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Abstract
In addition to the exploration of more spec-

trum at high-frequency bands, next-generation 
wireless networks will witness an intelligent con-
vergence of radio frequency (RF) and non-RF 
links such as optical and visible light communi-
cation. Optical attocell (OAC) networks provide 
an additional layer to RF-based wireless networks 
with gigabit-per-second data transmission rate 
and centimeter-level location accuracy. How-
ever, the directionality, line-of-sight constraints, 
as well as strong sensitivity to the location and 
orientation of user terminals challenge the strin-
gent requirements for throughput and latency. In 
this article, we consider mobile heterogeneous 
networks (HetNets) incorporating indoor OAC 
with femtocells and macrocells to provide a low-
cost and energy-efficient solution. The HetNets 
solution satisfies diverse service requirements in 
terms of user-experienced data rate, mobility, 
latency, accuracy, and security in the Internet of 
Things. To support seamless connectivity and opti-
mal resource allocation in the proposed HetNets 
with mobility awareness, handover in dynamic 
environments needs to be addressed efficiently. 
Incorporating rich environmental parameters into 
such a decision making problem facilitates the 
self-optimization process, but extensively expands 
the state space. To achieve a fast convergence 
speed, a deep reinforcement learning approach 
is proposed to optimize the handover parame-
ters (e.g., time-to-trigger and hysteresis margin). 
This is a model-free and off-policy reinforcement 
setting that trains and employs a deep neural net-
work to predict future rewards for successions of 
states and actions. Thus, the optimal parameters 
are obtained by selecting the best actions to take. 
Through numerical simulation and performance 
analysis, we discover the gain from enriching the 
state space and the adaptability of the system to 
dynamic environments.

Introduction
The majority of mobile traffic is usually indoors, 
especially in urban deployments, which is difficult 
to serve from outdoor base stations and is more 
of a challenge due to the use of ultra-high-fre-
quency bands [1]. Ericsson recently reported that 
in a dense urban high-rise area, 37 percent of 
macro traffic was served to indoor mobile users 

during busy hours, indicating that in-building cell 
deployment could be increased to meet indoor 
mobile traffic demand. In exploring unused spec-
trum, optical attocell (OAC) is considered as a 
competitive non-radio frequency (RF) candidate 
for indoor wireless access [2] due to numerous 
advantages such as its dual-use nature, high ener-
gy efficiency, ubiquitous availability, and no inter-
ference to RF devices. Heterogeneous networks’ 
(HetNets’) [3] integration of non-RF OAC net-
works within RF-based femtocell and macrocell 
networks provides a low-cost and flexible solution 
to satisfy the specifications of user experienced 
data rate, mobility, and latency in the next-genera-
tion wireless network standards.

Vertical handover (VHO), referred to as auto-
matic fallover from one technology to another in 
order to maintain communication, is different for 
the cellular-WiFi pair compared to that for the cel-
lular-OAC pair. This is mainly caused by the direc-
tionality feature of OAC. Traditionally, two major 
handover parameters, time-to-trigger (TTT) and 
hysteresis margin (HM), are defined to decide 
whether and when the user device switches the 
connection from one cell to another. HM sets the 
threshold for the handover to start being consid-
ered and is used to avoid the ping-pong effect. 
TTT determines the observation duration for mea-
surement after HM is met. Only if a certain event 
condition is satisfied for longer than the TTT is the 
handover triggered. The received signal strength 
(RSS) from an RF cell, either cellular or WiFi, has 
a stable mean but a large deviation for an indoor 
mobile user [4]. Accordingly, HM and TTT are 
designed to mitigate the false positive rate result-
ing from the deviation. In contrast, the RSS from 
an OAC has a drastically changing mean but a 
stable deviation during the walk in-and-out. Such 
unique features of OAC motivate a new holistic 
strategy to control the handover parameters.

