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Abstract—Due to the increasing usage of Internet-of-
things (IoT) devices, their positioning is an essential need
in many real-world applications. Along this line, visible
light communication (VLC) is a principal approach due
to its advantages of high accuracy, low computation cost,
ubiquitous lighting infrastructure, and being free of RF
interference. Still, there is a growing need for improving
the positioning accuracy and speed. This paper proposes
and prototypes a VLC-based positioning solution using
retroreflectors mounted on the IoT devices of interest.
The proposed method exploits the retro-reflected power
received at several PDs for rendering the coordinates
of reflectors in the real world. Specifically, the relative
relationships between the magnitudes of reflected light
ray power are used to figure out the z-y coordinates
such that the centroid of power magnitudes is regarded
as the z-y coordinate. Besides, the variance of those
magnitudes is used to infer the height of the retroflector
(the z-coordinate). The proposed solution excels in its
simplicity and fast computation and alleviates the need
for sensory devices and active operation. This is validated
over executive experiments conducted on a prototype in
a real-world environment.

Index Terms—VLC, positioning, localization,
retrorefelctors, IoT

I. INTRODUCTION

Since many Internet-of-Things (IoT) devices are
mainly used in indoor environments, their indoor
positioning (localization) is of increasing importance
both in-home and industrial environments. Position-
ing is needed in warehouse workspace, airports, and
shopping centers to name a few examples. A direct
positioning approach is the global positioning system
(GPS). However, it is unsuitable for indoor environ-
ments and does require expensive communication and
hardware overheads on the devices of interest. A better
alternative is the visible light communication (VLC)-
based approach [1]. The main idea behind this ap-
proach is to project light from a source into the object
of interest and then to exploit information extracted
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from the signal reflected back from the object of
interest for its positioning. Such information includes
strength, angle-of-arrival, polarization, and light distri-
bution patterns. Based on what information is retrieved
and the way how it is used in positioning, there is
a variety of VLC-based positioning approaches. The
technology of visible light positioning (VLP) describes
the functionality of indoor positioning by the means
of visible light emitted from the luminaires of the
obligatory room lighting and the acquisition of the
emitted light at a receiver unit equipped with one
or multiple photosensitive devices [2]. Visible Light
Sensing (VLS) expands the functionality of visible
light into the domain of sensing and detection [3].
The applications that are treatable by means of VLS
are manifold and range from simple pose detection
[4], occupancy or presence detection [5] to gesture
recognition [6], amongst many more. In VLS, the
object of desire reflects the light emitted from the light
source back towards the receiving element. By placing
reflective materials or other components (e.g. an LCD
shutter) that modulate the spectrum and/or the intensity
of the reflected light, information can be conveyed.

The VLC-based approach possesses several attrac-
tive advantages over other solutions. First, is requiring
minimal [7] or even no additional hardware com-
plexity [8]. Second, is the minimized interference in
the VLC domain due to its LOS nature promising
for very fine-grained positioning accuracy levels [9].
Moreover, some recent positioning approaches achieve
cm-level accuracy in a real-time operation [10]. Also,
the usefulness of the VLC approach is more strongly
pronounced with the widespread use of light-emitting
diodes (LEDs) for illumination in home, office, and
industrial environments.

Despite the clear advantages of the VLC-based
approach, it still faces a few challenges. First, is
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the non-convex nature of positioning when viewed as
an optimization problem. This awes to the nonlinear
relationships between the coordinates of an object
and the characteristics of its VLC received signals.
This forms a barrier against treating positioning as
a standard optimization problem [11] as this solution
framework tends to give local optima. Besides, signals
received from the device of interest depend on both its
location and orientation which is another unknown to
the positioning problem.

Motivation and related work

Non-VLP approaches include RF-based methods.
Along this line, FRID, Bluetooth, and WiFi [12] so-
lutions exist. However, their positioning accuracy is
about 1 m. Ultra-wideband (UWB)-based positioning
can achieve location precision within tens of centime-
ters. Nevertheless, they suffer from the disadvantages
of the high hardware cost, short battery lifetime, and
lack of interaction with the current devices.

