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Abstract

In this paper, we study the error estimates to sufficiently smooth solutions of the

nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin

(DG) finite element methods on uniform Cartesian meshes. A general approach with an

explicitly checkable condition is established for the proof of optimal L2 error estimates

of the semi-discrete CDG schemes, and this condition is checked to be valid in one and

two dimensions for polynomials of degree up to k = 8. Numerical experiments are given

to verify the theoretical results.
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1 Introduction

In this paper, we study the central discontinuous Galerkin (DG) finite element

method for solving scalar conservation laws [10]. The optimal error estimates of the

central DG methods have been proved for linear conservation laws in [12]. In this

paper, we present the optimal error estimates of central DG approximation based on

tensor-product polynomials under suitable assumptions for the general nonlinear scalar

conservation laws ut +
d∑

i=1

(fi(u))xi
= 0, (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where x = (x1, x2, ..., xd) and Ω is a bounded rectangular domain in Rd. Here u0(x) is a

given smooth function. We do not pay attention to boundary conditions in this paper;

hence the exact solution is considered to be either periodic or compactly supported. We

also assume the flux f(u) is smooth in the variable u; for example, f ∈ C2 is enough for

our proof. The analysis in this paper is for the smooth solutions of (1.1). Discontinuous

solutions with shocks are not considered here. We study the cases with d = 1 and 2, but

the approach is applicable to any d.

The central scheme of Nessyahu and Tadmor [14] computes hyperbolic conservation

laws on a staggered mesh and avoids the Riemann solver. In [3], Kurganov and Tadmor

introduced a new type of central scheme without the large dissipation error related to the

small time step size by using a variable control volume whose size depends on the time

step size. To avoid the excessive numerical dissipation for small time steps, Liu [8] uses

another coupling technique. The overlapping cell approach evolves two independent cell

averages on overlapping cells, which opens up many new possibilities. The advantages of

overlapping cells motivate the combination of the central scheme and the DG method,

which results in the central DG methods [7, 9, 10]. The central DG method evolves

two copies of approximating solutions defined on staggered meshes and avoids using

numerical fluxes which can be complicated and costly [4]. Like some previous central
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schemes, the central DG method also avoids the excessive numerical dissipation for small

time steps by a suitable choice of the numerical dissipation term. Besides, the central

method carries many features of standard DG methods, such as compact stencil, easy

parallel implementation, etc. The central DG method with Runge-Kutta time stepping

has a larger CFL number for stability than the standard Runge-Kutta DG method with

the same polynomial order k. Also the central DG method has a smaller error than the

standard DG method on the same mesh. See [10, 15] for more details. Later in [11], the

central local discontinuous Galerkin method was introduced to solve diffusion equations,

which is formulated based on the local discontinuous Galerkin scheme on overlapping

cells. Recently, the central DG method has been used to solve systems of conservation

laws in many applications [6, 5, 22, 18, 17].

In [12], suitable special projections for central DG methods were proposed to yield

optimal error estimates for scalar linear conservation laws. The proper local projections

were constructed according to the superconvergence property and the duality of overlap-

ping cells, which also required uniform Cartesian meshes. Zhang and Shu firstly presented

a priori error estimates for the fully discrete second order Runge-Kutta DG methods with

smooth solutions for scalar nonlinear conservation laws [19] and symmetrizable systems

[20]. The main techniques they used are Taylor expansion and energy estimates. Later

these techniques are widely used in error estimates for DG-type methods of nonlinear

equations, like the local DG methods for convection-diffusion and KdV equations [16],

the ultra weak DG methods for equations with higher order derivatives [1], the third

order Runge-Kutta DG methods for scalar conservation laws [21] and for symmetrizable

systems [13].

In this paper, we combine the special projections in [12] and the techniques used in

[19] to construct new projections to provide the optimal error estimates of the central

DG methods on uniform Cartesian meshes for nonlinear scalar conservation laws with

smooth solutions. In one dimension, we construct a proper local projection P∗
h similar to
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[12]. The existence and optimal approximation properties of this projection are proved

by standard finite element techniques. Moreover, this projection has similar supercon-

vergence property as the projections in [12]. By using this property we develop a general

approach with an explicitly checkable condition, and this condition is checked to be valid

in one dimension for polynomials of degree up to k = 8. This condition could also be

checked for larger k with increased algebraic complexity, but it is not carried out in this

paper. The optimal convergence results is valid for uniform meshes and for polynomials

of degree k ≥ 1, while for k = 0 we need the convection flux to be linear to get the

optimal results. For two-dimensional conservation laws, we follow the same arguments

as in the one-dimensional case to construct a suitable projection P∗
h and to analyze its

existence and approximation properties. This new projection utilizes Qk, the space of

tensor-product polynomials of degree at most k in each variable. Similarly, the optimal

convergence result is valid for uniform meshes and for polynomials of degree k ≥ 2 in

the two-dimensional case, while for k = 0, 1 we need the convection flux to be linear to

get the optimal results. The superconvergence result of P∗
h on uniform Cartesian meshes

will help to yield optimal convergence results under some suitable assumptions. Similar

approach with an explicitly checkable condition is established, and here we also check

this condition for polynomials of degree up to k = 8. Likewise, this condition could also

be checked for larger k with increased algebraic complexity, but we will not carried it

out. The approach is applicable to higher dimension d, but it will not be discussed in

this paper.

The rest of the paper is organized as follows. In section 2, we recall the central DG

method for one-dimensional conservation laws. Then we construct a special projection

and study its existence, uniqueness and optimal approximation properties. With the help

of this projection, we will prove the optimal error estimate for the semi-discrete central

DG methods on uniform meshes for the nonlinear conservation laws in one dimension. In

section 3, we extend the analysis to two-dimensions. Optimal error estimates are proved

4



by following the same lines of the one dimensional case. We provide numerical examples

to show our theoretical results in section 4. In section 5, we give a few concluding

remarks and perspectives for future work. Finally, in the appendix we provide proofs for

some of the more technical results of the error estimates.

2 The central DG method in one dimension

Here we consider the one-dimensional conservation law given byut + f(u)x = 0, (x, t) ∈ [a, b]× (0, T ],

u(x, 0) = u0(x), x ∈ [a, b],
(2.1)

with periodic boundary condition or compactly supported boundary condition.

2.1 Basic notations

For a given interval I = [a, b], we divide it into N cells as follows:

a = x0 < x1 < · · · < xN = b. (2.2)

We denote

xj+ 1
2
=
xj + xj+1

2
, Ij+ 1

2
= (xj, xj+1), hj+ 1

2
= xj+1 − xj, j = 0, . . . N − 1, (2.3)

and similarly for the dual mesh

Ij = (xj− 1
2
, xj+ 1

2
), hj = xj+ 1

2
− xj− 1

2
, j = 1, . . . N. (2.4)

We let h = maxj hj+ 1
2

and assume the mesh is regular. Define the approximation space

as
V k
h = {φh : (φh)|Ij ∈ P k(Ij), j = 1, ..., N},

W k
h = {ψh : (ψh)|I

j+1
2

∈ P k(Ij+ 1
2
), j = 0, ..., N − 1}.

(2.5)

Here P k(Ij) denotes the set of all polynomials of degree at most k on Ij. For a function

φh ∈ V k
h , we use (φh)

−
j+ 1

2

or (φh)
+
j+ 1

2

to refer to the value of φh at xj+ 1
2

from the left

cell Ij and the right cell Ij+1, respectively. For ψh ∈ W k
h , (ψh)

−
j and (ψh)

+
j have similar
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meanings. [φh] or [ψh] is used to denote φ+
h −φ

−
h or ψ+

h −ψ−
h , i.e. the jump of φh or ψh at

cell interfaces. We denote by C a positive constant independent of h, which may depend

on the solution of the problem and other parameters. For our analysis, we need the

uniform boundedness of f ′ and f ′′. We shall take this as an assumption for simplicity,

although such boundedness can be shown a posteriori by the eventual boundedness of

the numerical solution through the verification of the a priori assumptions at the end of

section 2 and section 3. Similar to [16, 19], to emphasize the nonlinearity of the flux

f(u), we use C∗ to denote a non-negative constant depending on the maximum of |f ′′|.

We remark C∗ = 0 for linear fluxes f(u) = cu with a constant c.

2.2 The central DG scheme

We propose the following semi-discrete central DG scheme for periodic boundary

condition: find uh ∈ V k
h and vh ∈ W k

h , such that for any φh ∈ V k
h and ψh ∈ W k

h ,∫
Ij

(uh)tφhdx =
1

τmax

∫
Ij

(vh − uh)φhdx+

∫
Ij

f(vh)(φh)xdx

− (f(vh)φ
−
h )j+ 1

2
+ (f(vh)φ

+
h )j− 1

2
, (2.6a)∫

I
j+1

2

(vh)tψhdx =
1

τmax

∫
I
j+1

2

(uh − vh)ψhdx+

∫
I
j+1

2

f(uh)(ψh)xdx

− (f(uh)ψ
−
h )j+1 + (f(uh)ψ

+
h )j, (2.6b)

where τmax is an upper bound for the time step size due to the CFL restriction, that

is, τmax = c h with a given constant CFL number c dictated by stability. For the initial

condition, we simply take uh(·, 0) = Phu0(·), vh(·, 0) = Qhu0(·), where Ph and Qh are

the L2 projections into V k
h and W k

h , respectively, and we have

∥u0 − Phu0∥L2(Ij) ≤ Chk+1∥u0∥Hk+1(Ij),

∥u0 −Qhu0∥L2(I
j+1

2
) ≤ Chk+1∥u0∥Hk+1(I

j+1
2
).

(2.7)
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2.3 L2 stability for the linear equation

In [10], the following stability result is proved for this scheme if f(u) is linear. Without

loss of generality, we take f(u) = u. Hence, we haveut + ux = 0, (x, t) ∈ [a, b]× (0, T ],

u(x, 0) = u0(x), x ∈ [a, b],
(2.8)

with periodic boundary condition.

Theorem 2.1. The numerical solutions uh and vh of the CDG scheme (2.6) for the

equation (2.8) have the following L2 stability property

1

2

d

dt

∫ b

a

(u2h + v2h)dx = − 1

τmax

∫ b

a

(vh − uh)
2dx ≤ 0. (2.9)

2.4 Optimal L2 error estimate

It is worth noting that the L2 stability for CDG scheme for nonlinear problem is

generally not available [10]. But under the assumption of the smoothness of the exact

solution, we can still get the error estimate of the nonlinear case. In this subsection, we

show a priori L2 error estimate of the scheme (2.6) for the equation (2.1).

Here and below, we use ∥ ·∥ to denote the standard L2 norm. For the proof, we recall

the classical inverse and trace inequalities [2]. For any wh ∈ V k
h or wh ∈ W k

h , there exists

a positive constant C independent of wh and h, such that

∥∂xwh∥ ≤ Ch−1∥wh∥, ∥wh∥Γ ≤ Ch−
1
2∥wh∥, ∥wh∥∞ ≤ Ch−

1
2∥wh∥, (2.10)

where Γ is the set of boundary points of all elements Ij or Ij+ 1
2
.

First we introduce some notations. For the numerical solutions uh and vh of the CDG

scheme (2.6) for equation (2.1), we define

B̃j(uh, vh;φh; f, u) :=
1

τmax

∫
Ij

(vh − uh)φhdx+

∫
Ij

f ′(u(xj))vh(φh)x

− f ′(u(xj))(vhφ
−
h )j+ 1

2
+ f ′(u(xj))(vhφ

+
h )j− 1

2
,

(2.11)
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B̂j+ 1
2
(uh, vh;ψh; f, u) :=

1

τmax

∫
I
j+1

2

(uh − vh)ψhdx+

∫
I
j+1

2

f ′(u(xj+ 1
2
))uh(ψh)x

− f ′(u(xj+ 1
2
))(uhψ

−
h )j+1 + f ′(u(xj+ 1

2
))(uhψ

+
h )j,

(2.12)

and

Bj(uh, vh;φh, ψh) :=

∫
Ij

(uh)tφhdx+

∫
I
j+1

2

(vh)tψhdx

− 1

τmax

∫
Ij

(vh − uh)φhdx−
1

τmax

∫
I
j+1

2

(uh − vh)ψhdx,

(2.13)

Obviously, we have

Bj(uh, vh;φh, ψh) =

∫
Ij

f(vh)(φh)xdx+

∫
I
j+1

2

f(uh)(ψh)xdx− (f(vh)φ
−
h )j+ 1

2

+ (f(vh)φ
+
h )j− 1

2
− (f(uh)ψ

−
h )j+1 + (f(uh)ψ

+
h )j,

∀φh ∈ V k
h , ψh ∈ W k

h .

(2.14)

It is also clear that the exact solution u of (2.1) satisfies

Bj(u, u;φh, ψh) =

∫
Ij

f(u)(φh)xdx+

∫
I
j+1

2

f(u)(ψh)xdx− (f(u)φ−
h )j+ 1

2

+ (f(u)φ+
h )j− 1

2
− (f(u)ψ−

h )j+1 + (f(u)ψ+
h )j,

∀φh ∈ V k
h , ψh ∈ W k

h .

(2.15)

Subtracting (2.14) from (2.15), we obtain the error equation

Bj(u− uh, u− vh;φh, ψh) =

∫
Ij

(f(u)− f(vh))(φh)xdx+

∫
I
j+1

2

(f(u)− f(uh))(ψh)xdx

− ((f(u)− f(vh))φ
−
h )j+ 1

2
+ ((f(u)− f(vh))φ

+
h )j− 1

2

− ((f(u)− f(uh))ψ
−
h )j+1 + ((f(u)− f(uh))ψ

+
h )j

:=Hj(f ;u, uh, vh;φh, ψh), ∀φh ∈ V k
h , ψh ∈ W k

h .