In this article, we study a self-optimizing mobile 
HetNet, as shown in Fig. 1, and focus on the han-
dover decision problem. The mobile user terminals 
(UTs) are located within the wireless coverage of 
an RF macrocell (e.g., cellular base station), an RF 
femtocell (e.g., WiFi access point), and optical atto-
cells. The RF macrocell offers the widest coverage, 
but is constrained by the scarce licensed frequen-
cy bands. The RF femtocell offloads part of the 
data traffic from the RF macrocell; however, this 
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compromises the quality of experience (QoE) sig-
nifi cantly when multiple UTs attempt to share the 
same spectrum resource. The OAC provides high-
speed wireless connectivity to local users, while the 
signal quality highly depends on the location and 
orientation of the UTs. The parameters (e.g, TTT 
and HM) controlling the handover among differ-
ent cells are updated regularly in a cloud server. 
The cloud server coordinates with the RF macro-
cell base station to periodically monitor the sig-
nal-to-interference-plus-noise ratio (SINR) of each 
mobile user and utilize the SINR feedback to 
optimize the handover parameters in a user-cen-
tric manner. To optimize the data off loading and 
resource allocation, the utilization of RF cell and 
OAC, the behavior and mobility pattern of user 
terminals, OAC deployment, and interference, 
the user preferences should be jointly analyzed, 
which requires massive iterations to reach a global 
optimum using traditional methods [5]. Moreover, 
the OACs are expected to satisfy the illumination 
requirements, the dynamics and uncertainty of 
which further complicate the problem.

Deep learning utilizes a neural network to 
handle complex and high-dimensional raw input 
data, and thereby can efficiently address the 
dynamics in the considered HetNets and avoid 
time-aggressive iterations of traditional mathe-
matical methods. Reinforcement learning typi-
cally models the problem as a Markov decision 
process (MDP), where an agent at every time 
step is in a state, takes an action, receives a 
reward, and transitions to the next state accord-
ing to environmental dynamics. The periodic 
updating process of handover parameters can 
be modeled as an MDP. Therefore, in this article, 
we utilize deep reinforcement learning (DRL) to 
optimize the handover decision making problem 
in a time-step-based manner. In particular, the 
online DRL is performed by directly measuring 
the QoE metrics (data rate, user speed, etc.) in 
each time step. In addition, offline DRL based 
on a fi xed simulating dataset generated from the 
SINR feedback will be leveraged to speed up the 
training process of a specific environment. For 
both online and off line DRL, the neural network 
is adopted to predict a function value that esti-
mates the future returns of taking action a from 
state s. Through the proposed DRL approach, 
we further discuss the existing challenges and 
future directions for self-optimizing mobile Het-
Nets. Thus, the contributions of this article can 
be summarized as follows:
• We discuss the limitations and developments 

of the emerging technologies that enable the 
self-optimization of mobile HetNets incor-
porating RF and non-RF links. Specifically, 
an overview of key technologies including 
mobile-assisted handover, user profi ling, and 
machine learning is presented.

• We analyze the handover decision making 
problem for the considered mobile HetNets. 
Then we propose a DRL-based data off load-
ing approach, which can improve the QoE 
considering the mobility dynamics and diff er-
ent communication conditions.

• We verify through extensive simulations the  
fast convergence rate and the adaptability 
to different environments of the proposed 
self-optimizing system.

lImItAtIons of current vHo ApproAcHes

cellulAr-wIfI HAndover Is dIfferent from 
cellulAr-oAc HAndover

The RSS from an RF cell does not increase or 
decrease sharply when the user crosses the cell. 
This is highly in contrast to the case in OAC. As 
shown in Fig. 2, the mobile user is walking in and 
out of an RF femtocell with an OAC located in 
the center. The RSS from the RF cell is maintained 
above a usable level for a relatively long period, 
while the non-zero RSS from the OAC may only 
last for several seconds. The diff erence indicates 
that if the cellular-WiFi handover strategy is direct-
ly applied to the cellular-OAC scenario, the UT 
will make frequent handover attempts to OAC; 
however, most of the attempts will end up fail-
ing since the mobile user walks out of the OAC 
before the handover is completed. The potential 
problems require us to rethink how to control the 
handover parameters such that the mobile user 
can take advantage of the ubiquitously deployed 
OACs and in the meantime keep the QoE above 
a satisfactory level. The diversity of QoE perfor-
mance under different user mobility is validated 
through an extensive case study in [3].

