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Abstract

In this paper, we study the error estimates to sufficiently smooth solutions of the
nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin
(DG) finite element methods on uniform Cartesian meshes. A general approach with an
explicitly checkable condition is established for the proof of optimal L? error estimates
of the semi-discrete CDG schemes, and this condition is checked to be valid in one and
two dimensions for polynomials of degree up to k£ = 8. Numerical experiments are given

to verify the theoretical results.
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1 Introduction

In this paper, we study the central discontinuous Galerkin (DG) finite element
method for solving scalar conservation laws [10]. The optimal error estimates of the
central DG methods have been proved for linear conservation laws in [12]. In this
paper, we present the optimal error estimates of central DG approximation based on
tensor-product polynomials under suitable assumptions for the general nonlinear scalar

conservation laws

et Y (i) =0, (x,1) €2x (0,7 (L.1)

u(x,0) = up(x), x€Q,

where x = (71, Ty, ..., 74) and € is a bounded rectangular domain in R Here uy(x) is a
given smooth function. We do not pay attention to boundary conditions in this paper;
hence the exact solution is considered to be either periodic or compactly supported. We
also assume the flux f(u) is smooth in the variable u; for example, f € C? is enough for
our proof. The analysis in this paper is for the smooth solutions of (1.1). Discontinuous
solutions with shocks are not considered here. We study the cases with d = 1 and 2, but
the approach is applicable to any d.

The central scheme of Nessyahu and Tadmor [14] computes hyperbolic conservation
laws on a staggered mesh and avoids the Riemann solver. In [3], Kurganov and Tadmor
introduced a new type of central scheme without the large dissipation error related to the
small time step size by using a variable control volume whose size depends on the time
step size. To avoid the excessive numerical dissipation for small time steps, Liu [8] uses
another coupling technique. The overlapping cell approach evolves two independent cell
averages on overlapping cells, which opens up many new possibilities. The advantages of
overlapping cells motivate the combination of the central scheme and the DG method,
which results in the central DG methods [7, 9, 10]. The central DG method evolves
two copies of approximating solutions defined on staggered meshes and avoids using

numerical fluxes which can be complicated and costly [4]. Like some previous central
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schemes, the central DG method also avoids the excessive numerical dissipation for small
time steps by a suitable choice of the numerical dissipation term. Besides, the central
method carries many features of standard DG methods, such as compact stencil, easy
parallel implementation, etc. The central DG method with Runge-Kutta time stepping
has a larger CFL number for stability than the standard Runge-Kutta DG method with
the same polynomial order k. Also the central DG method has a smaller error than the
standard DG method on the same mesh. See [10, 15] for more details. Later in [11], the
central local discontinuous Galerkin method was introduced to solve diffusion equations,
which is formulated based on the local discontinuous Galerkin scheme on overlapping
cells. Recently, the central DG method has been used to solve systems of conservation
laws in many applications [6, 5, 22, 18, 17].

In [12], suitable special projections for central DG methods were proposed to yield
optimal error estimates for scalar linear conservation laws. The proper local projections
were constructed according to the superconvergence property and the duality of overlap-
ping cells, which also required uniform Cartesian meshes. Zhang and Shu firstly presented
a priori error estimates for the fully discrete second order Runge-Kutta DG methods with
smooth solutions for scalar nonlinear conservation laws [19] and symmetrizable systems
[20]. The main techniques they used are Taylor expansion and energy estimates. Later
these techniques are widely used in error estimates for DG-type methods of nonlinear
equations, like the local DG methods for convection-diffusion and KdV equations [16],
the ultra weak DG methods for equations with higher order derivatives [1], the third
order Runge-Kutta DG methods for scalar conservation laws [21] and for symmetrizable
systems [13].

In this paper, we combine the special projections in [12] and the techniques used in
[19] to construct new projections to provide the optimal error estimates of the central
DG methods on uniform Cartesian meshes for nonlinear scalar conservation laws with

smooth solutions. In one dimension, we construct a proper local projection P} similar to



[12]. The existence and optimal approximation properties of this projection are proved
by standard finite element techniques. Moreover, this projection has similar supercon-
vergence property as the projections in [12]. By using this property we develop a general
approach with an explicitly checkable condition, and this condition is checked to be valid
in one dimension for polynomials of degree up to £ = 8. This condition could also be
checked for larger k with increased algebraic complexity, but it is not carried out in this
paper. The optimal convergence results is valid for uniform meshes and for polynomials
of degree k > 1, while for £k = 0 we need the convection flux to be linear to get the
optimal results. For two-dimensional conservation laws, we follow the same arguments
as in the one-dimensional case to construct a suitable projection P; and to analyze its
existence and approximation properties. This new projection utilizes Q¥, the space of
tensor-product polynomials of degree at most k in each variable. Similarly, the optimal
convergence result is valid for uniform meshes and for polynomials of degree k > 2 in
the two-dimensional case, while for £k = 0, 1 we need the convection flux to be linear to
get the optimal results. The superconvergence result of P; on uniform Cartesian meshes
will help to yield optimal convergence results under some suitable assumptions. Similar
approach with an explicitly checkable condition is established, and here we also check
this condition for polynomials of degree up to k = 8. Likewise, this condition could also
be checked for larger k£ with increased algebraic complexity, but we will not carried it
out. The approach is applicable to higher dimension d, but it will not be discussed in
this paper.

The rest of the paper is organized as follows. In section 2, we recall the central DG
method for one-dimensional conservation laws. Then we construct a special projection
and study its existence, uniqueness and optimal approximation properties. With the help
of this projection, we will prove the optimal error estimate for the semi-discrete central
DG methods on uniform meshes for the nonlinear conservation laws in one dimension. In

section 3, we extend the analysis to two-dimensions. Optimal error estimates are proved



by following the same lines of the one dimensional case. We provide numerical examples
to show our theoretical results in section 4. In section 5, we give a few concluding
remarks and perspectives for future work. Finally, in the appendix we provide proofs for

some of the more technical results of the error estimates.

2 The central DG method in one dimension

Here we consider the one-dimensional conservation law given by

u+ f(u), =0, (x,t) € [a,b] x (0,77,

(2.1)
u(z,0) =up(x), =€ la,b],
with periodic boundary condition or compactly supported boundary condition.
2.1 Basic notations
For a given interval I = [a, ], we divide it into N cells as follows:
a=x90<x1 <---<xy=0 (2.2)
We denote
Tj+ Tj )
Z'j+% :T, [j—i-% :(.I‘j,l’j+1), hj—l—% = Tj41 — Ty, j:07N—1, (23)

and similarly for the dual mesh

., j=1,...N. (2.4)

L= (2;_1,2,1), hj =21 — 2,2

We let h = max; h;, 1 and assume the mesh is regular. Define the approximation space
as i . '

Vh - {(’Oh : (Soh)hj S P (I])’j = 17 “'7N}7

W}I; = {I/}h : (77Z)h)|fj+% € Pk(I]J,-%):.] = 07 aN - ]-}

Here P*(I;) denotes the set of all polynomials of degree at most k on I;. For a function

(2.5)

on € VI, we use (gph)j’% or ((ph);;% to refer to the value of ¢, at ;1 from the left

cell I; and the right cell I;,4, respectively. For ¢, € W}, (¢n); and (1/]]1);_ have similar
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meanings. [pp] or [¢y] is used to denote ) — @, or ¥ —, , i.e. the jump of @, or 1, at
cell interfaces. We denote by C' a positive constant independent of A, which may depend
on the solution of the problem and other parameters. For our analysis, we need the
uniform boundedness of f’ and f”. We shall take this as an assumption for simplicity,
although such boundedness can be shown a posteriori by the eventual boundedness of
the numerical solution through the verification of the a priori assumptions at the end of
section 2 and section 3. Similar to [16, 19], to emphasize the nonlinearity of the flux
f(u), we use C, to denote a non-negative constant depending on the maximum of |f”|.

We remark C, = 0 for linear fluxes f(u) = cu with a constant c.

2.2 The central DG scheme

We propose the following semi-discrete central DG scheme for periodic boundary

condition: find u, € Vi¥ and v, € W}, such that for any ¢, € ViF and ¢y, € W},

/Ij(uh)tsohdx :Tnj:aac /1 (Un — up)pndr + /Ij f(vn)(on)zde

J

— (f(vn)ep )i + (f(on)en)m1s (2.6a)
/1 (vn)ebndz = ! /1 (un — vn)ndx +/I J(un)(n)ode
— (flun)¥y )ja + (f (un)y));, (2.6b)

where 7,,,, is an upper bound for the time step size due to the CFL restriction, that

is, Tyae = ¢ h with a given constant CFL number ¢ dictated by stability. For the initial
condition, we simply take u,(-,0) = Prug(+), va(-,0) = Qpuo(+), where Py, and Qy, are
the L? projections into V¥ and W}, respectively, and we have

luo — Pruollz2ry) < CR*Hjwo |l s sy,
k+1 (2.7)
||U() — Q}ﬂlo”[ﬁ(]ﬁ_%) < Ch ||U0||Hk+l([j+%).



2.3 L? stability for the linear equation

In [10], the following stability result is proved for this scheme if f(u) is linear. Without

loss of generality, we take f(u) = u. Hence, we have
ur +u, =0, (z,t) € la,b] x (0,77,
uw(z,0) = ug(x), =z € |a,b],

with periodic boundary condition.

Theorem 2.1. The numerical solutions up, and v, of the CDG scheme (2.6) for the

equation (2.8) have the following L? stability property

1d [° 1
5% a (u}% + /U}zl)d:c - _Tmax

/b(vh — up)*dx < 0. (2.9)

2.4 Optimal L? error estimate

It is worth noting that the L? stability for CDG scheme for nonlinear problem is
generally not available [10]. But under the assumption of the smoothness of the exact
solution, we can still get the error estimate of the nonlinear case. In this subsection, we
show a priori L* error estimate of the scheme (2.6) for the equation (2.1).