(2.16)

Summing over all j, the error equation becomes

∑
j

Bj(u− uh, u− vh;φh, ψh) =
∑
j

Hj(f ;u, uh, vh;φh, ψh), ∀φh ∈ V k
h , ψh ∈ W k

h .

(2.17)
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2.4.1 Projection operators

Similar to [12], we define P∗
h and Q∗

h as the following projections onto V k
h and W k

h

respectively on uniform meshes. That is, for a given function w(x), we define P∗
hw ∈ V k

h ,

such that ∀j, ∫
Ij

P∗
hwdx =

∫
Ij

wdx, (2.18a)

P̃h(P∗
hw;φh; f, u)j = P̃h(w;φh; f, u)j, ∀φh ∈ P k(Ij), (2.18b)

where P̃h(w;φh)j is defined as follows

P̃h(w;φh; f, u)j =
1

τmax

(

∫ xj

x
j− 1

2

w(x+
h

2
)φhdx+

∫ x
j+1

2

xj

w(x− h

2
)φhdx−

∫ x
j+1

2

x
j− 1

2

w(x)φhdx)

+

∫ xj

x
j− 1

2

f ′(u(xj))w(x+
h

2
)(φh)xdx

+

∫ x
j+1

2

xj

f ′(u(xj))w(x−
h

2
)(φh)xdx

− f ′(u(xj))w(xj)(φh(x
−
j+ 1

2

)− φh(x
+
j− 1

2

)).

(2.19)

Similarly, we define Q∗
hw ∈ W k

h , such that ∀j,∫
I
j+1

2

Q∗
hwdx =

∫
I
j+1

2

wdx, (2.20a)

Q̃h(Q∗
hw;ψh; f, u)j+ 1

2
= Q̃h(w;ψh; f, u)j+ 1

2
, ∀ψh ∈ P k(Ij+ 1

2
), (2.20b)

where Q̃h(w;ψh)j+ 1
2

is defined as follows

Q̃h(w;φh; f, u)j+ 1
2
=

1

τmax

(

∫ x
j+1

2

xj

w(x+
h

2
)ψhdx+

∫ xj+1

x
j+1

2

w(x− h

2
)ψhdx−

∫ xj+1

xj

w(x)ψhdx)

+

∫ x
j+1

2

xj

f ′(u(xj+ 1
2
))w(x+

h

2
)(ψh)xdx

+

∫ xj+1

x
j+1

2

f ′(u(xj+ 1
2
))w(x− h

2
)(φh)xdx

− f ′(u(xj+ 1
2
))w(xj+ 1

2
)(φh(x

−
j+1)− φh(x

+
j )).

(2.21)

Next, we will discuss the properties of the projections P∗
h and Q∗

h. Without loss of

generality we will only consider P∗
h. The equation (2.18a) is required by conservation.
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Note that P̃h(w;φh; f, u)j = 0 for ∀w when φh is a constant, so (2.18b) alone misses one

condition which is provided by (2.18a). The following lemma gives the existence and

uniqueness of the special projection P∗
h.

Lemma 2.1. The projection P∗
h defined by (2.18) exists and is unique for any smooth

function w(x), and the following inequality holds

∥P∗
hw∥ ≤ C∥w∥∞, (2.22)

for all k. The positive constant C depends on k, the bound of f ′(u), the constant c in

the scheme (2.6) and is independent of h and w.

Proof. The proof of this lemma is given in Appendix A.1.

Since P∗
h and Q∗

h are k-th degree polynomial preserving local projections, standard

approximation theory [2] implies, for smooth function w,

∥P∗
hw − w∥+ h∥P∗

hw − w∥∞ + h
1
2∥P∗

hw − w∥Γ ≤ Chk+1∥u∥Hk+1([a,b]),

∥Q∗
hw − w∥+ h∥Q∗

hw − w∥∞ + h
1
2∥Q∗

hw − w∥Γ ≤ Chk+1∥u∥Hk+1([a,b]),
(2.23)

Besides the standard approximation results (2.23), the special projections P∗
h and Q∗

h

also have the following superconvergence result.

Proposition 2.1. For k = 0, 1..., 8, assume that u is a (k + 1)-th degree polynomial

function in P k+1([a, b]). For a uniform partition on the interval [a, b], set uI = P∗
hu ∈ V k

h

and vI = Q∗
hu ∈ W k

h ,. Then we have

|B̃j(uI − u, vI − u;φh; f, u)| ≤ Ch2k+3 + C∥φh∥2L2(Ij)
, ∀φh ∈ P k(Ij)

|B̂j+ 1
2
(uI − u, vI − u;ψh; f, u)| ≤ Ch2k+3 + C∥ψh∥2L2(I

j+1
2
), ∀ψh ∈ P k(Ij+ 1

2
).

(2.24)

Proof. The proof of this proposition is given in Appendix A.2.

2.4.2 A priori L2 error estimates

Theorem 2.2. For k = 0, 1..., 8, let u(·, t) be the exact solution of equation (2.1), which

is sufficiently smooth with bounded derivatives, and assume f ∈ C2 with bounded f ′(u)
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and f ′′(u). The numerical solutions uh and vh of the CDG scheme (2.6) using uniform

meshes satisfies the following L2 error estimate

∥u(·, T )− uh(·, T )∥2 + ∥u(·, T )− vh(·, T )∥2 ≤ Ch2k+2, (2.25)

where k is the polynomial degree in the finite element spaces V k
h and W k

h , and the

constant C depends on k, the final time T , ∥u∥Hk+2 and the bounds on the derivatives

|fm|, m = 1, 2, but is independent of the mesh size h. Here ∥u∥Hk+2 is the maximum

(k + 2)-th order Sobolev norm of u over time in [0, T ]. For k = 0 we need f(u) to be

linear, i.e. f(u) = cu.

Proof. Let eu = u − uh, ev = u − vh be the error between the numerical and exact

solutions. To deal with the nonlinearity of f(u), we would like to first make the a priori

assumption that, for small enough h, we have

∥u− uh∥ ≤ Ch
3
2 , ∥u− vh∥ ≤ Ch

3
2 , (2.26)

which also establishes the Lipschitz continuity of the right-hand side of the method of

lines semi-discrete ordinary differential equation system, hence the very existence of uh

and vh. By the interpolation property, we then have

∥eu∥∞ ≤ Ch and ∥P∗
hu− uh∥∞ ≤ Ch,

∥ev∥∞ ≤ Ch and ∥Q∗
hu− uh∥∞ ≤ Ch.

(2.27)

This assumption is not necessary for linear f . We will verify this assumption for k ≥ 1

later.

By taking

φh = P∗
hu− uh, ψh = Q∗

hu− vh, φ
e = P∗

hu− u, ψe = Q∗
hu− u, (2.28)

we obtain the energy equality

∑
j

Bj(φh − φe, ψh − ψe;φh, ψh) =
∑
j

Hj(f ;u, uh, vh;φh, ψh). (2.29)
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From the definition of Bj, we can obtain∑
j

Bj(φh, ψh;φh, ψh) =
∑
j

Bj(φ
e, ψe;φh, ψh) +

∑
j

Hj(f ;u, uh, vh;φh, ψh)

=
∑
j

∫
Ij

(ψe)tφhdx+
∑
j

∫
I
j+1

2

(φe)tψhdx

−
∑
j

1

τmax

∫
Ij

(ψe − φe)φhdx−
∑
j

1

τmax

∫
I
j+1

2

(φe − ψe)ψhdx

+
∑
j

∫
Ij

(f(u)− f(vh))(φh)xdx+
∑
j

((f(u)− f(vh))[φh])j+ 1
2

+
∑
j

∫
I
j+1

2

(f(u)− f(uh))(ψh)xdx+
∑
j

((f(u)− f(uh))[ψh])j.

(2.30)

For the left-hand side of (2.30), we follow the L2 stability proof in Theorem 2.1 for linear

case to conclude

∑
j

Bj(φh, ψh;φh, ψh) =
1

2

d

dt

∫ b

a

(φ2
h + ψ2

h)dx+
1

τmax

∫ b

a

(φh − ψh)
2dx. (2.31)

Similar to [19] and [16], to deal with the nonlinear part of (2.30) we would like to use

the following Taylor expansions:

f(u)− f(uh) =f
′(u)φh − f ′(u)φe − 1

2
f ′′
u (φh − φe)2,

f(u)− f(vh) =f
′(u)ψh − f ′(u)ψe − 1

2
f ′′
v (ψh − ψe)2,

(2.32)

where f ′′
u and f ′′

v are the mean values. These imply the following representation,∑
j

Bj(φ
e, ψe;φh, ψh) +

∑
j

Hj(f ;u, uh, vh;φh, ψh)

=L+N1 +N2 +N3 +N4,

(2.33)

where

L =
∑
j

∫
Ij

(ψe)tφhdx+
∑
j

∫
I
j+1

2

(φe)tψhdx,

N1 =−
∑
j

1

τmax

∫
Ij

(ψe − φe)φhdx−
∑
j

∫
Ij

f ′(u)ψe(φh)xdx−
∑
j

(f ′(u)ψe[φh])j+ 1
2
,

N2 =−
∑
j

1

τmax

∫
I
j+1

2

(φe − ψe)ψhdx−
∑
j

∫
I
j+1

2

f ′(u)φe(ψh)xdx−
∑
j

(f ′(u)φe[ψh])j,
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N3 =
∑
j

∫
Ij

f ′(u)ψh(φh)xdx+
∑
j

(f ′(u)ψh[φh])j+ 1
2

+
∑
j

∫
I
j+1

2

f ′(u)φh(ψh)xdx+
∑
j

(f ′(u)φh[ψh])j,

N4 =− 1

2

(∑
j

∫
Ij

f ′′
v (ψh − ψe)2(φh)xdx+

∑
j

∫
I
j+1

2

f ′′
u (φh − φe)2(ψh)xdx

+
∑
j

(f ′′
v (ψh − ψe)2[φh])j+ 1

2
+
∑
j

(f ′′
u (φh − φe)2[ψh])j

)
.

By Young’s inequality and (2.23), we have

L ≤ C(∥φh∥2 + ∥ψh∥2) + Ch2k+2∥u∥2Hk+1([a,b]). (2.34)

Next we estimate the nonlinear part. First for the N1 term, we can rewrite it in the form

N1 =−
∑
j

1

τmax

∫
Ij

(ψe − φe)φhdx−
∑
j

∫
Ij

f ′(u(xj))ψ
e(φh)xdx

−
∑
j

(f ′(u(xj))ψ
e[φh])j+ 1

2
+
∑
j

∫
Ij

(f ′(u(xj))− f ′(u))ψe(φh)xdx

−
∑
j

(f ′(u(xj))− f ′(u))ψe[φh])j+ 1
2

=−
∑
j

B̃j(φ
e, ψe;φh) +

∑
j

∫
Ij

(f ′(u(xj))− f ′(u))ψe(φh)xdx

−
∑
j

(f ′(u(xj))− f ′(u))ψe[φh])j+ 1
2
.

By the inequality in (2.10), (2.23) and ∥f ′(u(xj))− f ′(u)∥L∞(Ij) = O(h), we have

N1 ≤ −
∑
j

B̃j(φ
e, ψe;φh; f, u) + C∗∥φh∥2 + C∗h

2k+2∥u∥2Hk+1([a,b]). (2.35)

For B̃j(φ
e, ψe;φh; f, u), let ûI be the Taylor polynomial of order k + 1 of u near xj i.e.

ûI
j =

∑k+1
i=0

1
i!
u(i)(xj)(x − xj)

i, x ∈ (xj−1, xj+1). Let ru denote the residual term i.e.

rju = u− ûI
j. Recalling the Bramble-Hilbert lemma [2], we have

∥rju∥L∞(Ij) ≤ Chk+
3
2 |u|Hk+2(Ij). (2.36)

Then we rewrite φe and ψe

φe = P∗
hu− u = P∗

hûI
j − ûI

j + P∗
hr

j
u − rju,
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ψe = Q∗
hu− u = Q∗

hûI
j − ûI

j +Q∗
hr

j
u − rju. (2.37)

Hence, using Proposition 2.1, we have

B̃j(φ
e, ψe;φh; f, u) =B̃j(φ

e, ψe;φh; f, u)

=B̃j(P∗
hûI

j − ûI
j + P∗

hr
j
u − rju,Q∗

hûI
j − ûI

j +Q∗
hr

j
u − rju;φh; f, u)

=B̃j(P∗
hûI

j − ûI
j,Q∗

hûI
j − ûI

j;φh; f, u)

+ B̃j(P∗
hr

j
u − rju,Q∗

hr
j
u − rju;φh; f, u)

=B̃j(P∗
hr

j
u − rju,Q∗

hr
j
u − rju;φh; f, u) + Ch2k+3 + C∥φh∥2L2(Ij)

. (2.38)

Therefore, by using Young’s inequality, (2.23), the inequality in (2.10) and (2.36), we

have

−
∑
j

B̃j(φ
e, ψe;φh; f, u) ≤ Ch2k+2|u|Hk+2([a,b]) + C∥φh∥2. (2.39)

Hence, for N1 we have

N1 ≤ (C + C∗)∥φh∥2 + (C + C∗)h
2k+2∥u∥2Hk+2([a,b]). (2.40)

Similarly, for N2 we have

N2 ≤ (C + C∗)∥ψh∥2 + (C + C∗)h
2k+2∥u∥2Hk+2([a,b]). (2.41)

The N3 term can be rewritten as the following form

N3 =
∑
j

(∫ x
j+1

2

xj

f ′(u)(ψhφh)xdx+

∫ xj+1

x
j+1

2

f ′(u)(ψhφh)xdx
)

+
∑
j

(f ′(u)ψh[φh])j+ 1
2
+
∑
j

(f ′(u)φh[ψh])j

=
∑
j

(
(f ′(u)ψhφ

−
h )j+ 1

2
− (f ′(u)φhψ

+
h )j + (f ′(u)φhψ

−
h )j+1

− (f ′(u)ψhφ
+
h )j+ 1

2
+ (f ′(u)ψh[φh])j+ 1

2
+ (f ′(u)φh[ψh])j

)
−
∑
j

∫ xj+1

xj

(f ′(u))xψhφhdx

=−
∑
j

∫ xj+1

xj

(f ′(u))xψhφhdx

≤C∥ψh∥∥φh∥ ≤ C(∥ψh∥2 + ∥φh∥2).