QuAsI-stAtIc networK selectIon
One of the state-of-the-art VHO approaches is 
the quasi-static network model-based access point 
(AP)-user association [6], where the channel char-
acteristics are assumed to be fixed in each coher-
ent and equal-length time slot. According to the 
channel quality feedback at time t, a centralized 
coordinator (CC) computes the best strategy based 
on a proposed algorithm. However, the AP-user 
association strategy starts having an eff ect at time t
+ t. The assumption working behind the quasi-static 
network model is that the UTs barely change their 

FIGURE 1. The considered self-optimizing mobile het-
erogeneous network.
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FIGURE 2. Diff erence in received signal strength when 
crossing a femtocell and an optical attocell.

RF macrocell

RSS(dB)

time(sec)

OAC
RF femtocell

Optical attocell

RF femtocell

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 29,2023 at 15:12:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • March/April 2022102

location or orientation within time t, which keeps 
the timeliness of the association strategy for time t. 
According to the experimental results in [4, Fig. 4a], 
if we measure the signal-to-noise ratio (SNR) varia-
tion in a walking in-and-out scenario of an OAC, at 
the steepest region, it takes only 10 ms for the SNR 
to change by 10 dB. As a result, it is highly possible 
that the strategy for time t will be outdated at time 
t + t in the mobile scenarios. Such outdated han-
dover decisions will lead to either severe data rate 
dropping or intermittent disconnection.

Immediate Handover from RF Cells to OAC
Another very recent VHO approach is to control 
the dwell time (i.e., the amount of time by which 
handover is delayed after event condition is met) 
from OAC to RF cells [7]. This approach assumes 
the UT immediately hands over from RF cells to 
OAC whenever it is in OAC coverage. Optimisti-
cally connecting to the OAC and only optimizing 
the dwell time from OAC to RF cells overlook 
the non-negligible time cost of the handover pro-
cess, which may end up with frequent discon-
nection. Although aggressively offloading data 
traffic from RF cells to OACs mitigates the con-
gestion in RF-based wireless networks, the con-
sequent user-experienced data rate and latency 
may be unacceptable even for a UT crossing the 
small-coverage OACs at a regular walking speed.

Key Technologies toward Self-Optimization
To enable self-optimization of mobile HetNets, we 
consider optimizing the handover strategies within 
each OAC in a centralized way while leaving the 
AP-user association to predefined handover trigger-
ing conditions. The optimal handover parameters 
are customized based on the classified type of user 
mobility and behavior toward self-optimization.

Mobile Assisted Handover
Handover can be classified based on the hando-
ver techniques used. Broadly, they can be classi-
fied into three types: network controlled handover 
(NCHO), mobile controlled handover (MCHO), 
and mobile assisted handover (MAHO). In NCHO, 
the network makes a handover decision based on 
the measurements of UTs at several APs. Informa-
tion about the channel quality for all the UTs is 
available at a single point in the network that facili-
tates resource allocation. In MCHO, each UT takes 
complete control of the handover decision pro-
cess. By measuring the RSS from surrounding APs, 
the UT initiates the handover when the RSS of the 
serving AP is worse than that of the target AP by a 
certain threshold. The fully decentralized handover 
control overlooks the network conditions and will 
severely degrade QoE with a large number of Inter-
net of Things (IoT) devices. In MAHO, instead of 
the network making the measurements, the mobile 
UT collects the measurements, usually in the form 
of SINR, RSS, bit error rate, and so on, and sends 
them to the network to make a handover decision 
[8]. MAHO allows the considered mobile HetNets 

to self-optimize the handover strategies based on 
the best knowledge of the QoE of each UT.

User Profiling
An indoor mobile user exhibits similar mobility 
patterns, behaviors, and activities in daily work 
and life [3], especially in public places such as 
office buildings, hospitals, enterprises, schools, 
and so on. Grouping the user mobility informa-
tion into profiles is of interest to the network. For 
instance, the users have a greater tendency to 
consume a video service when they are static, 
and the network would like to offload their traffic 
to OACs as much as possible. In contrast, when 
the users are in high mobility, they rather prefer 
video streaming, and the network may want to 
lower their chance to be switched to OACs. Such 
classifications help the correct estimation of user 
speed, providing important information about the 
consumption of network resources by the user 
and his/her mobility. The cognition of speed will 
then help the network operator to perform online 
network resource and handover optimization 
according to speed profiles [9].

