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ABSTRACT

In addition to the exploration of more spec-
trum at high-frequency bands, next-generation
wireless networks will witness an intelligent con-
vergence of radio frequency (RF) and non-RF
links such as optical and visible light communi-
cation. Optical attocell (OAC) networks provide
an additional layer to RF-based wireless networks
with gigabit-per-second data transmission rate
and centimeter-level location accuracy. How-
ever, the directionality, line-of-sight constraints,
as well as strong sensitivity to the location and
orientation of user terminals challenge the strin-
gent requirements for throughput and latency. In
this article, we consider mobile heterogeneous
networks (HetNets) incorporating indoor OAC
with femtocells and macrocells to provide a low-
cost and energy-efficient solution. The HetNets
solution satisfies diverse service requirements in
terms of user-experienced data rate, mobility,
latency, accuracy, and security in the Internet of
Things. To support seamless connectivity and opti-
mal resource allocation in the proposed HetNets
with mobility awareness, handover in dynamic
environments needs to be addressed efficiently.
Incorporating rich environmental parameters into
such a decision making problem facilitates the
self-optimization process, but extensively expands
the state space. To achieve a fast convergence
speed, a deep reinforcement learning approach
is proposed to optimize the handover parame-
ters (e.g., time-to-trigger and hysteresis margin).
This is a model-free and off-policy reinforcement
setting that trains and employs a deep neural net-
work to predict future rewards for successions of
states and actions. Thus, the optimal parameters
are obtained by selecting the best actions to take.
Through numerical simulation and performance
analysis, we discover the gain from enriching the
state space and the adaptability of the system to
dynamic environments.

INTRODUCTION

The majority of mobile traffic is usually indoors,
especially in urban deployments, which is difficult
to serve from outdoor base stations and is more
of a challenge due to the use of ultra-high-fre-
quency bands [1]. Ericsson recently reported that
in a dense urban high-rise area, 37 percent of
macro traffic was served to indoor mobile users

during busy hours, indicating that in-building cell
deployment could be increased to meet indoor
mobile traffic demand. In exploring unused spec-
trum, optical attocell (OAC) is considered as a
competitive non-radio frequency (RF) candidate
for indoor wireless access [2] due to numerous
advantages such as its dual-use nature, high ener-
gy efficiency, ubiquitous availability, and no inter-
ference to RF devices. Heterogeneous networks’
(HetNets’) [3] integration of non-RF OAC net-
works within RF-based femtocell and macrocell
networks provides a low-cost and flexible solution
to satisfy the specifications of user experienced
data rate, mobility, and latency in the next-genera-
tion wireless network standards.

Vertical handover (VHO), referred to as auto-
matic fallover from one technology to another in
order to maintain communication, is different for
the cellular-WiFi pair compared to that for the cel-
lular-OAC pair. This is mainly caused by the direc-
tionality feature of OAC. Traditionally, two major
handover parameters, time-to-trigger (TTT) and
hysteresis margin (HM), are defined to decide
whether and when the user device switches the
connection from one cell to another. HM sets the
threshold for the handover to start being consid-
ered and is used to avoid the ping-pong effect.
TTT determines the observation duration for mea-
surement after HM is met. Only if a certain event
condition is satisfied for longer than the TTT is the
handover triggered. The received signal strength
(RSS) from an RF cell, either cellular or WiFi, has
a stable mean but a large deviation for an indoor
mobile user [4]. Accordingly, HM and TTT are
designed to mitigate the false positive rate result-
ing from the deviation. In contrast, the RSS from
an OAC has a drastically changing mean but a
stable deviation during the walk in-and-out. Such
unique features of OAC motivate a new holistic
strategy to control the handover parameters.