Conventional VLP approaches are based on exploit-
ing the geometric relationship between the device of
interest and a strong light source [13]. Despite their
simplicity, those approaches require some knowledge
of the device of interest, such as partial or full ori-
entation information, a known UE height, or perfect
alignment between the transmitter and receiver (UE)
orientation directions [11]. Another category of VLP
approaches is the optimization-based approach. In this
setting, the positioning problem is cast as a standard
optimization formulation where the objective is to
optimize the positioning accuracy. Attempts along this
line include using gradient descent, linear search, and
Newton method [14]. This approach alleviates the need
for prior knowledge of the object of interest as required
by conventional methods. However, the non-convex
nature of the problem restricts the outcome to local
optima. This makes this approach susceptible to poor
positioning performances subject to the quality of the
local solution obtained. A third category is based on
sparse coding, where the sparsity of the solution is
exploited to guide the optimization search. However,
there are challenges related to extracting the correct
sparsity of the solution. This requires both using the
exact sparsity degree and identifying the actual domain
where the solution is sparse. Those two requirements
are nontrivial and require more investigation for this
approach to be effective in diverse operational circum-
stances.

A recent work, referred to as RETRO [10] sets up the
real-time backward channel by using an LCD shutter
to modulate the retroreflected light from a corner-cube
retroreflector, which distinguishes the retroreflected
optical signals from the environmental reflection and
the signals retroreflected from other IoT devices. IoT
devices can be identified using LCD shutters of distinct

LCD panel
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€ Retroflected light | measurement —/—> A
With DAQ
LCD shutter l
D 4 %92
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Fig. 1: The system model assumed.

operating frequencies in this setting. Performance-
wise, RETRO achieves cm-level accuracy, precision,
and real-time operation. Retro is based on explicitly
solving the coordinates of the retroflector, a small
device capable of reflecting VLC light to its source
with minimal scattering, minimizing the error in the
estimation of received power. An extension of RETRO
is PassiveRETRO [15], where retroflectors are com-
pletely passive.

Another line of research [16], considers using off-
the-shelf retro-reflective foils for VLC-based position-
ing. This is based on the idea that light impinges on
the retroreflective foils towards a photosensitive device
collocated in close vicinity to the light source. Along
this line, [17] achieves high positioning accuracy at
the cost of high computational complexity and exces-
sive memory requirements. Subsequently, [16], [18],
indicate that the supervised ML approach of random
forest well-suits the VLC positioning problem while
offering significant gains in computational complexity
and memory requirements.

Contributions and Organization

In summary, we make the following contributions:
« Associating the relationships between retroflected

power to guide on the z-y coordinates: in power

sensed at a few photodiodes (PD)s are used quanti-
fied and used to estimate the z-y coordinates of the
retroflector.

« Associating the standard deviation in power mag-
nitudes to the height: This association is used to
estimate the height from the standard deviation of
the magnitudes of received power values.
Organization: The remainder of this paper is orga-

nized as follows. Section II presents the system model

and revises preliminaries. The proposed positioning
algorithm is presented in Section III. Section IV details
the prototyping and experimentation of a proof of con-
cept of the proposed algorithm, with the conclusions
in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

We use a system model similar to the one in [10].
As shown in Fig. 1, the goal is obtain estimates of the
coordinates of the retroflector , ¢, and 2. This model
is composed of the following components. First is an
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LED panel acting as a (strong) light source. The second
is a retroflector circuit composed of a retroflector
covered by an LCD shutter with a controlled frequency.
This shutter allows or rejects light passage by operating
in opaque and transparent states at that frequency.
Thus, the retro-reflector reflects the incident ray in a
parallel reflected ray, which is then received by the PD.
However, one needs to measure this waveform at the
specific shutter frequency. This way, one can afford
to localize multiple devices simultaneously. To this
end, the device’s location governs the power received
by the PDs. Thus, the correspondence between the
location and the power can be exploited to estimate
the coordinates of the position. Those PDs are placed
to uniformly sample the LCD panel as pictorially
represented in Fig. 2.