(2.42)
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N4 is the high order term in Taylor expansion, it is easy to show that

N4 ≤C∗h
−1(∥ev∥∞∥ev∥∥φh∥+ ∥eu∥∞∥eu∥∥ψh∥)

≤C∗h
−1
(
∥ev∥∞(∥φh∥∥ψh∥+ ∥φh∥∥ψe∥) + ∥ev∥∞(∥ψh∥∥φh∥+ ∥ψh∥∥φe∥)

)
≤C∗(h

−1∥ev∥∞ + h−1∥eu∥∞)(∥φh∥2 + ∥ψh∥2)

+ C∗(h
−1∥ev∥∞ + h−1∥eu∥∞)h2k+2∥u∥2Hk+1([a,b]).

(2.43)

Hence, combining (2.34), (2.40), (2.41), (2.42), (2.43), (2.31), we obtain from (2.30)

1

2

d

dt

∫ b

a

(φ2
h + ψ2

h)dx ≤(C + C∗(h
−1∥ev∥∞ + h−1∥eu∥∞))(∥φh∥2 + ∥ψh∥2)

+ (C + C∗(h
−1∥ev∥∞ + h−1∥eu∥∞))h2k+2∥u∥2Hk+2([a,b]).

(2.44)

When k ≥ 1, by using a priori assumption (2.26) we have

1

2

d

dt

∫ b

a

(φ2
h + ψ2

h)dx ≤ (C + C∗)(∥φh∥2 + ∥ψh∥2) + (C + C∗)h
2k+2∥u∥2Hk+2([a,b]).

(2.45)

Finally, by Gronwall’s inequality and the fact that ∥φh(·, 0)∥ ≤ Chk+1, ∥ψh(·, 0)∥ ≤

Chk+1 we can get ∫ b

a

(φ2
h + ψ2

h)dx ≤ Ch2k+2. (2.46)

This, together with the approximation result (2.23), implies the desired error estimate.

For the case of k = 0, we assume that the convection term is linear, namely f(u) = cu.

This is to avoid the need of the a priori assumption (2.26) which is no longer justifiable

since our L2 error estimate is only of order O(h) in this case. The proof is similar to that

for k ≥ 1 case given above, and the only difference is C∗ = 0 in this case. By similar

lines of proof, we have

1

2

d

dt

∫ b

a

(φ2
h + ψ2

h)dx ≤ C(∥φh∥2 + ∥ψh∥2) + Ch2. (2.47)

An application of Gronwall’s inequality give us that∫ b

a

(φ2
h + ψ2

h)dx ≤ Ch2. (2.48)

This, together with the approximation result (2.23), implies the desired error estimate.
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Finally, let us justify the a priori assumption (2.26) for k ≥ 1. Similar to [19] and

[1], we can verify this by a proof by contradiction. By (2.25), we can consider h small

enough so that Chk+1 < 1
2
h

3
2 , where C is the constant in (2.25) determined by the final

time T . Define t∗ = sup{t : ∥u(·, t) − uh(·, t)∥ + ∥u(·, t) − vh(·, t)∥ ≤ h
3
2}, then we have

∥u(·, t∗)−uh(·, t∗)∥+∥u(·, t∗)−vh(·, t∗)∥ = h
3
2 by continuity if t∗ is finite. Clearly, (2.25)

holds for t ≤ t∗, in particular, ∥u(·, t∗) − uh(·, t∗)∥ + ∥u(·, t∗) − vh(·, t∗)∥ ≤ Chk+1 <

1
2
h

3
2 . This is a contradiction if t∗ < T . Hence, t∗ ≥ T and our a priori assumption is

justified.

3 The central DG method in multi-dimensions

In this section, we consider the semi-discrete central DG method for multidimensional

nonlinear conservation laws. Without loss of generality, we will show our central DG

scheme and prove the optimal a priori error estimates in two dimensions (d = 2); all the

arguments we present in our analysis depend on the tensor product structure of the mesh

and finite element space and can be easily extended to the more general cases d > 2.

Now we consider the following two-dimensional problem,ut + f(u)x + g(u)y = 0, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
(3.1)

with periodic boundary condition or compactly supported boundary condition.

3.1 Basic notations

Let {Ki,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]} be a partition of Ω into uniform square cells,

depicted by the solid lines in Fig. 3.1, and tagged by their cell centroid at (xi, yj). Define

h = xi+ 1
2
− xi− 1

2
= yj+ 1

2
− yj− 1

2
. Let Xk

h := {v ∈ L2(Ω) : v|Ki,j
∈ Qk(Ki,j), ∀(i, j)},

where Qk(Ki,j) is the tensor-product polynomials of degrees at most k in each variable

defined on Ki,j and no continuity is assumed across cell boundaries. Let Ki+ 1
2
,j+ 1

2
be

the dual mesh which consists of a h
2

shift of the Ki,j, depicted by the dashed lines in
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Fig. 3.1. 2D overlapping cells formed by collapsing the staggered dual cells on two
adjacent time levels to one time level.

Fig. 3.1. Let (xi+ 1
2
, yj+ 1

2
) be the cell centroid of the cell Ki+ 1

2
,j+ 1

2
and let Y k

h := {v ∈

L2(Ω) : v|Ki,j
∈ Qk(Ki+ 1

2
,j+ 1

2
), ∀(i, j)} denotes the space of tensor-product polynomials

of degrees at most k in each variable defined on Ki+ 1
2
,j+ 1

2
and no continuity is assumed

across the cell boundary. For a function φh ∈ Xk
h , we use (φh)

+
i+ 1

2
,y

and (φh)
−
i+ 1

2
,y

to

denote the values of φh at (xi+ 1
2
, y) from the right cell Ki+1,j and the left cell Ki,j,

respectively, when y ∈ [yj− 1
2
, yj+ 1

2
] on all vertical edges. And for ψh ∈ Y k

h , we use (ψh)
+
i,y

and (ψh)
−
i,y to denote the values of ψh at (xi, y) from the right cell Ki+ 1

2
,j+ 1

2
and the

left cell Ki− 1
2
,j+ 1

2
, respectively, when y ∈ [yj, yj+1] on all vertical edges. The notation

[φh]i+ 1
2
,y or [ψh]i+1,y denote (φh)

+
i+ 1

2
,y
− (φh)

−
i+ 1

2
,y

or (ψh)
+
i,y− (ψh)

−
i,y,i.e. the jump of φh at

(xi+ 1
2
, y) when y ∈ [yj− 1

2
, yj+ 1

2
] or the jump of ψh at (xi, y) when y ∈ [yj, yj+1]. Similarly,

we can define (φh)
+
x,j+ 1

2

, (φh)
−
x,j+ 1

2

, (ψh)
+
x,j, (ψh)

−
x,j, [φh]x,j+ 1

2
and [ψh]x,j.
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3.2 The central DG scheme

We propose the following semi-discrete CDG scheme for periodic boundary condition:

find uh ∈ Xk
h and vh ∈ Y k

h , such that for any φh ∈ Xk
h and ψh ∈ Y k

h ,∫
Ki,j

(uh)tφhdxdy =
1

τmax

∫
Ki,j

(vh − uh)φhdxdy

+

∫
Ki,j

(f(vh)(φh)x + g(vh)(φh)y)dxdy

−
∫ y

j+1
2

y
j− 1

2

((f(vh)φ
−
h )i+ 1

2
,y − (f(vh)φ

+
h )i− 1

2
,y)dy

−
∫ x

i+1
2

x
i− 1

2

((g(vh)φ
−
h )x,j+ 1

2
− (g(vh)φ

+
h )x,j+ 1

2
)dx, (3.2a)∫

K
i+1

2 ,j+1
2

(vh)tψhdxdy =
1

τmax

∫
K

i+1
2 ,j+1

2

(uh − vh)ψhdxdy

+

∫
K

i+1
2 ,j+1

2

(f(uh)(ψh)x + g(uh)(ψh)y)dxdy

−
∫ yj+1

yj

((f(uh)ψ
−
h )i+1,y − (f(uh)ψ

+
h )i,y)dy

−
∫ xi+1

xi

((g(uh)ψ
−
h )x,j+1 − (g(uh)ψ

+
h )x,j)dx, (3.2b)

where τmax is a max step size, determined by τmax = (CFL factor)×h/(maximum characteristic speed),

in which the CFL constant should be less than 1/2. Similarly, for the initial condition

we simply take uh(·, ·, 0) = Phu0(·, ·), vh(·, ·, 0) = Qhu0(·, ·), where Ph and Qh are the L2

projections into V k
h and W k

h , respectively, and we have

∥u0 − Phu0∥L2(Ki,j) ≤ Chk+1∥u0∥Hk+1(Ki,j),

∥u0 −Qhu0∥L2(K
i+1

2 ,j+1
2
) ≤ Chk+1∥u0∥Hk+1(K

i+1
2 ,j+1

2
).

(3.3)

3.3 L2 Stability for linear equation

The L2-stability is proved for the CDG scheme (3.2) in [10] if f(u) and g(u) are

linear. Without loss of generality, we take f(u) = g(u) = u. Hence, we haveut + ux + uy = 0, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,
(3.4)
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with periodic boundary condition.

Theorem 3.1. The numerical solutions uh and vh of the semi-discrete CDG scheme

(3.2) for the equation (3.4) have the following L2 stability property

∥uh(·, ·, T )∥2L2(Ω) + ∥vh(·, ·, T )∥2L2(Ω) ≤ ∥uh(·, ·, 0)∥2L2(Ω) + ∥vh(·, ·, 0)∥2L2(Ω). (3.5)

3.4 Optimal L2 error estimate

In this subsection, we show the a priori L2 error estimate of the scheme (3.2) for the

equation (3.1).

Here and below, we again use ∥ · ∥ to denote the standard L2 norm. Similar to the

one-dimensional case, we recall the classical inverse and trace inequalities [2]. For any

wh ∈ Xk
h or wh ∈ Y k

h , there exists a positive constant C independent of wh and h, such

that

∥∂xwh∥ ≤ Ch−1∥wh∥, ∥wh∥Γ ≤ Ch−
1
2∥wh∥, ∥wh∥∞ ≤ Ch−1∥wh∥, (3.6)

where Γ is the set of boundaries of all elements Ki,j or Ki+ 1
2
,j+ 1

2
.

Similar to the one-dimensional case, we first introduce some notations. Assume uh

and vh are the numerical solutions of CDG scheme (3.2) for equation (3.1), we define

B̃i,j(uh, vh;φh; f, g, u) :=
1

τmax

∫
Ki,j

(vh − uh)φhdxdy

+

∫
Ki,j

(f ′(u(xi, yj))(φh)x + g′(u(xi, yj))(φh)y)vhdxdy

−
∫ y

j+1
2

y
j− 1

2

f ′(u(xi, yj))((vhφ
−
h )i+ 1

2
,y − (vhφ

+
h )i− 1

2
,y)dy

−
∫ x

i+1
2

x
i− 1

2

g′(u(xi, yj))((vhφ
−
h )x,j+ 1

2
− (vhφ

+
h )x,j+ 1

2
)dx,

(3.7a)

B̂i+ 1
2
,j+ 1

2
(uh, vh;ψh; f, g, u) :=

1

τmax

∫
K

i+1
2 ,j+1

2

(uh − vh)ψhdxdy

+

∫
K

i+1
2 ,j+1

2

(f ′(u(xi+ 1
2
, yj+ 1

2
))(ψh)x

+ g′(u(xi+ 1
2
, yj+ 1

2
))(ψh)y)uhdxdy
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−
∫ yj+1

yj

f ′(u(xi+ 1
2
, yj+ 1

2
))((uhψ

−
h )i+1,y − (uhψ

+
h )i,y)dy

−
∫ xi+1

xi

g′(u(xi+ 1
2
, yj+ 1

2
))((uhψ

−
h )x,j+1 − (uhψ

+
h )x,j)dx,

(3.7b)

and

Bi,j(uh, vh;φh, ψh) =

∫
Ki,j

(uh)tφhdxdy +

∫
K

i+1
2 ,j+1

2

(vh)tψhdxdy

− 1

τmax

∫
Ki,j

(vh − uh)φhdxdy −
1

τmax

∫
K

i+1
2 ,j+1

2

(uh − vh)ψhdx,

(3.8)

Obviously, we have

Bi,j(uh, vh;φh, ψh) =

∫
Ki,j

(f(vh)(φh)x + g(vh)(φh)y)dxdy

+

∫
K

i+1
2 ,j+1

2

(f(uh)(ψh)x + g(uh)(ψh)y)dxdy

−
∫ y

j+1
2

y
j− 1

2

((f(vh)φ
−
h )i+ 1

2
,y − (f(vh)φ

+
h )i− 1

2
,y)dy

−
∫ x

i+1
2

x
i− 1

2

((g(vh)φ
−
h )x,j+ 1

2
− (g(vh)φ

+
h )x,j+ 1

2
)dx

−
∫ yj+1

yj

((f(uh)ψ
−
h )i+1,y − (f(uh)ψ

+
h )i,y)dy

−
∫ xi+1

xi

((g(uh)ψ
−
h )x,j+1 − (g(uh)ψ

+
h )x,j)dx,

∀φh ∈ Qk(Ki,j), ∀ψh ∈ Qk(Ki+ 1
2
,j+ 1

2
).

