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Abstract—Due to the increasing usage of Internet-of-
things (IoT) devices, their positioning is an essential need
in many real-world applications. Along this line, visible
light communication (VLC) is a principal approach due
to its advantages of high accuracy, low computation cost,
ubiquitous lighting infrastructure, and being free of RF
interference. Still, there is a growing need for improving
the positioning accuracy and speed. This paper proposes
and prototypes a VLC-based positioning solution using
retroreflectors mounted on the IoT devices of interest.
The proposed method exploits the retro-reflected power
received at several PDs for rendering the coordinates
of reflectors in the real world. Specifically, the relative
relationships between the magnitudes of reflected light
ray power are used to figure out the x-y coordinates
such that the centroid of power magnitudes is regarded
as the x-y coordinate. Besides, the variance of those
magnitudes is used to infer the height of the retroflector
(the z-coordinate). The proposed solution excels in its
simplicity and fast computation and alleviates the need
for sensory devices and active operation. This is validated
over executive experiments conducted on a prototype in
a real-world environment.

Index Terms—VLC, positioning, localization,
retrorefelctors, IoT

I. INTRODUCTION

Since many Internet-of-Things (IoT) devices are

mainly used in indoor environments, their indoor

positioning (localization) is of increasing importance

both in-home and industrial environments. Position-

ing is needed in warehouse workspace, airports, and

shopping centers to name a few examples. A direct

positioning approach is the global positioning system

(GPS). However, it is unsuitable for indoor environ-

ments and does require expensive communication and

hardware overheads on the devices of interest. A better

alternative is the visible light communication (VLC)-

based approach [1]. The main idea behind this ap-

proach is to project light from a source into the object

of interest and then to exploit information extracted

from the signal reflected back from the object of

interest for its positioning. Such information includes

strength, angle-of-arrival, polarization, and light distri-

bution patterns. Based on what information is retrieved

and the way how it is used in positioning, there is

a variety of VLC-based positioning approaches. The

technology of visible light positioning (VLP) describes

the functionality of indoor positioning by the means

of visible light emitted from the luminaires of the

obligatory room lighting and the acquisition of the

emitted light at a receiver unit equipped with one

or multiple photosensitive devices [2]. Visible Light

Sensing (VLS) expands the functionality of visible

light into the domain of sensing and detection [3].

The applications that are treatable by means of VLS

are manifold and range from simple pose detection

[4], occupancy or presence detection [5] to gesture

recognition [6], amongst many more. In VLS, the

object of desire reflects the light emitted from the light

source back towards the receiving element. By placing

reflective materials or other components (e.g. an LCD

shutter) that modulate the spectrum and/or the intensity

of the reflected light, information can be conveyed.

The VLC-based approach possesses several attrac-

tive advantages over other solutions. First, is requiring

minimal [7] or even no additional hardware com-

plexity [8]. Second, is the minimized interference in

the VLC domain due to its LOS nature promising

for very fine-grained positioning accuracy levels [9].

Moreover, some recent positioning approaches achieve

cm-level accuracy in a real-time operation [10]. Also,

the usefulness of the VLC approach is more strongly

pronounced with the widespread use of light-emitting

diodes (LEDs) for illumination in home, office, and

industrial environments.

Despite the clear advantages of the VLC-based

approach, it still faces a few challenges. First, is
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the non-convex nature of positioning when viewed as

an optimization problem. This awes to the nonlinear

relationships between the coordinates of an object

and the characteristics of its VLC received signals.

This forms a barrier against treating positioning as

a standard optimization problem [11] as this solution

framework tends to give local optima. Besides, signals

received from the device of interest depend on both its

location and orientation which is another unknown to

the positioning problem.

Motivation and related work

Non-VLP approaches include RF-based methods.