Here and below, we use || - || to denote the standard L? norm. For the proof, we recall
the classical inverse and trace inequalities [2]. For any wy, € V¥ or wy, € W}, there exists

a positive constant C' independent of wy, and h, such that
1 1
10zwn|l < ChTH|wall, [fwallr < CR7Z [Jwpll, [Jwnllo < CR72 Jws]), (2.10)

where I' is the set of boundary points of all elements I; or [, 1.
First we introduce some notations. For the numerical solutions u; and v;, of the CDG

scheme (2.6) for equation (2.1), we define

Bj(uh,vh;%;f, u) = ! /I(Uh — up)ppdx - /1 f/<u<$j))vh<90h)x

Tmaz j

— f/(u(l’j)xvh@}:)j-&-% + f/(u(ij(UhSO}er)j—%?

(2.11)



Bj+%(uh7?}h§¢h§fa u) = ! /1 (un — vp)ndr + Sl 1))un(vn)a

Tmas 1, I (2.12)
— Py )ty )i + £ () ()

and

&WWM%ww:[mm%w+[ (vn)tbndda

j i (2.13)
- Tniax /1j<vh — up)pndr — T;x /I#l(uh — vp)¥nd,
Obviously, we have
Bj(un, vn; ¢n, ¥n) :/[. J(vn)(on)2dz +/I F(un) (n)ade = (f (vn) @3 )41
+ (f(vh)‘P;)j—% — (f(u )wh )ir1 + (f(wn)¥i);, (2.14)
Vion € Vit € Wy
It is also clear that the exact solution u of (2.1) satisfies
Bj(u, w; on, n) / fw)(en)zdr + Fla)(Wn)edr — (f(u)py, )11
+qu%»%4<>>m+uww» (2.15)

Yoy € th,wh S Wh'

Subtracting (2.14) from (2.15), we obtain the error equation

Bj(u — up, u — vp; on, ¥n) :/ (f(u) = f(vn))(pn)d +/ (f(w) — f(un))(¥n)zdx

1; 1

= ((f(u) = flon))er )y + ((F(w) = fon))ey); -
= ((f () = flun))y )jer + ((f(w) = flun))iy);

=H;(f;u, un, vp; on,¥n), Yon € th,wh € W}’f

1
2

(2.16)

Summing over all j, the error equation becomes

> Bi(u—un, v = vn; on,thn) = Y H;(fu,un, vnion, 0n), Vi € Vi € W

(2.17)



2.4.1 Projection operators

Similar to [12], we define P} and Q; as the following projections onto V/ and W}
respectively on uniform meshes. That is, for a given function w(z), we define Pjw € V¥,
such that V7,

/P,twdx:/wdx, (2.18a)
I I

J

Py (Pyw; on; fru); = Pu(w; on; fou);, You € PH(L), (2.18b)

<

where P, (w; @), is defined as follows

Py(w; on; fou); = ! (/xj w(z + g)@hdx + /mﬁ% w(z — g)gphdx - /mH% w(x)ppdr)
e [ rut)ute+ .
1 AU EANE
— F )l (onlay, ) — ol )
(2.19)

Similarly, we define Q;w € W}, such that Vj,

/ Qpwdx :/ wdz, (2.20a)
Ly I

it3

Qn(Qhw; vns fru) 1 = Qn(wi s fru) 1, Yon € PE(I, 1), (2.20b)

where Qp(w; 1) j+1 is defined as follows

Qntwigifo) = ([ e Do [ wte - Dundo— [ wi@yvnda)

1
2T
max J 96]-_'_% Tj

[ Pl el + )@
[ Pty e — Do
= e )wlrg, ) en(rgn) = enle))).

1
2

(2.21)

Next, we will discuss the properties of the projections P; and Qj. Without loss of

generality we will only consider P;. The equation (2.18a) is required by conservation.
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Note that Py (w; ¢p; f, u); = 0 for Vw when ¢y, is a constant, so (2.18b) alone misses one
condition which is provided by (2.18a). The following lemma gives the existence and

uniqueness of the special projection PP.

Lemma 2.1. The projection P} defined by (2.18) exists and is unique for any smooth

function w(z), and the following inequality holds
[Phw| < Cllw|e, (2.22)

for all k. The positive constant C' depends on k, the bound of f'(u), the constant ¢ in

the scheme (2.6) and is independent of h and w.
Proof. The proof of this lemma is given in Appendix A.1. ]

Since P} and Qj are k-th degree polynomial preserving local projections, standard

approximation theory [2] implies, for smooth function w,

* * 1 *
[Phw — wl| + h|Phw — wlleo + hZ|[Brw — w]le < O |ul| g (a0 (2.23)
|Qw — wl + A Qyw — wlloo + A2 ]| Qhw — wllr < CRFful i oy,

Besides the standard approximation results (2.23), the special projections P; and Qj;

also have the following superconvergence result.

Proposition 2.1. For k = 0,1...,8, assume that u is a (k + 1)-th degree polynomial
function in P*([a,b]). For a uniform partition on the interval [a,b], set uy = Pju € V¥

and vy = Qju € Wf,. Then we have

|Bj(ur — u,vr — u; on; fru)| < CR*F° 4 Cllonlliagr,y, Yoon € PH(I5)
(2.24)

~

By (ur = wvr —wins fru)l < OW2 4 Ollénlliaq ) Voon € PE(Lpy).
Proof. The proof of this proposition is given in Appendix A.2. ]

2.4.2 A priori L? error estimates

Theorem 2.2. Fork =0,1...,8, let u(-,t) be the exact solution of equation (2.1), which

is sufficiently smooth with bounded derivatives, and assume f € C? with bounded f'(u)
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and f"(u). The numerical solutions uy and vy, of the CDG scheme (2.6) using uniform

meshes satisfies the following L? error estimate
lu-, T) = un(, DI + [lul-, T) = on (-, T)|* < CR**2, (2.25)

where k is the polynomial degree in the finite element spaces V¥ and WF, and the
constant C' depends on k, the final time T, ||u||gr+2 and the bounds on the derivatives
/™, m = 1,2, but is independent of the mesh size h. Here ||u||gr+2 is the mazimum
(k + 2)-th order Sobolev norm of u over time in [0,T]. For k = 0 we need f(u) to be

linear, i.e. f(u) = cu.

Proof. Let e, = u — up, e, = u — v, be the error between the numerical and exact
solutions. To deal with the nonlinearity of f(u), we would like to first make the a priori

assumption that, for small enough h, we have
lu—up| < Ch?, |lu— vy < Ch?, (2.26)

which also establishes the Lipschitz continuity of the right-hand side of the method of
lines semi-discrete ordinary differential equation system, hence the very existence of uy,
and vy,. By the interpolation property, we then have
llewlloo < Ch and ||Pru — uplle < Ch,
(2.27)
llevlloo < Ch and  ||Qru — up||eo < Ch.
This assumption is not necessary for linear f. We will verify this assumption for £ > 1

later.

By taking
on =Pru—up, Yp =Qpu — vy, ¢ =Pru—u, v°=Qru—u, (2.28)
we obtain the energy equality

Z Bj(pn — 0% ¥Yn — % on, i) = ZHj(f; U, Upy, U Pns V). (2.29)

11



From the definition of B}, we can obtain

> " Bi(n, tni on, ) :ZB‘ @, ¥ n, Un) +ZH' [y, uns v ons n)
J
—Z/ t@hdx—irZ/ ©°)ihndx
1
_;Tmam/[j(w _90 Sphdx_z /[ o QD - whdx
+Z/ f(vn))(en) dx-irz [Qoh])j—&-%
+3 / )@l + 306 = Faalo)

(2.30)

For the left-hand side of (2.30), we follow the L? stability proof in Theorem 2.1 for linear

case to conclude

d b b
ZB Sofhwh)gphawh) ;dt/( %L—i_’l/}f%)dx—i_ /(gph_wh>2dm (231>

Tmar

Similar to [19] and [16], to deal with the nonlinear part of (2.30) we would like to use

the following Taylor expansions:

Flu) = Flun) =F(uw)on — () = 5 fon — )"

1 , (2.32)
flw) = fon) =f(w)n — f(u)y — §f{f(¢h =),
where f! and f! are the mean values. These imply the following representation,
> B0 on ) + Y Hi(f s wny vns @n, tn)
j j (2.33)

=L + N1+ Ny + N3 + Ny,

where

L= Z/ Veondx + Z/ Vepdx,
1 , /
Ny==>" /1 (¥ — soe)gohdx - Z / (@) (on)ade - Z( F(@)eon)) o1,

T .
J max §

U / (6 — %dm_z / £ Wn)adz — S (F () fn]);.

— Tmaz .
J J

12



Nj = Z/f Vb (1) dx+z w)n[on]) ;41
+Z/ £ (w)on(n) dx+2 W)onltnl);
M= (% / i =0 Peds + 3 / R
+Z o @n = ) lon]) s +Z Fon = e)%bj)-
By Young’s inequality and (2.23), we have
L < C(lenlP + 110nl1?) + Ol . (2.34)

Next we estimate the nonlinear part. First for the N; term, we can rewrite it in the form

Nl AL LD / () on)ud
LU INEDY / PO o)l
- ; (ul;)) — (U))we[wh])ﬂ%
== DB s+ 2 [ (7 wla) — S ) )t
- i(f’(utvj))  F oy

By the inequality in (2.10), (2.23) and || f'(u(z;)) — f'(u)||z=(,) = O(h), we have

Ni < =" Bi(e", 65 ons £u) + Cullonll® + Cuh® 2 [u[Fas1 (0 - (2.35)

J
For Bj(we Y on; f,u), let uyp be the Taylor polynomial of order k + 1 of u near z; i.e.
ay = Zerol 2 (z;)(x — x;)', ® € (xj_1,2j41). Let r, denote the residual term i.e.

rJ = u — @y . Recalling the Bramble-Hilbert lemma [2], we have
7l ooy < CRE* 2 ul grsayy)- (2.36)
Then we rewrite ¢° and ¥°
e =Pru—u= IP’};@j —ay +P2ri — ri,

13



e _ QO O — I Qe — g
V= Qu—u=Qru —u +Qprl —rl.
Hence, using Proposition 2.1, we have

Bj(9°, 0% on; fou) =B, (9%, 0% o f,u)

(2.37)