(3.9)
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Let u be the exact solution of equation (3.1), clearly we have

Bi,j(u, u;φh, ψh) =

∫
Ki,j

(f(u)(φh)x + g(u)(φh)y)dxdy

+

∫
K

i+1
2 ,j+1

2

(f(u)(ψh)x + g(u)(ψh)y)dxdy

−
∫ y

j+1
2

y
j− 1

2

((f(u)φ−
h )i+ 1

2
,y − (f(u)φ+

h )i− 1
2
,y)dy

−
∫ x

i+1
2

x
i− 1

2

((g(u)φ−
h )x,j+ 1

2
− (g(u)φ+

h )x,j+ 1
2
)dx

−
∫ yj+1

yj

((f(u)ψ−
h )i+1,y − (f(u)ψ+

h )i,y)dy

−
∫ xi+1

xi

((g(u)ψ−
h )x,j+1 − (g(u)ψ+

h )x,j)dx,

∀φh ∈ Qk(Ki,j), ∀ψh ∈ Qk(Ki+ 1
2
,j+ 1

2
).

(3.10)

Subtracting (3.9) from (3.10), we get the error equation for two-dimensional case,

Bi,j(u− uh, u− vh;φh, ψh) =∫
Ki,j

(f(u)− f(vh))(φh)x + (g(u)− g(vh))(φh)ydxdy

+

∫
K

i+1
2 ,j+1

2

(f(u)− f(uh))(ψh)x + (g(u)− g(uh))(ψh)ydxdy

−
∫ y

j+1
2

y
j− 1

2

[((f(u)− f(vh))φ
−
h )i+ 1

2
,y − ((f(u)− f(vh))φ

+
h )i− 1

2
,y]dy

−
∫ x

i+1
2

x
i− 1

2

[((g(u)− g(vh))φ
−
h )x,j+ 1

2
− ((g(u)− g(vh))φ

+
h )x,j+ 1

2
]dx

−
∫ yj+1

yj

[((f(u)− f(uh))ψ
−
h )i+1,y − ((f(u)− f(uh))ψ

+
h )i,y]dy

−
∫ xi+1

xi

[((g(u)− g(uh))ψ
−
h )x,j+1 − ((g(u)− g(uh))ψ

+
h )x,j]dx

:=Hi,j(f ;u, uh, vh;φh, ψh), ∀φh ∈ Qk(Ki,j), ∀ψh ∈ Qk(Ki+ 1
2
,j+ 1

2
).

(3.11)

Summing over all i and j, the error equation becomes∑
i,j

Bi,j(u− uh, u− vh;φh, ψh) =
∑
i,j

Hi,j(f ;u, uh, vh;φh, ψh),

∀φh ∈ Qk(Ki,j), ∀ψh ∈ Qk(Ki+ 1
2
,j+ 1

2
).

(3.12)
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3.4.1 Projection operators

To prove the error estimates for two-dimensional problems in uniform Cartesian

meshes, we need two suitable projections P∗
h and Q∗

h similar to the one-dimensional case.

By applying the shifting technique in the two-dimensional case, for x and y variables

respectively, for a given function w(x) we define P∗
hw ∈ Qk(Ki,j) over Ki,j satisfying the

following two equations,∫
Ki,j

P∗
hwdxdy =

∫
Ki,j

wdxdy, (3.13a)

P̃h(P∗
hw;φh; f, g, u)i,j = P̃h(w;φh; f, g, u)i,j, ∀φh ∈ Qk(Ki,j) (3.13b)

where P̃h(w;φh; f, g, u)i,j is defined as follows,

P̃h(w;φh; f, g, u)i,j =
1

τmax

(∫ yj

y
j− 1

2

∫ xi

x
i− 1

2

w(x+
h

2
, y +

h

2
)φhdxdy

+

∫ yj

y
j− 1

2

∫ x
i+1

2

xi

w(x− h

2
, y +

h

2
)φhdxdy

+

∫ y
j+1

2

yj

∫ xi

x
i− 1

2

w(x+
h

2
, y − h

2
)φhdxdy

+

∫ y
j+1

2

yj

∫ x
i+1

2

xi

w(x− h

2
, y − h

2
)φhdxdy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

w(x, y)φhdxdy

)

+

∫ yj

y
j− 1

2

∫ xi

x
i− 1

2

w(x+
h

2
, y +

h

2
)(f ′(u(xi, yj))∂xφh + g′(u(xi, yj))∂yφh)dxdy

+

∫ yj

y
j− 1

2

∫ x
i+1

2

xi

w(x− h

2
, y +

h

2
)(f ′(u(xi, yj))∂xφh + g′(u(xi, yj))∂yφh)dxdy

+

∫ y
j+1

2

yj

∫ xi

x
i− 1

2

w(x+
h

2
, y − h

2
)(f ′(u(xi, yj))∂xφh + g′(u(xi, yj))∂yφh)dxdy

+

∫ y
j+1

2

yj

∫ x
i+1

2

xi

w(x− h

2
, y − h

2
)(f ′(u(xi, yj))∂xφh + g′(u(xi, yj))∂yφh)dxdy

−
∫ yj

y
j− 1

2

f ′(u(xi, yj))w(xi, y +
h

2
)
(
φh(x

−
i+ 1

2

, y)− φh(x
+
i− 1

2

, y)
)
dy

−
∫ y

j+1
2

yj

f ′(u(xi, yj))w(xi, y −
h

2
)
(
φh(x

−
i+ 1

2

, y)− φh(x
+
i− 1

2

, y)
)
dy
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−
∫ xi

x
i− 1

2

g′(u(xi, yj))w(x+
h

2
, yj)

(
φh(x, y

−
j+ 1

2

)− φh(x, y
+
j− 1

2

)
)
dx

−
∫ x

i+1
2

xi

g′(u(xi, yj))w(x−
h

2
, yj)

(
φh(x, y

−
j+ 1

2

)− φh(x, y
+
j− 1

2

)
)
dx,

(3.14)
Similarly, we can define the projection Q∗

h from w ∈ L∞(Ki+ 1
2
,j+ 1

2
) into Q∗

hw ∈ Qk(Ki+ 1
2
,j+ 1

2
)

over Ki+ 1
2
,j+ 1

2
. Next we will discuss the properties of these two special projections. With-

out loss of generality we will only consider P∗
h. The equation (3.13a) is required by con-

servation. Note that P̃h(w;φh)i,j = 0 for ∀w when φh is a constant, so (3.13b) alone

misses one condition which is provided by (3.13a), just like the one-dimensional case.

Existence and optimal approximate property of the projection P∗
h are established in the

following lemma.

Lemma 3.1. The projection P∗
h defined by (3.13) exists and is unique for any smooth

function w(x), and the following inequality holds

∥P∗
hw − w∥+ h∥P∗

hw − w∥∞ + h
1
2∥P∗

hw − w∥Γ ≤ Chk+1∥w∥Hk+1(Ω), (3.15)

for all k. The positive constant C depends on k, the bound of f ′(u), g′(u), the constant

c and is independent of h and w.

Proof. The proof of this lemma is given in Appendix A.3.

Similarly, for Q∗
h we have

∥Q∗
hw − w∥+ h∥Q∗

hw − w∥∞ + h
1
2∥Q∗

hw − w∥Γ ≤ Chk+1∥w∥Hk+1(Ω), (3.16)

if w is a smooth function.

Again, the projections P∗
h and Q∗

h satisfy the following superconvergence result.

Lemma 3.2. For m = 0, 1..., 8, assume that u = xk+1 or yk+1, let uI = P∗
hu and

vI = Q∗
hu then

|B̃i,j(uI − u, vI − u;φh; f, g, u)| ≤Ch2k+4 + C∥φh∥2L2(Ki,j)
, (3.17)

|B̂i+ 1
2
,j+ 1

2
(uI − u, vI − u;ψh; f, g, u)| ≤Ch2k+4 + C∥ψh∥2L2(K

i+1
2 ,j+1

2
). (3.18)

Proof. The proof of this lemma is given in Appendix A.4.
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3.5 A priori L2 error estimates

Now let us give the a priori error estimate for the two-dimensional case.

Theorem 3.2. For k = 0, 1..., 8, let u(·, ·, t) be the exact solution of equation (3.1), which

is sufficiently smooth with bounded derivatives, and assume f ∈ C2 with bounded f ′(u)

and f ′′(u). The numerical solutions uh and vh of the CDG scheme (3.2) using uniform

meshes satisfies the following L2 error estimate

∥u(·, ·, T )− uh(·, ·, T )∥2 + ∥u(·, ·, T )− vh(·, ·, T )∥2 ≤ Ch2k+2, (3.19)

where k is the polynomial degree in the finite element spaces Xk
h and Y k

h , and the con-

stant C depends on k, the final time T , ∥u∥Hk+2 and the bounds on the derivatives

|f (m)|, |g(m)|, m = 1, 2, but is independent of the mesh size h. Here ∥u∥Hk+2 is the

maximum (k + 2)-th order Sobolev norm of u over time in [0, T ]. For k = 0 and 1 we

need f(u) and g(u) to be linear, i.e. f(u) = c1u and g(u) = c2u with constants c1 and

c2.

Proof. Let eu = u − uh, ev = u − vh be the error between the numerical and exact

solutions. Similar to the one-dimensional case, to deal with the nonlinearity of f(u) and

g(u), we would like first make a priori assumption that, for small enough h, we have

∥u− uh∥ ≤ Ch2, ∥u− vh∥ ≤ Ch2, (3.20)

which also establishes the Lipschitz continuity of the right-hand side of the method of

lines semi-discrete ordinary differential equation system, hence the very existence of uh

and vh. By the interpolation property, we then have

∥eu∥∞ ≤ Ch and ∥P∗
hu− uh∥∞ ≤ Ch,

∥ev∥∞ ≤ Ch and ∥Q∗
hu− uh∥∞ ≤ Ch.

(3.21)

This assumption is not necessary for linear f and g. We will verify this assumption for

k ≥ 2 later.
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By taking

φh = P∗
hu− uh, ψh = Q∗

hu− vh, φ
e = P∗

hu− u, ψe = Q∗
hu− u, (3.22)

we obtain the energy equality

∑
i,j

Bi,j(φh − φe, ψh − ψe;φh, ψh) =
∑
i,j

Hi,j(f ;u, uh, vh;φh, ψh). (3.23)

From the definition of Bi,j, we can obtain∑
i,j

Bi,j(φh, ψh;φh, ψh)

=
∑
i,j

Bi,j(φ
e, ψe;φh, ψh) +

∑
i,j

Hi,j(f ;u, uh, vh;φh, ψh)

=
∑
i,j

∫
Ki,j

(ψe)tφhdxdy +
∑
i,j

∫
K

i+1
2 ,j+1

2

(φe)tψhdxdy

−
∑
i,j

1

τmax

∫
Ki,j

(ψe − φe)φhdxdy −
∑
i,j

1

τmax

∫
K

i+1
2 ,j+1

2

(φe − ψe)ψhdxdy

+
∑
i,j

∫
Ki,j

(f(u)− f(vh))(φh)x + (g(u)− g(vh))(φh)ydxdy

+
∑
i,j

∫
K

i+1
2 ,j+1

2

(f(u)− f(uh))(ψh)x + (g(u)− g(uh))(ψh)ydxdy

+
∑
i,j

∫ y
j+1

2

y
j− 1

2

((f(u)− f(vh))[φh])i+ 1
2
,ydy +

∑
i,j

∫ x
i+1

2

x
i− 1

2

((g(u)− g(vh))[φh])x,j+ 1
2
dx

+
∑
i,j

∫ yj+1

yj

((f(u)− f(uh))[ψh])i,ydy +
∑
i,j

∫ xi+1

xi

((g(u)− g(uh))[ψh])x,jdx.

(3.24)

For the left-hand side of (3.24), we follow the L2 stability proof in Theorem 3.1 for linear

case to conclude

∑
i,j

Bi,j(φh, ψh;φh, ψh) =
1

2

d

dt

∫
Ω

(φ2
h + ψ2

h)dx+
1

τmax

∫
Ω

(φh − ψh)
2dx. (3.25)

Similar to the proof in [19] and [16], to deal with the nonlinear part of (3.24) we would

25



like to use the following Taylor expansions:

f(u)− f(uh) =f
′(u)φh − f ′(u)φe − 1

2
f ′′
u (φh − φe)2,

f(u)− f(vh) =f
′(u)ψh − f ′(u)ψe − 1

2
f ′′
v (ψh − ψe)2,

g(u)− g(uh) =g
′(u)φh − g′(u)φe − 1

2
g′′u(φh − φe)2,

g(u)− g(vh) =g
′(u)ψh − g′(u)ψe − 1

2
g′′v (ψh − ψe)2,

(3.26)

where f ′′
u , f

′′
v and g′′u, g′′v are the mean values. These imply the following representation,∑

i,j

Bi,j(φ
e, ψe;φh, ψh) +

∑
i,j

Hi,j(f ;u, uh, vh;φh, ψh)

=L+N1 +N2 +N3 +N4,

(3.27)

where

L =
∑
i,j

∫
Ki,j

(ψe)tφhdxdy +
∑
i,j

∫
K

i+1
2 ,j+1

2

(φe)tψhdxdy,

N1 =−
∑
i,j

1

τmax

∫
Ki,j

(ψe − φe)φhdxdy

−
∑
i,j

∫
Ki,j

(f ′(u)ψe(φh)x + g′(u)ψe(φh)y)dxdy

−
∑
i,j

∫ y
j+1

2

y
j− 1

2

(f ′(u)ψe[φh])i+ 1
2
,ydy −

∑
i,j

∫ x
i+1

2

x
i− 1

2

(g′(u)ψe[φh])x,j+ 1
2
dx,

N2 =−
∑
i,j

1

τmax

∫
K

i+1
2 ,j+1

2

(φe − ψe)ψhdxdy

−
∑
i,j

∫
K

i+1
2 ,j+1

2

(f ′(u)φe(ψh)x + g′(u)φe(ψh)y)dxdy

−
∑
i,j

∫ yj+1

yj

(f ′(u)φe[ψh])i,ydy −
∑
i,j

∫ xi+1

xi

(g′(u)φe[ψh])x,jdx,

N3 =
∑
i,j

∫
Ki,j

(f ′(u)ψh(φh)x + g′(u)ψh(φh)y)dxdy

+
∑
i,j

∫
K

i+1
2 ,j+1

2

(f ′(u)φh(ψh)x + g′(u)φh(ψh)y)dxdy

+
∑
i,j

∫ y
j+1

2

y
j− 1

2

(f ′(u)ψh[φh])i+ 1
2
,ydy +

∑
i,j

∫ x
i+1

2

x
i− 1

2

(g′(u)ψh[φh])x,j+ 1
2
dx

+
∑
i,j

∫ yj+1

yj

(f ′(u)φh[ψh])i,ydy +
∑
i,j

∫ xi+1

xi

(g′(u)φh[ψh])x,jdx,
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N4 =− 1

2

(∑
i,j

∫
Ki,j

(f ′′
v (ψh − ψe)2(φh)x + g′′v (ψh − ψe)2(φh)y)dxdy

+
∑
i,j

∫
K

i+1
2 ,j+1

2

(f ′′
u (φh − φe)2(ψh)x + g′′u(φh − φe)2(ψh)y)dxdy

+
∑
i,j

∫ y
j+1

2

y
j− 1

2

(f ′′
v (ψh − ψe)2[φh])i+ 1

2
,ydy +

∑
i,j

∫ x
i+1

2

x
i− 1

2

(g′′v (ψh − ψe)2[φh])x,j+ 1
2
dx

+
∑
i,j

∫ yj+1

yj

(f ′′
u (φh − φe)2[ψh])i,ydy +

∑
i,j

∫ xi+1

xi

(g′′u(φh − φe)2[ψh])x,jdx
)
.