In this article, we study a self-optimizing mobile
HetNet, as shown in Fig. 1, and focus on the han-
dover decision problem. The mobile user terminals
(UTs) are located within the wireless coverage of
an RF macrocell (e.g., cellular base station), an RF
femtocell (e.g., WiFi access point), and optical atto-
cells. The RF macrocell offers the widest coverage,
but is constrained by the scarce licensed frequen-
cy bands. The RF femtocell offloads part of the
data traffic from the RF macrocell; however, this
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compromises the quality of experience (QoE) sig-
nificantly when multiple UTs attempt to share the
same spectrum resource. The OAC provides high-
speed wireless connectivity to local users, while the
signal quality highly depends on the location and
orientation of the UTs. The parameters (e.g, TTT
and HM) controlling the handover among differ-
ent cells are updated regularly in a cloud server.
The cloud server coordinates with the RF macro-
cell base station to periodically monitor the sig-
nal-to-interference-plus-noise ratio (SINR) of each
mobile user and utilize the SINR feedback to
optimize the handover parameters in a user-cen-
tric manner. To optimize the data offloading and
resource allocation, the utilization of RF cell and
OAC, the behavior and mobility pattern of user
terminals, OAC deployment, and interference,
the user preferences should be jointly analyzed,
which requires massive iterations to reach a global
optimum using traditional methods [5]. Moreover,
the OACs are expected to satisfy the illumination
requirements, the dynamics and uncertainty of
which further complicate the problem.

Deep learning utilizes a neural network to
handle complex and high-dimensional raw input
data, and thereby can efficiently address the
dynamics in the considered HetNets and avoid
time-aggressive iterations of traditional mathe-
matical methods. Reinforcement learning typi-
cally models the problem as a Markov decision
process (MDP), where an agent at every time
step is in a state, takes an action, receives a
reward, and transitions to the next state accord-
ing to environmental dynamics. The periodic
updating process of handover parameters can
be modeled as an MDP. Therefore, in this article,
we utilize deep reinforcement learning (DRL) to
optimize the handover decision making problem
in a time-step-based manner. In particular, the
online DRL is performed by directly measuring
the QoE metrics (data rate, user speed, etc.) in
each time step. In addition, offline DRL based
on a fixed simulating dataset generated from the
SINR feedback will be leveraged to speed up the
training process of a specific environment. For
both online and offline DRL, the neural network
is adopted to predict a function value that esti-
mates the future returns of taking action a from
state s. Through the proposed DRL approach,
we further discuss the existing challenges and
future directions for self-optimizing mobile Het-
Nets. Thus, the contributions of this article can
be summarized as follows:

+ We discuss the limitations and developments
of the emerging technologies that enable the
self-optimization of mobile HetNets incor-
porating RF and non-RF links. Specifically,
an overview of key technologies including
mobile-assisted handover, user profiling, and
machine learning is presented.

+ We analyze the handover decision making
problem for the considered mobile HetNets.
Then we propose a DRL-based data offload-
ing approach, which can improve the QoE
considering the mobility dynamics and differ-
ent communication conditions.

+ We verify through extensive simulations the
fast convergence rate and the adaptability
to different environments of the proposed
self-optimizing system.
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LIMITATIONS OF CURRENT VHO APPROACHES

CELLULAR-WIFI HANDOVER IS DIFFERENT FROM
CELLULAR-OAC HANDOVER

The RSS from an RF cell does not increase or
decrease sharply when the user crosses the cell.
This is highly in contrast to the case in OAC. As
shown in Fig. 2, the mobile user is walking in and
out of an RF femtocell with an OAC located in
the center. The RSS from the RF cell is maintained
above a usable level for a relatively long period,
while the non-zero RSS from the OAC may only
last for several seconds. The difference indicates
that if the cellular-WiFi handover strategy is direct-
ly applied to the cellular-OAC scenario, the UT
will make frequent handover attempts to OAC;
however, most of the attempts will end up fail-
ing since the mobile user walks out of the OAC
before the handover is completed. The potential
problems require us to rethink how to control the
handover parameters such that the mobile user
can take advantage of the ubiquitously deployed
OAGCs and in the meantime keep the QoE above
a satisfactory level. The diversity of QoE perfor-
mance under different user mobility is validated
through an extensive case study in [3].

