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Abstract

We propose a high order positivity-preserving conservative remapping method on three-

dimensional (3D) tetrahedral meshes, based on the weighted essentially non-oscillatory (WENO)

reconstruction method. By precisely computing the overlaps between the meshes before and

after the rezoning step in the arbitrary Lagrangian-Eulerian (ALE) framework, our method

does not limit the range of mesh movements and has wider applications. This also makes

our remapping process simpler to attain high-order accuracy. We use the third order multi-

resolution WENO reconstruction procedure in this paper as an example, in which we recon-

struct three polynomials of different orders via nested central spatial stencils and distribute

nonlinear weights based on the smoothness of the polynomials, ensuring optimal accuracy

in the smooth region while avoiding numerical oscillations in the non-smooth region. The

multi-resolution WENO procedure involves fewer high-order reconstruction polynomials and

can use arbitrary positive linear weights, making it more effective for our 3D remapping

problem. We incorporate an efficient local limiting to preserve positivity for the positive

physical variables involved in the ALE framework without sacrificing the original high-order

accuracy and conservation. A set of numerical tests are provided to verify properties of our

remapping algorithm, such as high-order accuracy, conservation, essentially non-oscillatory

performance, positivity-preserving and efficiency.
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1 Introduction

The arbitrary Lagrangian-Eulerian (ALE) framework, which combines the benefits of two

fundamental strategies in computational fluid dynamics, namely the Lagrangian framework

and the Eulerian framework, has a wide range of applications in numerical simulation of

fluid flow. The evolution of the indirect ALE method consists of three steps: the Lagrangian

step for solving the fluid equations, which involves mesh movements with the fluid flow, the

rezoning step, which may be carried out after one or several time steps, for improving the

mesh quality, and the remapping step for transferring physical variables to the rezoned mesh.

In this paper, we focus on the three-dimensional remapping algorithm in the indirect ALE

method. After the Lagrangian process, we have the physical variables on the old deformed

mesh. The rezoning step provides a new high-quality mesh, and the remapping process has

to transfer the physical variables from the old mesh to the new mesh. The mesh rezoning

and the subsequent remapping steps are complementary to the Lagrangian step, without

which the mesh may be seriously distorted, making the computation difficult to proceed. A

suitable remapping algorithm should be consistent in accuracy with the Lagrangian step. In

particular, the remapping method for the ALE framework should introduce as little error as

possible and adhere to physical properties of the fluid flow variables, such as conservation

and positivity. In practice, this procedure should be efficient, to economically cope with any

mesh movements.

The flux-based method and the intersection-based method are two widely employed types

of remapping algorithms. The flux-based method attempts to determine the exchanges

between the old and new mesh cells, which can also be described as a transport equation [6,

16], which transfers the numerical variables from the old mesh to the new mesh conservatively.

The advantage of the flux-based method is its simplicity: only a transport equation needs to

be solved, for which one can use standard numerical methods. The disadvantage of the flux-

based method is that it would require mesh connectivity from the old mesh to the new mesh,

which must have the same number of mesh cells with the same connection topology. Also,
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if the new mesh changes significantly from the old mesh, or if the change is not smooth, the

flux-based method is difficult to implement, may run slowly, and may be difficult to achieve

high order accuracy.

Another commonly used remapping algorithm, the intersection-based method, attempts

to determine the exact overlaps between the new and old meshes, and integrate the re-

construction polynomials on these overlaps to acquire information on the new mesh. This

remapping technique has no requirement on the range of changes from the old mesh to the

new mesh. The new mesh could have different number of cells and different connection

topology from the old mesh, making the remapping procedure more flexible and easier to at-

tain high-order accuracy. However, finding overlaps between the old and new mesh cells is a

complicated procedure, making the code much more laborious than the flux-based technique,

especially for the complicated mesh cells in three dimension (3D). Besides that, due to the

cost of the clipping algorithm, the intersection-based method could be more expensive than

the flux-based method, especially if the new mesh is only a small and smooth movement

from the old one. The authors in [14, 11, 12] have examined the benefits and drawbacks

of these two strategies, while dealing with the two-dimensional multi-material remapping

problems with small mesh movements. The advocated procedure is to use the fast and easy

flux-based technique for the cells with only one material, while for the cells with complicated

multi-material situation, the intuitive but expensive intersection-based method is adopted.