Machine Learning
Machine learning (ML) models have been applied 
to a wide spectrum of applications and achieved 
state-of-the-art performance. In a problem such as 
optimizing handover control, an ML approach is a 
promising technique as it can learn to optimize han-
dover based on observations and information from 
the environment. Along this line, RL and particu-
larly its DRL breed seems to be the best fit among 
ML models. This can be seen in several aspects. 
One aspect is alleviating the need for explicit 
system modeling. The importance of this allevia-
tion is expected to be more strongly pronounced 
in future heterogeneous wireless networks with 
increased system complexity. Moreover, DRL 
allows for accommodating additional user and sys-
tem information to further guide the optimization 
process. This is due to its ability to handle high-di-
mensional state spaces. This promises to achieve 
fast and efficient performance and better exploita-
tion of the available information about the system 
and the environment. With the anticipated surge of 
user types and mobility patterns in future networks, 
adaptivity and self-adjustment are key requirements 
in any handover mechanism.

System Model
To optimize data offloading in the considered 
mobile HetNets in a self-organized manner with 
context awareness, we propose a system frame-
work (Fig. 1) that is running a self-optimizing algo-
rithm in a CC that may reside in a cloud server to 
control the handover parameters of the RF fem-
tocells and OACs located under the coverage of 
the RF macrocell. We consider a control and user 
plane framework similar to the dual connectivity 
configuration proposed in [10]. However, we aim 
to self-optimize the handover parameters instead 
of heuristically adjusting them.

Typically, to design a handover policy, TTT and 
HM are set to appropriate values to lower the 
drop rate and the ping-pong rate. Nonetheless, 
since the line-of-sight signal is dominant in OAC, 
the value of SINR either increases or decreases 
monotonically when the UT crosses the OAC 

Although aggressively offloading data traffic from RF cells to OACs mitigates the congestion in RF-based 
wireless networks, the consequent user-experienced data rate and latency may be unacceptable even 

for a UT crossing the small-coverage OACs at a regular walking speed.
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edge. Accordingly, the value of HM, which is lev-
eraged to mitigate the ping-pong effect caused 
by the RSS fluctuation at the cell edge, is set to 
zero for the VHO from RF cell to OAC. Pertaining 
to handover control, the UT sends SINR reports 
of the potential serving cells periodically to the 
CC through RF macrocell uplink control signaling. 
Once the SINR reports meet a handover event 
condition, the TTT starts counting. If the event 
condition is satisfied until TTT counts to zero, the 
CC initiates the handover process by sending a 
Radio Resource Control (RRC) message [10] (i.e., 
shown in green) to the UT. By manipulating the 
value of TTT, the network adjusts the handover 
sensitivity to dynamic user mobility patterns.

The training process of TTT values is per-
formed in a time-step-based manner. A certain 
period of time, which can typically be set as a day 
due to the statistically repetitive user translational 
movement patterns, is divided into multiple equal-
length time steps, and the value of TTT is fixed 
in each time step duration. In order to enable 
refined optimization of the handover parameters 
and avoid sudden large changes, the value of TTT 
can only be increased or decreased by a single 
level in each time step. The training process has 
two forms: the online one directly measures the 
QoE metrics during the operation of the system, 
tunes the handover parameters, and updates the 
policy accordingly; while the offline one runs in 
the background by building a simulation envi-
ronment based on the SINR feedback collected 
during the system operation. The offline training 
significantly shortens the convergence time, which 
could be a challenge due to the lack of training 
samples if only the online form is adopted.

Problem Formulation
This work considers the problem of optimizing 
the TTT values for the handover between RF cells 
and OACs. The objective is to maximize the aver-
age user throughput over APs. The optimization 
is an adjustment of the TTT values based on their 
current values and the status of the environment 
characterized by certain observations. Such obser-
vations may include, for example, average user 
speed, the number of users, and their RSSI val-
ues. The next system state depends on the current 
state and the action taken to change such a state. 
In other words, the system has a Markov property. 
Therefore, one may cast the optimization prob-
lem as a Markov decision process (MDP). To this 

end, deep Q-learning (DQN) [11] is a reasonable 
solution framework that promises to accommo-
date high-dimensional state spaces.