=B;(Pyar’ — ar + Py, — vl Quiar’ — ar + Qyrl — 1l ons fLu)

=B;(Pyuy —a, Qpay’ —ar’; on; f,u)

+ BJ(]P);(J% - Tia Q;Ti - Ti; Ph; f7 U)

=B;(Pyrl — v, Qprl — rison; fou) + Ch?H 4 Cllenll7a,):

(2.38)

Therefore, by using Young’s inequality, (2.23), the inequality in (2.10) and (2.36), we

have
- ZBJ(SOe, V%5 on; fru) < CR* 2 ) grse (o) + Cllenll*.
Hence, for N; we have
Ny < (C+ C)llenl® + (C + C*)h2k+2H“H%{kw([a,b})-
Similarly, for Ny we have

Ny < (C+ Co)llvnll* + (O + COR|ullfgire o 1)

The N3 term can be rewritten as the following form

M=3 ( / P+ [ 7))

j Z .
J it+3

+Z w)nlen]) 1 +Z w)en[tn]);
= Z ( Wngr )i — (f <u>sohwh )+ (F(Wenti )i
— (g + (M @nlonl)siy + (F()enln));)

-3 / T P ) etnpnda
=— Z /mﬁl )eVnendz

SCH%HH%H < C([[vnll? + llenll?)-

14
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Ny is the high order term in Taylor expansion, it is easy to show that

Ny <Cih ™ ([lewllsolles | lenll + llewllos llewll 14n]])
SC*’fl(H%Hoo(||80h\|\|¢h\| + llonll 1N + llewlloo (leonllllenll + H?/JhHHSfH))
. ) , ) (2.43)
<Cu(h lewlloo + 7 lewlloo) (lonll” + |¢n %)
+ Cu(hHlewlloo + h_l||€U||00)h2k+2||u||§-1k+1([a,b])‘
Hence, combining (2.34), (2.40), (2.41), (2.42), (2.43), (2.31), we obtain from (2.30)

1d [* 5,
= + 7)dz <(C + Cu(h™eslloo + 27 €]l oo 2+ 2
i ], (6 e SO+ CO el 4 b el + Il

+(C + Culh Hlewlloo + 1M lewlloo) )2 [l v o gy -
When k > 1, by using a priori assumption (2.26) we have

1d [°

sar | (@h vz < (C+ COlllenll® + 19nl*) + (C + COP* 2 ullfpnre -
(2.45)

Finally, by Gronwall’s inequality and the fact that ||ox(-,0)]] < Ch**L |[Yn(-,0)|| <

Ch¥! we can get
b
/ (2 + ) dr < Oh? 2, (2.46)

This, together with the approximation result (2.23), implies the desired error estimate.

For the case of k = 0, we assume that the convection term is linear, namely f(u) = cu.
This is to avoid the need of the a priori assumption (2.26) which is no longer justifiable
since our L? error estimate is only of order O(h) in this case. The proof is similar to that
for k > 1 case given above, and the only difference is C', = 0 in this case. By similar

lines of proof, we have

1d [°

57 | (n T nde < Cllenll® + llnll®) + CP. (2.47)

An application of Gronwall’s inequality give us that
b
/ (g7 +b3)dx < Oh>. (2.48)

This, together with the approximation result (2.23), implies the desired error estimate.

15



Finally, let us justify the a priori assumption (2.26) for £ > 1. Similar to [19] and
[1], we can verify this by a proof by contradiction. By (2.25), we can consider h small
enough so that Ch*! < %h%, where C'is the constant in (2.25) determined by the final
time 7. Define t* = sup{t : ||u(-,t) — un (-, )| + |u(-, ) — va(-,t)|| < h2}, then we have
u(-, t*) = un (-, ) || + [[u(-, ) = va (-, £%)|| = h2 by continuity if ¢* is finite. Clearly, (2.25)
holds for t < t*, in particular, |Ju(-,t*) — up(-, t*)|| + [Ju(-, t*) — va(-,t%)]] < ChFL <
%h%. This is a contradiction if t* < T. Hence, t* > T and our a priori assumption is

justified. ]

3 The central DG method in multi-dimensions

In this section, we consider the semi-discrete central DG method for multidimensional
nonlinear conservation laws. Without loss of generality, we will show our central DG
scheme and prove the optimal a priori error estimates in two dimensions (d = 2); all the
arguments we present in our analysis depend on the tensor product structure of the mesh
and finite element space and can be easily extended to the more general cases d > 2.

Now we consider the following two-dimensional problem,

u+ f(u)s +9(u)y, =0, (x,y,t)€Qx(0,T],
(3.1)
u(w,y,()) = uO(x>y)a (xvy) € Q,

with periodic boundary condition or compactly supported boundary condition.

3.1 Basic notations

Let {K;; = [mi_%, xH%] X [yj_%,yj+%]} be a partition of €2 into uniform square cells,
depicted by the solid lines in Fig. 3.1, and tagged by their cell centroid at (z;,y;). Define

h=a1—x_ 1 =y; 1 —y;_1. Let Xp={ve L’ :vlx, € Q"(K;;), V(i j)}

where Q (K ;) is the tensor-product polynomials of degrees at most k in each variable

defined on K;; and no continuity is assumed across cell boundaries. Let K, 1,1 be
? 27 2

the dual mesh which consists of a % shift of the K;;, depicted by the dashed lines in
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X, .
¢ !+%')j+%)

(xi,95)

Fig. 3.1. 2D overlapping cells formed by collapsing the staggered dual cells on two
adjacent time levels to one time level.

Fig. 3.1. Let (:L“Z-Jr%,yﬂ%) be the cell centroid of the cell K; 1 ;.1 and let Y= {ve

L*(Q) v

Ki; € Qk(KH%,jJF%), V(i,7)} denotes the space of tensor-product polynomials
of degrees at most k in each variable defined on K, +1gtl and no continuity is assumed
across the cell boundary. For a function ¢, € XF, we use (gph):r%’y and (¢n);,, , to
denote the values of ) at (xi%,y) from the right cell K,y ; and the left cell K;;,
respectively, when y € [y; 1,9 +%] on all vertical edges. And for 1, € Y}¥, we use (?ﬂh);y
and (¢5);, to denote the values of ¢, at (x;,y) from the right cell K141 and the
left cell KZ;%’]- +1s respectively, when y € [y;,y;41] on all vertical edges. The notation
[onliy1y or [¥nlit1,y denote (@h),ﬂévy - (Sﬁh);%,y or (¢Yn)i, — (¥n);i-e. the jump of @y, at
(xH%,y) when y € [yj,%,yﬂ%] or the jump of ¢, at (x;,y) when y € [y;, y;4+1]. Similarly,

we can define (Sph);r,ﬁr%’ (‘:Oh);j+%> (wh);_,ﬁ (wh):;,j’ [‘Ph]x,ﬁé and [Yp]e ;-
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3.2 The central DG scheme

We propose the following semi-discrete CDG scheme for periodic boundary condition:

find u, € X} and v, € V¥, such that for any ¢, € X} and ¢y, € Y},

/ (un)pndardy =
K

0,7

/ (vp, — up)prdady
K.

mazx i

+/K‘ (f () (2n)e + g(vn)(on)y)dzdy

_ /yr"% ((f(Uh)SD}:>i+%,y - (f(Uh)SOZ)F%“y)dy

((g(vh)¢;)x,j+% - (g(vh)wz)x,j—&-%)d‘r? (3.2a)

/ (vp)ebpdzdy = / (up, — vp)Ypdady
K. 1 K

Tmaz 11
i+5,0+5

+ /K (f (un)(Wn)z + g(un)(Pn),)dzdy

i+a+g

B /yjH((f(uh)wh)iH,y = (f(un)¥)iy)dy

Y

_ /%i-&-l((g(uh)l/}}:)m,j-l—l — (g(up)ty ) ;) de, (3.2b)

where 7,4, 18 @ max step size, determined by 7,,,, = (CFL factor)xh/(maximum characteristic speed),
in which the CF'L constant should be less than 1/2. Similarly, for the initial condition

we simply take up (-, -,0) = Pyuo(-, ), vn(:,+,0) = Quuo(-, ), where P, and Qy, are the L?

projections into V¥ and W}, respectively, and we have

luo = Pruoll 2, ) < CHEHlug |l e i, )

(3.3)

luo = Qutollzgre,, ) < CH* uollsnc,,

3.3 L? Stability for linear equation
The L*-stability is proved for the CDG scheme (3.2) in [10] if f(u) and g(u) are

linear. Without loss of generality, we take f(u) = g(u) = u. Hence, we have

u+uy +uy, =0, (z,9,t) € Qx(0,7T],
u(:v,y,()) = UO(Q:?y)a (xay) c Qa
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with periodic boundary condition.

Theorem 3.1. The numerical solutions u, and v, of the semi-discrete CDG scheme

(3.2) for the equation (3.4) have the following L? stability property

lun (s D22y + lon s T2y < llunls - 0)ll72) + Il 0)ll72)-  (3:5)
3.4 Optimal L? error estimate

In this subsection, we show the a priori L? error estimate of the scheme (3.2) for the
equation (3.1).