In the Lagrangian framework, the mesh nodes move with the fluid flow, which may not

be smooth. Especially, if one decides to perform the rezoning and remapping after many

time steps, or only when the mesh quality becomes too poor, the change from the old mesh

to the new mesh can be very large and non-smooth. It may even happen that the number

of cells and the cell connectivity are different from the old mesh to the new mesh, such

as during local refinement or coarsening of meshes in adaptivity. In such situations, the

intersection-based remapping method shows a significant advantage. By clipping the exact

intersections between the old and new mesh cells, the intersection-based remapping method
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has no limit on the mesh movements and other changes.

To obtain a high-order accurate ALE method, the accuracy of the remapping algorithm

must be at least as high as that of the Lagrangian step. A high-order intersection-based

remapping approach depends on a high-order reconstruction method. However, high-order

reconstruction polynomials may produce numerical oscillations around discontinuities or

large gradient regions, which should be addressed. In the meantime, widely used in the

computational fluid dynamics, the ALE framework involves some physical variables with

special physical properties, such as the conservation of mass, momentum, total energy as

well as the positivity of density and internal energy. As a result, the remapping algorithm

should obey these physical properties.

After years of development, there are currently lots of work about two-dimensional

and three-dimensional remapping algorithms, and most of the three-dimensional methods

are developed from the lower dimensional cases. Grandy developed a first-order accu-

rate intersection-based remapping algorithm for polyhedral meshes [8]. After that, a few

high-order accurate remapping methods have been proposed [4, 16, 15], based on the high-

order essentially non-oscillatory (ENO) reconstruction or on solving the transport equation

over curvilinear polyhedral meshes. Besides the high-order accuracy, there are some three-

dimensional remapping algorithms focused on the bound preserving property for certain

positive physical variables in the simulation of fluid flow. With the flux corrected transport

approach [1] or the Barth-Jespersen method [7, 3, 5, 2], all of them are firstly designed in the

two-dimensional case [2, 13, 18]. Based on the assumption that low-order methods guarantee

bound preservation but high-order methods produce out-of-bounds solutions, these bound

preservation methods typically substitute the high-order method near the extrema which are

near the bounds by a low order method, and could lead to the loss of accuracy. However,

there has been seldom discussion on designing a bound preservation remapping method with

more than second-order accuracy.

In this paper, we would like to design a high-order accurate, essentially non-oscillatory
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intersection-based remapping algorithm on three-dimensional tetrahedral meshes, following

our previous work on the two-dimensional quadrilateral meshes [15]. We also would like

to preserve physical properties such as conservation and positivity without losing the high-

order accuracy. We adopt an exact clipping approach to calculate the intersections after first

reconstructing high-order polynomials on the existing meshes with the known information

such as the cell averages. After that, to retain positivity for the physical positive variables,

we will apply a local positivity-preserving limiter and compute the new information by

integrating the modified polynomials over the intersections.

As mentioned above, a high-order reconstruction method is necessary for a high-order

remapping algorithm. The weighted essentially non-oscillatory (WENO) [17, 9] idea used

in solving hyperbolic equations can achieve high-order accuracy in smooth regions and can

avoid numerical oscillations in non-smooth regions. It defines smoothness indicators to mea-

sure the smoothness of the reconstruction polynomials on different stencils and assign smaller

weights for the reconstruction polynomials that may cause numerical oscillations. More re-

cently, Zhu and Shu [22] have designed the multi-resolution WENO method, which is more

effective especially on unstructured meshes or moving meshes, due to the allowance of arbi-

trary positive linear weights and simpler central stencil combinations. Based on these high-

order non-oscillatory reconstruction methods, the two-dimensional remapping algorithm can

achieve high-order accuracy [4, 15], and we extend it to the three-dimensional remapping

problem in this paper.

Generally, it is not difficult to preserve positivity for first-order remapping methods, but

it is more difficult to keep high-order accuracy while preserving positivity. The positivity-

preserving limiter of Zhang and Shu [20, 21] is a good attempt to tackle this problem, and it

has been validated in the 2D remapping procedure [15]. By compressing out-of-bounds point

values toward the cell average at specific quadrature points, this limiter, originally designed

to solve compressible Euler equations, can preserve positivity of the physical variables such

as density and internal energy without sacrificing the high-order accuracy and conservation.
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Meanwhile, this positivity-preserving limiter is simple to implement, requiring only a few

lines in the code.