Along this line, FRID, Bluetooth, and WiFi [12] so-

lutions exist. However, their positioning accuracy is

about 1 m. Ultra-wideband (UWB)-based positioning

can achieve location precision within tens of centime-

ters. Nevertheless, they suffer from the disadvantages

of the high hardware cost, short battery lifetime, and

lack of interaction with the current devices.

Conventional VLP approaches are based on exploit-

ing the geometric relationship between the device of

interest and a strong light source [13]. Despite their

simplicity, those approaches require some knowledge

of the device of interest, such as partial or full ori-

entation information, a known UE height, or perfect

alignment between the transmitter and receiver (UE)

orientation directions [11]. Another category of VLP

approaches is the optimization-based approach. In this

setting, the positioning problem is cast as a standard

optimization formulation where the objective is to

optimize the positioning accuracy. Attempts along this

line include using gradient descent, linear search, and

Newton method [14]. This approach alleviates the need

for prior knowledge of the object of interest as required

by conventional methods. However, the non-convex

nature of the problem restricts the outcome to local

optima. This makes this approach susceptible to poor

positioning performances subject to the quality of the

local solution obtained. A third category is based on

sparse coding, where the sparsity of the solution is

exploited to guide the optimization search. However,

there are challenges related to extracting the correct

sparsity of the solution. This requires both using the

exact sparsity degree and identifying the actual domain

where the solution is sparse. Those two requirements

are nontrivial and require more investigation for this

approach to be effective in diverse operational circum-

stances.

A recent work, referred to as RETRO [10] sets up the

real-time backward channel by using an LCD shutter

to modulate the retroreflected light from a corner-cube

retroreflector, which distinguishes the retroreflected

optical signals from the environmental reflection and

the signals retroreflected from other IoT devices. IoT

devices can be identified using LCD shutters of distinct

LCD panel

PD

Retroflected light 
Incident light 

Retroflector

Power 

measurement

With DAQ

Localization 

algorithm

ො𝑥, ො𝑦, Ƹ𝑧LCD shutter

Fig. 1: The system model assumed.

operating frequencies in this setting. Performance-

wise, RETRO achieves cm-level accuracy, precision,

and real-time operation. Retro is based on explicitly

solving the coordinates of the retroflector, a small

device capable of reflecting VLC light to its source

with minimal scattering, minimizing the error in the

estimation of received power. An extension of RETRO

is PassiveRETRO [15], where retroflectors are com-

pletely passive.

Another line of research [16], considers using off-

the-shelf retro-reflective foils for VLC-based position-

ing. This is based on the idea that light impinges on

the retroreflective foils towards a photosensitive device

collocated in close vicinity to the light source. Along

this line, [17] achieves high positioning accuracy at

the cost of high computational complexity and exces-

sive memory requirements. Subsequently, [16], [18],

indicate that the supervised ML approach of random

forest well-suits the VLC positioning problem while

offering significant gains in computational complexity

and memory requirements.

Contributions and Organization

In summary, we make the following contributions:

• Associating the relationships between retroflected

power to guide on the x-y coordinates: in power

sensed at a few photodiodes (PD)s are used quanti-

fied and used to estimate the x-y coordinates of the

retroflector.

• Associating the standard deviation in power mag-

nitudes to the height: This association is used to

estimate the height from the standard deviation of

the magnitudes of received power values.

Organization: The remainder of this paper is orga-

nized as follows. Section II presents the system model

and revises preliminaries. The proposed positioning

algorithm is presented in Section III. Section IV details

the prototyping and experimentation of a proof of con-

cept of the proposed algorithm, with the conclusions

in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

We use a system model similar to the one in [10].

As shown in Fig. 1, the goal is obtain estimates of the

coordinates of the retroflector x̂, ŷ, and ẑ. This model

is composed of the following components. First is an
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LED panel acting as a (strong) light source. The second

is a retroflector circuit composed of a retroflector

covered by an LCD shutter with a controlled frequency.

This shutter allows or rejects light passage by operating

in opaque and transparent states at that frequency.