Here and below, we again use || - || to denote the standard L? norm. Similar to the
one-dimensional case, we recall the classical inverse and trace inequalities [2]. For any
wy, € XF or wy, € Y}F, there exists a positive constant C' independent of wy, and h, such
that

|8swnll < Ch M fwill, Jeonlle < Ch7% enl, [lwnlloo < CR™luwnll, (3.6)

where I' is the set of boundaries of all elements K;; or K, 1l

Similar to the one-dimensional case, we first introduce some notations. Assume uy,

and v, are the numerical solutions of CDG scheme (3.2) for equation (3.1), we define

5 1
B j(un, vns on; f, g, u) == / (v, — up)prdrdy
K

T y
max i

T /K (F (e, ;) (on)e + g (ulzer 7)) on)yondady

_ / P (s, YD ((0nen )iy = (V)i )dy
)

I=32
.
- [ ) (e = b))
(3.7a)
. 1
Biya g (un, ons tns fr 9, 1) := / (un, — vp)¢ndady
mazx Ki+%d_+%
w0 by ) @
Kivdird

+ g’(u(:cH%, yj+%)) (Vn)y)undrdy
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Yji+1
[ o vy N i iy — ()i

J

[ e s N g — (w003 ),

(3.7b)
and
B; j(un, vn; on, ¥n) :/ (un)ondrdy + / (vp)sndxdy
Kij Ki+%,j+%
1 1
— / (v, — up)ppdady — / (up, — vp)Ypde,
Tmazx K'J‘ Tmazx Ki+%,j+%
(3.8)
Obviously, we have
B; j(un, vn; on, ¥n) = (f(vn)(on)a + g(vn)(n)y)dzdy
Kl,_]
s )+ gl ), )dody
Kivljrd
y].+ 1 B N
— [ @iy — F)eD) s )y
yj,%
it (3.9)

— /z %((g(vh)sofi)x,ﬁ% = (9(vn)@h )z s )de
— /yjﬂ((f(uh)w;)i—i-l,y - (f(uh)wl_z‘—)l,y)dy

B /z H((9<“hwﬁ)x,j+1 — (g(un)y )aj)de,

Von € Q" (Kij), Vb € Q°(Kip1 ji1).
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Let u be the exact solution of equation (3.1), clearly we have

Buj(uty s on, ) = / (F)(9n)s + 9(u) (91)y)dady

Kij

(f () (¥n)e + g(u)(thn)y)drdy

(3.10)

Y5

= [ e~ () i)y
Yj

Tit1
= [ o e~ (gl o),
Vo, € Qk(KiJ): Vi, € Qk(Kz‘+%,j+%)'

Subtracting (3.9) from (3.10), we get the error equation for two-dimensional case,
B j(u — up, u — vp; 0n, Un) =

(f (u) = f(on))(pn)z + (g(u) — g(vn))(n)ydrdy

+ /K () — F(un)) (n)s + (9(u) — glun))(tn),dady

) = Fo) sy — (@) = F@)oh) s Jdy
;%l (3.11)
= [ o) = gen)en )iy - (90 ~ gD, y)do
= [ = F) iy — () = )il
= [ 00) = ) )ager — () — gl ol
=H, 5 (f5 0,y vn; on, Un), Yoo € Q% (Kiy), Yoo € QM (Kip1ji1).
Summing over all 7 and j, the error equation becomes
> Bij(w—un,w—opion, ) = > Hij(f; 0, wn, vns on, ¥n),
irj ij (3.12)

Vion € QY(Kiy), Y € Q" (K1 41).
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3.4.1 Projection operators

To prove the error estimates for two-dimensional problems in uniform Cartesian
meshes, we need two suitable projections P; and Qj similar to the one-dimensional case.
By applying the shifting technique in the two-dimensional case, for x and y variables
respectively, for a given function w(z) we define Pjw € Q*(K; ;) over K, ; satisfying the

following two equations,

/ P wdzdy = / wdzdy, (3.13a)
K K;
Pu(Prw; on; fr9,u)ig = Pu(w; on; f,9,u)ij, Yeon € Q(K;j) (3.13b)

where ﬁh(w; on; f,g,u);; is defined as follows,

. 1 Yi i h h
Pu(w; on; f,9,u)i = w(z + 5 Y+ 5)%(136(19
max yji% $17%
Vi [Tieg h h
+ / / w(r — YA §)sohd:vdy
) Zq

.
S
Nl

_l_
ST~
:ﬁ
+
=

%\a

g
—
8
+

[\
<@

o |
S~—
AS)
>
Y
3
.
<

+
@\»
<
+
[T
[N
S
)
|
N |
<<
|
|
AS)
>
oW
&
oW
<

<
|

|
S~
+
(S
ﬁ
b
"

*w(z, y)sohdwdy>

v b h ,
[0 e Gy ) i )0uon + o (s, ) By oy
Vi “Tind
Y Fit} h h, . /
[0 [ e S D0 e n))0uen + o (u(as, 1) Dyen)dedy
yj_% X4
Yird [T h h., . ,
[ et Gy = D i) Ouon + o (a0, ) dndy
Yj %7%
Yird [Tird h h., . ,
[P0 [ = Sy = S )0+ o Culai, )y
Yj Z;
vio h B N
- / Filulzi, ys))wlzi,y + 3) (soh(:cH%, y) — soh(fci,%,y))dy
yj,%
Yivd h _
- [ ety - ) (el 0) - el o) )dy
Y
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i=3

B /:il o (s, ;) ( + g7yj)<gph(;lj,yj+;) — oz, y! ))d:c

_ /z o 9 (w(zi, y;))w(z - E,yj)<90h($,yj_+§) — (@, y! )>dx’

1
2 J—3

Similarly, we can define the projection Q; from w € L"O(K.Jr%’j%) into Qyw € Qk(Ki+%7j+%)

(3

over K, . Next we will discuss the properties of these two special projections. With-

i+3.+3
out loss of generality we will only consider P;. The equation (3.13a) is required by con-
servation. Note that P, (w;@s)i; = 0 for Yw when ¢y is a constant, so (3.13b) alone
misses one condition which is provided by (3.13a), just like the one-dimensional case.

Existence and optimal approximate property of the projection PP; are established in the

following lemma.

Lemma 3.1. The projection P} defined by (3.13) exists and is unique for any smooth

function w(z), and the following inequality holds

IPrw — w|| + hl|[Bfw — wlle + h2 [Phw — wl|r < CRY|w] grer ), (3.15)
for all k. The positive constant C' depends on k, the bound of f'(u), ¢'(u), the constant
¢ and is independent of h and w.

Proof. The proof of this lemma is given in Appendix A.3. O

Similarly, for Q; we have
|1Q}w — w| + hl|Qiw — w]|o + B2 | Qpw — wllr < CHFH|w|] g oy, (3.16)

if w is a smooth function.
Again, the projections P; and Qj satisfy the following superconvergence result.

k+1

Lemma 3.2. For m = 0,1...,8, assume that u = x or Y"1 let uy = Pju and

v = Qpu then

| By j(ur — u,vr — w;pn; f, g, w)] SCh** ™ 4 Cllgnl[72 s, ), (3.17)
By g s — w00 = w i £ 9.0 SCWH 4 Cllinlia, o (319)
Proof. The proof of this lemma is given in Appendix A.4. O]
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3.5 A priori L? error estimates

Now let us give the a priori error estimate for the two-dimensional case.

Theorem 3.2. Fork =0,1...,8, let u(-,-,t) be the exact solution of equation (3.1), which
is sufficiently smooth with bounded derivatives, and assume f € C? with bounded f'(u)
and f"(u). The numerical solutions uy, and vy, of the CDG scheme (3.2) using uniform

meshes satisfies the following L? error estimate
||u<v '7T> - uh('? K T)H2 + Hu(7 * T) - Uh('v '7T)||2 < Ch2k+2a (319)

where k is the polynomial degree in the finite element spaces X\ and Y}¥, and the con-
stant C' depends on k, the final time T, ||ul|grer2 and the bounds on the derivatives
|1 g™, m = 1,2, but is independent of the mesh size h. Here ||u||grs2 is the
mazimum (k + 2)-th order Sobolev norm of u over time in [0,T]. For k =0 and 1 we
need f(u) and g(u) to be linear, i.e. f(u) = cyu and g(u) = cou with constants ¢; and

Cy.

Proof. Let e, = u — up, e, = u — v, be the error between the numerical and exact
solutions. Similar to the one-dimensional case, to deal with the nonlinearity of f(u) and

g(u), we would like first make a priori assumption that, for small enough h, we have
|u —up|| < Ch?, |lu— v < Ch?, (3.20)

which also establishes the Lipschitz continuity of the right-hand side of the method of
lines semi-discrete ordinary differential equation system, hence the very existence of uy,

and vy,. By the interpolation property, we then have

llewl|oo < Ch and ||Pru — uplle < Ch,
(3.21)
llevlloo < Ch and  ||Qfu — up||eo < Ch.

This assumption is not necessary for linear f and g. We will verify this assumption for

k > 2 later.
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By taking

on =Pru—up, Yp = Qru — vy, ¢° =Pru—u, ¥ =Qru—u, (3.22)

we obtain the energy equality
Z Bij(on — ¢ Un — ¥ 0n, ¥p) = Z H; j(f; s un, Un; @n, Un).- (3.23)
12 2%

From the definition of B, ;, we can obtain

2,7
Z Bi j(n: ¥ns; ons tn)

_ZB'L] (;0 1/) @hvwh +ZH’LJ f uuhavha@h7¢h)

ZXJ: /K W t(PhdSCdy-i-Z / )b dady
3, ij(f<u) N+ ()~ o)y
+ Z [ 0= e (60 = gy
X %Hf,((f(U)—f( Meitrs 3 [ ot = gipyd
+Z /:jl«ﬂ ) — Flun))n] zydwz / 29 ) = 9(un)) [n] oyl

(3.24)

For the left-hand side of (3.24), we follow the L? stability proof in Theorem 3.1 for linear

case to conclude

1d
Z B; i (n, Un; n, Yn) = 3 /Q(@i + ¢p)dz + /Q(%Dh — Uyp) dx. (3.25)

max

Similar to the proof in [19] and [16], to deal with the nonlinear part of (3.24) we would

25



like to use the following Taylor expansions:
1
Fw) = fun) =f'(w)on = f(w)e" = S Fillon — &),

Flu) = Flon) =F"(upn — £/ () — 5 £~ 0°)"
1 2

g(u) — g(un) =g'(w)on — g'(u)p® — 595(% — %)%,

9(u) — g(on) =g'(u)bn — ' (wo* — S — )’

(3.26)

where f/, f' and ¢/, g/ are the mean values. These imply the following representation,

ZB” 0, %5 on, Un) +Z 3 (F5u, wn, vns o, tn)