DQN is a model-free and off-policy DRL meth-
od. Similar to other RL settings, DQN trains an 
agent based on states and rewards. Specifically, a 
DQN agent is a value-based RL agent that trains 
a deep neural network (DNN) referred to as the 
critic network. However, this critic network is 
trained to give an estimate of the long-run reward 
for each state-action pair. It is the deep charac-
teristic of this network that makes it possible to 
include high-dimensional state spaces.

Similar to other RL approaches, the DQN set-
ting works in two phases. First is a training phase 
where the DQN is trained over a set of episodes. 
The observed reward is used to update DNN using 
Bellman’s equation. During the training phase, 
the weights of DNN are adjusted such that for a 
given action-state input, the Q value is predicted. 
The next phase is an inference phase representing 
the runtime operation. DNN can still be updated 
through the experience it gets during the infer-
ence phase. The exploration-exploitation trade-off 
of DQN is controlled by the e-greedy approach, 
which is used as a probability threshold to either 
selecting an action at random or selecting it such 
that it maximizes the state-action value function.

Figure 3a shows a block diagram of the pro-
posed DQN system. The DQN agent located at 
the CC interacts with the environment by adjust-
ing the handover parameters (i.e., taking an 
action). The average throughput of RF and OAC 
users is estimated using the SINR feedback and 
regarded as the reward. After that, the informa-
tion is used to update the critic DNN network.

The State-Space
Each state is a tuple composed of the TTT values, 
the user’s speed, and the number of users. This 
information is readily available at the CC at no 
additional cost. One can think of incorporating 
other information/observations about the users or 
the environment once possible. This is expected 
to lead to more fine-grained state definitions and 
eventually better performance.

The Action Space
Actions are taken to adjust the handover param-
eters. This work assumes a set of predefined TTT 
values and each action corresponds to either 
increasing or decreasing one or two of the TTT 

FIGURE 3. a) The proposed system’s block diagram; b) the DNN’s layer diagram. Q denotes the eventual 
reward value.
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parameters by one step.1 Hence these values will 
not exhibit abrupt changes. Thus, the action space 
is a discrete space and the role of the agent is to 
choose the best action. Still, one may additionally 
adopt a policy-based RL strategy whereby actions 
can be learned from the RL framework, rather 
than chosen from a predefined set.

The Reward Function
The reward function adopted in this work is the 
average throughput per user, across RF and OAC 
APs, as suggested in [3]. Technically, the through-
put is obtained as a function of the SINR which is 
regularly being monitored at the CC.

DNN Configurations
A layer diagram of the adopted critic DNN struc-
ture is depicted in Fig. 3b. The critic DNN receives 
the state tuple as an input and outputs the expect-
ed cumulative long-term reward (Q-value) when 
the corresponding discrete action is taken. There-
fore, the critic DNN used is composed of a fea-
ture input layer having the same size as the state 
dimension. This is followed by hidden layers: two 
stages of fully connected layers followed by recti-
fied linear unit (ReLu) activation functions. Even-
tually, it is terminated by a fully connected output 
layer having the same dimension of the action 
space.2 This approach of having all Q-values cal-
culated with one pass through the network avoids 
having to run the network individually for every 
action and helps to increase speed significantly. 
Note that the DNN architecture is a generic one, 
and many others can be used.

Optimizers used in the training of DL models 
require independent and identically distributed 
data for their convergence. However, this is not 
the case with RL as states and their rewards and 
actions are correlated across time. Thus, naive-
ly training the DNN with sampled data results in 
oscillations and possible divergence in its training. 
To this end, a remedy to this problem is the advent 
of experience replay. In this setting, one continu-
ously samples observations and rewards from the 
environment and stores them in a so-called expe-
rience buffer. Then the DNN is updated by a mini-
batch of randomly selected data points from the 

experience buffer. In addition to breaking harmful 
correlations, experience replay allows learning 
more information from individual tuples multiple 
times, recalls rare occurrences, and in general 
makes better use of experiences.