Thus, the retro-reflector reflects the incident ray in a

parallel reflected ray, which is then received by the PD.

However, one needs to measure this waveform at the

specific shutter frequency. This way, one can afford

to localize multiple devices simultaneously. To this

end, the device’s location governs the power received

by the PDs. Thus, the correspondence between the

location and the power can be exploited to estimate

the coordinates of the position. Those PDs are placed

to uniformly sample the LCD panel as pictorially

represented in Fig. 2.

III. THE PROPOSED ALGORITHM

A. Estimating the x-y coordinates

In essence, the magnitude of received PD power

directly correlates with how close the retroflector is.

To validate this assumption, Fig. 3 shows the power

received by the five PDs as the retroflector is directly

placed at 100 cms below PD1. The power received

at PD1 is the largest amongst others. This signifies

a clear association between the x-y coordinates of

the retroflector’s position and the relative relationships

between the PD power. Thus, we propose considering

the magnitude of power as five variables and obtaining

the x-y coordinates of the retroflector as the centroid

of those variables. Specifically, let us consider the

power magnitudes as vector quantities each placed at

the position of its underlying PD. Then, we find the

centroid of those quantities. So, the x-y coordinates of

the retroflector are those of the centroid point.

 





  














Fig. 2: A top view of the PD layout.

B. Estimating the z-coordinate

As discussed earlier, there is a direct relationship

between the proximity of the retroflect to the PDs

and their received power. To this end, we can relate

the z-coordinate of the retroflector to those power

values. To achieve this mapping, let us consider how

different the PDs perceive the retroflector at varying

heights (z-coordinates). For this purpose, the following

experiment is conducted. We vary the z-coordinate of

the distance between the retroflector and the center

of the PD array from 10 cm to 180 cm. For each

value, we measure the five PD power magnitudes

and calculate their standard deviation. Fig. 4 shows

a semi-log plot of the standard deviation in power

versus z distance. As seen in this figure, there is

an almost linear relationship between the z-distance

and the standard deviation in received powers. Ex-

ploiting this relationship unleashes a direct association

between the two quantities. Therefore, we obtain the

z-coordinate based on the magnitude of the standard

deviation in power values measured by the five PDs.

This experiment empirically verifies the power stan-

dard deviation-retroflector’s height association in the

following lemma.

Let us define a power magnitude vector v = [Pi],
where i denotes the PD index. To this end, we calculate

the standard deviation of this vector as:

std(a) =

√

√

√

√

1

n

n
∑

i=n

(a(i)− ā)2. (1)

Lemma 1: the standard deviation of the PD power

vector is inverse proportional to the height-squared. For

the proof, see Appendix.

The main steps of the proposed association-based

positioning algorithm are outlined in Algorithm 1.
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Fig. 3: Spectra of power received by PD1 through PD5

in (a) through (e), respectively, with the retroflector

placed at 100 cm underneath PD1.
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Fig. 4: PD received power standard deviation versus

height.
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Algorithm 1 The proposed positioning algorithm.

Input: power at the PDs Pi, i ∈ 1, n, and a set of

known std(v)-height associations.

Output: Estimated coordinates of the retroflector’s

position.

1: Assign the values of the power magnitudes Pi to

their location on the PD array

2: Calculate the centred of power magnitudes c.

3: Set x̂ ← c(x).
4: Set ŷ ← c(y).
5: Set a = {Pi}
6: Calculate the standard deviation of std(a).
7: set ẑ ← a value fit to the std(v)-height associa-

tions.