(3.27)
—£+/\/1 + Ny + N3 + Ny,
where
L= Z / (v tsohdrcdy+z / . o) etndady,
Z — — ¢ )pndrdy
- Z / + o/ () (n),)dady
—Z/(f( Y on]) 1y — Z/; o] syl
N2=—;T;m / ey
—ZJ: /K » +1(]"(U)soe(wh)x+g’(u)goe(wh)y)dmy
—Z/:+ (f' (@) [n])iydy — Z/ O [0n])asd
N3 = Z]: L_J_(f (W) bn (on)e + ¢ (W) (@n)y ) dzdy
+Z;/K+ +1(f/(u)90h(¢h)z+g/(u)<,0h(¢h)y)dxdy
+Z/H2(f( )tnln])ir ydy—i-Z/ (g W) enleon 1)y siade
Ty

(f( )en[n]) Zydy%—Z/ng )en[¥n])a ;d

26



Ni=- 1 Z/ () (n — 0 (on)e + gu(bn — ©°)? (1), ) dady
+ Z/ v (on = )2 (V) + g (on — ©°)* (n)y)dady
+Z/ : é’ (¥n = ¥°)[on])irs ydy+2/ 1% 9o (o = )’ [on])a 4 12
+Z/ w (on — ©°)*[¢n]) Zyalerz:/“1 (gu(on — ¢ [I/Jh])x]da:)
By Young’s inequality and (3.15), (3.16) we have
L < C(llenll® + [¥nll?) + CR**2 ul|Fps - (3.28)

Next we estimate the nonlinear part. First for the N; term, we can rewrite it as

M:—Z ! / (¥ — ) pndady

- Tmaz

-3 [t o)+ o ) oy
J+
_Z/ ? (@i, yp) 0 on))ir s, dy — Z/ w(@s, ;) )V [ on))p jrrda

3 [ o) = £ )+ (0 ) o )0
£y / () — /) ]
D3 [ e = g @) 0y o

= - ZJ B;,j(ioe, U*; o)

+ Z/ ((f(ul@i yy) = (W) (on)e + (9" (u(®i, y;)) — g' (W)Y (on)y)dody
e 30 [T i) = 7 @)Dy

(9l ) — 9 ) L)), s d

By using the inequality in (3.6), (3.15), (3.16) and || f'(u(zs,y,)) — F'(u)]| 1=, ) =
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O(h), [lg' (u(zi, y5)) — 9'(u)|| L=k, ;) = O(h), we have

Ny < — Z Bij (%, 0% on) + Cullonl® + Ch 2|l Fisr oy (3.29)

J
For Bi,j(goe, Y°; ¢p), we know that for an arbitrary element K ;, we can obtain the fol-

lowing results from Lemma 3.2, for Vu € P ([x;_1, 2511 X [yj-1, ¥j+1)), Veon € QF (K, ;)
|Bi i (Bru — u, Qhu— u; on; f,9,u)| < CR* ™ + Cllgnl| ok, (3.30)

On each element K;; we consider the following Taylor expansion of w around (x;,y;),

u = Tu+ Ru, (3.31)
where
E+1 1
1 O'u(xi,y;)

T _ 19 ) _ s l—m _ \m . 2

' 1=0 mZ:O m!(l —m)! Qxl=moy™ (@ =) "y — )", (3:32)
P o2 (k + 2)(x — 22 (y — )™ [ 1 k+1ak+2u<x55)’ yﬁ('S))d 3.33
AT k2 m) /0 U gyt B

with xgs) =z; + s(z —x;), ](-S) =y;+s(y—y;). It is obvious that Tu € P*([z;_1, ;1] X

Yi—1,Yixr1]). Note that the operator P; is a linear operator and P;u = P;Tu + P} Ru, we
j j h h h h

obtain from (3.30) that

Bi (0% on; £, 9,u) =Bi j(PyTu — Tu + P Ru — Ru,
QpTu — Tu + Qj Ru — Ru; o; f, g, u)
=B, ;(PyTu — Tu, Q;Tu — Tu; py; f, g,u)
+ B (P Ru — Ru, Qj Ru — Ru; o; f, g, u)

+ Ch*** + Cllgnllia i, ,)- (3.34)
Recalling the Bramble-Hilbert lemma [2], we have

||Ru||Loo(Kz.7j) < Chk+1|u|Hk+2(Ki7j). (335)
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Therefore, by using Young’s inequality, (3.15), (3.16), (3.6) and (3.35), we have
=2 Big¢", 0% ons f90) < CR* 2 Jull sy + Cllonl|* (3.36)
Hence, for N; we have
N1 < (C+ C)llgnll® + (C + COR* 2 ||ullfuraq). (3.37)
Similarly, for N, we have
N < (C + C) [l + (C + COR 2|l (3.38)

Similar to the one-dimensional case, the N3 term can be rewritten as

N; = Z / / f'(w)(npn) dxderZ /y / ) Wnpn)odady

J—

+Z/ / . W) (Yren) dydx+2/x 1 / w) (Unipn)ydydz

-2

—l—Z/ w)Vn[on)) i1 ydy—FZ/ %9 ¢h90h])x]+ldx

xz+1

+Z/ w)on[thn] zydy+2/ (9" (Wen[¥n])a,jdz

—Z (/‘“12 Wney )iy 1y — (F(W)ney)i 1y
» :

1
2

l\')

Jonti i — (@t i + (7 @nlon]) s )y (3.39)
(0 e g s — (8 (0o )

it

Nl

i

+ (
“f
+ (9" (Wenty, )ug — (9" (Wenty )ag + (9 (Wenlenl)g i1 )de
= [T @ity + [ @D

J

- /K <<f/<u>>"” + (gl(u))y)sf?hwhdxdy>
- Z /K ((f/(u))x + <gl(u))y)90h1/1hdxdy

<Cullenllllvonll < Culllnll® + llvonll®)-
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N is the high order term in Taylor expansion, it’s easy to show that

Ny Sc*h_l(HevHoonevHHSOhH + ||GU||OO||6U||||¢hH)
SC’*h_l<||€v||oo(||90h||||@/)h|| + [lenllllDN) + lewlloo (llnllllenll + ||¢h||||%06||)>

) ) ) , (3.40)
<Cu(hewllo + B el Qlonl + 10]P)
+ Culh™ e lloe + B lewlloo Bl

Then by combining (3.28), (3.37), (3.38), (3.39), (3.40), (3.25), we obtain from (3.24)

1d _ _
57 [ (0 +ui)drdy <(C+ Co(hewlloo + 7 leulloo)) (lenll* + ll9nl?)
2dt Jq (3.41)
+ (O 4 Culh ™ lewlloo + A7 lewllo) ) 2wl vz -
When k£ > 2, by using a priori assumption (3.21) we have

1d

2dt Q(soiwi)dxdyé<O+C*)(||soh||2+I|¢h||2)+(O+O*)h2‘“+2||u||?{k+z<m- (3.42)

Finally, by Gronwall’s inequality and the fact that |[¢n(-,-,0)|| < Ch*L, ||wn(-, -, 0)| <

ChF! we can get
%% Q(goi + 3 )dwdy < Ch***2, (3.43)
This, together with the approximation result (3.15), (3.16) implies the desired error
estimate.
For the case of kK = 0 or 1, we assume that f(u) and g(u) are linear fluxes, namely
f(u) = cpu, g(u) = cou with constants ¢;, cz. This is to avoid the need of the a priori
assumption (3.20) which is no longer justifiable in this case. By similar lines of proof

and noting that C, = 0 in this case, we can obtain

1d

o [ (G uddady < CllonlP + lnl?) + CH*42, k=0, 1. (3.44)
Q

By using the Gronwall’s inequality we have
/(wi + ¢p)dedy < Ch*M2 k=0, 1, (3.45)
Q

This, together with the approximation result (3.15), (3.16), implies the desired error

estimate for £ = 0, 1 with linear fluxes.
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Just like the one-dimensional case, let us justify the a priori assumption (3.20) with
k > 2. Similar to [19] and [1], we can verify this by a proof by contradiction. By (3.19),
we can consider h small enough so that Ch*! < %hz, where C'is the constant in (3.19)
determined by the final time 7. Define t* = sup{t : ||Ju(-, -, t) — up(:, )| + ||Ju(-, -, t) —
vp(e, o, 1) < h?}, then we have ||u(-, -, t*) — up(-, -, )| + ||u(s, - t*) — vp(-, -, t)|| = h?
by continuity if ¢* is finite. Clearly, (3.19) holds for ¢ < ¢*, in particular, |u(-,-,t*) —
wp (- )|+ JJu, - %) = vp(e, -, t%)|| < Ch¥ < 1h% This is a contradiction if t* < 7.

Hence, t* > T and our a priori assumption is justified. O]

4 Numerical examples

In this section, we present numerical examples to verify our theoretical findings.
Uniform meshes are used in all examples. The schemes are integrated in time with the
third order SSP Runge-Kutta method. We would like to compute on elements of degree
k=0,1,2,3. We set the CFL number to be 0.05. For k = 0,1,2 we let At = CFL - h
and At = CFL - hs for k = 3 where h is the characteristic length of the mesh, so that

the time error will be dominated by the spatial error.

Example 4.1. We solve the one-dimensional Burgers equation given by
u2
U + (?)x =0, z € [-7, ],
u(z,0) =sin(z), = € [—m, 7], (4.1)
u(—m,t) = u(m,t).