Numerical Results and Performance Analysis
The performance of the proposed DQN-based 
handover control algorithm is characterized by 
its convergence rate and converged value. Sim-
ulations are conducted in MATLAB and Simulink 
2021. Simulink is used to simulate the mobile user 
environment. Table 1 lists key simulation parame-
ters and their chosen values. More specifically, we 
use a system composed of one RF AP3 and four 
OAC APs. Each OAC AP has a coverage radius of 
2 m. All OAC APs are uniformly disposed in the 
coverage area of the RF AP. In each time step, 
the average user speed and number of users are 
Gaussian functions of time, where the user speed 
is low and the number of users is high at midday. 
There is a total of 16 candidate values in [0, 5.12] 
s for each TTT value set according to [12]. This 
simulation considers the number of time steps per 
episode to be 48, and the duration of each time 
step is half an hour. The simulation results indicate 
the time cost of the offline training parallel to the 
online training during the system operation.

During training, the agent randomly selects a 
mini-batch of 200 data points from an experience 
buffer of 104 training samples. We set the initial 
value of e to 0.3, the minimum value of e  to 
0.01, and the e decay rate to 0.001. The DNN 
architecture has an input layer of 9 neurons, fol-
lowed by two fully connected hidden layers of 12 
and 48 neurons, respectively. The model is termi-
nated by an output layer of 9 neurons.

The learning reward convergence of the pro-
posed algorithm is evaluated in two simulations. 
In the first simulation, we evaluate the conver-
gence performance with different state-space 
dimensions. In the second simulation, we evaluate 
the adaptation capability to different operational 
environments and conditions. The results are aver-
aged over 10 trials to have statistical significance.

The results of the first simulation are present-
ed in Fig. 4a, which shows the convergence for 
three state-space settings. First is a two-dimen-
sional (2D) setting where a state is composed of 
the two TTT values only. Second is a three-dimen-
sional (3D) setting where a state is a concatena-
tion of the TTT values, and one observation that is 
the average user speed. Similarly, the third setting 
is four-dimensional (4D), where each state is a 
concatenation of the two TTT values, the average 
user speed, and the user bandwidth.

Several observations can be made in view of 
Fig. 4a. First, it is clearly evident that DQN can 
learn in a small number of episodes. This agrees 
with the intuition that the use of DNN is expected 
to enhance the speed of convergence. More spe-
cifically, the 2D case converges in around 20 iter-
ations. Next is the 3D case in around 35 iterations, 
and then the 4D case in around the same number 
of iterations. The results are intuitively sound in 
the sense that higher-dimension state space corre-
sponds to higher computational burdens despite 
promising better optimization. Second, the added 
benefit of increasing the dimension of state space 
is seen in converging to higher terminal values 

TABLE 1. Values of the main simulation parameters.

Parameter Value

OAC coverage radius 1.5 m

TTT range [0, 5.12] s

Number of time steps/episode 48

Initial e 0.3

Minimum e 0.001

e-decay 0.001

Number of episodes 100

Initial state [0, 5.12] s 

Number of OAC APs 4

Number of RF APs 1

Experience buffer length 10000 samples

Mini-batch size 200

1 We assume actions of incre-
menting or decrementing the 
values of TTT by one step.

2 Because the action space 
is discrete, the output corre-
sponds to this space.

3 Incorporating more RF APs 
does not incur substantial 
changes to the proposed 
approach since the RF AP with 
the strongest SINR for each 
OAC is mostly determined. 
The evaluation of the impact 
of “more than one RF AP” on 
the convergence rate is con-
sidered as our future work.
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albeit after a few more iterations. This observa-
tion is consistently correct as one moves from the 
2D to 4D settings. In conclusion, one can clearly 
see the added benefi t of using more fi ne-grained 
states. Essentially, each dimension corresponds to 
a certain measurement or knowledge about the 
system. To this end, the DQN framework allows 
one to afford high-dimensional state spaces effi-
ciently and seamlessly.

To quantitatively study the execution time of the 
proposed algorithm, we average execution time 
over 10 trials for 100 episodes. The tic-toc function 
in MATLAB 2021-a is run on a Dell OPTIPLEX work-
station with Intel Core i7 (8-core and 3.81 GHz) and 
8 GB RAM. The 2D, 3D, and 4D cases take 159.39, 
161.58, and 161.83 s to fi nish, respectively.

The second simulation considers diff erent envi-
ronmental settings, including mobility pattern and 
number of OAC APs. In this work, we adopt two 
mobility patterns: a straight-line pattern and a zig-
zag pattern where the user performs an orthogo-
nal turn after a certain travel distance.