In this paper, we will focus on the three-dimensional remapping method, which is or-

ganized as follows. Section 2 presents our three-dimensional intersection-based remapping

algorithm in detail. In the beginning, we describe the architecture of our remapping method,

which is divided into four parts. With the multi-resolution WENO idea, we reconstruct

high-order, non-oscillatory polynomials, and then compute the intersections of the new and

old tetrahedral cells. After that, we apply a positivity-preserving limiter on modifying the

high-order polynomials for the positive physical variables, and finally we integrate the recon-

struction polynomials across the overlaps to obtain the new cell averages. Several numerical

experiments in Section 3 are given to verify the properties of our algorithm, including tests

for accuracy, non-oscillatory performance, dissipation effects, positivity-preserving, with a

cost analysis. Concluding remarks are given in Section 4.

2 The remapping algorithm

2.1 Basic concepts

In this section, we will describe our three-dimensional remapping algorithm step by step in

detail. After the Lagrangian process and the rezoning process, in the ALE framework, a

remapping algorithm is needed to convert variables from the old mesh to the new mesh.

Suppose the three-dimensional computational domain Ω is a connected domain decom-

posed into tetrahedral cells {Ii}
N
i=1. We use the notation |Ii| to represent the volume of cell

Ii and {Ĩi}
Ñ
i=1 to represent the new rezoned mesh cells. Obviously, we require that there are

neither overlaps nor gaps between any two neighboring cells

N⋃

i=1

Ii =

Ñ⋃

i=1

Ĩi = Ω,
∣∣∣Ii

⋂
Ij

∣∣∣ = 0,
∣∣∣Ĩi

⋂
Ĩj

∣∣∣ = 0, i 6= j,

and this rule will not be broken by the new mesh in the rezoning step of a typical indirect

ALE method.
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The physical variables in a typical indirect ALE technique for computational fluid dynam-

ics are normally conservative variables, and the remapping algorithm makes no distinction

between these conservative variables. We denote the cell average of a conservative variable

(such as mass (density), momentum, or total energy) as ūi. The ALE framework’s conserva-

tive remapping procedure requires us to transfer the cell average ūi from the old mesh {Ii}
N
i=1

created after the Lagrangian step to the new mesh {Ĩi}
Ñ
i=1 updated by the rezoning step in a

conservative, accurate and non-oscillatory manner. In order to achieve high-order accuracy

in the ALE approach, the remapping phase requires a high-order reconstruction method.

When high-order reconstruction polynomials are included, more emphasis should be placed

on keeping the solution non-oscillatory, particularly in numerical simulations with nonlinear

conservation laws. Besides conservation, high-order accuracy and non-oscillatory perfor-

mance, the remapping method should maintain positivity (non-negativity) for non-negative

physical quantities such as density and internal energy.

We extend the two-dimensional remapping approach proposed in [15] to three-dimensional

tetrahedral meshes in this paper. Reconstructing high-order polynomials {ui(x, y, z)}Ni=1 on

the old meshes {Ii}
N
i=1, and calculating the new cell averages {¯̃ui}

Ñ
i=1 on the new meshes

{Ĩi}
Ñ
i=1 by integrating over the intersections between the old and new meshes, are the main

components of the remapping procedure. Meanwhile, to avoid numerical oscillations and

negative values for physically positive quantities, the WENO procedure and a positivity-

preserving limiter are used. Hence, we break the description of the remapping algorithm

into several parts:

• High-order reconstruction: reconstruct high-order polynomial ui(x, y, z) in each cell Ii

with the multi-resolution WENO method;

• Clipping: utilize the clipping algorithm in [19] to compute the intersection Ii
⋂

Ĩj;

• Positivity-preserving modification: modify the reconstruction polynomials by the positivity-

preserving limiter in [20, 21] to maintain positivity for the physically positive variables
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such as density and internal energy;

• Numerical integration: calculate exactly (module round-off error) the integration of

the modified polynomials over the intersections.

Next, we will describe our remapping algorithm step by step.

2.2 High-order reconstruction

It is not difficult to reconstruct high-order polynomials based on the cell averages, but how to

avoid numerical oscillation effectively deserves more attention. The WENO idea widely used

in finite volume and finite difference methods is a good attempt to overcome this difficulty.

In recent years, Zhu and Shu have proposed a finite volume multi-resolution WENO scheme

for solving hyperbolic conservation laws [22]. By reconstructing unequal degree polynomials

on several unequal-sized central stencils with the WENO idea, this new type of WENO

reconstruction is simpler and more effective, especially on unstructured meshes and moving

meshes, and they inherit the advantages of the classical WENO reconstructions.