The exact solution is obtained by Newton iteration. In this example, we use 7,4, =

_h_
2k+1°

at T'= 0.5 with 0 < k < 3 are listed in Tables 4.1.

h = QW” to test the numerical schemes. The errors and numerical order of accuracy

Table 4.1 shows that the order of convergence of the error achieves the expected

(k 4+ 1)-th order of accuracy.
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k| N LY error  order | L? error order | L™ error order
10 | 6.73E-001 - 3.65E-001 - 5.60E-001 -
20 | 3.34E-001 1.01 | 1.83E-001 0.99 | 3.04E-001 0.88

0 40 | 1.66E-001 1.00 | 9.19E-002 1.00 | 1.56E-001 0.97
80 | 8.31E-002 1.00 | 4.60E-002 1.00 | 7.90E-002 0.98
160 | 4.15E-002 1.00 | 2.30E-002 1.00 | 3.97E-002 0.99
10 | 6.90E-002 - 4.40E-002 - 8.69E-002 -

1 20 | 1.86E-002 1.89 | 1.25E-002 1.81 | 2.58E-002 1.75
40 | 4.73E-003 1.98 | 3.21E-003 1.97 | 7.34E-003 1.81
80 | 1.19E-003 1.99 | 8.11E-004 1.98 | 1.95E-003 1.92
160 | 2.98E-004 2.00 | 2.04E-004 1.99 | 4.94E-004 1.98
10 | 9.68E-003 - 8.58E-003 - 2.53E-002 -

9 20 | 8.97E-004 3.43 | 9.29E-004 3.21 | 4.24E-003 2.58

40 | 1.13E-004 2.99 | 1.14E-004 3.02 | 6.03E-004 2.82
80 | 1.42E-005 299 | 1.44E-005 2.98 | 7.87TE-005 2.94
160 | 1.78E-006 3.00 | 1.81E-006 2.99 | 9.99E-006 2.98
10 | 6.06E-04 - 6.47E-04 - 3.26E-03 -

20 | 6.17E-05  3.30 | 6.91E-05 3.23 | 2.73E-04  3.58
40 | 4.54E-06  3.77 | 5.54E-06 3.64 | 3.21E-05  3.09
80 | 2.86E-07 3.99 | 3.49E-07 3.99 | 2.06E-06 3.96
160 | 1.79E-08 4.00 | 2.19E-08 4.00 | 1.30E-07  3.99

Table 4.1. Errors and numerical orders of accuracy for Example 4.1 on a uniform mesh

of N cells. Here Ty0: = 2khﬁ and final time T" = 0.5.

Example 4.2. We solve the two-dimensional Burgers equation given by

u2 2

/T )y — 07 ) 1y 27
ut+(2)+(2)y (x,y) € [-7, 7] (42)
u(z,y,0) = sin(z +y), (z,y) € [-m,7]%
with periodic boundary condition. The exact solution follows from the solution of

one-dimensional Burgers equation with & = x 4+ y. In this example, we use Tu: =

h

s b= QW” to test the numerical schemes. The central DG scheme is evolved up to

T = 0.2 when the solution is still smooth. The errors and numerical order of accuracy
with 0 < k < 3 are listed in Tables 4.2.
Table 4.2 shows that the order of convergence of the error achieves the expected

(k + 1)-th order of accuracy.
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k Nx N L' error  order | L? error order | L™ error order
10 x 10 | 5.57E+00 - 1.22E4-00 - 8.16E-01 -
0 20 x 20 | 2.76E+00 1.01 | 6.17E-01  0.98 | 4.87TE-01 0.74
40 x 40 | 1.37E4+00 1.01 | 3.09E-01 1.00 | 2.57E-01 0.92
80 x 80 6.81E-01 1.01 | 1.54E-01 1.00 | 1.30E-01 0.98
160 x 160 | 3.40E-01  1.00 | 7.72E-02 1.00 | 6.54E-02 0.99
10 x 10 9.12E-01 - 2.34E-01 - 2.60E-01 -
1 20 x 20 2.37E-01 1.94 | 6.25E-02 1.90 | 8.19E-02 1.67
40 x 40 5.99E-02 1.99 | 1.60E-02 1.97 | 2.19E-02 1.90
80 x 80 1.50E-02 2.00 | 4.02E-03 1.99 | 5.71E-03 1.94
160 x 160 | 3.75E-03 2.00 | 1.01E-03 2.00 | 1.45E-03 1.98
10 x 10 1.49E-01 - 5.03E-02 - 1.22E-01 -
9 20 x 20 1.91E-02 297 | 6.44E-03 2.97 | 2.14E-02 2.52
40 x 40 2.38E-03  3.00 | 8.33E-04 2.95 | 3.00E-03 2.83
80 x 80 3.00E-04 2.99 | 1.06E-04 298 | 3.87TE-04 2.96
160 x 160 | 3.77E-05 2.99 | 1.33E-05 2.99 | 4.87E-05 2.99
10 x 10 2.06E-02 - 7.45E-03 - 2.20E-02 -
3 20 x 20 2.04E-03 3.33 | 872E-04 3.09 | 3.30E-03 2.74
40 x 40 1.48E-04 3.79 | 6.09E-05 3.84 | 2.50E-04 3.72
80 x 80 9.70E-06  3.93 | 4.02E-06 3.92 | 1.78E-05 3.81
160 x 160 | 6.19E-07 3.97 | 2.62E-07 3.94 | 1.17E-06 3.92

Table 4.2. Errors and numerical orders of accuracy for Example 4.2 on a uniform mesh

of N x N cells. Here 7,0z = # and final time T = 0.2.

5 Concluding remarks

In this paper, a priori optimal L? error estimates to central DG methods on uniform
meshes applied to nonlinear conservation laws with smooth solutions are proved with
polynomial degrees of k < 8. The main techniques used in this paper are special projec-
tions and Taylor expansions. Our analysis is carried out both in one dimension and in
two-dimensions for uniform Cartesian meshes and tensor-product polynomial spaces. We
also give some numerical examples to verify the results of our theoretical analysis. The
error estimates for nonlinear conservation laws in this paper were obtained using stabil-
ity for the linear case and the smoothness of the exact solution. It is not clear whether
stability holds for the scalar nonlinear conservation laws with general non-smooth solu-
tions. Such a stability proof for the central DG schemes and the extension of this work to

non-uniform meshes and unstructured triangular meshes are interesting and challenging,
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and constitutes our ongoing work.

A Appendix: Collection of technical proofs

In this appendix, we collect the proofs of some technical lemmas and propositions.

A.1 Proof of Lemma 2.1

Proof. We only consider PP}, while the proof for QQ; follows similar lines. For Vj, we let

£= 2(:”—;%) on I;, for a smooth function w(x) and a k-th order polynomial ¢y (z) on I;,

and define

o) = w(gf +z;) = w(z),
61(6) = en(5E + ;) = onla).

Note that the procedure to find the P;@ € P*([—1, 1]) is to solve for a linear system,

(A1)

so existence of the projection can be proved by proving its uniqueness. Thus, we only
need to prove the uniqueness of the projection P;. We set w;(§) = Prw(§) = Prw(x)
with ©(§) = w(z) = 0, and would like to prove w;(§) = 0. Then by the definition of the

projection P}, we have:

0

~ h 1
]Dh(w[; ¢h7 f7 u)j _27_(/_ w1<£ + 1)Oh(£)d£ + /O w[<§ - 1)¢h(£)d£

1

_/_ wr(§)Pn(£)d) +/_1'f/<u(wj))w1(f+ D)(#n(&))edg

v Pl er (€ — 1)(@n(€))sde
() (0)(6n(1) — b1(~1))
=0, (A.2a)
Z /11 wr(€)de = 0. (A.2b)
Let én(6) = wr(€) € PH([-L, 1)), we get

Pz .y = ([ nte s Den(@rte+ [ nte — Durterde — [ ey

+ /_1 f(u())wr (€ + 1) (wr(§))eds +/0 f'(ul;))wr (€ = 1) (wr(€))edé
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= f'(u(x;))wr(0) (wr(1) — wi(=1)) = 0. (A.3)

We rewrite ﬁh(wI; wr; f,u); by a change of variable & — £ + 1 for the integrations over

[—1,0] to get

27—max

P o)y = (2 [ e = Ve — [ ente — 17 — [ teriae)

+/0 f(w(z))wr(§)(wr(§ — 1))eds +/0 f(u(;))wr(§ = 1)(wr(§))eds

P (u))wor(0) (wr (1) — wi(~1))
S A@MO—w@—UW&zO (A.4)

QTmaa:

Thus,
wi(€) = wi€ —1), V€€ (0,1). (A.5)

Next we will show that w;(€) is a constant on [—1,1]. Let wr(€) = 328 a;€%, € € [-1,1].

For k = 0 it clearly holds. For £ > 1, now from (A.5) we have

G(&) == wr(§) —wr(§—1) = Zai(&’i — (-1 =0, VEe(0,1). (A.6)

Assume a;, 1 < i <k are not all zeros, then G(§) is a non-zero polynomial of degree at
most k — 1, thus it has at most k — 1 roots, which is a contradiction to (A.6). Hence, we
have a; = 0, V1 <1 <k, which indicates that w;(£) is a constant on [—1,1]. Hence, by

(A.2b), we have
h 1

1
which implies w;(§) =0 on [—1,1].
We have now finished the proof of uniqueness. Next we move to prove the bounded-

ness. Let wy(x) = Piw(x) = Zf:o a;z' and set the test functions ¢;, = z, 22, ..., 2%. Then

we have

k
Py(wr; s f, u); :Z&uai, 1<I<Fk, (A.8)
i—0

1 k 1+ (_1)i+1 k
/ wy(x)de = Z a; = Z o0 (A.9)
- i=0

1 i=0 i+1
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By calculation, for 1 <[ < k we have

o Al (1) 4+ (1)) (=141

061'1227_7%%[ (i+1+1) + 1+1+1 )

+ f’(U(xj))m<l 1 (((z‘_jéz);r ) —

ZQTZam fi " f/(U(xj))mb

where

(D) (D) (D)

M= T+ 1) itl+1 7 (A.11)

LN = 1) (1) (-1 |
i = (i+1)! '

We denote 8 = (aqg, ..., a)", A(i,1) = ay, 0<i <k, 0<I<kandby = f_ll w(x)dz, b =
Py(w; 2l fiu), 1 <1<k, B=/by,...,bp)T. We will solve the following linear system to
get the coefficients [,

ATB = B. (A.12)
We can rewrite A as the following form,

_h

A= M flulm)H o C (A13)
where
pi, 0 <1<k, 1 <1 <E,
M(il) = (A.14)
0,0<i<k, =0,
nilaoéigka 1§l§k7
H(i, 1) = (A.15)
0,0<i:<Ek, [ =0,
0,0<i<k, 1<I<kEk,
C(i,l) = (A.16)
O[io,ogigk, [=0.
From the formulation of the scheme (2.6) we have 7, = ¢ h, here ¢ is a constant

dictated by stability. Then we have

AT = 2icMT + f(u(x;))YHT +CT. (A.17)
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From (A.11) we know that

2((3 + DY+
(i+1+1)!
pa = < 206+ 1) —4ll)

(i+1+1)!

