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Abstract

In this paper, we investigate hyperbolic systems with random inputs based on generalized polynomial
chaos (gPC) approximations, which is one of the most popular methods for uncertainty quantification (UQ)
and can be implemented with either the stochastic Galerkin (SG) method or the stochastic collocation
(SC) method. One of the challenges for solving stochastic hyperbolic systems with the SG method is that
the resulting deterministic system may not be hyperbolic. The lack of hyperbolicity may lead to the ill-
posedness of the problem and the instability of numerical simulations. The main objective of this paper is
to show that by approximating the solution in the random space with the SG method in a pseudo-spectral
way with suitable quadrature rules, the SG scheme can be written as a SC scheme on a set of specific nodes.
The resulting collocation scheme preserves the hyperbolicity of the original hyperbolic system, and is more
efficient to implement. On the other hand, entropy conditions play an essential role in the well-posedness
of hyperbolic conservation laws. Thus we approximate the resulted collocation scheme in space by the
entropy stable nodal discontinuous Galerkin (DG) method [4], where the entropy stability is guaranteed by
high order summation-by-parts operators, entropy conservative fluxes and entropy stable fluxes. Numerical
experiments are performed to validate the accuracy and effectiveness of the proposed numerical schemes.

Keywords: Uncertainty quantification, hyperbolic systems, generalized polynomial chaos, entropy stable,
DG methods, hyperbolicity-preserving

1 Introduction

In this paper, we investigate the impact of uncertainty on hyperbolic conservation laws, with our focus on the
following one-dimensional system

∂u(x, t, z)
∂t

+
∂f(u(x, t, z))

∂x
= 0, (1.1)

where u = (u1, · · · , ud)T denotes the vector of state variables taking values in a convex set Ω ⊂ Rd, f =

( f1, · · · , fd)T is the flux function, and z = (z1, · · · , zdz) ∈ Ωz ⊂ R
dz , dz ≥ 1 are a set of mutually independent

random variables characterizing the random inputs to the governing equation. The system (1.1) is assumed to
be hyperbolic for each realization of z, that is, the Jacobian matrix f′(u) is assumed to have d real eigenvalues
and a complete set of eigenvectors for each z ∈ Ωz.
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The uncertainty may arise from physical parameters, initial or boundary conditions, etc. Many numerical
techniques have been developed to predict the behavior of physical systems with random inputs, among which
the polynomial chaos (PC) methods have received intensive attention. The term “polynomial chaos” was
coined by Nobert Wiener in [47], in which Hermite polynomials serve as an orthogonal basis for studying the
decomposition of Gaussian stochastic processes. Inspired by Wiener’s work, Ghanem and his collaborators
started the original PC method using Hermite polynomials for many practical engineering problems (most with
Gaussian uncertainties) with success, see [17] for an overview. Later, generalized polynomial chaos (gPC)
was proposed in [54], where different kinds of orthogonal polynomials are chosen as a basis depending on the
probability distribution of the random inputs and are adopted for improved representations of more general
random processes. Being essentially a spectral approach in the random space, the gPC method exhibits fast
rate of convergence when the solution depends smoothly on the random parameters, and is numerically easy
to implement with either the stochastic collocation (SC) method or the stochastic Galerkin (SG) method. The
SC method is based on the repetitive use of an established numerical code solving the deterministic model
on a prescribed set of nodes in the random space, and thus is non-intrusive. Early works can be found in
[45, 31, 53, 1, 50, 33, 44], etc. The SG method is based on a Galerkin projection of the model equations and
usually results in a set of coupled deterministic equations. Hence the SG method needs new codes to deal with
the larger, coupled systems of equations and is intrusive. We refer readers to the review paper [51] and the
book [52] for more details of the gPC method.

Although the gPC method has been successfully applied to a large variety of problems, its application to
uncertain hyperbolic problems is quite challenging. One of the difficulties is caused by the fact that for hyper-
bolic conservation laws, the resulting deterministic systems from the SG method are not always hyperbolic.
For scalar conservation laws, the resulting SG systems are still hyperbolic [3, 22, 28]. For general hyperbolic
systems, the authors in [46] proved that if the stochastic Jacobian matrix ∇uf is symmetric or its eigenvectors
are independent of the uncertainty, then the resulted SG system is hyperbolic. This theory provides another
proof of the fact that the Galerkin system derived from an uncertain scalar conservation law is hyperbolic and
can be applied to linear hyperbolic systems with uncertainty only on initial or boundary conditions. This the-
ory was further verified for linear hyperbolic systems in [36]. The authors in [11] showed that the resulting SG
systems for shallow water equations and Euler equations are not hyperbolic in some cases. Recently, a hyper-
bolicity study on the uncertain kinetic Fokker-Planck equation in [27] showed that, while the SG system at the
kinetic level is hyperbolic, its fluid dynamic limit, the uncertain isentropic Euler equation, is not necessarily
hyperbolic. The lack of hyperbolicity may lead to the ill-posedness of the initial or boundary problem and the
instability of numerical simulations.

Many efforts were made to obtain the well-behaved and hyperbolicity-preserving SG system for hyper-
bolic conservation laws. In [35, 11], the authors reformulated the conservation laws in a symmetrically hyper-
bolic form in terms of the entropy variables, proved the resulting SG system is hyperbolic, and proposed an
optimization-based method, called the intrusive polynomial moment method (IPMM) to compute the polyno-
mial chaos expansion of entropy variables given the polynomial chaos expansion of the conserved variables.
The optimization problem in IPMM needs to be solved for each cell and at each time step and is computation-
ally expensive. Moreover, it is not easy to extend this method to a general hyperbolic system without a convex
entropy pair. Another approach with Roe variable formulation was proposed for the Euler equation in [34] and
for the shallow water equation in [16, 15]. Although effective, its extension to general systems is also very
limited, due to the Roe linearization. A class of operator-splitting based SG methods was developed for Euler
equations in [5] and for the Saint-Venant system in [6], where the original systems are split into several subsys-
tems whose SG systems are hyperbolic. However, the authors in [37] showed that this may still lead to complex
eigenvalues due to the mismatch in hyperbolicity sets of the subsystems. The authors in [48, 49] carried out
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a special treatment with symmetrization for quasi-linear hyperbolic conservation laws so that the resulting SG
system is provably symmetric hyperbolic. Unfortunately the resulting SG systems are non-conservative and
numerical solvers designed for conservative formulations cannot be applied directly. Recently, the authors in
[37, 38, 12] applied a suitable “slope” limiter to the standard SG polynomial expansion that point-wisely shifts
the solution into the numerically hyperbolicity set. More recently, a hyperbolicity-preserving SG approach for
shallow water equations was proposed in [9, 10] by carefully selecting the polynomial chaos expansion of the
nonlinear term q2/h (we use the notations in [9] with q being the water discharge and h being the water height)
in terms of the polynomial chaos expansions of the conserved variables.