Here we try to perform the multi-resolution WENO reconstruction procedure on the cell

Ii. Following the reconstruction step in [22], we reconstruct a zeroth degree polynomial

qi1(x, y, z) on the spatial stencil T i
1 = {Ii} and a first degree polynomial qi2(x, y, z) on the

spatial stencil T i
2 = {Ii, Ii1, Ii2, Ii3, Ii4}, where Iij, j = 1, 2, 3, 4 are the four neighbors of the

cell Ii. For the second degree polynomial qi3(x, y, z), we select a central spatial stencil T i
3

which includes the cell Ii, its four neighbors Ii1, Ii2, Ii3, Ii4, and the neighboring cells of these

four neighbors

T i
3 = {Ii, Ii1, Ii2, Ii3, Ii4, Ii11, Ii12, Ii13, Ii21, Ii22, Ii23, Ii31, Ii32, Ii33, Ii41, Ii42, Ii43},

where Iijk, k = 1, 2, 3 are the three neighbors of the cell Iij other than the central cell Ii for

j = 1, 2, 3, 4. Notice that some of these neighbors’ neighboring cells might be the same. In

Figure 2.1, we give an example of these nested central spatial stencils.
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Figure 2.1: Nested central spatial stencils. Left: spatial stencil T i
1 with dark gray color and

transparent spatial stencil T i
2; Right: spatial stencil T i

1 with black color, spatial stencil T i
2

with gray color and transparent spatial stencil T i
3.

To keep conservation, the above three polynomials must satisfy

∫

Ii

qil(x, y, z)dxdydz = ūi|Ii|, l = 1, 2, 3,

where we recall that |Ii| is the volume of the cell Ii. It is easy to reconstruct the zeroth

degree polynomial qi1(x, y, z), but we need a constraint least-square procedure to determine

qi2(x, y, z) and qi3(x, y, z),

qi2(x, y, z) = arg min
p2(x,y,z)∈P1

∑
Il∈T

i
2
\Ii

(∫
Il
p2(x, y, z)dxdydz − |Il|ūl

)2

,

qi3(x, y, z) = arg min
p3(x,y,z)∈P2

∑
Il∈T

i
3
\Ii

(∫
Il
p3(x, y, z)dxdydz − |Il|ūl

)2

,

s.t.
∫
Ii
qi2(x, y, z)dxdydz =

∫
Ii
qi3(x, y, z)dxdydz = ūi|Ii|,

(2.1)

where p2(x, y, z) and p3(x, y, z) are taken from P1 and P2, respectively. Here, Pm is the

space of polynomials of degree less than or equal to m for m = 1, 2. Furthermore, we can

extend our reconstruction method to higher-order by adding the next layer of neighboring

cells around the central spatial stencil T i
3, etc., and reconstructing higher-order polynomials.

Next, we introduce positive linear weights and equivalent expressions for qi1(x, y, z),

qi2(x, y, z), q
i
3(x, y, z),

pi1(x, y, z) = qi1(x, y, z)
pi2(x, y, z) = 1

γ2,2
qi2(x, y, z)−

γ1,2
γ2,2

pi1(x, y, z)

pi3(x, y, z) = 1
γ3,3

qi3(x, y, z)−
γ1,3
γ3,3

pi1(x, y, z)−
γ2,3
γ3,3

pi2(x, y, z)
(2.2)
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where
∑k

l=1 γl,k = 1, γk,k 6= 0, k = 2, 3 are the linear weights. Following [22], we assume

γl,k =
γ̄l,k

∑k
l=1

γ̄l,k
, where γ̄l,k = 10l, l = 1, · · · , k. Actually, different values of γ̄l,k have modestly

different results in the numerical tests of [22]. By combing pil(x, y, z), l = 1, 2, 3 with the

linear weights γl,3, l = 1, 2, 3, one can achieve optimal accuracy on the biggest stencil T i
3,

γ1,3p
i
1(x, y, z) + γ2,3p

i
2(x, y, z) + γ3,3p

i
3(x, y, z) = qi3(x, y, z).

In smooth regions, one can get optimal accuracy by combing pil(x, y, z), l = 1, 2, 3 with the

linear weights, but in non-smooth regions, the WENO idea should be adopted to avoid

numerical oscillations.