QUASI-STATIC NETWORK SELECTION

One of the state-of-the-art VHO approaches is
the quasi-static network model-based access point
(AP)-user association [6], where the channel char-
acteristics are assumed to be fixed in each coher-
ent and equal-length time slot. According to the
channel quality feedback at time t, a centralized
coordinator (CC) computes the best strategy based
on a proposed algorithm. However, the AP-user
association strategy starts having an effect at time t
+ 1. The assumption working behind the quasi-static
network model is that the UTs barely change their
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to self-optimize the handover strategies based on
Although aggressively offloading data traffic from RF cells to OACs mitigates the congestion in RF-based the best knowledge of the QoE of each UT.

wireless networks, the consequent user-experienced data rate and latency may be unacceptable even USER PROFILING

for a UT crossing the small-coverage OACs at a regular walking speed.

location or orientation within time t, which keeps
the timeliness of the association strategy for time t.
According to the experimental results in [4, Fig. 4al,
if we measure the signal-to-noise ratio (SNR) varia-
tion in a walking in-and-out scenario of an OAC, at
the steepest region, it takes only 10 ms for the SNR
to change by 10 dB. As a result, it is highly possible
that the strategy for time t will be outdated at time
t + 7 in the mobile scenarios. Such outdated han-
dover decisions will lead to either severe data rate
dropping or intermittent disconnection.

[MMEDIATE HANDOVER FROM RF CELLS T0 OAC

Another very recent VHO approach is to control
the dwell time (i.e., the amount of time by which
handover is delayed after event condition is met)
from OAC to RF cells [7]. This approach assumes
the UT immediately hands over from RF cells to
OAC whenever it is in OAC coverage. Optimisti-
cally connecting to the OAC and only optimizing
the dwell time from OAC to RF cells overlook
the non-negligible time cost of the handover pro-
cess, which may end up with frequent discon-
nection. Although aggressively offloading data
traffic from RF cells to OACs mitigates the con-
gestion in RF-based wireless networks, the con-
sequent user-experienced data rate and latency
may be unacceptable even for a UT crossing the
small-coverage OACs at a regular walking speed.

KEY TECHNOLOGIES TOWARD SELF-OPTIMIZATION

To enable self-optimization of mobile HetNets, we
consider optimizing the handover strategies within
each OAC in a centralized way while leaving the
AP-user association to predefined handover trigger-
ing conditions. The optimal handover parameters
are customized based on the classified type of user
mobility and behavior toward self-optimization.

MOBILE ASSISTED HANDOVER

Handover can be classified based on the hando-
ver techniques used. Broadly, they can be classi-
fied into three types: network controlled handover
(NCHO), mobile controlled handover (MCHO),
and mobile assisted handover (MAHO). In NCHO,
the network makes a handover decision based on
the measurements of UTs at several APs. Informa-
tion about the channel quality for all the UTs is
available at a single point in the network that facili-
tates resource allocation. In MCHO, each UT takes
complete control of the handover decision pro-
cess. By measuring the RSS from surrounding APs,
the UT initiates the handover when the RSS of the
serving AP is worse than that of the target AP by a
certain threshold. The fully decentralized handover
control overlooks the network conditions and will
severely degrade QoE with a large number of Inter-
net of Things (loT) devices. In MAHO, instead of
the network making the measurements, the mobile
UT collects the measurements, usually in the form
of SINR, RSS, bit error rate, and so on, and sends
them to the network to make a handover decision
[8]. MAHO allows the considered mobile HetNets

An indoor mobile user exhibits similar mobility
patterns, behaviors, and activities in daily work
and life [3], especially in public places such as
office buildings, hospitals, enterprises, schools,
and so on. Grouping the user mobility informa-
tion into profiles is of interest to the network. For
instance, the users have a greater tendency to
consume a video service when they are static,
and the network would like to offload their traffic
to OACs as much as possible. In contrast, when
the users are in high mobility, they rather prefer
video streaming, and the network may want to
lower their chance to be switched to OACs. Such
classifications help the correct estimation of user
speed, providing important information about the
consumption of network resources by the user
and his/her mobility. The cognition of speed will
then help the network operator to perform online
network resource and handover optimization
according to speed profiles [9].