In this paper, we quantify the uncertainties of hyperbolic systems by the SG method in a pseudo-spectral
way. We show that with suitable quadrature rules, the SG scheme under a pseudo-spectral approximation
leads to a collocation type scheme, which preserves the hyperbolicity of the original hyperbolic system and
can be computed in a non-intrusive way. The idea to show that the Galerkin method leads to a collocation type
approximation with the help of quadrature rules was inspired by [13] for studying polynomial approximations
of ordinary differential equations and elliptic equations. We refer readers to [1] for the analysis of the analogies
between the collocation and the spectral Galerkin methods for elliptic equations with random inputs. On the
other hand, it is well-known that weak solutions of the hyperbolic system (1.1) may not be unique or physically
relevant, and the physically relevant solution, i.e. the so-called entropy solution, satisfies the following entropy
inequality

∂U(u)
∂t

+
∂F(u)
∂x

≤ 0, (1.2)

in the sense of distribution for convex entropy functions U(u) and the associated entropy fluxes F(u), both
being mappings from Ω to R and related by

U′(u)f′(u) = F′(u). (1.3)

It is natural to seek numerical solutions which also share a similar entropy inequality as (1.3). In this paper,
for the spatial discretization of the resulted collocation scheme, we apply the entropy stable discontinuous
Galerkin (DG) methods proposed in [4], in which a unified framework was developed for designing high
order DG methods satisfying a discrete version of (1.3) for any given single convex entropy, through suitable
numerical quadrature which is specific to this given entropy. More details on the development of entropy stable
schemes for hyperbolic conservation laws can be find in [4] and the cited references therein. We refer readers to
[18] for the study on existence and uniqueness of random entropy admissible solutions for conservation laws,
as well as the performance of the numerical method involving the SC method for the stochastic discretization
and the standard Runge-Kutta DG methods [8] for the spatial-temporal discretization.

The rest of the paper is organized as follows: In Section 2, we present the gPC method for the hyperbolic
system with random inputs, and show that under suitable quadrature rules, the SG scheme approximated in a
pseudo-spectral fashion results a collocation type scheme. In Section 3 we present the details of the entropy
stable DG method for the resulted collocation scheme from Section 2. Numerical tests are given in Section 4
and concluding remarks are given in Section 5.

2 Modeling stochastic hyperbolic systems

In this section, we discuss the gPC method for quantifying the uncertainties in the hyperbolic system (1.1).
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2.1 The stochastic Galerkin and stochastic collocation methods

In this section, we briefly review the stochastic Galerkin (SG) method and the stochastic collocation (SC)
method for discretizing (1.1) in the random space.

For easy presentation, let us consider dz = 1 and assume z is a random variable in a properly defined
complete random space with sample space Ωz and probability density function µ(z). The gPC basis functions,
denoted as {ϕm(z)}Nm=0, are orthogonal polynomials with µ(z) serving as the weight function, i.e.∫

Ωz

ϕi(z)ϕ j(z)µ(z)dz = δi j, (2.1)

where δi j is the Kronecker delta function. Note the polynomials are normalized here for simplicity and they
depend on the distribution of the random variable z. For example, uniform distributions are associated with
Legendre polynomials, and Gaussian distributions are associated with Hermite polynomials. See e.g. [54, 52]
for more details. Let PN(Ωz) be the set of polynomials of degree up to N defined in Ωz. Clearly {ϕm}

N
m=0 form

a basis of PN(Ωz). Given a function u : Ωz → R, we denote the expected value (if exists) by

E[u] :=
∫

Ωz

u(z) µ(z) dz, (2.2)

and the gPC projection of u is given by

uN(z) =

N∑
m=0

ûmϕm(z), ûm = E[u(z)ϕm(z)]. (2.3)

The expectation and the gPC projection are also employed for functions u : Ωz → R
d by components.

For the SG method, we seek, for any fixed (x, t), an approximation uN ∈ PN(Ωz) to the solution via a finite
term gPC expansion

uN(x, t, z) =

N∑
i=0

ûi(x, t)ϕi(z), (2.4)

such that the residue of the system (1.1) is orthogonal to the space PN(Ωz) by components, i.e.

∂

∂t

∫
Ωz

uN(x, t, z) ϕm(z) µ(z) dz +
∂

∂x

∫
Ωz

f(uN) ϕm(z) µ(z) dz = 0, m = 0, · · · ,N. (2.5)

The result is a larger coupled deterministic system for the gPC expansion coefficients, given by

∂

∂t
ûm(x, t) +

∂

∂x

∫
Ωz

f(uN(x, t, z))ϕm(z) µ(z) dz, m = 0, · · · ,N. (2.6)

For the stochastic collocation method, we seek, for any fixed (x, t), an approximation vN ∈ PN(Ωz) to
the solution such that the residue (by components) of the system (1.1) vanishes at a set of prescribed nodes
{z(m)}

Nc
m=1 in the random space, i.e.

∂

∂t
vN(x, t, z(m)) +

∂

∂x
f(vN(x, t, z(m))) = 0, m = 1, · · · ,Nc. (2.7)
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The SG method ensures that the residue of the stochastic governing equations is orthogonal to the polyno-
mial space spanned by the basis and thus has optimal accuracy, while the SC method only needs to execute a
reliable deterministic solver at each node and thus is easy to implement. More details about the SG and SC
methods can be found in the book [52]. Our focus in this paper is not on the comparison between these two
methods. Instead, we show in the following section that the SG method under pseudo-spectral approach is
equivalent to the SC method with special choice of nodes. In fact, for the SG method, a feasible treatment for
the computation of nonlinear fluxes in the hyperbolic system is to approximate the integral (2.6) in a pseudo-
spectral way [29], for which one can employ a quadrature rule, or a cubature rule in multivariate cases, with
sufficient accuracy.

2.2 Pseudo-spectral approach

In this section, our aim is to show that the SG scheme (2.5) computed in a pseudo-spectral way leads to a
collocation type scheme, which preserves the hyperbolicity property of the original hyperbolic system.