III. THE PROPOSED ALGORITHM
A. Estimating the x-y coordinates

In essence, the magnitude of received PD power
directly correlates with how close the retroflector is.
To validate this assumption, Fig. 3 shows the power
received by the five PDs as the retroflector is directly
placed at 100 cms below PD1. The power received
at PD1 is the largest amongst others. This signifies
a clear association between the x-y coordinates of
the retroflector’s position and the relative relationships
between the PD power. Thus, we propose considering
the magnitude of power as five variables and obtaining
the -y coordinates of the retroflector as the centroid
of those variables. Specifically, let us consider the
power magnitudes as vector quantities each placed at
the position of its underlying PD. Then, we find the
centroid of those quantities. So, the z-y coordinates of
the retroflector are those of the centroid point.

Fig. 2: A top view of the PD layout.

B. Estimating the z-coordinate

As discussed earlier, there is a direct relationship
between the proximity of the retroflect to the PDs
and their received power. To this end, we can relate
the z-coordinate of the retroflector to those power
values. To achieve this mapping, let us consider how
different the PDs perceive the retroflector at varying
heights (z-coordinates). For this purpose, the following

experiment is conducted. We vary the z-coordinate of
the distance between the retroflector and the center
of the PD array from 10 cm to 180 cm. For each
value, we measure the five PD power magnitudes
and calculate their standard deviation. Fig. 4 shows
a semi-log plot of the standard deviation in power
versus z distance. As seen in this figure, there is
an almost linear relationship between the z-distance
and the standard deviation in received powers. Ex-
ploiting this relationship unleashes a direct association
between the two quantities. Therefore, we obtain the
z-coordinate based on the magnitude of the standard
deviation in power values measured by the five PDs.
This experiment empirically verifies the power stan-
dard deviation-retroflector’s height association in the
following lemma.

Let us define a power magnitude vector v = [P;],
where 7 denotes the PD index. To this end, we calculate
the standard deviation of this vector as:

std(a) = | = > _(a(i) — a). (1)

i=n

Lemma 1: the standard deviation of the PD power
vector is inverse proportional to the height-squared. For
the proof, see Appendix.

The main steps of the proposed association-based
positioning algorithm are outlined in Algorithm 1.

Fig. 3: Spectra of power received by PD1 through PD5
in (a) through (e), respectively, with the retroflector
placed at 100 cm underneath PD1.

log (std(PD)) (W)

0O 20 40 60 8 100 120 140 160 180

height (cm)

Fig. 4: PD received power standard deviation versus
height.
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Algorithm 1 The proposed positioning algorithm.

Input: power at the PDs P;,7 € 1,n, and a set of
known std(v)-height associations.

Output: Estimated coordinates of the retroflector’s
position.

1: Assign the values of the power magnitudes P; to

their location on the PD array

Calculate the centred of power magnitudes c.

Set & < ¢(x).

Set § + c(y).

Set a = {Pz}

Calculate the standard deviation of std(a).

set £ < a value fit to the std(v)-height associa-

tions.