By Young’s inequality and (3.15), (3.16) we have

L ≤ C(∥φh∥2 + ∥ψh∥2) + Ch2k+2∥u∥2Hk+1(Ω). (3.28)

Next we estimate the nonlinear part. First for the N1 term, we can rewrite it as

N1 =−
∑
i,j

1

τmax

∫
Ki,j

(ψe − φe)φhdxdy

−
∑
i,j

∫
Ki,j

(f ′(u(xi, yj))ψ
e(φh)x + g′(u(xi, yj))ψ

e(φh)y)dxdy

−
∑
i,j

∫ y
j+1

2

y
j− 1

2

(f ′(u(xi, yj))ψ
e[φh])i+ 1

2
,ydy −

∑
i,j

∫ x
i+1

2

x
i− 1

2

(g′(u(xi, yj))ψ
e[φh])x,j+ 1

2
dx

+
∑
i,j

∫
Ki,j

((f ′(u(xi, yj))− f ′(u))ψe(φh)x + (g′(u(xi, yj))− g′(u))ψe(φh)y)dxdy

+
∑
i,j

∫ y
j+1

2

y
j− 1

2

((f ′(u(xi, yj))− f ′(u))ψe[φh])i+ 1
2
,ydy

+
∑
i,j

∫ x
i+1

2

x
i− 1

2

((g′(u(xi, yj))− g′(u))ψe[φh])x,j+ 1
2
dx

=−
∑
i,j

B̃i,j(φ
e, ψe;φh)

+
∑
i,j

∫
Ki,j

((f ′(u(xi, yj))− f ′(u))ψe(φh)x + (g′(u(xi, yj))− g′(u))ψe(φh)y)dxdy

+
∑
i,j

∫ y
j+1

2

y
j− 1

2

((f ′(u(xi, yj))− f ′(u))ψe[φh])i+ 1
2
,ydy

+
∑
i,j

∫ x
i+1

2

x
i− 1

2

((g′(u(xi, yj))− g′(u))ψe[φh])x,j+ 1
2
dx.

By using the inequality in (3.6), (3.15), (3.16) and ∥f ′(u(xi, yj)) − f ′(u)∥L∞(Ki,j) =
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O(h), ∥g′(u(xi, yj))− g′(u)∥L∞(Ki,j) = O(h), we have

N1 ≤ −
∑
j

B̃i,j(φ
e, ψe;φh) + C∗∥φh∥2 + C∗h

2k+2∥u∥2Hk+1([a,b]). (3.29)

For B̃i,j(φ
e, ψe;φh), we know that for an arbitrary element Ki,j, we can obtain the fol-

lowing results from Lemma 3.2, for ∀u ∈ P k+1([xi−1, xi+1]× [yj−1, yj+1]), ∀φh ∈ Qk(Ki,j)

|B̃i,j(P∗
hu− u,Q∗

hu− u;φh; f, g, u)| ≤ Ch2k+4 + C∥φh∥2L2(Ki,j)
, (3.30)

On each element Ki,j we consider the following Taylor expansion of u around (xi, yj),

u = Tu+Ru, (3.31)

where

Tu =
k+1∑
l=0

l∑
m=0

1

m!(l −m)!

∂lu(xi, yj)

∂xl−m∂ym
(x− xi)

l−m(y − yj)
m, (3.32)

Ru =
k+2∑
m=0

(k + 2)(x− xi)
k+2−m(y − yj)

m

m!(k + 2−m)!

∫ 1

0

(1− s)k+1
∂k+2u(x

(s)
i , y

(s)
j )

∂xk+2−m∂ym
ds. (3.33)

with x(s)i = xi+ s(x−xi), y
(s)
j = yj + s(y− yj). It is obvious that Tu ∈ P k([xi−1, xi+1]×

[yj−1, yj+1]). Note that the operator P∗
h is a linear operator and P∗

hu = P∗
hTu+P∗

hRu, we

obtain from (3.30) that

B̃i,j(φ
e, ψe;φh; f, g, u) =B̃i,j(P∗

hTu− Tu+ P∗
hRu−Ru,

Q∗
hTu− Tu+Q∗

hRu−Ru;φh; f, g, u)

=B̃i,j(P∗
hTu− Tu,Q∗

hTu− Tu;φh; f, g, u)

+ B̃i,j(P∗
hRu−Ru,Q∗

hRu−Ru;φh; f, g, u)

=B̃i,j(P∗
hRu−Ru,Q∗

hRu−Ru;φh; f, g, u)

+ Ch2k+4 + C∥φh∥2L2(Ki,j)
. (3.34)

Recalling the Bramble-Hilbert lemma [2], we have

∥Ru∥L∞(Ki,j) ≤ Chk+1|u|Hk+2(Ki,j). (3.35)
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Therefore, by using Young’s inequality, (3.15), (3.16), (3.6) and (3.35), we have

−
∑
i,j

B̃i,j(φ
e, ψe;φh; f, g, u) ≤ Ch2k+2∥u∥Hk+2(Ω) + C∥φh∥2. (3.36)

Hence, for N1 we have

N1 ≤ (C + C∗)∥φh∥2 + (C + C∗)h
2k+2∥u∥2Hk+2(Ω). (3.37)

Similarly, for N2 we have

N2 ≤ (C + C∗)∥ψh∥2 + (C + C∗)h
2k+2∥u∥2Hk+2(Ω). (3.38)

Similar to the one-dimensional case, the N3 term can be rewritten as

N3 =
∑
i,j

∫ y
j+1

2

y
j− 1

2

∫ xi

x
i− 1

2

f ′(u)(ψhφh)xdxdy +
∑
i,j

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

xi

f ′(u)(ψhφh)xdxdy

+
∑
i,j

∫ x
i+1

2

x
i− 1

2

∫ yj

y
j− 1

2

g′(u)(ψhφh)ydydx+
∑
i,j

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

yj

g′(u)(ψhφh)ydydx

+
∑
i,j

∫ y
j+1

2

y
j− 1

2

(f ′(u)ψh[φh])i+ 1
2
,ydy +

∑
i,j

∫ x
i+1

2

x
i− 1

2

(g′(u)ψh[φh])x,j+ 1
2
dx

+
∑
i,j

∫ yj+1

yj

(f ′(u)φh[ψh])i,ydy +
∑
i,j

∫ xi+1

xi

(g′(u)φh[ψh])x,jdx

=
∑
i,j

(∫ y
j+1

2

y
j− 1

2

((f ′(u)ψhφ
−
h )i+ 1

2
,y − (f ′(u)ψhφ

+
h )i− 1

2
,y

+ (f ′(u)φhψ
−
h )i,y − (f ′(u)φhψ

+
h )i,y + (f ′(u)ψh[φh])i+ 1

2
,y)dy

+

∫ x
i+1

2

x
i− 1

2

((g′(u)ψhφ
−
h )x,j+ 1

2
− (g′(u)ψhφ

+
h )x,j− 1

2

+ (g′(u)φhψ
−
h )x,j − (g′(u)φhψ

+
h )x,j + (g′(u)ψh[φh])x,j+ 1

2
)dx

+

∫ yj+1

yj

(f ′(u)φh[ψh])i,ydy +

∫ xi+1

xi

(g′(u)φh[ψh])x,jdx

−
∫
Ki,j

((f ′(u))x + (g′(u))y)φhψhdxdy
)

=−
∑
i,j

∫
Ki,j

((f ′(u))x + (g′(u))y)φhψhdxdy

≤C∗∥φh∥∥ψh∥ ≤ C∗(∥φh∥2 + ∥ψh∥2).

(3.39)
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N4 is the high order term in Taylor expansion, it’s easy to show that

N4 ≤C∗h
−1(∥ev∥∞∥ev∥∥φh∥+ ∥eu∥∞∥eu∥∥ψh∥)

≤C∗h
−1
(
∥ev∥∞(∥φh∥∥ψh∥+ ∥φh∥∥ψe∥) + ∥ev∥∞(∥ψh∥∥φh∥+ ∥ψh∥∥φe∥)

)
≤C∗(h

−1∥ev∥∞ + h−1∥eu∥∞)(∥φh∥2 + ∥ψh∥2)

+ C∗(h
−1∥ev∥∞ + h−1∥eu∥∞)h2k+2∥u∥2Hk+1(Ω).

(3.40)

Then by combining (3.28), (3.37), (3.38), (3.39), (3.40), (3.25), we obtain from (3.24)

1

2

d

dt

∫
Ω

(φ2
h + ψ2

h)dxdy ≤(C + C∗(h
−1∥ev∥∞ + h−1∥eu∥∞))(∥φh∥2 + ∥ψh∥2)

+ (C + C∗(h
−1∥ev∥∞ + h−1∥eu∥∞))h2k+2∥u∥2Hk+2(Ω).

(3.41)

When k ≥ 2, by using a priori assumption (3.21) we have

1

2

d

dt

∫
Ω

(φ2
h + ψ2

h)dxdy ≤ (C + C∗)(∥φh∥2 + ∥ψh∥2) + (C + C∗)h
2k+2∥u∥2Hk+2(Ω). (3.42)

Finally, by Gronwall’s inequality and the fact that ∥φh(·, ·, 0)∥ ≤ Chk+1, ∥ψh(·, ·, 0)∥ ≤

Chk+1 we can get
1

2

d

dt

∫
Ω

(φ2
h + ψ2

h)dxdy ≤ Ch2k+2. (3.43)

This, together with the approximation result (3.15), (3.16) implies the desired error

estimate.

For the case of k = 0 or 1, we assume that f(u) and g(u) are linear fluxes, namely

f(u) = c1u, g(u) = c2u with constants c1, c2. This is to avoid the need of the a priori

assumption (3.20) which is no longer justifiable in this case. By similar lines of proof

and noting that C∗ = 0 in this case, we can obtain

1

2

d

dt

∫
Ω

(φ2
h + ψ2

h)dxdy ≤ C(∥φh∥2 + ∥ψh∥2) + Ch2k+2, k = 0, 1. (3.44)

By using the Gronwall’s inequality we have∫
Ω

(φ2
h + ψ2

h)dxdy ≤ Ch2k+2, k = 0, 1. (3.45)

This, together with the approximation result (3.15), (3.16), implies the desired error

estimate for k = 0, 1 with linear fluxes.
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Just like the one-dimensional case, let us justify the a priori assumption (3.20) with

k ≥ 2. Similar to [19] and [1], we can verify this by a proof by contradiction. By (3.19),

we can consider h small enough so that Chk+1 < 1
2
h2, where C is the constant in (3.19)

determined by the final time T . Define t∗ = sup{t : ∥u(·, ·, t) − uh(·, ·, t)∥ + ∥u(·, ·, t) −

vh(·, ·, t)∥ ≤ h2}, then we have ∥u(·, ·, t∗) − uh(·, ·, t∗)∥ + ∥u(·, ·, t∗) − vh(·, ·, t∗)∥ = h2

by continuity if t∗ is finite. Clearly, (3.19) holds for t ≤ t∗, in particular, ∥u(·, ·, t∗) −

uh(·, ·, t∗)∥ + ∥u(·, ·, t∗) − vh(·, ·, t∗)∥ ≤ Chk+1 < 1
2
h2. This is a contradiction if t∗ < T .

Hence, t∗ ≥ T and our a priori assumption is justified.

4 Numerical examples

In this section, we present numerical examples to verify our theoretical findings.

Uniform meshes are used in all examples. The schemes are integrated in time with the

third order SSP Runge-Kutta method. We would like to compute on elements of degree

k = 0, 1, 2, 3. We set the CFL number to be 0.05. For k = 0, 1, 2 we let ∆t = CFL · h

and ∆t = CFL · h 4
3 for k = 3 where h is the characteristic length of the mesh, so that

the time error will be dominated by the spatial error.

Example 4.1. We solve the one-dimensional Burgers equation given by
ut + (

u2

2
)x = 0, x ∈ [−π, π],

u(x, 0) = sin(x), x ∈ [−π, π],

u(−π, t) = u(π, t).

(4.1)

The exact solution is obtained by Newton iteration. In this example, we use τmax =

h
2k+1

, h = 2π
N

to test the numerical schemes. The errors and numerical order of accuracy

at T = 0.5 with 0 ≤ k ≤ 3 are listed in Tables 4.1.