Let ζm, 0 ≤ m ≤ N be the zeros of ϕN+1(z) and lm(z), 0 ≤ m ≤ N be the set of Lagrange interpolation
polynomials with respect to the N + 1 points {ζm}, i.e. lm(ζ`) = δm`. The following expression is easily proven

lm(z) =

N∏
`=0,`,m

z − ζ`
ζm − ζ`

. (2.8)

Clearly lm(z) ∈ PN(Ωz) and {lm}Nm=0 form a basis of PN . For any polynomial ϕ ∈ PN(Ωz), it can be written as

ϕ(z) =

N∑
m=0

ϕ(ζm)lm(z). (2.9)

We define the interpolation operator IN : C0(Ωz)→ PN(Ωz) which maps a continuous function f to the unique
polynomial IN f ∈ PN(Ωz) satisfying IN f (ζm) = f (ζm), 0 ≤ m ≤ N. That is

IN f (z) =

N∑
m=0

f (ζm)lm(z). (2.10)

The integral of f can by approximated by the integrating IN f , i.e.∫
Ωz

f (z)µ(z)dz ≈
N∑

m=0

f (ζm)αm, (2.11)

where αm =
∫
Ωz

lm(z)µ(z), dz, 0 ≤ m ≤ N are the weights. This Gauss quadrature rule (2.11) is exact for any
polynomial of degree up to 2N + 1, see e..g. [21, 13, 25] for more details.

The Galerkin procedure (2.5) holds for ϕm,m = 0, · · · ,N, which form a basis of PN(Ωz). Therefore, for
any ϕ(z) ∈ PN(Ωz), we have

∂

∂t

∫
Ωz

uN(x, t, z) ϕ(z) µ(z) dz +
∂

∂x

∫
Ωz

f(uN) ϕ(z) µ(z) dz = 0. (2.12)

By approximating the integrals in (2.12) by the Gauss quadrature rule with nodes {ζm}
N
m=0 and weights {αm}

N
m=0,

we obtain
N∑
`=0

∂

∂t
uN(x, t, ζ`)ϕ(ζ`)α` +

N∑
`=0

∂

∂x
f(uN(x, t, ζ`))ϕ(ζ`)α` = 0. (2.13)
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Then we take the test function ϕ as the Lagrange interpolation polynomials lm, 0 ≤ m ≤ N, which is also a
basis of PN(Ωz), yielding

∂

∂t
uN(x, t, ζm) +

∂

∂x
f(uN(x, t, ζm)) = 0, m = 0, · · · ,N. (2.14)

Now we obtain a collocation type approximation on the quadrature points {ζm} by approximating the SG
method with quadrature rules. The specific quadrature rule through which the SG method leads to the SC
method first needs to take a suitable number of points, i.e. N + 1 points for the N-term Galerkin expansion,
for the Lagrangian interpolation polynomials based on N + 1 points to form a basis of PN(Ωz) and thus can be
taken as test functions in the Galerkin procedure. Secondly, it is well-known that numerical integral formulas
based on N + 1 points can not be exact for polynomials of degree higher than 2N + 1. The Gauss quadrature
rule (2.11) with N + 1 points on the other hand is exact for polynomials of degree up to 2N + 1. Therefore, the
collocation points need to be taken as Gauss quadrature points in order to approximate the integrals in the SG
scheme (2.12) with optimal accuracy, where the integrand of the first integral is a polynomial of degree up to
2N and the integrand of the second integral is a nonlinear function. A small difference between the Galerkin
scheme and the collocation scheme is due to the so-called aliasing error, but the approximation solutions
behave similarly. The collocation approximation in (2.14) is more efficient in term of computational cost and
it preserves the hyperbolicity of the deterministic system.

Though we use one-dimensional (dz = 1) random variable for the discussion, the generalization to multi-
dimensional random variables is straightforward by tensor product collocation, which is mostly used for low-
dimensional problems with dz typically less than 5. For higher dimensions, an alternative approach is to use
Smolyak sparse grids [40]. The Smolyak algorithm is a linear combination of product formulas, and the linear
combination is chosen in such a way that an integration property for one dimension is preserved for higher
dimensions as much as possible. Only products with a relatively small number of points are used and the
resulting nodal set has a significantly smaller number of nodes compared to the tensor product rule. Depending
on the choice of Gauss quadrature in one dimension, there are a variety of sparse grid constructions, which
offer different accuracy. Here we do not engage in depth discussion of the technical details. We refer readers to
[33] for error estimates of the SC method with the Smolyak-type sparse grids constructed based on Clenshaw-
Curtis and Gaussian abscissas for solving stochastic partial differential equations. We also refer readers to
[14, 55, 23] and cited references therein for the sparse grid SC method based on least square polynomial
chaos.

3 Entropy stable discontinuous Galerkin methods

In this section, we present the algorithm formulation of the entropy stable nodal DG method [4] to approximate
the resulted collocation scheme (2.14) for each fixed quadrature point ζm. For simplicity, we omit the argument
ζm in this section.

3.1 Nodal DG scheme

In this section, we present a brief review of the nodal DG scheme. First we make a partition of the spatial
domain [a, b] into Nx computational cells and denote the cell by Ii = [xi−1/2, xi+1/2], where

a = x 1
2
< x 3

2
< · · · < xNx+ 1

2
.
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We denote the cell center by xi = 1
2
(
xi−1/2 + xi+1/2

)
and cell size by ∆xi = xi+1/2 − xi+1/2, for i = 1, · · · ,Nx.

Denote ∆x = max
1≤i≤Nx

∆xi and define a finite element approximation space as

Vk
h := {vh : vh|Ii ∈ [Pk(Ii)]d, i = 1, · · · ,Nx},

where Pk(Ii) denotes the set of polynomials of degree at most k on cell Ii.
With a slight abuse of notation, the semi-discrete classical DG scheme for solving (2.14) is defined as

follows: for fixed t, to find the unique function uh ∈ V
k
h, such that, for i = 1, · · · ,Nx,∫

Ii

∂uT
h

∂t
ψhdx −

∫
Ii

f(uh)T dψh

dx
dx + f̂T

i+ 1
2
ψh(x−

i+ 1
2
) − f̂T

i− 1
2
ψh(x+

i− 1
2
) = 0, (3.1)

holds for all test functions ψh ∈ V
k
h, where f̂i+ 1

2
is the so-called numerical flux defined at the cell interface and

depends on the values of uh from both sides of the interface, i.e.

f̂i+ 1
2

= f̂(uh(x−
i+ 1

2
),uh(x+

i+ 1
2
)). (3.2)

For systems, the numerical flux f̂i+ 1
2

is taken as an exact or approximated Riemann solver. More details can be
found in [7] and the review paper [8].