8: return z,y, 2

RSN A i

IV. SETUP AND EXPERIMENTAL VALIDATION
A. Test bed and setup

A testbed is constructed according to the system
model specified in Section II. A photo of this testbed is
shown in Fig. 5. The retroflector is mounted on a tripod
for keeping track of its position’s coordinates in the
physical world. As a light source, we use a commercial
flat LED panel with evenly distributed light (400W,
4000K, 3770 Lumens) provided by Hyperikon. The
PD used in this paper is Hamamatsu S6968 [19]. We
operate each PD in the photoconductive mode. The cir-
cular retroflectorPS976 (uncoated) is manufactured by
Thorlabs [20]. Specifically, each PD is serialized with
a 6.8 k(2 resistor, and the series combination is reverse-
biased by a 10 V DC voltage. The power received by a
PD is proportional to the resistor voltage. We measure
this voltage using the Measurement Computing USB-
1608FS-Plus Series data acquisition (DAQ) device
[21]. This device gives a mealtime measurement of the
voltages corresponding to the powers of the five PDs
at a sampling frequency of 50K samples/sec. Those
measurements are then fed to a PD through the USB
port. Next, we record power measurement through
MatLab and then apply a fast Fourier transform (FFT)
on those power values to extract the actual power
magnitude at the LCD shutter’s switching frequency.
Sample FFT power spectra are shown in Fig. 3. As
seen in this figure, each spectrum has two main peaks;
one at a 60 Hz frequency as the light source operates at
a mains frequency of 60 Hz, and another smaller peak
at 20 Hz due to the power reflected by the retroflector.
Besides, there are a few other negligibly small peaks
due to ambient and measurement noises.

DC power is supplied by a standard DC power
source. Eventually, mealtime positioning is done on
MatLab. Table I lists several other system parameter
values.

TABLE I: System parameters and specifications.

Item Value
Refractive index 1.51

No. of PDs 5

PD S6968

As 150 mm?2
Power sampling frequency | 50 KHz
retroflector Thorlabs PS976
LCD shutter frequency 20 Hz

LCD shutter Pi-cell

Fig. 5: A photo of the prototypes’ testbed.

B. Positioning performance evaluation

In this experiment, we present a performance eval-
uation of the proposed algorithm. The performance
metric is the empirical cumulative distribution func-
tion (CDF) of the positioning error in the z, y, and
z-coordinates. Specifically, we place the retroflector
at 400 points that sample the working area of the
positioning system uniformly. At each of these posi-
tions, we obtain an estimate of the coordinates of the
retroflector and calculate the absolute error between
these estimates and the actual X, y, and z-coordinates in
the physical world. Once the errors for all the positions
are calculated, we plot an empirical CDF graph of these
errors. This procedure is repeated for 3 height values
of 100, 130, and 160 cm.

In this experiment, we compare the proposed algo-
rithm to four variants of the ML positioning approach.
This ML approach views the positioning problem as
a regression problem, i.e., we train a model based
on a ground truth set of training data. Each data
point is composed of the power magnitudes seen by
the five PDs, and the corresponding output is the =z,
y, and z coordinates. So, we train three regression
models, one to predict each coordinate based on the
five measurements. Then, during inference time, we
feed the measurement vector of five power magnitudes
to each model to obtain estimates of z, y, and z. It is
worth mentioning that we collect a training set of 900
1200 training data points, and we randomly select 900
for training. Then, for validation, we use another set
of measurements.

There is a variety of ways one can implement this
ML predictor. In this experiment, we opt to consider
the following regression approaches.

e LR: a linear regression model

488

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 07,2023 at 01:57:44 UTC from IEEE Xplore. Restrictions apply.



2022 13th International Conference on Information and Communication Systems (ICICS)
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Fig. 6: Empirical CDF positioning error with z = (a)
100 cm, (b) 130 cm, and (c¢) 160 cm.

e SVM: a support vector machine (SVM) regression
model with a Gaussian kernel

e NN: A shallow neural network (NN) regression
model

e« DMLP: a deep multi-layer perceptron (MLP) re-
gression model with 50 hidden layers and a drop-
out layer

Fig. 6 shows the empirical CDF plots of the errors in
estimating the z, y, and z coordinates of 400 positions
uniformly sampling the grid shown in Fig. 2 at three
heights from the LED array. Namely, 100, 130, and
160 cm. Correspondingly, the CDF plots of the above-
mentioned ML-based baselines are shown in Fig. 7.
Those figures show that the proposed algorithm has
the highest accuracy amongst all methods. This is
consistently the same for the z, y, and z coordinates.
However, as expected intuitively, the deep MLP ap-
proach performs better than the remaining baseline
due to its deep nature. However, the four baselines
perform poorly in estimating the z-coordinate. This
necessitates redefining the ML models to incorporate
the height information in their training using specific
ML architectures.

