≤M

"
Ω

∫
T j

lm(x, y, t, q j∗)(qm(x, y, t) − qm∗(x, y, t))dtdΩ

=

"
Ωa

∫
T j

a∪T j
b

lma(x, y, t, q j∗)(qma(x, y, t) − qm∗a(x, y, t))dtdΩ

=

"
Ωa

∫
T j

a

−δlma(x, y, t, q j∗)dt +

∫
T j

b

δlma(x, y, t, q j∗)dt
 dΩ

≤

"
Ωa

∫
T j

a

−δ(l̂ma j(x, y, q j∗) + 2ε))dt +

∫
T j

b

δ(l̂ma j(x, y, q j∗) + ε))dt
 dΩ

=

"
Ωa

(−δ|T j
a |(l̂

ma j(x, y, q j∗) + 2ε)) + δ|T j
b |(l̂

ma j(x, y, q j∗) + ε))dΩ

=

"
Ωa

(−δ|T j
a |ε)dΩ

= −δ|T j
a ||Ωa|ε < 0 (A.15)

This contradicts Equation (A.1) for this choice of q j ∈ Λ j , and the qm(x, y, t) > 0 case of

Equation (17) is thus proved by contradiction. Thus, q j∗ ∈ Λ j that satisfies the variational

inequalities problem (Equation (A.1) or Equation (18)), is equivalent to the satisfaction of the

dynamic user-optimal condition with departure-time consideration defined in Equation (17).

Appendix B Detailed proof of Theorem 2

Theorem B.1. Let λ > 0, q̃ j∗ is a solution of the variational inequality problem (equation 35)

if and only if (Equation (B.1)):

q̃ j∗ = PΛ̃(q̃ j∗ − λĨ j(q̃ j∗)), (B.1)
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where Ĩ j(q̃ j∗) =
{
lmn
ik

(
q̃ j∗

)
∀i = 1, . . . ,Nx, k = 1, . . . ,Ny, n = 1, . . . ,N j

t ,m = 1, . . . ,M
}
, PΛ̃(x) is

the unique projection of x ∈ Λ̃ and is defined as PΛ̃(x) = Argmin{‖ y − x ‖: y ∈ Λ̃}

Proof: As the grid size of the proposed discretization ( ∆x, ∆y and ∆t ) is positive, the dis-

cretized VI problem (Equation 35) could be represented in vector form of Ĩ j
(
q̃ j∗

)T (
q̃ j − q̃ j∗

)
≥

0 for all q̃ ∈ Λ̃ . According to the definition of PΛ̃ , it could be shown that (Equation (B.2)):

|y − PΛ̃(y)| ≤ |y − z| (B.2)

with PΛ̃ ∈ Λ̃ and Λ̃ is a closed convex set. Let z = θx+ (1− θ)PΛ̃(y) = PΛ̂(y) + θ
(
x − PΛ̃(y)

)
for all x ∈ Λ̃ and θ ∈ (0, 1) , Equation (B.2) becomes:

∣∣∣y − PΛ̂(y)
∣∣∣ ≤ ∣∣∣y − PΛ̂(y) − θ

(
x − PΛ̂(y)

)∣∣∣∣∣∣y − PΛ̂(y)
∣∣∣2 ≤ ∣∣∣y − PΛ̂(y) − θ

(
x − PΛ̂(y)

)∣∣∣2∣∣∣y − PΛ̂(y)
∣∣∣2 ≤ ∣∣∣y − PΛ̂(y)

∣∣∣2 − 2θ (y − PΛ(y))T (
x − PΛ̂(y)

)
+ θ2

∣∣∣(x − PΛ̂(y)
)∣∣∣2

(y − PΛ(y))T (
x − PΛ̂(y)

)
≤
θ

2

∣∣∣(x − PΛ̂(y)
)∣∣∣2

Thus as θ → 0+ it could be shown that (Equation (B.3)):

(
y − PΛ̃(y)

)T (
x − PΛ̃(y)

)
≤ 0 (B.3)

(Necessity.) Let x = q̃ j∗ , which is a solution of the discretized VI problem, and y =

q̃ j∗ − λĨ j
(
q̃ j∗

)
, by Equation (B.3), it could be shown that (Equation (B.4)):

(
q̃ j∗ − λĨ j

(
q̃ j∗

)
− PΛ

(
q̃ j∗ − λĨ j (q̃∗)

))T (
q̃∗ − PΛ̂

(
q̃ j∗ − λĨ j

(
q̃ j∗

)))
≤ 0 (B.4)

after rearranging will get (Equation (B.5)):∣∣∣∣q̃ j∗ − PΛ̂

(
q̃ j∗ − λĨ j

(
q̃ j∗

))∣∣∣∣2 ≤ λĨ j
(
q̃ j∗

) (
q̃ j∗ − PΛ̃

(
q̃ j∗ − λĨ j (q̃∗)

))
(B.5)

As PΛ̃

(
q̃;∗ − λĨ j

(
q̃ j∗

))
∈ Λ̃ and q̃ j∗ is the solution of the discretized VI problem, the following

equation will hold (Equation (B.6)):

(
PΛ̃

(
q̃ j∗ − λĨ j

(
q̃ j∗

))
− q̃ j∗

)T
Ĩ j

(
q̃ j∗

)
≥ 0 (B.6)
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As Equations (B.5) and (B.6) must be simultaneously satisfied, it could be concluded that

(Equation (B.7)): (
PΛ̃

(
q̃ j∗ − λĨ j

(
q̃ j∗

))
− q̃ j∗

)T
Ĩ j

(
q̃ j∗

)
= 0 (B.7)

Owing to the arbitrariness of λ, PΛ̃

(
q̃ j∗ − λĨ j

(
q̃ j∗

))
− q̃ j∗ = 0 or Ĩ j

(
q̃ j∗

)
= 0 . For Ĩ j

(
q̃ j∗

)
= 0

and by Equation (B.5), it could be shown that q j∗ = PΛ̃

(
q̃ j∗

)
. Thus, in either case it could be

concluded that Equation (B.1) is satisfied.

(Sufficiency.) By Equation (B.3), let y = q̃ j∗ − λĨ j
(
q̃ j∗

)
and x = q̃ j ∈ Λ̃ , it could be

shown that (Equation (B.8)):(
q̃ j∗ − λĨ j

(
q̃ j∗

)
− PΛ̂

(
q̃ j∗ − λĨ j∗(q̃ j∗

)))T (
q̃ j − PΛ

(
q̃ j∗ − λĨ j (q̃∗)

))
≤ 0 (B.8)

By Equation (B.1), Equation (B.8) equals (Equation (B.9)):

−λĨ j
(
q̃ j∗

)T (
q̃ j − q̃ j∗

)
≤ 0 (B.9)

As λ ≥ 0 , it could be shown that (Equation (B.10)):

Ĩ j
(
q̃ j∗

)T (
q̃ j − q̃ j∗

)
≥ 0 (B.10)

which is the vector from the discretized VI problem.
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