In particular, we compare the convergence per-
formance as exposed to the following four settings:
• Env. 1: Two OAC APs, straight-line pattern
• Env. 2: Three OAC APs, straight-line pattern
• Env. 3: Three OAC APs, zigzag pattern
• Env. 4: Four OAC APs, zigzag pattern.

In view of Fig. 4b, the average reward is higher 
for simpler mobility patterns. We also observe 
that adding more OAC APs does not necessar-
ily enhance the reward. The reason is that the 
increased complexity of handover decision mak-
ing may reduce the average throughput experi-
enced by each user. Overall, the simulation results 
validate that the proposed DQN algorithm can 
converge fast and adapt to different environ-
ments. This is a key requirement for future com-
munication networks where systems are expected 
to be strongly dynamic and changing.

Finally, we compare our proposed scheme 
to two state-of-the-art approaches, namely qua-
si-static (QS) [6] and immediate handover (IH) 
[7] schemes, under Env. 2 and Env. 3 settings. We 
compare the three schemes in terms of average 

Th and average number of handover operations 
(NHO) per user. As shown in Fig. 5, our proposed 
scheme outperforms QS and IH due to the reduc-
tion of unnecessary handover operations.

conclusIon And future worK
In this article, we study the next generation mobile 
wireless HetNet and consider optimizing the data off -
loading policy. We introduce the diff erence between 
inter-RF cells handover and the handover between 
RF cells and OACs. We highlight the limitations 
of the current VHO approaches and the develop-
ments of emerging technologies toward self-optimi-
zation. Then we discuss how the technologies are 
integrated into the system model. We formulate a 
handover parameter optimization problem and pro-
pose a DRL-based off loading strategy. The simulation 
results validate that the system adapts to dynamic 
environments with a fast convergence rate, which is 

FIGURE 4. Average reward vs. episode for 10 trails with a) diff erent state space dimensions; b) diff erent oper-
ation environments. For a), the 95 percent confi dence intervals are [61.19, 64.34] Mb/s, [66.63, 69.83] 
Mb/s, and [68.05, 71.19] Mb/s, respectively for the 2D, 3D and 4D settings. For b), the 95 percent 
confi dence intervals of the Env. 1 through Env. 4 are [103.44, 104.97] Mb/s, [85.77, 88.54] Mb/s, 
[66.00, 69.70] Mb/s, and [61.25, 63.29] Mb/s, respectively.
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FIGURE 5. Performance comparison of the proposed approach vs. quasi-static 
(QS) and immediate handover (IH) schemes, compared in terms of average 
throughput (Th) on the left vertical axis, and average number of handovers 
(NHO) per user on the vertical right axis, under Env. 2 and Env. 3 settings.

Env. 2-Th Env. 3-Th Env. 2-NHO Env. 3-NHO
0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

0

2

4

6

8

10

12

14

A
ve

ra
ge

 N
H

O

QS
IH
Prop.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 29,2023 at 15:12:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • March/April 2022106

an essential feature of network self-optimization. As 
our future work, we will incorporate more realistic 
mobility models in the simulation, such as detailed 
models tailored for specific scenarios and real trace 
models. We will also study the integration of multiple 
access technologies in the reward function design 
[13], channel aggregation and load balancing among 
different links [14], and secure data transmission 
using the narrow-interception-range OAC links [15].

Acknowledgment
This work was supported by NSF grants OIA-
1757207 and CNS-1647170.

References 
[1] Ericsson, “Planning In-Building Coverage for 5G: From Rules 

of Thumb to Statistics and AI”; https://www.ericsson.com/
en/mobility-report/articles/indoor-outdoor. 

[2] W. Saad et al., “A Vision of 6G Wireless Systems: Applica-
tions, Trends, Technologies, and Open Research Problems,” 
IEEE Network, vol. 34, no. 3, May/June 2019, pp. 134–42. 

[3] S. Shao et al., “Optimizing Handover Parameters by Q-Learn-
ing for Heterogeneous Radio-Optical Networks,” IEEE Pho-
tonics J., vol. 12, no. 1, 2020. 

[4] J. Zhang et al., “Dancing with Light: Predictive In-Frame Rate 
Selection for Visible Light Networks,” Proc. IEEE INFOCOM, 
2015, pp. 2434–42. 