To have a rough assessment of the time complexity
of the proposed algorithm, we perform positioning 100
times. We measure the execution time for each time,
i.e., the time duration from reading the power mea-
surements until producing the coordinate estimates.
Fig. 8 shows a CDF plot of the execution time. It is
evident that more than 95% of the time, the execution
time is less than 0.25 ms. This result assures the
proposed algorithm’s time complexity and suitability
for real-time operation. These results are validated
using the tic-toc Matlab command run over Matlab
2021 b operating on an i5-Processor laptop computer

Empirical CDF Empirical COF

(b)

(©
Fig. 7: Empirical CDF positioning error for LR, SVM
regression, NN regression, deep MLP regression, and
the proposed algorithm for z, y, and z in a through c
respectively.

with 8 GBs of RAM.

Empirical CDF

* X 00029046
Yo.9
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Fig. 8: A CDF plot of execution times for 100 trials.

V. CONCLUSIONS

This paper has presented an algorithm for real-
time object positioning in an indoor environment. The
proposed algorithm is based on exploiting the relative
relationships between the power of signals reflected
from a retroflector placed on the top of the object to
a set of PDs. We have presented a method for asso-
ciating the relations between the magnitudes of these
powers and the x-y coordinates and another criterion to
associate the standard deviation in those magnitudes to
the z-coordinate. This work has empirically validated
the assumptions behind those associations. Besides, the
proposed algorithm achieves an accurate positioning
performance with a fast and real-time operation. These
findings have been validated through practical experi-
ments conducted over a prototype system.

Interesting future extensions to this work include op-
timizing the number of PDs to use and their positioning
on the LCD array. Besides, the proposed algorithm can
be extended to achieve orientation estimation.
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VII. APPENDIX

Proof of Lemma 1: The power received by a PD
can be written as follows [10].

(ml +1)A,
8mrd? @

where P; is the transmitted power, Ay is the effective
sensing area of the PD, ml is the Lambertian index, 6
is the incidence angle to the front face of the retrore-
flector, « is the ratio of the effective reflecting area
and the maximum effective reflecting area, and [ is
the ratio of the actual to the virtual effective reflecting
area. Also, d is the Euclidean distance between the PD
and the retroflector. Thus, we can write d? = 22 + v2
for an assumed zero elevation and azimuth angles case
for simplicity.

To further simplify the analysis, let us refer by ¢ to
the quantity Pt%cosmlﬂﬁaﬂ so that we can
write P, = qd%. To this end, let us consider a power
vector of two PDs only, so, a = [P1, P2]. So, P1 =
qilf’ and P2 = chlg' Also, the mean value of a is

di+d3
did3

P. =P cos™ 1 0ap,

a= Q[% =+ %] So, a =gq . Now, let us express

the variance of this vector.

1
Var(a) = 5((P1 —a)’+(P2—-a)?), ()
Now, substituting the expression for a into (3),
1 42 + d2 d? + d?
Var(a) = - (PL— gL 2)2 4 (P2 — gL T2 y2)
2 dids dyds
4

Following a few algebraic simplification steps, and
considering the specials cases where v; = 0, i.e., d? =
h? we arrive at

2[4 2 2,4
Var(a) = 1¢° [P*(=5) — h*(1 — 6v° — ]

22 h8 — 2h6v2 — h4v?t
Thus, it is evident that Var(a) is inverse proportional
to h*. Therefore, the standard deviation, i.e., the square
root of the variance, is inverse proportional to the
height-squared h2. This result can be generalized for
an a vector corresponding to n PDs.

®)
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