8: return x̂, ŷ, ẑ

IV. SETUP AND EXPERIMENTAL VALIDATION

A. Test bed and setup

A testbed is constructed according to the system

model specified in Section II. A photo of this testbed is

shown in Fig. 5. The retroflector is mounted on a tripod

for keeping track of its position’s coordinates in the

physical world. As a light source, we use a commercial

flat LED panel with evenly distributed light (400W,

4000K, 3770 Lumens) provided by Hyperikon. The

PD used in this paper is Hamamatsu S6968 [19]. We

operate each PD in the photoconductive mode. The cir-

cular retroflectorPS976 (uncoated) is manufactured by

Thorlabs [20]. Specifically, each PD is serialized with

a 6.8 kΩ resistor, and the series combination is reverse-

biased by a 10 V DC voltage. The power received by a

PD is proportional to the resistor voltage. We measure

this voltage using the Measurement Computing USB-

1608FS-Plus Series data acquisition (DAQ) device

[21]. This device gives a mealtime measurement of the

voltages corresponding to the powers of the five PDs

at a sampling frequency of 50K samples/sec. Those

measurements are then fed to a PD through the USB

port. Next, we record power measurement through

MatLab and then apply a fast Fourier transform (FFT)

on those power values to extract the actual power

magnitude at the LCD shutter’s switching frequency.

Sample FFT power spectra are shown in Fig. 3. As

seen in this figure, each spectrum has two main peaks;

one at a 60 Hz frequency as the light source operates at

a mains frequency of 60 Hz, and another smaller peak

at 20 Hz due to the power reflected by the retroflector.

Besides, there are a few other negligibly small peaks

due to ambient and measurement noises.

DC power is supplied by a standard DC power

source. Eventually, mealtime positioning is done on

MatLab. Table I lists several other system parameter

values.

TABLE I: System parameters and specifications.

Item Value

Refractive index 1.51

No. of PDs 5

PD S6968

As 150 mm2

Power sampling frequency 50 KHz

retroflector Thorlabs PS976

LCD shutter frequency 20 Hz

LCD shutter Pi-cell

Fig. 5: A photo of the prototypes’ testbed.

B. Positioning performance evaluation

In this experiment, we present a performance eval-

uation of the proposed algorithm. The performance

metric is the empirical cumulative distribution func-

tion (CDF) of the positioning error in the x, y, and

z-coordinates. Specifically, we place the retroflector

at 400 points that sample the working area of the

positioning system uniformly. At each of these posi-

tions, we obtain an estimate of the coordinates of the

retroflector and calculate the absolute error between

these estimates and the actual x, y, and z-coordinates in

the physical world. Once the errors for all the positions

are calculated, we plot an empirical CDF graph of these

errors. This procedure is repeated for 3 height values

of 100, 130, and 160 cm.

In this experiment, we compare the proposed algo-

rithm to four variants of the ML positioning approach.

This ML approach views the positioning problem as

a regression problem, i.e., we train a model based

on a ground truth set of training data. Each data

point is composed of the power magnitudes seen by

the five PDs, and the corresponding output is the x,

y, and z coordinates. So, we train three regression

models, one to predict each coordinate based on the

five measurements. Then, during inference time, we

feed the measurement vector of five power magnitudes

to each model to obtain estimates of x, y, and z. It is

worth mentioning that we collect a training set of 900

1200 training data points, and we randomly select 900

for training. Then, for validation, we use another set

of measurements.

There is a variety of ways one can implement this

ML predictor. In this experiment, we opt to consider

the following regression approaches.

• LR: a linear regression model
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Fig. 6: Empirical CDF positioning error with z = (a)

100 cm, (b) 130 cm, and (c) 160 cm.

• SVM: a support vector machine (SVM) regression

model with a Gaussian kernel

• NN: A shallow neural network (NN) regression

model

• DMLP: a deep multi-layer perceptron (MLP) re-

gression model with 50 hidden layers and a drop-

out layer

Fig. 6 shows the empirical CDF plots of the errors in

estimating the x, y, and z coordinates of 400 positions

uniformly sampling the grid shown in Fig. 2 at three

heights from the LED array. Namely, 100, 130, and

160 cm. Correspondingly, the CDF plots of the above-

mentioned ML-based baselines are shown in Fig. 7.

Those figures show that the proposed algorithm has

the highest accuracy amongst all methods. This is

consistently the same for the x, y, and z coordinates.