Table 4.1 shows that the order of convergence of the error achieves the expected

(k + 1)-th order of accuracy.
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k N L1 error order L2 error order L∞ error order

0

10 6.73E-001 - 3.65E-001 - 5.60E-001 -
20 3.34E-001 1.01 1.83E-001 0.99 3.04E-001 0.88
40 1.66E-001 1.00 9.19E-002 1.00 1.56E-001 0.97
80 8.31E-002 1.00 4.60E-002 1.00 7.90E-002 0.98
160 4.15E-002 1.00 2.30E-002 1.00 3.97E-002 0.99

1

10 6.90E-002 - 4.40E-002 - 8.69E-002 -
20 1.86E-002 1.89 1.25E-002 1.81 2.58E-002 1.75
40 4.73E-003 1.98 3.21E-003 1.97 7.34E-003 1.81
80 1.19E-003 1.99 8.11E-004 1.98 1.95E-003 1.92
160 2.98E-004 2.00 2.04E-004 1.99 4.94E-004 1.98

2

10 9.68E-003 - 8.58E-003 - 2.53E-002 -
20 8.97E-004 3.43 9.29E-004 3.21 4.24E-003 2.58
40 1.13E-004 2.99 1.14E-004 3.02 6.03E-004 2.82
80 1.42E-005 2.99 1.44E-005 2.98 7.87E-005 2.94
160 1.78E-006 3.00 1.81E-006 2.99 9.99E-006 2.98

3

10 6.06E-04 - 6.47E-04 - 3.26E-03 -
20 6.17E-05 3.30 6.91E-05 3.23 2.73E-04 3.58
40 4.54E-06 3.77 5.54E-06 3.64 3.21E-05 3.09
80 2.86E-07 3.99 3.49E-07 3.99 2.06E-06 3.96
160 1.79E-08 4.00 2.19E-08 4.00 1.30E-07 3.99

Table 4.1. Errors and numerical orders of accuracy for Example 4.1 on a uniform mesh
of N cells. Here τmax = h

2k+1
and final time T = 0.5.

Example 4.2. We solve the two-dimensional Burgers equation given byut + (
u2

2
)x + (

u2

2
)y = 0, (x, y) ∈ [−π, π]2,

u(x, y, 0) = sin(x+ y), (x, y) ∈ [−π, π]2,
(4.2)

with periodic boundary condition. The exact solution follows from the solution of

one-dimensional Burgers equation with ξ = x + y. In this example, we use τmax =

h
2k+1

, h = 2π
N

to test the numerical schemes. The central DG scheme is evolved up to

T = 0.2 when the solution is still smooth. The errors and numerical order of accuracy

with 0 ≤ k ≤ 3 are listed in Tables 4.2.

Table 4.2 shows that the order of convergence of the error achieves the expected

(k + 1)-th order of accuracy.
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k N× N L1 error order L2 error order L∞ error order

0

10× 10 5.57E+00 - 1.22E+00 - 8.16E-01 -
20× 20 2.76E+00 1.01 6.17E-01 0.98 4.87E-01 0.74
40× 40 1.37E+00 1.01 3.09E-01 1.00 2.57E-01 0.92
80× 80 6.81E-01 1.01 1.54E-01 1.00 1.30E-01 0.98
160× 160 3.40E-01 1.00 7.72E-02 1.00 6.54E-02 0.99

1

10× 10 9.12E-01 - 2.34E-01 - 2.60E-01 -
20× 20 2.37E-01 1.94 6.25E-02 1.90 8.19E-02 1.67
40× 40 5.99E-02 1.99 1.60E-02 1.97 2.19E-02 1.90
80× 80 1.50E-02 2.00 4.02E-03 1.99 5.71E-03 1.94
160× 160 3.75E-03 2.00 1.01E-03 2.00 1.45E-03 1.98

2

10× 10 1.49E-01 - 5.03E-02 - 1.22E-01 -
20× 20 1.91E-02 2.97 6.44E-03 2.97 2.14E-02 2.52
40× 40 2.38E-03 3.00 8.33E-04 2.95 3.00E-03 2.83
80× 80 3.00E-04 2.99 1.05E-04 2.98 3.87E-04 2.96
160× 160 3.77E-05 2.99 1.33E-05 2.99 4.87E-05 2.99

3

10× 10 2.06E-02 - 7.45E-03 - 2.20E-02 -
20× 20 2.04E-03 3.33 8.72E-04 3.09 3.30E-03 2.74
40× 40 1.48E-04 3.79 6.09E-05 3.84 2.50E-04 3.72
80× 80 9.70E-06 3.93 4.02E-06 3.92 1.78E-05 3.81
160× 160 6.19E-07 3.97 2.62E-07 3.94 1.17E-06 3.92

Table 4.2. Errors and numerical orders of accuracy for Example 4.2 on a uniform mesh
of N ×N cells. Here τmax = h

2k+1
and final time T = 0.2.

5 Concluding remarks

In this paper, a priori optimal L2 error estimates to central DG methods on uniform

meshes applied to nonlinear conservation laws with smooth solutions are proved with

polynomial degrees of k ≤ 8. The main techniques used in this paper are special projec-

tions and Taylor expansions. Our analysis is carried out both in one dimension and in

two-dimensions for uniform Cartesian meshes and tensor-product polynomial spaces. We

also give some numerical examples to verify the results of our theoretical analysis. The

error estimates for nonlinear conservation laws in this paper were obtained using stabil-

ity for the linear case and the smoothness of the exact solution. It is not clear whether

stability holds for the scalar nonlinear conservation laws with general non-smooth solu-

tions. Such a stability proof for the central DG schemes and the extension of this work to

non-uniform meshes and unstructured triangular meshes are interesting and challenging,
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and constitutes our ongoing work.

A Appendix: Collection of technical proofs

In this appendix, we collect the proofs of some technical lemmas and propositions.

A.1 Proof of Lemma 2.1

Proof. We only consider P∗
h, while the proof for Q∗

h follows similar lines. For ∀j, we let

ξ =
2(x−xj)

h
on Ij, for a smooth function ω(x) and a k-th order polynomial φh(x) on Ij,

and define
ω̃(ξ) = ω(

h

2
ξ + xj) = ω(x),

ϕh(ξ) = φh(
h

2
ξ + xj) = φh(x).

(A.1)

Note that the procedure to find the P∗
hω̃ ∈ Pk([−1, 1]) is to solve for a linear system,

so existence of the projection can be proved by proving its uniqueness. Thus, we only

need to prove the uniqueness of the projection P∗
h. We set ωI(ξ) = P∗

hω̃(ξ) = P∗
hω(x)

with ω̃(ξ) = ω(x) = 0, and would like to prove ωI(ξ) = 0. Then by the definition of the

projection P∗
h, we have:

P̃h(ωI ;ϕh; f, u)j =
h

2τmax

(

∫ 0

−1

ωI(ξ + 1)ϕh(ξ)dξ +

∫ 1

0

ωI(ξ − 1)ϕh(ξ)dξ

−
∫ 1

−1

ωI(ξ)ϕh(ξ)dξ) +

∫ 0

−1

f ′(u(xj))ωI(ξ + 1)(ϕh(ξ))ξdξ

+

∫ 1

0

f ′(u(xj))ωI(ξ − 1)(ϕh(ξ))ξdξ

− f ′(u(xj))ωI(0)(ϕh(1)− ϕh(−1))

=0, (A.2a)
h

2

∫ 1

−1

ωI(ξ)dξ = 0. (A.2b)

Let ϕh(ξ) = ωI(ξ) ∈ Pk([−1, 1]), we get

P̃h(ωI ;ωI ; f, u)j =
h

2τmax

(∫ 0

−1

ωI(ξ + 1)ωI(ξ)dξ +

∫ 1

0

ωI(ξ − 1)ωI(ξ)dξ −
∫ 1

−1

ωI(ξ)
2dξ

)
+

∫ 0

−1

f ′(u(xj))ωI(ξ + 1)(ωI(ξ))ξdξ +

∫ 1

0

f ′(u(xj))ωI(ξ − 1)(ωI(ξ))ξdξ
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− f ′(u(xj))ωI(0) (ωI(1)− ωI(−1)) = 0. (A.3)

We rewrite P̃h(ωI ;ωI ; f, u)j by a change of variable ξ → ξ + 1 for the integrations over

[−1, 0] to get

P̃h(ωI ;ωI ; f, u)j =
h

2τmax

(
2

∫ 1

0

ωI(ξ − 1)ωI(ξ)dξ −
∫ 1

0

ωI(ξ − 1)2dξ −
∫ 1

0

ωI(ξ)
2dξ

)
+

∫ 1

0

f ′(u(xj))ωI(ξ)(ωI(ξ − 1))ξdξ +

∫ 1

0

f ′(u(xj))ωI(ξ − 1)(ωI(ξ))ξdξ

− f ′(u(xj))ωI(0)(ωI(1)− ωI(−1))

=− h

2τmax

∫ 1

0

(ωI(ξ)− ωI(ξ − 1))2dξ = 0. (A.4)

Thus,

ωI(ξ) = ωI(ξ − 1), ∀ξ ∈ (0, 1). (A.5)

Next we will show that ωI(ξ) is a constant on [−1, 1]. Let ωI(ξ) =
∑k

i=0 aiξ
i, ξ ∈ [−1, 1].

For k = 0 it clearly holds. For k ≥ 1, now from (A.5) we have

G(ξ) := ωI(ξ)− ωI(ξ − 1) =
k∑

i=1

ai(ξ
i − (ξ − 1)i) = 0, ∀ξ ∈ (0, 1). (A.6)

Assume ai, 1 ≤ i ≤ k are not all zeros, then G(ξ) is a non-zero polynomial of degree at

most k− 1, thus it has at most k− 1 roots, which is a contradiction to (A.6). Hence, we

have ai = 0, ∀1 ≤ i ≤ k, which indicates that ωI(ξ) is a constant on [−1, 1]. Hence, by

(A.2b), we have
h

2

∫ 1

−1

ωI(ξ)dξ = hωI(ξ) = 0, (A.7)

which implies ωI(ξ) ≡ 0 on [−1, 1].

We have now finished the proof of uniqueness. Next we move to prove the bounded-

ness. Let ωI(x) = P∗
hω(x) =

∑k
i=0 aix

i and set the test functions φh = x, x2, ..., xk. Then

we have

P̃h(ωI ;x
l; f, u)j =

k∑
i−0

αilai, 1 ≤ l ≤ k, (A.8)

∫ 1

−1

wI(x)dx =
k∑

i=0

1i+1 − (−1)i+1

i+ 1
ai =

k∑
i=0

αi0ai. (A.9)
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By calculation, for 1 ≤ l ≤ k we have

αil =
h

2τmax

[
i!l!
(
(−1)i + (−1)l

)
(i+ l + 1)!

+
(−1)i+l + 1

i+ l + 1
]

+ f ′(u(xj))
li!(l − 1)!

(
(−1)i + (−1)l+1

)
(i+ l)!

=
h

2τmax

µil + f ′(u(xj))ηil,

(A.10)

where
µil =

i!l!
(
(−1)i + (−1)l

)
(i+ l + 1)!

+
(−1)i+l + 1

i+ l + 1
,

ηil =
li!(l − 1)!

(
(−1)i + (−1)l+1

)
(i+ l)!

.

(A.11)

We denote β = (a0, ..., ak)
T , A(i, l) = αil, 0 ≤ i ≤ k, 0 ≤ l ≤ k and b0 =

∫ 1

−1
w(x)dx, bl =

P̃h(w;x
l; f, u), 1 ≤ l ≤ k, B = (b0, ..., bk)

T . We will solve the following linear system to

get the coefficients β,

ATβ = B. (A.12)

We can rewrite A as the following form,

A =
h

2τmax

M+ f ′(u(xj))H + C, (A.13)

where

M(i, l) =

µil, 0 ≤ i ≤ k, 1 ≤ l ≤ k,

0, 0 ≤ i ≤ k, l = 0,
(A.14)

H(i, l) =

ηil, 0 ≤ i ≤ k, 1 ≤ l ≤ k,

0, 0 ≤ i ≤ k, l = 0,
(A.15)

C(i, l) =

 0, 0 ≤ i ≤ k, 1 ≤ l ≤ k,

αi0, 0 ≤ i ≤ k, l = 0.
(A.16)

From the formulation of the scheme (2.6) we have τmax = c h, here c is a constant

dictated by stability. Then we have

AT =
1

2c
MT + f ′(u(xj))HT + CT . (A.17)
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From (A.11) we know that

µil =



2((i+ l)! + i!l!)

(i+ l + 1)!
, if i and l are even,

2((i+ l)!− i!l!)

(i+ l + 1)!
, if i and l are odd,

0, if (i+ l) is odd,

(A.18)

ηil =



−2li!(l − 1)!

(i+ l)!
, if i is odd and l is even,

2li!(l − 1)!

(i+ l)!
, if i is even and l is odd,

0, if (i+ l) is even,

(A.19)

and from (A.9) we have

αi0 =


2

i+ 1
, if i is even,

0, if i is odd.

(A.20)

Hence, we can estimate the infinity norm of AT ,

∥AT∥∞ =∥ 1

2c
MT + f ′(u(xj))HT + CT∥∞

=max{
k∑

i=0

|αi0|, max
1≤l≤k

k∑
i=0

(
1

2c
|µil|+ |f ′(u(xj))ηil|)}.