MACHINE LEARNING

Machine learning (ML) models have been applied
to a wide spectrum of applications and achieved
state-of-the-art performance. In a problem such as
optimizing handover control, an ML approach is a
promising technique as it can learn to optimize han-
dover based on observations and information from
the environment. Along this line, RL and particu-
larly its DRL breed seems to be the best fit among
ML models. This can be seen in several aspects.
One aspect is alleviating the need for explicit
system modeling. The importance of this allevia-
tion is expected to be more strongly pronounced
in future heterogeneous wireless networks with
increased system complexity. Moreover, DRL
allows for accommodating additional user and sys-
tem information to further guide the optimization
process. This is due to its ability to handle high-di-
mensional state spaces. This promises to achieve
fast and efficient performance and better exploita-
tion of the available information about the system
and the environment. With the anticipated surge of
user types and mobility patterns in future networks,
adaptivity and self-adjustment are key requirements
in any handover mechanism.

SYSTEM MODEL

To optimize data offloading in the considered
mobile HetNets in a self-organized manner with
context awareness, we propose a system frame-
work (Fig. 1) that is running a self-optimizing algo-
rithm in a CC that may reside in a cloud server to
control the handover parameters of the RF fem-
tocells and OACs located under the coverage of
the RF macrocell. We consider a control and user
plane framework similar to the dual connectivity
configuration proposed in [10]. However, we aim
to self-optimize the handover parameters instead
of heuristically adjusting them.

Typically, to design a handover policy, TTT and
HM are set to appropriate values to lower the
drop rate and the ping-pong rate. Nonetheless,
since the line-of-sight signal is dominant in OAC,
the value of SINR either increases or decreases
monotonically when the UT crosses the OAC
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FIGURE 3. a) The proposed system’s block diagram; b) the DNN's layer diagram. Q denotes the eventual

reward value.

edge. Accordingly, the value of HM, which is lev-
eraged to mitigate the ping-pong effect caused
by the RSS fluctuation at the cell edge, is set to
zero for the VHO from RF cell to OAC. Pertaining
to handover control, the UT sends SINR reports
of the potential serving cells periodically to the
CC through RF macrocell uplink control signaling.
Once the SINR reports meet a handover event
condition, the TTT starts counting. If the event
condition is satisfied until TTT counts to zero, the
CC initiates the handover process by sending a
Radio Resource Control (RRC) message [10] (i.e.,
shown in green) to the UT. By manipulating the
value of TTT, the network adjusts the handover
sensitivity to dynamic user mobility patterns.

The training process of TTT values is per-
formed in a time-step-based manner. A certain
period of time, which can typically be set as a day
due to the statistically repetitive user translational
movement patterns, is divided into multiple equal-
length time steps, and the value of TTT is fixed
in each time step duration. In order to enable
refined optimization of the handover parameters
and avoid sudden large changes, the value of TTT
can only be increased or decreased by a single
level in each time step. The training process has
two forms: the online one directly measures the
QoE metrics during the operation of the system,
tunes the handover parameters, and updates the
policy accordingly; while the offline one runs in
the background by building a simulation envi-
ronment based on the SINR feedback collected
during the system operation. The offline training
significantly shortens the convergence time, which
could be a challenge due to the lack of training
samples if only the online form is adopted.