,if 1 and | are even,

(A.18)

,if 1 and l are odd,

0,if (i+1) is odd,

\

(—21il(1 — 1)!
(i +10)
o =4 211 —1)!
(i+1)!

,if 1 1s odd and | is even,

(A.19)

,if 11s even and | is odd,

0,if (i+1) is even,
and from (A.9) we have
——, if i 1is even,
a0 = i+ 1 (AQO)
0, ¢f i is odd.
Hence, we can estimate the infinity norm of A7,
1
AT oo =||—MT + f(u(z))HT 4+ CT |
Eo (A.21)
—max{Z ol gy 3o ltal 17wl -

1<l<k

Since p;; > 0 for (¢ +1) is even and f'(u(z;)) is bounded, then we have
AT <€, (A.22)

where £ is a constant which depends on polynomial degree &, the bound of f’(u(x;)) and
constant c. Since the first row of the matrix A7 are constants a;y which only depends
1

on degree k and the other elements of A” either only contain 5 or only f’(u(z;)), the

by the definition of determinant we have
det(AT) = ZD "(u(x;)))E, (A.23)

where D;(k) is a constant which only depends on degree k. Notice that if f'(u(z;)) =
0 in (A.23), then det(A”) = Dy(k)(5)*. From the previous proof of the existence

and uniqueness of the projection, we know that A’ is always invertible which means
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det(AT) # 0 holds for any value of f'(u(x;)). Hence, here we have Dy (k) # 0. Therefore,

we can take ¢ small enough so that

EAGIFEEY
G (A.24)

1 7 c—1
> Di(k)(5,) (f (u(z;))* | <
- :
We emphasize that this choice of ¢ is only a sufficient condition for our proof, in numerical

computation ¢ should be chosen as the largest CFL number for linear stability to avoid

excessive numerical dissipation. We now have

| det(AT)| > %(i)k >0, (A.25)

2c

holds for all f'(u(x;)). Next let o;(AT) denotes the i—th singular value of AT which
are in descending order from 0 to k, opax(AT) and o (A”) represent the largest and

smallest singular value of matrix A”. Then we have

1
ATy =
H H2 mm(AT)
1
Tin(AT)

Umln

_ (Omax (A7) (A.26)
[T 0i(A7)

AT
| det(AT)]
2(2c)k

<Al

By the equivalence of norms

[AT]l2 <VE+ 1] A", (A.27)
A oo <VE+ 1A |2, (A.28)
we have

2(2c)k (k+1)"%
Dy(k)

It is obvious that ||Blle < C|lw|le due to the boundedness of f'(u(x;)). Here C is

IAT || < &k, (A.29)

a constant which depends on degree k and the bound of f'(u(z;)). Hence, for the

38



coefficients 5 we have

2(2e)F (k+1)"%
Dy (k)

which immediately results in the boundedness of Pjw. [

1Bllo < NA™ ool Blloo < EXClw]|os. (A.30)

A.2 Proof of Proposition 2.1

Let uy = Phu € Vif, vy = Qpu € W, a; = f'(u(z))), a;,1 = f’(u(:cﬂ%)), by the

2

definition of B; and B]- +1, we have
2

Bj('LL[,U[;QDh;f,U) - Bj(uuuﬂ(plwf’u)

1 (I).+1 IE.+1
- " o — wr)onda + 0y / o — ) (on)e

Tmax xT .

j—

[N
<
|

- (UI(Ij-i-%) - U(xj+%))80h(x;+%) + (U1<xj—%) - U(l'j—

- 1 it h h
=Py (ur —u;op; fu); + [ (v —u —ur(z — 5) +u(z — 5))<Phd$

max

J

T h h
+/ (vl—u—u1($~|—§)+u(:p+§))tphd$]

-3

sol [ -l = 3) +ule - )

+ /xﬂ (vr —u—ur(z+ g) + u(x + g))(%)xdﬂf

i—%

= (vr(zyp1) —ulzgyy) = ur(z)) +ulz;)en(z), 1)

+ (vs(x )], (A.31)

j_

) — ulz;_) —ur(z) +ulz;))enla?

o=
Nl

and

~

Bj+%<U],U[;¢h;f,U) o Bﬂ%(%”ﬂﬁh;ﬁu)

—— [ —vnde s oy [ - w) @),

T, . .
max j ]

= (wr(j1) = u(zj))Wn(wp) + (ur(a;) — ulz;))vn(e))]

:Qh(vl —u; Yp; f, u)j+% + - 1 [/xj+1(w —Uu— vl(:c — g) + u(x - g))whdx

mazxr Jx. 4
i

2

+ /m 3 (ur —u — vz + g) +u(r + g))’(/}hdl']
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i+
Ti+} h h
[ - u e 5) a4 ) 0)ada
— (ur(wj1) = w(zjpn) —vr(@; 1) +ule; 1)) on(2;,,)
+ (ur(z;) — u(x;) — v;(a:j+%) + u(ijr%))?ﬂh(xj)]. (A.32)
For u = ¥, to get the desired result we need to estimate [|v; — 2" —u;(z + %) +
(2 + 5" e,y ey llor =™ = (e = 5) + (@ = 5) 2, 0, and [luy — 28—

(Bt 8 e = 2 (o= ) (= B sy We will
only show that [[u; — 2" —up(z— %)+ (2 — 5)F| 12 @p,0y) < Ch2k+5 Wlth k=0,1..,8,
as the other cases are similar.

For k = 0,1...,8, by using the definition of the projection and the property that
Haj—aﬂ% Lo (r;) = Haj—aj% | Lo(1;) = O(h) we have the following results. For u = z**1,
by the definition ( for £ = 0 we only have the first equation in the definition ),

. 1 . 1
.7+§ J+7
/ urdx :/ ="z,
X . X .

1 1
I=2 2

Ph(U[,x f ) Ph( ]Jl;f7U)j, lzla"'7k7

_ (A.33)
Tjt1 Tjt1
/ vrdx :/ e,
Qh(vl; Il; fa u)j—k% :Qh(‘rk—H; xl; f7 u)j—&-%u [ = 17 SE) ka
then we have .
Uy :Zozlxl, Vx € I;
=0 (A.34)

k
vy = Zﬁl:cl, Vo € I
=0

Here a; and f3; are the coefficients obtained by solving the local linear system (A.33).
We leave the detailed calculations and formulas for k£ up to 8 in a separate file, as a

supplement to this paper, since they are too lengthy. We then have, £k = 0,1.,,, 8, that

/ =2 — o=+ (o — %mzdx = O(h**?), (A.35)

J
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and therefore we can prove that

h
3 e,y < CRP. (A.36)
T2

|vp — 2" — ugp(z — 5) + (z — 5

Then by using Holder’s inequality and Young’s inequality, we obtain from (A.31)
|Bj(ur, vr; pn; fu) — Bj(u, u; on; fru)] < OB+ Cllgnl 72y, (A.37)
Similarly, for B L we have
| By (wr,vr tns frw) = By (u,w; s fu)] < CR#FF2 4 C’|¢h’|%2(fj+%)' (A.38)

A.3 Proof of Lemma 3.1

Proof. Let u; denote Pju. Assume that u = 0. Take @5 = u; in (3.14), we get

Y5 h
Tmm/ / 2ur(z + = ,y+§)uz(x,y)

Y1 1
2 2

0= Ph(ul, uI

h
—|—2u1(:r;+ cur(z,y + 2)dxdy

/ / P ——

i—

h h h
(x+ ) +u1(x+2,y+ ) da:dy)
1

h
= / / (ur(z + = ,y+§)—uf(x7y))2dxdy

Tmam

1
2 2

/ / Do) eyt D) drdy). (A39)

i—d
2
where we have again used change of variable to shift all the integration regions to the

same subcell (z;_ 1 z;) X (y;_ 1 y;j) to simplify the formulation. Then

h h

h h
—,Y+—= E,y) = uj(x,y+§),V(:U,y) S ( zﬁl? ) (yJ**’y])

5 2), UI(.Z'+

ur(z,y) = ur(z+

Thus u;(x,y) = ¢o on K, j, ¢ is a constant. By (3.13) we immediately get u; = 0, and we
have finished the proof of uniqueness, hence also existence. We note that this projection

is a local projection, hence we can make a change of variables to the reference element
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2(y— yg)

[—1,1] x [—1,1] by taking £ = ) and n = Taking a similar derivation as in

the proof of (A.1), we obtain
[rl| oo e, 5y < CCR) ]| oe e - (A.40)

Again standard approximation theory [2] implies the optimal approximating estimates.