We now choose the local basis of the solution space Vh
k to be the Lagrangian polynomials based on the

Legendre-Gauss-Lobatto points in the cell I j, and obtain the nodal forms of the DG schemes. We first introduce
some notations. Define the independent variable ξ in the reference cell I = [−1, 1] via the following mapping

ξ =
2(x − xi)

∆x
, x ∈ [xi− 1

2
, xi+ 1

2
]. (3.3)

Denote ξ0, ξ1, · · · , ξk as the Legendre-Gauss-Lobatto quadrature points in [−1, 1] and ωi, i = 0, · · · , k as the
associated quadrature weights. We further define the continuous inner product (·, ·) as (ψ, ϕ) =

∫ 1
−1 ψϕdξ, and

define the discrete inner product 〈·, ·〉 as

〈ψ, ϕ〉 =

k∑
`=0

ψ(ξ`)ϕ(ξ`)ω` (3.4)

by the Legendre-Gauss-Lobatto quadrature rule with k + 1 quadrature points, which is exact for polynomials
of degree up to 2k − 1. The Lagrangian basis polynomials based on {ξ j}

k
j=0 are given by

L j(ξ) =

k∏
`=0,`, j

ξ − ξ`
ξ j − ξ`

, (3.5)

and the DG solution in the cell Ii can be represented by

uh(x, t) = uh(ξ, t) =

k∑
`=0

ũ`i (t)L`(ξ), x ∈ Ii, (3.6)

where ũ`i is a vector of length d containing the values of the solution uh (a vector of length d) at the point
ξ` in the cell Ii, i.e. ũ`i = uh|Ii(ξl). After substituting (3.6) into (3.1) and applying Legendre-Gauss-Lobatto
quadrature rule to the integrals in (3.1), the nodal formulation of the DG scheme is given by

∆xi

2

k∑
l=0

M jl
dul

dt
−

k∑
l=0

S l jfl +

k∑
l=0

B jlfl
∗ = 0, j = 0, · · · , k, (3.7)

7



where ul = ũl
i , fl = f(ũ`i ), S is the stiffness matrix defined as S jl = 〈L j, L′l〉, B is the boundary matrix

given by B = diag{−1, 0, · · · , 0, 1}, M is the mass matrix defined as M jl = 〈L j, Ll〉 = ω jδ jl, and f0
∗ = f̂i− 1

2
,

fk
∗ = f̂i+ 1

2
, fl
∗ = 0, 1 ≤ l < k. We remark here that the stiffness matrix S is integrated exactly since L j(ξ)L′l(ξ) is

a polynomial of degree 2k − 1, while the mass matrix M is obtained by the discrete inner product (3.4) which
introduces some integration error and is typically termed as mass lumping.

3.2 Entropy stable nodal DG scheme

As discussed in [4], the nodal DG scheme (3.7) does not satisfy any entropy condition, but it can be modified
to be entropy stable, due to the flexibility of the nodal representation. The key to this modification is the
summation-by-parts (SBP) property, entropy conservative fluxes and entropy stable fluxes.

The SBP property is a discrete analogue of integration by parts, given by

S = MD, MD + DT M = S + S T = B, (3.8)

where D is the difference matrix with D jl = L′l(ξ j). By the SBP property (3.8), the nodal DG scheme (3.7) can
be written as

∆xi

2
du j

dt
+

k∑
l=0

D jlfl +
τ j

ω j
(f j
∗ − f j) = 0, j = 0, · · · , k, (3.9)

where τ0 = −1, τk = 1 and τ j = 0 for 1 ≤ j < k.
To define the entropy conservative and stable fluxes, we first assume that the entropy function U is strictly

convex, define the entropy variable as v = U′(u)T and set g(v) = f(u(v)). As claimed in [20, 32, 19], the
existence of strictly convex entropy function is equivalent to the symmetry of u′(v) and g′(v), and thus there
exist the so-called potential function φ(v) and potential flux ψ(v) such that

φ′(v) = u(v)T , ψ′(v) = g(v)T . (3.10)

A consistent, symmetric two-point numerical flux fS (uL,uS ) is entropy conservative if it satisfies

(vR − vL)T fS (uL,uR) = ψR − ψL, (3.11)

and a consistent two-point numerical flux f̂(uL,uS ) is entropy stable if it satisfies

(vR − vL)T f̂(uL,uR) − (ψR − ψL) ≤ 0. (3.12)

Here vL, vR and ψL, ψR are the entropy variables and potential fluxes at the left and right states. More details
can be found in [42, 43].

As shown in [4], the entropy stability of the nodal DG scheme is guaranteed by modifying (3.9) in the
following form

∆xi

2
du j

dt
+

k∑
l=0

D jlfS (u j,ul) +
τ j

ω j
(f j
∗ − f j) = 0, j = 0, · · · , k, (3.13)

where fS (u j,ul) is taken as the symmetric entropy conservative flux and the numerical flux f̂ is taken as the
entropy stable flux at the cell interface. For the numerical flux f̂, it has been known for decades that the widely
used upwind numerical fluxes, including monotone fluxes for scalar conservation laws and Godunov-type
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fluxes for systems, are entropy stable. For the entropy conservative flux fS (u j,ul), it is uniquely determined
for scalar conservation laws but not unique for systems. For many systems, explicit entropy conservative
fluxes can be derived and are easy to compute. Here we provide entropy conservative fluxes for general linear
hyperbolic systems and Euler systems used in our numerical examples.

Example 3.1. The linear system is given by

∂u
∂t

+ A
∂u
∂x

= 0 (3.14)

where A is a matrix independent of x and t and may depend on the random parameters. It is strictly hyperbolic
for each realization of the random parameters.