(A.21)

Since µil > 0 for (i+ l) is even and f ′(u(xj)) is bounded, then we have

∥AT∥∞ ≤ E , (A.22)

where E is a constant which depends on polynomial degree k, the bound of f ′(u(xj)) and

constant c. Since the first row of the matrix AT are constants αi0 which only depends

on degree k and the other elements of AT either only contain 1
2c

or only f ′(u(xj)), the

by the definition of determinant we have

det(AT ) =
k∑

i=0

Di(k)(
1

2c
)i(f ′(u(xj)))

k−i, (A.23)

where Di(k) is a constant which only depends on degree k. Notice that if f ′(u(xj)) =

0 in (A.23), then det(AT ) = Dk(k)(
1
2c
)k. From the previous proof of the existence

and uniqueness of the projection, we know that AT is always invertible which means
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det(AT ) ̸= 0 holds for any value of f ′(u(xj)). Hence, here we have Dk(k) ̸= 0. Therefore,

we can take c small enough so that

|
k−1∑
i=0

Di(k)(
1

2c
)i(f ′(u(xj)))

k−i| ≤ |Dk(k)|
2

(
1

2c
)k. (A.24)

We emphasize that this choice of c is only a sufficient condition for our proof, in numerical

computation c should be chosen as the largest CFL number for linear stability to avoid

excessive numerical dissipation. We now have

| det(AT )| ≥ |Dk(k)|
2

(
1

2c
)k > 0, (A.25)

holds for all f ′(u(xj)). Next let σi(AT ) denotes the i−th singular value of AT which

are in descending order from 0 to k, σmax(A
T ) and σmin(A

T ) represent the largest and

smallest singular value of matrix AT . Then we have

∥A−T∥2 =
1

σmin(AT )

≤ 1

σmin(AT )
· (

k−1∏
i=0

σmax(A
T )

σi(AT )
)

=
(σmax(A

T ))k∏k
i=0 σi(A

T )

=
∥AT∥k2

| det(AT )|

≤2(2c)k

Dk(k)
∥AT∥k2.

(A.26)

By the equivalence of norms

∥AT∥2 ≤
√
k + 1∥AT∥∞, (A.27)

∥A−T∥∞ ≤
√
k + 1∥A−T∥2, (A.28)

we have

∥A−T∥∞ ≤ 2(2c)k(k + 1)
k+1
2

Dk(k)
Ek. (A.29)

It is obvious that ∥B∥∞ ≤ C̃∥w∥∞ due to the boundedness of f ′(u(xj)). Here C̃ is

a constant which depends on degree k and the bound of f ′(u(xj)). Hence, for the
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coefficients β we have

∥β∥∞ ≤ ∥A−T∥∞∥B∥∞ ≤ 2(2c)k(k + 1)
k+1
2

Dk(k)
EkC̃∥w∥∞. (A.30)

which immediately results in the boundedness of P∗
hw.

A.2 Proof of Proposition 2.1

Let uI = P∗
hu ∈ V k

h , vI = Q∗
hu ∈ W k

h , aj = f ′(u(xj)), aj+ 1
2
= f ′(u(xj+ 1

2
)), by the

definition of B̃j and B̂j+ 1
2
, we have

B̃j(uI , vI ;φh; f, u)− B̃j(u, u;φh; f, u)

=
1

τmax

∫ x
j+1

2

x
j− 1

2

(vI − uI)φhdx+ aj[

∫ x
j+1

2

x
j− 1

2

(vI − u)(φh)x

− (vI(xj+ 1
2
)− u(xj+ 1

2
))φh(x

−
j+ 1

2

) + (vI(xj− 1
2
)− u(xj− 1

2
))φh(x

+
j− 1

2

)]

=P̃h(uI − u;φh; f, u)j +
1

τmax

[

∫ x
j+1

2

xj

(vI − u− uI(x−
h

2
) + u(x− h

2
))φhdx

+

∫ xj

x
j− 1

2

(vI − u− uI(x+
h

2
) + u(x+

h

2
))φhdx]

+ aj[

∫ x
j+1

2

xj

(vI − u− uI(x−
h

2
) + u(x− h

2
))(φh)xdx

+

∫ xj

x
j− 1

2

(vI − u− uI(x+
h

2
) + u(x+

h

2
))(φh)xdx

− (vI(xj+ 1
2
)− u(xj+ 1

2
)− uI(xj) + u(xj))φh(x

−
j+ 1

2

)

+ (vI(xj− 1
2
)− u(xj− 1

2
)− uI(xj) + u(xj))φh(x

+
j− 1

2

)], (A.31)

and

B̂j+ 1
2
(uI , vI ;ψh; f, u)− B̂j+ 1

2
(u, u;ψh; f, u)

=
1

τmax

∫ xj+1

xj

(uI − vI)ψhdx+ aj+ 1
2
[

∫ xj+1

xj

(uI − u)(ψh)x

− (uI(xj+1)− u(xj+1))ψh(x
−
j+1) + (uI(xj)− u(xj))ψh(x

+
j )]

=Q̃h(vI − u;ψh; f, u)j+ 1
2
+

1

τmax

[

∫ xj+1

x
j+1

2

(uI − u− vI(x−
h

2
) + u(x− h

2
))ψhdx

+

∫ x
j+1

2

xj

(uI − u− vI(x+
h

2
) + u(x+

h

2
))ψhdx]
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+ aj+ 1
2
[

∫ xj+1

x
j+1

2

(uI − u− vI(x−
h

2
) + u(x− h

2
))(ψh)xdx

+

∫ x
j+1

2

xj

(uI − u− vI(x+
h

2
) + u(x+

h

2
))(ψh)xdx

− (uI(xj+1)− u(xj+1)− vI(xj+ 1
2
) + u(xj+ 1

2
))ψh(x

−
j+1)

+ (uI(xj)− u(xj)− vI(xj+ 1
2
) + u(xj+ 1

2
))ψh(x

+
j )]. (A.32)

For u = xk+1, to get the desired result we need to estimate ∥vI − xk+1 − uI(x+
h
2
) +

(x+ h
2
)k+1∥L2(x

j− 1
2
,xj), ∥vI − xk+1 − uI(x− h

2
) + (x− h

2
)k+1∥L2(xj ,xj+1

2
) and ∥uI − xk+1 −

vI(x+
h
2
)+(x+ h

2
)k+1∥L2(xj ,xj+1

2
), ∥uI−xk+1−vI(x− h

2
)+(x− h

2
)k+1∥L2(x

j+1
2
,xj+1). We will

only show that ∥vI−xk+1−uI(x− h
2
)+(x− h

2
)k+1∥L2(xj ,xj+1

2
) ≤ Ch2k+5 with k = 0, 1..., 8,

as the other cases are similar.

For k = 0, 1..., 8, by using the definition of the projection and the property that

∥aj−aj+ 1
2
∥L∞(Ij) = ∥aj−aj− 1

2
∥L∞(Ij) = O(h) we have the following results. For u = xk+1,

by the definition ( for k = 0 we only have the first equation in the definition ),∫ x
j+1

2

x
j− 1

2

uIdx =

∫ x
j+1

2

x
j− 1

2

xk+1dx,

P̃h(uI ;x
l; f, u)j =P̃h(x

k+1;xl; f, u)j, l = 1, ..., k,∫ xj+1

xj

vIdx =

∫ xj+1

xj

xk+1dx,

Q̃h(vI ;x
l; f, u)j+ 1

2
=Q̃h(x

k+1;xl; f, u)j+ 1
2
, l = 1, ..., k,

(A.33)

then we have

uI =
k∑

l=0

αlx
l, ∀x ∈ Ij,

vI =
k∑

l=0

βlx
l, ∀x ∈ Ij+ 1

2
.

(A.34)

Here αl and βl are the coefficients obtained by solving the local linear system (A.33).

We leave the detailed calculations and formulas for k up to 8 in a separate file, as a

supplement to this paper, since they are too lengthy. We then have, k = 0, 1., , , 8, that∫ x
j+1

2

xj

(vI − x2 − uI(x−
h

2
) + (x− h

2
)2)2dx = O(h2k+5), (A.35)
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and therefore we can prove that

∥vI − xk+1 − uI(x−
h

2
) + (x− h

2
)k+1∥2L2(xj ,xj+1

2
) ≤ Ch2k+5. (A.36)

Then by using Holder’s inequality and Young’s inequality, we obtain from (A.31)

|B̃j(uI , vI ;φh; f, u)− B̃j(u, u;φh; f, u)| ≤ Ch2k+3 + C∥φh∥2L2(Ij)
. (A.37)

Similarly, for B̂j+ 1
2

we have

|B̂j+ 1
2
(uI , vI ;ψh; f, u)− B̂j+ 1

2
(u, u;ψh; f, u)| ≤ Ch2k+3 + C∥ψh∥2L2(I

j+1
2
). (A.38)

A.3 Proof of Lemma 3.1

Proof. Let uI denote P∗
hu. Assume that u ≡ 0. Take φh = uI in (3.14), we get

0 = P̃h(uI , uI)i,j =
1

τmax

(∫ yj

y
j− 1

2

∫ xi

x
i− 1

2

2uI(x+
h

2
, y +

h

2
)uI(x, y)

+ 2uI(x+
h

2
, y)uI(x, y +

h

2
) dxdy

−
∫ yj

y
j− 1

2

∫ xi

x
i− 1

2

uI(x, y)
2 + uI(x, y +

h

2
)2

+ uI(x+
h

2
, y)2 + uI(x+

h

2
, y +

h

2
)2 dxdy

)
=− 1

τmax

(∫ yj

y
j− 1

2

∫ xi

x
i− 1

2

(uI(x+
h

2
, y +

h

2
)− uI(x, y))

2 dxdy

+

∫ yj

y
j− 1

2

∫ xi

x
i− 1

2

(uI(x+
h

2
, y)− uI(x, y +

h

2
))2 dxdy

)
, (A.39)

where we have again used change of variable to shift all the integration regions to the

same subcell (xi− 1
2
, xi)× (yj− 1

2
, yj) to simplify the formulation. Then

uI(x, y) = uI(x+
h

2
, y+

h

2
), uI(x+

h

2
, y) = uI(x, y+

h

2
), ∀(x, y) ∈ (xi− 1

2
, xi)×(yj− 1

2
, yj).

Thus uI(x, y) ≡ c0 on Ki,j, c0 is a constant. By (3.13) we immediately get uI ≡ 0, and we

have finished the proof of uniqueness, hence also existence. We note that this projection

is a local projection, hence we can make a change of variables to the reference element
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[−1, 1]× [−1, 1] by taking ξ = 2(x−xi)
h

and η =
2(y−yj)

h
. Taking a similar derivation as in

the proof of (A.1), we obtain

∥uI∥L∞(Ki,j) ≤ C(k)∥u∥L∞(Ki,j). (A.40)

Again standard approximation theory [2] implies the optimal approximating estimates.

A.4 Proof of Lemma 3.2

Proof. Let uI = P∗
hu ∈ Xk

h , vI = Q∗
hu ∈ Y k

h , and ai,j = f ′(u(xi, yj)), bi,j = g′(u(xi, yj)),

ai+ 1
2
,j+ 1

2
= f ′(u(xi+ 1

2
, yj+ 1

2
)), bi+ 1

2
,j+ 1

2
= g′(u(xi+ 1

2
, yj+ 1

2
)), then by the definition of B̃i,j

and B̂i+ 1
2
,j+ 1

2
, we have

B̃i,j(uI , vI ;φh; f, g, u)− B̃i,j(u, u;φh; f, g, u)

=
1

τmax

∫
Ki,j

(vI − uI)φhdxdy + ai,j

[∫
Ki,j

(vI − u)(φh)xdxdy

−
∫ y

j+1
2

y
j− 1

2

(
(vI − u)(xi+ 1

2
, y)φh(x

−
i+ 1

2

, y)− (vI − u)(xi− 1
2
, y)φh(x

+
i− 1

2

, y)
)]

+ bi,j

[∫
Ki,j

(vI − u)(φh)ydxdy −
∫ x

i+1
2

x
i− 1

2

(
(vI − u)(x, yj+ 1

2
)φh(x, y

−
j+ 1

2

)

− (vI − u)(x, yj− 1
2
)φh(x, y

+
j− 1

2

)
)]

=P̃h(uI − u;φh; f, g, u)i,j

+
1

τmax

[∫ x
i+1

2

xi

∫ y
j+1

2

yj

(
vI(x, y)− u(x, y)− uI(x−

h

2
, y − h

2
) + u(x− h

2
, y − h

2
)
)
φhdxdy

+

∫ xi

x
i− 1

2

∫ y
j+1

2

yj

(
vI(x, y)− u(x, y)− uI(x+

h

2
, y − h

2
) + u(x+

h

2
, y − h

2
)
)
φhdxdy

+

∫ x
i+1

2

xi

∫ yj

y
j− 1

2

(
vI(x, y)− u(x, y)− uI(x−

h

2
, y +

h

2
) + u(x− h

2
, y +

h

2
)
)
φhdxdy

+

∫ xi

x
i− 1

2

∫ yj

y
j− 1

2

(
vI(x, y)− u(x, y)− uI(x+

h

2
, y +

h

2
) + u(x+

h

2
, y +

h

2
)
)
φhdxdy

]

+ ai,j

[∫ x
i+1

2

xi

∫ y
j+1

2

yj

(
vI(x, y)− u(x, y)− uI(x−

h

2
, y − h

2
) + u(x− h

2
, y − h

2
)
)
(φh)xdxdy
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+

∫ xi

x
i− 1

2

∫ y
j+1

2

yj

(
vI(x, y)− u(x, y)− uI(x+

h

2
, y − h

2
) + u(x+

h

2
, y − h

2
)
)
(φh)xdxdy

+

∫ x
i+1

2

xi

∫ yj

y
j− 1

2

(
vI(x, y)− u(x, y)− uI(x−

h

2
, y +

h

2
) + u(x− h

2
, y +

h

2
)
)
(φh)xdxdy

+

∫ xi

x
i− 1

2

∫ yj

y
j− 1

2

(
vI(x, y)− u(x, y)− uI(x+

h

2
, y +

h

2
) + u(x+

h

2
, y +

h

2
)
)
(φh)xdxdy

−
∫ y

j+1
2

yj

(
vI(xi+ 1

2
, y)− u(xi+ 1

2
, y)− uI(xi, y −

h

2
) + u(xi, y −

h

2
)
)
φh(x

−
i+ 1

2

, y)dy

−
∫ yj

y
j− 1

2

(
vI(xi+ 1

2
, y)− u(xi+ 1

2
, y)− uI(xi, y +

h

2
) + u(xi, y +

h

2
)
)
φh(x

−
i+ 1

2

, y)dy

+

∫ y
j+1

2

yj

(
vI(xi− 1

2
, y)− u(xi− 1

2
, y)− uI(xi, y −

h

2
) + u(xi, y −

h

2
)
)
φh(x

+
i− 1

2

, y)dy

+

∫ yj

y
j− 1

2

(
vI(xi− 1

2
, y)− u(xi− 1

2
, y)− uI(xj, y +

h

2
) + u(xj, y +

h

2
)
)
φh(x

+
i− 1

2

, y)dy

]