PROBLEM FORMULATION

This work considers the problem of optimizing
the TTT values for the handover between RF cells
and OACs. The objective is to maximize the aver-
age user throughput over APs. The optimization
is an adjustment of the TTT values based on their
current values and the status of the environment
characterized by certain observations. Such obser-
vations may include, for example, average user
speed, the number of users, and their RSSI val-
ues. The next system state depends on the current
state and the action taken to change such a state.
In other words, the system has a Markov property.
Therefore, one may cast the optimization prob-
lem as a Markov decision process (MDP). To this

end, deep Q-learning (DQN) [11] is a reasonable
solution framework that promises to accommo-
date high-dimensional state spaces.

DQN is a model-free and off-policy DRL meth-
od. Similar to other RL settings, DQN trains an
agent based on states and rewards. Specifically, a
DQN agent is a value-based RL agent that trains
a deep neural network (DNN) referred to as the
critic network. However, this critic network is
trained to give an estimate of the long-run reward
for each state-action pair. It is the deep charac-
teristic of this network that makes it possible to
include high-dimensional state spaces.

Similar to other RL approaches, the DQN set-
ting works in two phases. First is a training phase
where the DQN is trained over a set of episodes.
The observed reward is used to update DNN using
Bellman’s equation. During the training phase,
the weights of DNN are adjusted such that for a
given action-state input, the Q value is predicted.
The next phase is an inference phase representing
the runtime operation. DNN can still be updated
through the experience it gets during the infer-
ence phase. The exploration-exploitation trade-off
of DQN is controlled by the g-greedy approach,
which is used as a probability threshold to either
selecting an action at random or selecting it such
that it maximizes the state-action value function.

Figure 3a shows a block diagram of the pro-
posed DQN system. The DQN agent located at
the CC interacts with the environment by adjust-
ing the handover parameters (i.e., taking an
action). The average throughput of RF and OAC
users is estimated using the SINR feedback and
regarded as the reward. After that, the informa-
tion is used to update the critic DNN network.

THE STATE-SPACE

Each state is a tuple composed of the TTT values,
the user’s speed, and the number of users. This
information is readily available at the CC at no
additional cost. One can think of incorporating
other information/observations about the users or
the environment once possible. This is expected
to lead to more fine-grained state definitions and
eventually better performance.

THE ACTION SPACE

Actions are taken to adjust the handover param-
eters. This work assumes a set of predefined TTT
values and each action corresponds to either
increasing or decreasing one or two of the TTT
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1 We assume actions of incre-
menting or decrementing the
values of by one step.

2 Because the action space
is discrete, the output corre-
sponds to this space.

3 Incorporating more RF APs
does not incur substantial
changes to the proposed
approach since the RF AP with
the strongest SINR for each
OAC is mostly determined.
The evaluation of the impact
of “more than one RF AP” on
the convergence rate is con-
sidered as our future work.

Parameter Value
0AC coverage radius 15m
TTT range [0,512]s
Number of time steps/episode 48
Initial & 03
Minimum & 0.001
&-(decay 0.001
Number of episodes 100
Initial state [0,512]s
Number of AC APS 4

Number of RF APs 1

Experience buffer length 10000 samples

Mini-batch size 200

TABLE1. Values of the main simulation parameters.

parameters by one step.! Hence these values will
not exhibit abrupt changes. Thus, the action space
is a discrete space and the role of the agent is to
choose the best action. Still, one may additionally
adopt a policy-based RL strategy whereby actions
can be learned from the RL framework, rather
than chosen from a predefined set.

THE REWARD FUNCTION

The reward function adopted in this work is the
average throughput per user, across RF and OAC
APs, as suggested in [3]. Technically, the through-
put is obtained as a function of the SINR which is
regularly being monitored at the CC.