• A is symmetric. As in [4], the entropy function can be taken as the standard energy U = 1
2 uT u. Then

v = u and

F =
1
2

uT Au, φ =
1
2

uT u, ψ =
1
2

uT Au. (3.15)

The entropy stable flux is simply the arithmetic mean

fS (uL,uR) =
1
2

(AuL + AuR). (3.16)

• A is not symmetric. We first need to get the symmetrizer of A and then transform the system into a
symmetric one [24]. For better explanation, we use the wave equation (4.2) of Example 4.1 in Section
4, which is of the form (3.14) with

A =

(
0 −1

−c2 0

)
, c > 0 (3.17)

as an example to show the procedure. The eigenvalues of A are ±c and the corresponding eigenvectors
are (1,∓c). Let T be the matrix with columns being eigenvectors of A, then

T =

(
1 1
c −c

)
, and T−1 =

1
2


1

1
c

1 −
1
c

 . (3.18)

Let D̃ = diag{d1, d2} be a real positive diagonal matrix. Then the so-called symmetrizer of A is defined
as

H := (T−1)∗D̃T−1 =
1
4


d1 + d2

1
c

(d1 − d2)

1
c

(d1 − d2)
1
c2 (d1 + d2)

 , (3.19)

which is positive definite, and, with d1 = d2 = 2, we get the symmetrizer

H = (T−1)∗D̃T−1 =


1 0

0
1
c2

 . (3.20)
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Let

H1/2 = diag{1, 1/c}, and ũ = H1/2u, (3.21)

then (3.14) can be transformed as

∂ũ
∂t

+ H1/2A(H1/2)−1 ∂ũ
∂x

= 0, (3.22)

with B̃ = H1/2A(H1/2)−1 =

(
0 −c
−c 0

)
. The transformed system (3.22) is symmetric. As in the

symmetric case, the entropy function can be taken as U = 1
2 ũT ũ. Then ṽ = ũ and

F =
1
2

ũT B̃ũ, φ =
1
2

ũT ũ, ψ =
1
2

ũT B̃ũ. (3.23)

The entropy conservative flux is

fS (ũL, ũR) =
1
2

(B̃ũL + B̃ũR). (3.24)

By (3.21), the entropy function for the original system (3.14) with A defined in (3.17) can be taken as
U = 1

2 ũT ũ = 1
2 uT Hu. Then v = Hu and

F =
1
2

uT HAu, φ =
1
2

uT Hu, ψ =
1
2

uT HAu. (3.25)

The entropy conservative flux is

fS (uL,uR) =
1
2

(AuL + AuR). (3.26)

In fact, with HA = H1/2B̃H1/2 being Hermitian, we have

(vR − vL)T fS (uL,uR) =
1
2

(uR − uL)T HA(uR + uL) =
1
2

uT
R HAuR −

1
2

uT
L HAuL = ψR − ψL. (3.27)

Example 3.2. The one-dimensional Euler system given by

∂

∂t

 ρ

ρu
E

 +
∂

∂x

 ρu
ρu2 + p
u(E + p)

 = 0, (3.28)

is of the form (1.1) with u = (ρ, ρu, E)T and f(u) =
(
ρu, ρu2 + p, u(E + p)

)T
. Here ρ is the density, u is the

velocity, E is the total energy, and p = (γ − 1)
(
E − 1

2ρu2
)

is the pressure with γ being the ratio of specific
heats. Denote

Ω =
{
u = (ρ, ρu, E)T : ρ > 0, p > 0

}
(3.29)

as the physically admissible state set, where Ω is a convex set, and is related to the positivity of the density ρ
and the pressure p. It can be verified that for all u ∈ Ω and almost everywhere z ∈ Ωz, the Euler system is
hyperbolic.
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For Euler systems, one entropy conservative flux suggested by Ismail and Roe in [26] is given by

fs(uL,uR) =


f (1)
S

f (2)
S

f (3)
S

 =



w2(w3)log

w3

w1
+

w2

w1
f (1)
S

1
2

w2

w1

(
γ + 1
γ − 1

(w3)log

(w1)log + f (2)
S

)

, (3.30)

where (w1,w2,w3) =
√

ρ
p (1, u, p), w` and (w`)log are the arithmetic mean and the logarithmic mean given by

w` =
1
2

(w`,L + w`,R), (w`)log =
w`,R − w`,L

log w`,R − log w`,L
, ` = 1, 2, 3. (3.31)

Another entropy conservative flux, suggested by Chandrashekar in [2] is given by

fs(uL,uR) =



(u)log ρ

ρ

β
+ u f (1)

S(
1

(γ − 1)(β)log
−

1
2

u2

)
f (1)
S + u f (2)

S


, (3.32)

where β = ρ/p.

In summary, we present in this section the details of the entropy stable DG scheme for approximating the
spatial variable of the hyperbolic system on each quadrature point in the random space. For time discretization,
we use the third-order strong stability preserving (SSP) Runge-Kutta (RK) method [39], which for solving

(uh)t = L(uh), (3.33)

with L being the spatial discretization operator, is given by

u(1)
h = un

h + ∆tL(un
h),

u(2)
h =

3
4

un
h +

1
4

(
u(1)

h + ∆tL(u(1)
h )

)
,

un+1
h =

1
3

un
h +

2
3

(
u(2)

h + ∆tL(u(2)
h )

)
.

(3.34)

After obtaining the numerical solution uh(x, t) at each quadrature point ζm in the random space, i.e.
uh(x, t, ζm), the mean and variance of the numerical solution uh at fixed spatial point x and time t are com-
puted by

E[uh](x, t) =

N∑
m=0

uh(x, t, ζm)αm, Var[uh](x, t) =

N∑
m=0

uh(x, t, ζm)2αm − (E[uh])2, (3.35)

according to the quadrature rule defined in (2.11). The corresponding standard deviation is σ[uh] =
√

Var[uh].
Other statistical quantities of uh can also be approximated by applying the the quadrature rule (2.11) directly
to their definitions.
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4 Numerical examples

In this section, we present numerical results to demonstrate the performance of the numerical scheme discussed
in Sections 2 and 3. For all convergence tests, we examine the following two measures:

• error in the mean: emean(t) = maxx |�(u) − �(ue)|,

• error in the standard deviation (STD): estd(t) = maxx |σu − σue |,

where u and ue denote the numerical solution and exact solution, respectively. For the accuracy tests of the
entropy stable nodal DG methods coupled with the third-order SSP RK method, the time step ∆t is further
adjusted as ∆t ∼ ∆x4/3 for k = 3 and ∆t ∼ ∆x5/3 for k = 4.