However, as expected intuitively, the deep MLP ap-

proach performs better than the remaining baseline

due to its deep nature. However, the four baselines

perform poorly in estimating the z-coordinate. This

necessitates redefining the ML models to incorporate

the height information in their training using specific

ML architectures.

To have a rough assessment of the time complexity

of the proposed algorithm, we perform positioning 100

times. We measure the execution time for each time,

i.e., the time duration from reading the power mea-

surements until producing the coordinate estimates.

Fig. 8 shows a CDF plot of the execution time. It is

evident that more than 95% of the time, the execution

time is less than 0.25 ms. This result assures the

proposed algorithm’s time complexity and suitability

for real-time operation. These results are validated

using the tic-toc Matlab command run over Matlab

2021 b operating on an i5-Processor laptop computer
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Fig. 7: Empirical CDF positioning error for LR, SVM

regression, NN regression, deep MLP regression, and

the proposed algorithm for x, y, and z in a through c

respectively.

with 8 GBs of RAM.
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Fig. 8: A CDF plot of execution times for 100 trials.

V. CONCLUSIONS

This paper has presented an algorithm for real-

time object positioning in an indoor environment. The

proposed algorithm is based on exploiting the relative

relationships between the power of signals reflected

from a retroflector placed on the top of the object to

a set of PDs. We have presented a method for asso-

ciating the relations between the magnitudes of these

powers and the x-y coordinates and another criterion to

associate the standard deviation in those magnitudes to

the z-coordinate. This work has empirically validated

the assumptions behind those associations. Besides, the

proposed algorithm achieves an accurate positioning

performance with a fast and real-time operation. These

findings have been validated through practical experi-

ments conducted over a prototype system.

Interesting future extensions to this work include op-

timizing the number of PDs to use and their positioning

on the LCD array. Besides, the proposed algorithm can

be extended to achieve orientation estimation.
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VII. APPENDIX

Proof of Lemma 1: The power received by a PD

can be written as follows [10].

Pr = Pt

(ml + 1)As

8πd2
cosml+1θαβ, (2)

where Pt is the transmitted power, As is the effective

sensing area of the PD, ml is the Lambertian index, θ

is the incidence angle to the front face of the retrore-

flector, α is the ratio of the effective reflecting area

and the maximum effective reflecting area, and β is

the ratio of the actual to the virtual effective reflecting

area. Also, d is the Euclidean distance between the PD

and the retroflector. Thus, we can write d2 = z2 + v2

for an assumed zero elevation and azimuth angles case

for simplicity.

To further simplify the analysis, let us refer by q to

the quantity Pt

(ml+1)As

8π cosml+1θαβ so that we can

write Pr = q 1
d2 . To this end, let us consider a power

vector of two PDs only, so, a = [P1, P2]. So, P1 =
q 1
d2

1

, and P2 = q 1
d2

2

. Also, the mean value of a is

ā = q[ 1
d2

1

+ 1
d2

2

]. So, ā = q
d
2

1
+d

2

2

d2

1
d2

2

. Now, let us express

the variance of this vector.

V ar(a) =
1

2
((P1− ā)2 + (P2− ā)2), (3)

Now, substituting the expression for ā into (3),

V ar(a) =
1

2
((P1− q

d21 + d22
d21d

2
2

)2 + (P2− q
d21 + d22
d21d

2
2

)2)

(4)

Following a few algebraic simplification steps, and

considering the specials cases where v1 = 0, i.e., d21 =
h2 we arrive at

V ar(a) =
1

2

q2

2

[h4(−5)− h2(1− 6v2 − v4]

h8 − 2h6v2 − h4v4
(5)

Thus, it is evident that V ar(a) is inverse proportional

to h4. Therefore, the standard deviation, i.e., the square

root of the variance, is inverse proportional to the

height-squared h2. This result can be generalized for

an a vector corresponding to n PDs.
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