DNN CONFIGURATIONS

A layer diagram of the adopted critic DNN struc-
ture is depicted in Fig. 3b. The critic DNN receives
the state tuple as an input and outputs the expect-
ed cumulative long-term reward (Q-value) when
the corresponding discrete action is taken. There-
fore, the critic DNN used is composed of a fea-
ture input layer having the same size as the state
dimension. This is followed by hidden layers: two
stages of fully connected layers followed by recti-
fied linear unit (ReLu) activation functions. Even-
tually, it is terminated by a fully connected output
layer having the same dimension of the action
space.2 This approach of having all Q-values cal-
culated with one pass through the network avoids
having to run the network individually for every
action and helps to increase speed significantly.
Note that the DNN architecture is a generic one,
and many others can be used.

Optimizers used in the training of DL models
require independent and identically distributed
data for their convergence. However, this is not
the case with RL as states and their rewards and
actions are correlated across time. Thus, naive-
ly training the DNN with sampled data results in
oscillations and possible divergence in its training.
To this end, a remedy to this problem is the advent
of experience replay. In this setting, one continu-
ously samples observations and rewards from the
environment and stores them in a so-called expe-
rience buffer. Then the DNN is updated by a mini-
batch of randomly selected data points from the

experience buffer. In addition to breaking harmful
correlations, experience replay allows learning
more information from individual tuples multiple
times, recalls rare occurrences, and in general
makes better use of experiences.

NUMERICAL RESULTS AND PERFORMANCE ANALYSIS

The performance of the proposed DQN-based
handover control algorithm is characterized by
its convergence rate and converged value. Sim-
ulations are conducted in MATLAB and Simulink
2021. Simulink is used to simulate the mobile user
environment. Table 1 lists key simulation parame-
ters and their chosen values. More specifically, we
use a system composed of one RF AP3 and four
OAC APs. Each OAC AP has a coverage radius of
2 m. All OAC APs are uniformly disposed in the
coverage area of the RF AP. In each time step,
the average user speed and number of users are
Gaussian functions of time, where the user speed
is low and the number of users is high at midday.
There is a total of 16 candidate values in [0, 5.12]
s for each TTT value set according to [12]. This
simulation considers the number of time steps per
episode to be 48, and the duration of each time
step is half an hour. The simulation results indicate
the time cost of the offline training parallel to the
online training during the system operation.

During training, the agent randomly selects a
mini-batch of 200 data points from an experience
buffer of 104 training samples. We set the initial
value of ¢ to 0.3, the minimum value of £ to
0.01, and the ¢ decay rate to 0.001. The DNN
architecture has an input layer of 9 neurons, fol-
lowed by two fully connected hidden layers of 12
and 48 neurons, respectively. The model is termi-
nated by an output layer of 9 neurons.

The learning reward convergence of the pro-
posed algorithm is evaluated in two simulations.
In the first simulation, we evaluate the conver-
gence performance with different state-space
dimensions. In the second simulation, we evaluate
the adaptation capability to different operational
environments and conditions. The results are aver-
aged over 10 trials to have statistical significance.

The results of the first simulation are present-
ed in Fig. 4a, which shows the convergence for
three state-space settings. First is a two-dimen-
sional (2D) setting where a state is composed of
the two TTT values only. Second is a three-dimen-
sional (3D) setting where a state is a concatena-
tion of the TTT values, and one observation that is
the average user speed. Similarly, the third setting
is four-dimensional (4D), where each state is a
concatenation of the two TTT values, the average
user speed, and the user bandwidth.

Several observations can be made in view of
Fig. 4a. First, it is clearly evident that DQN can
learn in a small number of episodes. This agrees
with the intuition that the use of DNN is expected
to enhance the speed of convergence. More spe-
cifically, the 2D case converges in around 20 iter-
ations. Next is the 3D case in around 35 iterations,
and then the 4D case in around the same number
of iterations. The results are intuitively sound in
the sense that higher-dimension state space corre-
sponds to higher computational burdens despite
promising better optimization. Second, the added
benefit of increasing the dimension of state space
is seen in converging to higher terminal values
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FIGURE 4. Average reward vs. episode for 10 trails with a) different state space dimensions; b) different oper-
ation environments. For a), the 95 percent confidence intervals are [61.19, 64.34] Mb/s, [66.63, 69.83]
Mb/s, and [68.05, 71.19] Mb/s, respectively for the 2D, 3D and 4D settings. For b), the 95 percent
confidence intervals of the Env. 1 through Env. 4 are [103.44, 104.97] Mb/s, [85.77, 88.54] Mb/s,
[66.00, 69.70] Mb/s, and [61.25, 63.29] Mb/s, respectively.