Example 4.1. In this example, we test the convergence rates of the errors in the mean and in the STD for
solutions with different regularity properties, using the following scalar wave equation

∂2w
∂t2 = c2 ∂

2w
∂x2 (4.1)

with velocity c > 0. Define u1 := ∂w
∂x and u2 := ∂w

∂t . Equation (4.1) can be rewritten as the following system

∂

∂t

(
u1
u2

)
+

(
0 −1

−c2 0

)
∂

∂x

(
u1
u2

)
=

(
0
0

)
. (4.2)

We take c(z) = 1+0.1z as random perturbations, where z is a uniformly distributed random variable on [−1, 1].
This linear system (4.2) is strictly hyperbolic for each realization of z. Let u = (u1, u2)T and the system (4.2)
can be written into the form (3.14) with A defined in (3.17). We consider the following two settings:

• Case I: Initial conditions are given by

u1,0(x) = sin x, u2,0(x) = 0, (4.3)

in the domain x ∈ [0, 2π] and periodic boundary conditions are applied. t = 2π.

• Case II: Initial conditions are given by

u1,0(x) =

{
4x(x2 − 1) −1 < x < 1;
0 elsewhere,

and u2,0(x) = 0, (4.4)

in the domain x ∈ [−5, 5] and the boundary conditions u(−5, t) = u(5, t) = 0 are applied [36]. t = 3.

For Case I, u1,0(x) is infinitely differentiable and thus belongs to the space C∞([0, 2π],R). For Case II, u1,0(x)
and its first derivative are L2 functions, and thus it belongs to the Sobolev space H1([−5, 5],R). The exact
solution of (4.2) is

u1(x, t, z) =
1
2

(
u1,0(x + c(z)t) + u1,0(x − c(z)t)

)
,

u2(x, t, z) =
c(z)
2

(
u1,0(x + c(z)t) − u1,0(x − c(z)t)

)
.

(4.5)

Therefore, the solution of (4.2) is sufficiently smooth under the settings of Case I, while the solution of (4.2)
has finite regularity under the settings of Case II.
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Numerical simulations are performed with the entropy function taken as U = 1
2 uT Hu, where the sym-

metrizer H is defined in (3.20), and the entropy stable flux is given by (3.26). The Lax-Friedrichs flux is
adopted at cell interfaces. The basis of the gPC expansion is taken as the Legendre polynomials, and the
quadrature points {ζm}

Nz
m=1 are taken as the roots of the (Nz)-th Legendre polynomial, i.e. the Legendre-Gauss

quadrature points. 20 Gauss-Legendre quadrature points are used to evaluate the mean and standard deviation
of the exact solution.

We first show the convergence of the errors in the mean and the errors in the STD of the solution with
different number of collocation points Nz for Case I in Figure 4.1 on the semi-log scale and for Case II in
Figure 4.2 on the log-log scale, with Nx = 320 cells in the spatial domain. For Case I with sufficiently smooth
solutions, we observe in Figure 4.1 the exponential convergence rate with respect to the number of collocation
points Nz. The errors saturate when the spatial and temporal errors dominate. For Case II where the solutions
have finite regularity, we observe in Figure 4.2 the second-order spectral convergence rate.
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Figure 4.1: Wave equation (4.2). Case I. Errors in the mean and STD of the solution with respect to the number
of collocation points Nz. DG scheme with k = 2 (left) and k = 3 (right). Nx = 320.
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Figure 4.2: Wave equation (4.2). Case II. Errors in the mean and STD of the solution with respect to the
number of collocation points Nz. DG scheme with k = 2 (left) and k = 3 (right). Nx = 320.

We then fix a relatively large Nz = 8 and conduct the convergence test of the errors in the mean and STD
with respect to the entropy stable DG spatial discretization, for Case I with sufficiently smooth solutions. We
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list numerical errors and orders of convergence with respect to different Nx in Table 4.1. We observe optimal
convergence rate of k + 1 for the DG scheme with k + 1 nodes as expected.

Table 4.1: Wave equation 4.2. Case I. Errors and convergence rates in the mean and STD of the solution with
respect to the DG spatial discretization. Nz = 8.

u1 u2

Nx emean Order estd Order emean Order estd Order

k = 1 20 2.37E-02 7.29E-03 9.13E-02 9 1.86E-02
40 2.72E-03 3.13 2.07E-03 1.81 2.44E-02 1.90 3.70E-03 2.33
80 2.70E-04 3.33 5.33E-04 1.96 6.21E-03 1.98 7.86E-04 2.24

160 1.97E-05 3.78 1.34E-04 1.99 1.56E-03 2.00 1.79E-04 2.14

k = 2 20 5.86E-04 6.35E-05 4.93E-04 2.13E-04
40 7.50E-05 2.97 5.65E-06 3.49 6.81E-05 2.86 2.78E-05 2.94
80 9.42E-06 2.99 6.12E-07 3.21 8.96E-06 2.93 3.51E-06 2.98

160 1.18E-06 3.00 7.33E-08 3.06 1.15E-06 2.96 4.41E-07 2.99

k = 3 16 4.96E-05 1.11E-05 3.03E-05 1.84E-05
32 3.14E-06 3.98 7.13E-07 3.96 1.92E-06 3.98 1.18E-06 3.97
64 1.97E-07 3.99 4.49E-08 3.99 1.21E-07 3.99 7.39E-08 3.99

128 1.23E-08 4.00 2.81E-09 4.00 7.54E-09 4.00 4.63E-09 4.00

k = 4 16 7.87E-06 4.75E-07 7.69E-07 2.97E-06
32 2.44E-07 5.01 1.49E-08 5.00 2.86E-08 4.75 9.25E-08 5.00
64 7.60E-09 5.00 4.65E-10 5.00 9.40E-10 4.93 2.89E-09 5.00

128 2.37E-10 5.00 1.45E-11 5.00 3.00E-11 4.97 9.05E-11 5.00

For a more detailed visualization, we also perform the numerical simulation with fixed time step size in
order to conveniently compute the time evolution of the statistical information of the numerical solution. We
adopt the entropy stable DG scheme with k = 2 and Nx = 100 for the spatial discretization. We set ∆t = 2π

240
for Case I and ∆t = 1

80 for Case II. Clearly the CFL condition is satisfied, which is necessary for the stability
of the method. We show the resulting solutions of the system (4.2) for the deterministic case with c = 1 in
Figure 4.3 for Case I and in Figure 4.5 for Case II. Time evolutions of the mean and standard deviation of the
solutions achieved by the collocation scheme with 4 points are shown in Figure 4.4 for Case I and in Figure
4.6 for Case II. The expected values of both cases are similar to the deterministic solution with c = 1.