]

A.4 Proof of Lemma 3.2

Proof. Let uy = Pju € X,’f, vy = Qpu € th, and a;; = f'(u(zi,y;)), bij = g (u(zs,y;)),
gl il = f’(u($i+1,yj+%)), bi%,j% = g’(u($i+%,yj+%)), then by the definition of B;

and B, 1, we have

H— j+ )
Bij(ur,vr; on; f,9,u) — By j(u, u; on; f, g, u)

1
= / (vr — ur)ppdxdy + a; / (v — u)(pp)dxdy
K. Ki;

T
mazx i

- /yyﬂ% <(“I ~ W@y, Y)en(w g y) = (or =)@y y)onle i_“y)>]

i-3

+ bi,j

| = wtedsdy = [ (o= e ente, )

2] i—

NI

to\»—A

~ (o1 = w)(@ ;. wa%gni

_Ph(uf — U; Ph, f g,u

1 Tip h h h h
Tmax [ / U(%?J)—Uf(x—§7y—§)+u($—§ay—§)>60hd$dy
y]+ h h h h
+/ 1 / (vz z,y) —u(z,y) —ur(x + Y- 5) +u(z + 5Y - §)><phd:vdy
T3
i+l h h h h
+/ / <UI U(:v,y)—u[(ﬂf—57y+§)+U($—§,y+§)>%d:vdy

+/x 1/y (vz(w,y) U(rc,y)—uI(Hg7y+g)+U(w+g,y+g)><ﬁhdmdy]

i-5 " Yi-3

Cid Vel b hooh

—’_ai,j[/ ?/ ’ (Ul(xay)_u(l’yy)_ulw_579_5)4‘“@_an—a))(QOh)zdﬁdy
z; Y
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vt h h h h
+ vz z,y) (:If,y)—uf(x+§,y—§)+U(:v+§,y—§)>(<Ph)xdfcdy
m% h h h h
+/ / vr(z,y) —w(z,y) —ur(x — 2,y+2)+U($—§,y+§)>(<ﬁh)xd$dy
y]
vi h h h h
y% h h _
—/’ (m<w,w ulwiyy) = wileny = 5) +uleny - 3) )enler, s v)dy
Yj
Yj h h _
- (vz(xi+%,y) — (g g,y) —wiwny + 5) +uly + 5))s0h(fci+%,y)dy
Y

%
Yi+d h h
[T (o) — alo ) = oy = 5) b uleny = 3) )en(al )y
y 2

h h
1(2i-3,y) —ulzi g, y) —wi(eg, g+ 5) +ule, g+ 5))%(1’?_%, y)dy]

_|_
@\
' &

—
]

Tl (YL h h h h
L7077 (o) — o)~ wrle = Gy =)+ ule = 5oy = 5)) (o dady

Y1 h h h h
/ ’ (vz(x,y) —u(z,y) —ur(z+ 5y 5) + u(z + 5y 5))(<Ph)yd$dy

Yj
Tl (Y h h h h
[T (o) = o) =l = Gyt 5+ uta = 5+ 5)) (on)ydody

Tioo i h h h h
[ [ (o)~ ulew) — o+ Gyt 5) +ula+ 5o+ 5)) (o) dody
x y

N
<
<
|

2

i-3
h h _
— U[(I — §,yj) + U/($ - §7yj)>90h(x7yj+%)dx

i h h _
[ (o) = ulgyy) = wlo+ 5o + e+ 50) )ontany,)do

+ /x <U1(x>yj—%) —u(z,y; 1) —ur(z — Q,y]) + u(z — §,yj)>@h( y]+ %)d:):

i h h
+ / (w(% Yi-1) — @,y 1) —urz + 5,y5) +ulz + 57%‘))%(% Vi1
- Bi+%yj+%(u7 u; Yn; f, U)

By s (ur,vrvn; fou)

1
= / (U[_U[)whdl’dy+ai+é,j+é[/
K K

Tmazx 11
itg.0tg

(v — u)(¢Yp)dxdy

i+5.i+3
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_/‘”“(w W) (@i, 9)0n(, 4 y) — (ur = 0) ;- Whhwy))]

Yj

+ b,"j

| = o@ndedy~ [ (= e,

)

— (ur =)y, (s >)]
:Qh(vf — U wh; f>g7u)i+l jJrl

i %H hoh hoh
[/ / ur(z,y) —u(z,y) —v(x — 2,y—2)+u(x—§,y—§)>whd:cdy

Tmaa:

yﬁl h h h h
+ uf(w,y) —u(x,y) —vi(z+ s,y — 5) tulx+ 5,y — ) )ndedy
. - 2 2 2 2

Tit1 (Y1 h h h h
/ / uy(z,y) (x,y)—vf(x—57y+2)+u 2,y+2>¢hdxdy
h h h h
/ / ur(z,y) (x,y)—vz(:v+§,y+2)+ux+2,y+ )whd:vdy]
Tit1 Yj+1 h h h
+ a’H» ]+ / UI(LC,Z/) - 'Lb(.’lf,y) - ’U[(SL’ - §7y 2) + U( 27y )) (¢h>zd$d3/
Tl Y
il Vit h h h h
+/Zi /y+1 (uf(fv,y)—U(w y)—vz(w+§,y—§)+u + 5y 5) )edxdy
Itz
it YL h h h h
+/ / = (uI(x,y)—U(w,y)—vz(:v——,y+ )+ux——,y+—> )adxdy
ey Ju 2 2 2 9
2
Tirl [Yird h h h h
+/ / (uf(w,y)—U(w,y)—vz(w+§,y+2)+u:v+2,y+§) )edady
Z; Yj
Y+l h
= [ (i) = uloin ) = orlogy - )+ ulregy - 3))dnlaz vy
Yj

=

Yj h h _
- / <U1($i+1, ?J) - U($i+17 3/) - UI($¢+%a y+ 5) + u(xi+%, y+ 5)) h($i+1, y)dy
Y

i3
+

yj % h
+ (u;(:ci,y) —u(x;,y) —vl(q;i%’y_

h
5)+ulei gy = 5) vl y)dy

Yi
Yj h h +
+ (UI(-Ti, y) — u(w;,y) — ’UI(:UH-%a Y+ 5) + U(ZUH%, Y+ 5))@%(% y)dy
Y. 1

-2

J
Tit1 y]+1 h h h h
01 el [/ / UNC?J)—U(% y) — vz — 27y—§)+u($—§ay——)>(¢h) dxdy
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y]+1

+ u; —u(x,y) —vr(x +

) (wh)ydxdy

| s

E —ﬁ)—f‘ ( _|_ﬁ _
273/ 9 ulx 2,3/

+

\\\\\\\

|

) ) (n)ydxdy

2 2 2
Y,

_|_

h h h
=Y+ o) Fulz+ 5

'U,[.Ty (x7y>_vl<x+2 2

Y+

i hooh h
/ u;xy (fE,y)—U[( 7y+ )+U’(w__7y+

o>

N———

) ) (on)ydidy

2

mz-&-l

h h _
<U1 x yg+1 (x 3/]+1) - UI(I - 57 yj+%) + u(x - 57 Z/j+%)>@/)h($a ?/jH)de"

h h _
<U1 T, Y1) — (T, yj41) — vi(z + 3 ijr%) + u(z + 5 yj+%)>?/fh(37a Yji1)dx

h h
(u[ z,y;) —u(z,y;) — v — Evyj-i-%) +u(z — §,yj+%)>¢h(x,yj)dx

$z+1

+

z+ h h
+ (ul z,y;) —u(z,y;) — v](x+§,yj+é)—I—u(m+§,yj+é)>¢h(x,yj)dx].
(A.42)

For u(z,y) = 2 or y*1, we only need to estimate va(x,y) —aF T — oy (z— Ly —

)+ (@ = 9 2o, i,y a0d or(@,y) = o —wle = 5y = 5) + (y -

>k+1||L2

NS N>

(@i, )X (W50, 1)) B the other cases are similar.

For £ = 0,1...,8, by using the definition of the projection and the property that

”aiJ - ai+%,j+%HL°°(Ki,j) = O<h)7 Hbl,] -

results:

biv1 jpillree(x,,) = O(h) we have the following

1) u = 2" by the definition of the projection (for & = 0 we only have the first

equation in the definition),

Tl (Y1
/ / uldxdy:/ " / e e* 1 dzdy,
1 _1 Zz, £)

-1 Yy

Ph UI,.T y fga _Ph( L ZL' y fga )’L]7 man:07"'7k7

Tit+1 Yj+1 Ti41 Yj+1
/ / vrdxdy = / / zFdzdy,

Qh(vhm Yy ’f7g7 )i+%7]‘+% :Qh( k:+17 m?/ afaga )i-}-%,j-t,-%a m7n:07"'aka
(A.43)

l\)
N
NI

then we have

Eook
ur = Z Zo‘m’nxmynv V(z,y) € Ky, (A.44)



k k
vr = Z Zﬁm’nlﬁmyn7 V(ZE, y) € Ki+%7j+%- (A45)
n=0

m=0
Here ayy, ,, and 3, , are the coefficients obtained by solving the local linear system
(A.43). We leave the detailed calculations and formulas for k& up to 8 in a separate
file, as a supplement to this paper, since they are too lengthy. We then have, for

k=0,1.,,,8, that

/ / (vr(z,y) — 2" — up(z — Z?y_E)—i‘(x—g)k+1)2dxdy20(h2k+6).
(A.46)

u = ¥t by the definition of the projection (for &k = 0 we only have the first
y o, by proj y

equation in the definition),

/ / urdrdy = / / y* T dxdy,
_1 _1 _1

PhU[,.T Z/ f97 ) _Ph( k+1‘r y fga )7]7mn_0 k7

Ti+1 Yj+1 Tit+1 Yj+1
/ / vrdxdy = / / y*dzdy,

Qh(vhx Yy af)ga )i+%,j+% :Qh( k+17 afag) )i-}-%,j-t,-%a m7n:07'“ak7
(A.47)

I\J\
NJ\
K\J\

then we have

k k
ur=3 Y omar™y", V(,y) € Kiy, (A.48)
m=0 n=0
k
ZZﬁm w2y V(2 y) € Kip (A.49)
m=0 n=0

Here oy, Bmn are the coefficients obtained by solving the local linear system

k1 in two-

(A.47). We do not give detailed calculations here since for u = y
dimensional case the formulas are symmetric to those of u = z**! by switching x

and y (i and j). Hence, by some calculation we have

h  h h
/ / (Wilz,y) =" —w(e = S,y = 5) + (y = 5)")dedy = O(R*°).
(A.50)
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Hence, for £k =0,1.,,,8 we have proved that

it h ok h

k+12 2k+6
||Uf(x7y) - _u](x_ an_ §)+(ZE— 5) ||LQ((xi,xi+%)X(yj,yj+%)) <Ch ’
(A.51)
h h h
ki1 k4112 2k-+6
”Ul(xay) ) - ’LL[([E - §ay - 5) + (y - 5) ||L2((x¢,mi+%)X(yj,yj+%)) <Ch .
(A.52)

Then by using Holder’s inequality and Young’s inequality, we obtain from (A.41)
|BZ,] (ula V15 Ph; f’ g, U’) - Bi,j(u7 U; Ph;y f7 g, U)| S Ch2k+4 + C“(zDhH%Q(Kz,J) (A53)
Similarly, for B, 11441 we have

|Bis s (ur, o9 f,9,0) = Bipy s (u, sy fg,w)] < OB 4 CH%H;(KH%,H%)-
(A.54)
[
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