albeit after a few more iterations. This observa-
tion is consistently correct as one moves from the
2D to 4D settings. In conclusion, one can clearly
see the added benefit of using more fine-grained
states. Essentially, each dimension corresponds to
a certain measurement or knowledge about the
system. To this end, the DQN framework allows
one to afford high-dimensional state spaces effi-
ciently and seamlessly.

To quantitatively study the execution time of the
proposed algorithm, we average execution time
over 10 trials for 100 episodes. The tic-toc function
in MATLAB 2021-a is run on a Dell OPTIPLEX work-
station with Intel Core i7 (8-core and 3.81 GHz) and
8 GB RAM. The 2D, 3D, and 4D cases take 159.39,
161.58, and 161.83 s to finish, respectively.

The second simulation considers different envi-
ronmental settings, including mobility pattern and
number of OAC APs. In this work, we adopt two
mobility patterns: a straight-line pattern and a zig-
zag pattern where the user performs an orthogo-
nal turn after a certain travel distance.

In particular, we compare the convergence per-
formance as exposed to the following four settings:
+ Env. 1: Two OAC APs, straightline pattern
+ Env. 2: Three OAC APs, straight-line pattern
* Env. 3: Three OAC APs, zigzag pattern
* Env. 4: Four OAC APs, zigzag pattern.

In view of Fig. 4b, the average reward is higher
for simpler mobility patterns. We also observe
that adding more OAC APs does not necessar-
ily enhance the reward. The reason is that the
increased complexity of handover decision mak-
ing may reduce the average throughput experi-
enced by each user. Overall, the simulation results
validate that the proposed DQN algorithm can
converge fast and adapt to different environ-
ments. This is a key requirement for future com-
munication networks where systems are expected
to be strongly dynamic and changing.

Finally, we compare our proposed scheme
to two state-of-the-art approaches, namely qua-
si-static (QS) [6] and immediate handover (IH)
[7] schemes, under Env. 2 and Env. 3 settings. We
compare the three schemes in terms of average
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FIGURE 5. Performance comparison of the proposed approach vs. quasi-static
(QS) and immediate handover (IH) schemes, compared in terms of average
throughput (Th) on the left vertical axis, and average number of handovers

(NHO) per user on the vertical right axis, under Env. 2 and Env. 3 settings.

Th and average number of handover operations
(NHO) per user. As shown in Fig. 5, our proposed
scheme outperforms QS and IH due to the reduc-
tion of unnecessary handover operations.

ConCLUSION AND FUTURE WORK

In this article, we study the next generation mobile
wireless HetNet and consider optimizing the data off-
loading policy. We introduce the difference between
inter-RF cells handover and the handover between
RF cells and OACs. We highlight the limitations
of the current VHO approaches and the develop-
ments of emerging technologies toward self-optimi-
zation. Then we discuss how the technologies are
integrated into the system model. We formulate a
handover parameter optimization problem and pro-
pose a DRL-based offloading strategy. The simulation
results validate that the system adapts to dynamic
environments with a fast convergence rate, which is
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The simulation results validate that the system adapts to dynamic environments with a fast conver-

gence rate, which is an essential feature of network self-optimization.

an essential feature of network self-optimization. As
our future work, we will incorporate more realistic
mobility models in the simulation, such as detailed
models tailored for specific scenarios and real trace
models. We will also study the integration of multiple
access technologies in the reward function design
[13], channel aggregation and load balancing among
different links [14], and secure data transmission
using the narrow-interception-range OAC links [15].
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