+ bi,j

[∫ x
i+1

2

xi

∫ y
j+1

2

yj

(
vI(x, y)− u(x, y)− uI(x−

h

2
, y − h

2
) + u(x− h

2
, y − h

2
)
)
(φh)ydxdy

+

∫ xi

x
i− 1

2

∫ y
j+1

2

yj

(
vI(x, y)− u(x, y)− uI(x+

h

2
, y − h

2
) + u(x+

h

2
, y − h

2
)
)
(φh)ydxdy

+

∫ x
i+1

2

xi

∫ yj

y
j− 1

2

(
vI(x, y)− u(x, y)− uI(x−

h

2
, y +

h

2
) + u(x− h

2
, y +

h

2
)
)
(φh)ydxdy

+

∫ xi

x
i− 1

2

∫ yj

y
j− 1

2

(
vI(x, y)− u(x, y)− uI(x+

h

2
, y +

h

2
) + u(x+

h

2
, y +

h

2
)
)
(φh)ydxdy

−
∫ x

i+1
2

xi

(
vI(x, yj+ 1

2
)− u(x, yj+ 1

2
)− uI(x−

h

2
, yj) + u(x− h

2
, yj)

)
φh(x, y

−
j+ 1

2

)dx

−
∫ xi

x
i− 1

2

(
vI(x, yj+ 1

2
)− u(x, yj+ 1

2
)− uI(x+

h

2
, yj) + u(x+

h

2
, yj)

)
φh(x, y

−
j+ 1

2

)dx

+

∫ x
i+1

2

xi

(
vI(x, yj− 1

2
)− u(x, yj− 1

2
)− uI(x−

h

2
, yj) + u(x− h

2
, yj)

)
φh(x, y

+
j− 1

2

)dx

+

∫ xi

x
i− 1

2

(
vI(x, yj− 1

2
)− u(x, yj− 1

2
)− uI(x+

h

2
, yj) + u(x+

h

2
, yj)

)
φh(x, y

+
j− 1

2

)dx

]
,

(A.41)
B̂i+ 1

2
,j+ 1

2
(uI , vI ;ψh; f, u)− B̂i+ 1

2
,j+ 1

2
(u, u;ψh; f, u)

=
1

τmax

∫
K

i+1
2 ,j+1

2

(uI − vI)ψhdxdy + ai+ 1
2
,j+ 1

2

[∫
K

i+1
2 ,j+1

2

(vI − u)(ψh)xdxdy
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−
∫ yj+1

yj

(
(uI − u)(xi+ 1

2
, y)ψh(x

−
i+ 1

2

, y)− (uI − u)(xi− 1
2
, y)ψh(x

+
i− 1

2

, y)
)]

+ bi,j

[∫
Ki,j

(uI − u)(ψh)ydxdy −
∫ xi+1

xi

(
(uI − u)(x, yj+ 1

2
)ψh(x, y

−
j+ 1

2

)

− (uI − u)(x, yj− 1
2
)ψh(x, y

+
j− 1

2

)
)]

=Q̃h(vI − u;ψh; f, g, u)i+ 1
2
,j+ 1

2

+
1

τmax

[∫ xi+1

x
i+1

2

∫ yj+1

y
j+1

2

(
uI(x, y)− u(x, y)− vI(x−

h

2
, y − h

2
) + u(x− h

2
, y − h

2
)
)
ψhdxdy

+

∫ x
i+1

2

xi

∫ yj+1

y
j+1

2

(
uI(x, y)− u(x, y)− vI(x+

h

2
, y − h

2
) + u(x+

h

2
, y − h

2
)
)
ψhdxdy

+

∫ xi+1

x
i+1

2

∫ y
j+1

2

yj

(
uI(x, y)− u(x, y)− vI(x−

h

2
, y +

h

2
) + u(x− h

2
, y +

h

2
)
)
ψhdxdy

+

∫ x
i+1

2

xi

∫ y
j+1

2

yj

(
uI(x, y)− u(x, y)− vI(x+

h

2
, y +

h

2
) + u(x+

h

2
, y +

h

2
)
)
ψhdxdy

]

+ ai+ 1
2
,j+ 1

2

[∫ xi+1

x
i+1

2

∫ yj+1

y
j+1

2

(
uI(x, y)− u(x, y)− vI(x−

h

2
, y − h

2
) + u(x− h

2
, y − h

2
)
)
(ψh)xdxdy

+

∫ x
i+1

2

xi

∫ yj+1

y
j+1

2

(
uI(x, y)− u(x, y)− vI(x+

h

2
, y − h

2
) + u(x+

h

2
, y − h

2
)
)
(ψh)xdxdy

+

∫ xi+1

x
i+1

2

∫ y
j+1

2

yj

(
uI(x, y)− u(x, y)− vI(x−

h

2
, y +

h

2
) + u(x− h

2
, y +

h

2
)
)
(ψh)xdxdy

+

∫ x
i+1

2

xi

∫ y
j+1

2

yj

(
uI(x, y)− u(x, y)− vI(x+

h

2
, y +

h

2
) + u(x+

h

2
, y +

h

2
)
)
(ψh)xdxdy

−
∫ y

j+1
2

yj

(
uI(xi+1, y)− u(xi+1, y)− vI(xi+ 1

2
, y − h

2
) + u(xi+ 1

2
, y − h

2
)
)
ψh(x

−
i+1, y)dy

−
∫ yj

y
j− 1

2

(
uI(xi+1, y)− u(xi+1, y)− vI(xi+ 1

2
, y +

h

2
) + u(xi+ 1

2
, y +

h

2
)
)
ψh(x

−
i+1, y)dy

+

∫ y
j+1

2

yj

(
uI(xi, y)− u(xi, y)− vI(xi+ 1

2
, y − h

2
) + u(xi+ 1

2
, y − h

2
)
)
ψh(x

+
i , y)dy

+

∫ yj

y
j− 1

2

(
uI(xi, y)− u(xi, y)− vI(xi+ 1

2
, y +

h

2
) + u(xi+ 1

2
, y +

h

2
)
)
ψh(x

+
i , y)dy

]

+ bi+ 1
2
,j+ 1

2

[∫ xi+1

x
i+1

2

∫ yj+1

y
j+1

2

(
uI(x, y)− u(x, y)− vI(x−

h

2
, y − h

2
) + u(x− h

2
, y − h

2
)
)
(ψh)ydxdy
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+

∫ x
i+1

2

xi

∫ yj+1

y
j+1

2

(
uI(x, y)− u(x, y)− vI(x+

h

2
, y − h

2
) + u(x+

h

2
, y − h

2
)
)
(ψh)ydxdy

+

∫ xi+1

x
i+1

2

∫ y
j+1

2

yj

(
uI(x, y)− u(x, y)− vI(x−

h

2
, y +

h

2
) + u(x− h

2
, y +

h

2
)
)
(ψh)ydxdy

+

∫ x
i+1

2

xi

∫ y
j+1

2

yj

(
uI(x, y)− u(x, y)− vI(x+

h

2
, y +

h

2
) + u(x+

h

2
, y +

h

2
)
)
(ψh)ydxdy

−
∫ xi+1

x
i+1

2

(
uI(x, yj+1)− u(x, yj+1)− vI(x−

h

2
, yj+ 1

2
) + u(x− h

2
, yj+ 1

2
)
)
ψh(x, y

−
j+1)dx

−
∫ x

i+1
2

xi

(
uI(x, yj+1)− u(x, yj+1)− vI(x+

h

2
, yj+ 1

2
) + u(x+

h

2
, yj+ 1

2
)
)
ψh(x, y

−
j+1)dx

+

∫ xi+1

x
i+1

2

(
uI(x, yj)− u(x, yj)− vI(x−

h

2
, yj+ 1

2
) + u(x− h

2
, yj+ 1

2
)
)
ψh(x, y

+
j )dx

+

∫ x
i+1

2

xi

(
uI(x, yj)− u(x, yj)− vI(x+

h

2
, yj+ 1

2
) + u(x+

h

2
, yj+ 1

2
)
)
ψh(x, y

+
j )dx

]
.

(A.42)

For u(x, y) = xk+1 or yk+1, we only need to estimate ∥vI(x, y) − xk+1 − uI(x − h
2
, y −

h
2
) + (x − h

2
)k+1∥L2((xi,xi+1

2
)×(yj ,yj+1

2
)) and ∥vI(x, y) − yk+1 − uI(x − h

2
, y − h

2
) + (y −

h
2
)k+1∥L2((xi,xi+1

2
)×(yj ,yj+1

2
)) as the other cases are similar.

For k = 0, 1..., 8, by using the definition of the projection and the property that

∥ai,j − ai+ 1
2
,j+ 1

2
∥L∞(Ki,j) = O(h), ∥bi,j − bi+ 1

2
,j+ 1

2
∥L∞(Ki,j) = O(h) we have the following

results:

1) u = xk+1, by the definition of the projection (for k = 0 we only have the first

equation in the definition),∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

uIdxdy =

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

xk+1dxdy,

P̃h(uI ;x
myn; f, g, u)i,j =P̃h(x

k+1;xmyn; f, g, u)i,j, m, n = 0, ..., k,∫ xi+1

xi

∫ yj+1

yj

vIdxdy =

∫ xi+1

xi

∫ yj+1

yj

xk+1dxdy,

Q̃h(vI ;x
myn; f, g, u)i+ 1

2
,j+ 1

2
=Q̃h(x

k+1;xmyn; f, g, u)i+ 1
2
,j+ 1

2
, m, n = 0, ..., k,

(A.43)

then we have

uI =
k∑

m=0

k∑
n=0

αm,nx
myn, ∀(x, y) ∈ Ki,j, (A.44)
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vI =
k∑

m=0

k∑
n=0

βm,nx
myn, ∀(x, y) ∈ Ki+ 1

2
,j+ 1

2
. (A.45)

Here αm,n and βm,n are the coefficients obtained by solving the local linear system

(A.43). We leave the detailed calculations and formulas for k up to 8 in a separate

file, as a supplement to this paper, since they are too lengthy. We then have, for

k = 0, 1., , , 8, that∫ x
i+1

2

xi

∫ y
j+1

2

yj

(vI(x, y)− xk+1 − uI(x−
h

2
, y − h

2
) + (x− h

2
)k+1)2dxdy = O(h2k+6).

(A.46)

2) u = yk+1, by the definition of the projection (for k = 0 we only have the first

equation in the definition),∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

uIdxdy =

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

yk+1dxdy,

P̃h(uI ;x
myn; f, g, u)i,j =P̃h(x

k+1;xmyn; f, g, u)i,j, m, n = 0, ..., k,∫ xi+1

xi

∫ yj+1

yj

vIdxdy =

∫ xi+1

xi

∫ yj+1

yj

yk+1dxdy,

Q̃h(vI ;x
myn; f, g, u)i+ 1

2
,j+ 1

2
=Q̃h(y

k+1;xmyn; f, g, u)i+ 1
2
,j+ 1

2
, m, n = 0, ..., k,

(A.47)

then we have

uI =
k∑

m=0

k∑
n=0

αm,nx
myn, ∀(x, y) ∈ Ki,j, (A.48)

vI =
k∑

m=0

k∑
n=0

βm,nx
myn, ∀(x, y) ∈ Ki+ 1

2
,j+ 1

2
. (A.49)

Here αm,n, βm,n are the coefficients obtained by solving the local linear system

(A.47). We do not give detailed calculations here since for u = yk+1 in two-

dimensional case the formulas are symmetric to those of u = xk+1 by switching x

and y (i and j). Hence, by some calculation we have∫ x
i+1

2

xi

∫ y
j+1

2

yj

(vI(x, y)− yk+1 − uI(x−
h

2
, y − h

2
) + (y − h

2
)k+1)2dxdy = O(h2k+6).

(A.50)
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Hence, for k = 0, 1., , , 8 we have proved that

∥vI(x, y)− xk+1 − uI(x−
h

2
, y − h

2
) + (x− h

2
)k+1∥2L2((xi,xi+1

2
)×(yj ,yj+1

2
)) ≤ Ch2k+6,

(A.51)

∥vI(x, y)− yk+1 − uI(x−
h

2
, y − h

2
) + (y − h

2
)k+1∥2L2((xi,xi+1

2
)×(yj ,yj+1

2
)) ≤ Ch2k+6.

(A.52)

Then by using Holder’s inequality and Young’s inequality, we obtain from (A.41)

|B̃i,j(uI , vI ;φh; f, g, u)− B̃i,j(u, u;φh; f, g, u)| ≤ Ch2k+4 + C∥φh∥2L2(Ki,j)
. (A.53)

Similarly, for B̂i+ 1
2
,j+ 1

2
we have

|B̂i+ 1
2
,j+ 1

2
(uI , vI ;ψh; f, g, u)− B̂i+ 1

2
,j+ 1

2
(u, u;ψh; f, g, u)| ≤ Ch2k+4 + C∥ψh∥2L2(K

i+1
2 ,j+1

2
).

(A.54)
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