[5] S. Shao et al., “Joint Link Scheduling and Brightness Control 
for Greening VLC-Based Indoor Access Networks,” J. Opti-
cal Commun. Networking, vol. 8, no. 3, 2016, pp.148–61. 

[6] T. M. Duong and S. Kwon, “Vertical Handover Analysis for 
Randomly Deployed Small Cells in Heterogeneous Net-
works,” IEEE Trans. Wireless Commun., vol. 19, no. 4, 2020, 
pp. 2282–92. 

[7] A. Zeshan and T. Baykas, “Location Aware Vertical Hando-
ver in a VLC/WLAN Hybrid Network,” IEEE Access, vol.9, 
2021, pp. 129,810–19. 

[8] L. Jiao et al., “Enabling Efficient Blockage-Aware Handover in 
RIS-Assisted mmWave Cellular Networks,” IEEE Trans. Wire-
less Commun., vol. 21, no. 4, 2022, pp. 2243–57. 

[9] I. Saffar et al., “Deep Learning Based Speed Profiling for 
Mobile Users in 5G Cellular Networks,” Proc. IEEE GLOBE-

COM, 2019, pp. 1–7. 
[10] M. Polese et al., “Improved Handover Through Dual Con-

nectivity in 5G mmWave Mobile Networks,” IEEE JSAC, vol. 
35, no. 9, 2017, pp. 2069–84. 

[11] V. Mnih et al., “Human-Level Control Through Deep Rein-
forcement Learning,” Nature, vol. 518, no. 7540, 2015, pp. 
529–33. 

[12] T. ETSI, 136 331 v13. 0.0 (Jan. 2016) LTE, “Evolved Uni-
versal Terrestrial Radio Access (E-UTRA),” Jan. 2016, pp. 
2016–670. 

[13] A. Farhadi Zavleh and H. Bakhshi, “Resource Allocation in 
Sparse Code Multiple Access-Based Systems for Cloud-Ra-
dio Access Network in 5G Networks,” Trans. Emerging Tele-
commun. Technologies, vol. 32, no. 1, 2021, p. e4153. 

[14] Y. Li et al., “Deep Reinforcement Learning for Dynamic 
Spectrum Sensing and Aggregation in Multi-Channel Wire-
less Networks,” IEEE Trans. Cognitive Commun. Networking, 
vol. 6, no. 2, 2020, pp. 464–75. 

[15] G. Pan et al., “Secure Cooperative Hybrid VLC-RF Sys-
tems,” IEEE Trans. Wireless Commun., vol. 19, no. 11, 2020, 
pp. 7097–7107.

Biographies
SIhua Shao [M’18] (sihua.shao@nmt.edu) received his Ph.D. 
degree and the Hashimoto Prize for best doctoral dissertation 
from the New Jersey Institute of Technology in 2018. Currently, 
he is an assistant professor with the Department of Electrical 
Engineering at New Mexico Tech. His research interests include 
wireless communication and wireless networks.

Mahmoud Nazzal [S’14] (mn69@njit.edu) received his Ph.D. 
degree from Eastern Mediterranean University in 2015. He is 
currently a Ph.D. student with the Department of Electrical and 
Computer Engineering at New Jersey Institute of Technology. 
His research interests include sparse coding, machine learning, 
and signal processing for wireless communication.

Abdallah KhrEIshah [S’07, M’11, SM’18] (abdallah@njit.edu) 
received his Ph.D. degree from Purdue University in 2010. 
He is currently an associate professor with the Department of 
Electrical and Computer Engineering at New Jersey Institute 
of Technology. His research spans wireless networks, visible 
light communication, congestion control, edge computing, and 
network security.

Moussa Ayyash [SM’12] (msma@ieee.org) is currently a pro-
fessor of computing at Chicago State University. His current 
research interests span digital and data communication, wireless 
networking, visible light communication, network security, and 
machine learning. He is a recipient of the 2018 Best Survey 
Paper Award from IEEE Communications Society.

The simulation results validate that the system adapts to dynamic environments with a fast conver-
gence rate, which is an essential feature of network self-optimization.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 29,2023 at 15:12:34 UTC from IEEE Xplore.  Restrictions apply. 