Example 4.2. In this example, we solve the linearised shallow water equations. One-dimensional shallow
water equations [30] are given by

∂

∂t

(
v
h

)
+
∂

∂x

( 1
2 v2 + h

vh

)
=

(
0
0

)
(4.6)

with the water level h > 0 and the velocity v ∈ R. The linearised shallow water equations are of the form

∂

∂t
u + A

∂

∂x
u = 0. (4.7)
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Figure 4.3: Numerical solutions u1 (left) and u2 (right) of wave equation (4.2) with c = 1. Case I. k = 2.

Figure 4.4: Mean (top) and standard deviation (bottom) of u1 (left) and u2 (right) of wave equation (4.2). Case
I. k = 2. Nz = 4.
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Figure 4.5: Numerical solutions u1 (left) and u2 (right) of wave equation (4.2) with c = 1. Case II. k = 2.

Figure 4.6: Mean (Top) and standard deviation (bottom) of u1 (left) and u2 (right) of wave equation (4.2). Case
II. k = 2. Nz = 4.
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where u = (u1, u2)T and the coefficient matrix A is given by

A =

(
v̄ 1
h̄ v̄

)
with v̄, h̄ being constants. The linear system (4.7) is strictly hyperbolic for all v̄ ∈ R and all h̄ > 0. We take the
constants v̄ = 2, h̄ = 1

2 and add random perturbations, which yields the matrix A as

A(z1, z2) =

(
2 1
1
2 1

)
+ z1η

(
2 0
0 2

)
+ z2η

(
0 0
2
5 0

)
. (4.8)

Here the constant η ∈ R is used to control the magnitude of the variance in the random input. For the random
variables, we consider the following two cases:

• Case I: Both z1 are z2 are uniformly distributed random variables on [−1, 1];

• Case II: z1 is a standard Gaussian random variable and z2 is a uniformly distributed random variable on
[−1, 1].

For both settings, the linear system (4.7) is strictly hyperbolic for each realization of the random parameters
provided that |η| < 5

4 . We set η = 1. We take the basis of the gPC expansion for two-dimensional random space
by extending the one-dimensional basis via tensor construction. Thus the corresponding quadrature points in
the random space are taken as the tensor product of two sets of Legendre-Gauss quadrature points for Case I,
and the tensor product of Legendre-Gauss quadrature points and Hermite-Gauss quadrature points for Case II.
We remark here that Case II serves as a counterexample in [36], in which the hyperbolicity of the resulted SG
system is not guaranteed for a basis of multivariate polynomials up to a fixed degree.

We perform numerical simulations of the linearised system (4.7) under the same setting as in [36] with the
initial conditions given by

u1(0, x) =
1

10
sin(2πx), u2(0, x) =

1
10

cos(2πx),

and periodic boundary conditions applied for the spatial domain [0, 1]. The entropy function is taken as
U = 1

2 uT Hu with the symmetrizer H given by

H =

(
1 0
0 10

5+4z2

)
and the entropy stable flux is given by (3.26). The Lax-Friedrichs flux is adopted at cell interfaces.

First, we conduct the convergence test for Case I. Figure 4.7 shows the convergence of the errors in
the mean and standard deviation of the solution with respect to the number of quadrature points Nz (Nz =

1, 4, 9, 25, · · · for two-dimensional random space) on the semi-log scale, with Nx = 160 cells in the spatial
domain for k = 2, 3. We observe the exponential convergence rate with respect to the number of collocation
points for both DG schemes.

We also perform numerical tests for the DG scheme with k = 2 on Nx = 25 cells and fixed time step
size. For comparison, we first solve the deterministic system (4.7) with z1 = z2 = 0, i.e., the mean of random
parameters. Figure 4.8 shows the resulting deterministic solution with ∆t = 1

150 . For both random cases, ∆t
is taken to be 1

1600 . Figures 4.9 and 4.10 show the mean and standard deviation of the numerical solution of
Case I obtained by the SC scheme with different number of points, respectively. The mean value stays the

17



20 40 60 80 100

N
z

10
-8

10
-6

10
-4

10
-2

10
0

Error in Mean-u
1

Error in STD-u
1

Error in Mean-u
2

Error in STD-u
2

20 40 60 80 100

N
z

10
-8

10
-6

10
-4

10
-2

10
0

Error in Mean-u
1

Error in STD-u
1

Error in Mean-u
2

Error in STD-u
2

Figure 4.7: Shallow water equation (4.7). Case I. Errors in the mean and STD with respect to the number of
collocation points Nz. DG scheme with k = 2 (left) and k = 3 (right). Nx = 160.

same for different number of points used in the SC method and the standard deviation has the similar feature
when the number of points is large enough. Figures 4.11 and 4.12 show the mean and standard deviation of the
numerical solution of Case II obtained by the SC scheme with different number of points, respectively. Both
the mean and the standard deviation vary according to the number of points in the SC method. Moreover, the
results of SC methods with 4 × 4 points agree well with those obtained by the stochastic Galerkin approach
with basis polynomials being a tensor product structure based on the univariate polynomials of degree 3 in
[36]. In contrast to Example 4.1, the mean of both random cases differs significantly from the deterministic
solution using the mean values of the random parameters.

Figure 4.8: Shallow water equation. Deterministic solutions u1 (left) and u2 (right) using mean of the random
parameters. k = 2.

Example 4.3. In this example, we consider the well-known Sod problem [41] which is a classical Riemann
problem of the Euler equation (3.28) with the following initial conditions:

(ρ, u, p) =

{
(1, 0, 1), x < ε
(0.125, 0, 0.1), x ≥ ε.

(4.9)
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Figure 4.9: Shallow water equation. Case I. Mean of u1 (left) and u2 (right) obtained by the SC method with
4 × 4 (top), 10 × 10 (middle) and 16 × 16 (bottom) points. k = 2.
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Figure 4.10: Shallow water equation. Case I. Standard deviation of u1 (left) and u2 (right) obtained by the SC
method with 4 × 4 (top), 10 × 10 (middle) and 16 × 16 (bottom) points. k = 2.
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Figure 4.11: Shallow water equation. Case II. Mean of u1 (left) and u2 (right) obtained by the SC method with
4 × 4 (top), 10 × 10 (middle) and 16 × 16 (bottom) points. k = 2.
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Figure 4.12: Shallow water equation. Case II. Stand deviation of u1 (left) and u2 (right) obtained by the SC
with 4 × 4 (top), 10 × 10 (middle) and 16 × 16 (bottom) points. k = 2.
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The computational domain is set as [−0.5, 0.5]. We investigate the impact of uncertainty on the Sod problem
arising from either the ratio of specific heats γ in (3.28) or the initial shock position ε, i.e. the following two
one-dimensional random cases:

• Case I: ε = 0 and γ = 1.5+0.1z with z being a uniformly distributed random variable on [−1, 1] (γ = 5/3
for monatomic gas and γ = 1.4 corresponds to diatomic molecules).

• Case II: γ = 1.4 and ε = 0.05z with z being a uniformly distributed random variable on [−1, 1].

The gPC basis for both cases is taken as the Legendre polynomial chaos, and thus Legendre-Gauss quadra-
ture points are used in the collocation scheme. 20 Legendre-Gauss quadrature points are used to evaluate the
mean and standard deviation of the exact solution. We perform numerical simulations by solving the resulted
collocation scheme with the entropy stable DG method of k = 2 and Nx = 130. The Godunov flux is adopted
at cell interfaces. Both entropy conservative fluxes (3.30) and (3.32) obtain equally good results. Therefore
we only show the numerical results obtained by the flux (3.30) for Case I and by the flux (3.32) for Case II to
save space.

The exact solution contains a left rarefaction wave, a middle contact discontinuity and a right shock wave.
The standard DG scheme needs to apply limiters such as the positivity-preserving limiter to deal with the issues
caused by negative density or negative pressure, which may be more complicated with the randomness in the
system. Moreover the resulted deterministic system from the SG method for Euler equations is not hyperbolic
[11]. However, after approaching the SG method in a pseudo-spectral fashion, we obtain a collocation scheme
with suitable quadrature points {ζm}

Nz
m=1, and then apply the entropy stable nodal DG scheme, which can be

evolved without any limiter. For Case I, Figure 4.13 shows the mean and standard deviation of the numerical
solution obtained with Nz = 4. We do not apply any limiter. We observe that the mean values of all waves are
well resolved with slight over- and under-shoots at the right shock wave, and the values of standard deviation
have peaked at the shock positions.

For Case II, the initial shock position is perturbed, which is more challenging. We first show the solutions
at time t = 0 and t = 0.13 for three realizations of the random interface position. We do not apply any limiter
and obtain good agreement between the numerical solutions and the exact solutions for each realization. For
this challenging case, negative pressure or negative density may occur at some random shock positions. The
positivity-preserving limiter [56] is applied to prevent negative density or negative pressure. We plot the mean
and standard deviation of the numerical solution obtained with Nz = 9 in Figure 4.15, when the numerical
solutions are better resolved with more collocation points in this case, while the numerical solutions of Case I
stay almost the same with different sets of collocation points.

Example 4.4. In this example, we consider the Sod problem [41] with the following initial conditions:

(ρ, u, p) =

{
(1 + 0.1z1, 0.05 + 0.05z2, 1 + 0.1z3), x < 0
(0.125 + 0.01z4, 0, 0.1 + 0.01z5), x ≥ 0.

(4.10)

where z = (z1, z2, z3, z4, z5) are five independent, uniformly distributed random variables on [−1, 1]. The
computational domain is set as [−0.5, 0.5]. γ = 1.4.

We perform numerical simulations using the entropy stable DG method with k = 2 and Nx = 130 for
the spatial discretization. The Godunov flux is adopted at cell interfaces. Entropy conservative fluxes are
taken as (3.32). For the stochastic discretization, we use the collocation scheme with Smolyak-type sparse
grids constructed by Clenshaw-Curtis abscissas. Figure 4.16 shows the mean and standard deviation of the
numerical solution obtained by Smolyak sparse grids of level 2. The mean and standard deviation of the exact
solution are evaluated by the sparse grid quadrature rule of level 9. We do not apply any limiter. We observe

23



-0.5 0 0.5

 x

0

0.2

0.4

0.6

0.8

1

(a) mean of density

-0.5 0 0.5

 x

0

0.05

0.1

0.15

(b) STD of density

-0.5 0 0.5

 x

0

0.2

0.4

0.6

0.8

1

(c) mean of velocity

-0.5 0 0.5

 x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(d) STD of velocity

-0.5 0 0.5

 x

0

0.2

0.4

0.6

0.8

1

(e) mean of pressure

-0.5 0 0.5

 x

0

0.05

0.1

0.15

(f) STD of pressure

Figure 4.13: Sod’s problem in Example 4.3. Case I. Solid line: exact solution; circle: numerical solution.
Mean (left) and standard deviation (right) of density (top), velocity (middle) and pressure (bottom) at t = 0.13
(right). Nz = 4. k = 2. Nx = 130. We do not apply any limiter.
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Figure 4.14: Sod’s problem in Example 4.3. Case II. Density (top), velocity (middle) and pressure (bottom) at
time t = 0 (left) and t = 0.13 (right) for three realizations of the random interface position. We do not apply
any limiter.
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Figure 4.15: Sod’s problem in Example 4.3. Case II. Solid line: exact solution; circle: numerical solution.
Mean (left) and standard deviation (right) of density (top), velocity (middle) and pressure (bottom) at t = 0.13
(right). Nz = 9. k = 2. Nx = 130.
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that the mean values of the rarefaction wave, contact discontinuity and the shock wave are all well resolved,
and the values of the standard deviation have peaked at the shock positions.

5 Conclusion

In this paper, we investigate the impact of uncertainty on the hyperbolic systems. We discretize the uncertain
hyperbolic system in the random space by the SG method, under a pseudo-spectral fashion, resulting a col-
location type scheme on a set of suitable quadrature points. Then we apply the entropy stable DG method to
discretize the spatial variable, coupling with the SSPRK method for time discretization, yielding an entropy
stable solver for each node of the resulted collocation scheme. We demonstrate the accuracy and effectiveness
of our numerical scheme by several hyperbolic systems with one-dimensional, two-dimensional and high-
dimensional random variables. We remark here that although our focus in this paper is restricted to spatially
one-dimensional hyperbolic systems, the idea can be extended to spatially multi-dimensional cases. For multi-
dimensional hyperbolic systems, the SG method applied in the randoms space under a pseudo-spectral fashion
can similarly lead to a collocation type scheme and the resulted scheme can be further approximated by suitable
spatial discretizations and temporal discretizations.
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