In non-smooth regions, the high-order reconstruction polynomials may generate numer-

ical oscillations, so we use the smoothness indicators β2 and β3 to measure the smoothness

of pi2(x, y, z) and pi3(x, y, z), respectively. Following the practice in [9, 22], we define the

smoothness indicators as

β2 =

1∑

|l|=1

|Ii|
2|l|
3

−1

∫

Ii

(
∂|l|

∂xl1∂yl2∂zl3
pi2(x, y, z)

)2

dxdydz, (2.3)

β3 =

2∑

|l|=1

|Ii|
2|l|
3

−1

∫

Ii

(
∂|l|

∂xl1∂yl2∂zl3
pi3(x, y, z)

)2

dxdydz, (2.4)

where l = (l1, l2, l3), |l| = l1+l2+l3, l1, l2, l3 ≥ 0. If the high-order polynomials are not smooth

enough, the smoothness indicators will be large and we will distribute smaller nonlinear

weights to them to avoid numerical oscillations.

The determination of β1 is more special. It would be equal to zero if β1 is calculated in

the same way as those for β2 and β3. In smooth regions, the adoption of β1 = 0 would have

no effect on the optimal high order accuracy. However, in non-smooth regions, β1 = 0 would

cause the zero-order polynomial pi1(x, y, z) to take too large weight, leading to excessive

numerical smearing. Therefore, we would like to slightly magnify β1. We select four new

stencils T i
1,l = {Iil1, Iil2, Iil3}, l = 1, 2, 3, 4, and construct four linear polynomials pi1,l(x, y, z) ∈

span{x−xil

|Iil|
1
3

, y−yil

|Iil|
1
3

, z−zil

|Iil|
1
3

} satisfying pi1,l(xilk, yilk, zilk) = ūilk−ūil, l = 1, 2, 3, 4, k = 1, 2, 3, where

ūilk and (xilk, yilk, zilk) are the cell average and the barycenter of Iilk ∈ T i
3. Using the WENO
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idea to combine these four polynomials, we set λ1,l =
1
4
and

σℓ = λ1,ℓ


1 +

(
|β1,1−β1,2|+|β1,1−β1,3|+|β1,1−β1,4|+|β1,2−β1,3|+|β1,2−β1,4|+|β1,3−β1,4|

6

)2

β1,ℓ + ε


 , ε = 10−6,

for l = 1, 2, 3, 4, where β1,l are the associated smoothness indicators of pi1,l(x, y, z) calculated

by (2.3). Then β1 is defined as

β1 =

1∑

|l|=1

|Ii|
2

3
|l|

(
∂|l|

∂xl1∂yl2∂zl3

(
4∑

ℓ=1

σℓ

σ
pi1,ℓ(x, y, z)

))2

(2.5)

where σ =
∑4

l=1 σl.

Based on the linear weights γl,3 and the smoothness indicators βl, we introduce the

nonlinear weights ωl as

ωl =
ω̃l∑3
l=1 ω̃l

, ω̃l = γl,3

(
1 +

τ3

ε+ βl

)
, τ3 =

(
|β3 − β1|+ |β3 − β2|

2

)2

. (2.6)

Here ε is chosen as 10−6 to avoid zero in the denominator.

Finally, we get the reconstruction polynomial over the cell Ii

ui(x, y, z) =
3∑

l=1

ωlp
i
l(x, y, z). (2.7)

2.3 Clipping

The primary principle of the intersection-based remapping algorithm is to determine precisely

the intersections between the new and old meshes. The cost of computing intersections

is rather high when compared to the flux-based remapping algorithm, which is the main

drawback of the intersection-based remapping method. However, it has almost no restrictions

on the relationship between the old and new meshes, and it is easier to achieve high-order

accuracy since the integration error on the intersections obtained by an exact clipping method

is close to the machine zero. Because of the aforementioned benefits, the intersection-based

remapping method is more flexible in the ALE framework.
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In this subsection, we will show how to use the clipping approach in our remapping

process. Powell and Abel [19] proposed an exact clipping algorithm for clipping any two

convex polyhedrons and we will adopt this exact clipping algorithm in this paper. Assume we

have a new tetrahedral cell Ĩj named ‘target cell’ and an old tetrahedral cell Ii named ‘window

cell’. Calculating the intersection of the target cell and the window cell is what we need to

perform. The fundamental component of the clipping technique for the 3D tetrahedral

meshes is identical to that of the clipping technique adopted in the 2D quadrilateral meshes

[4, 15]. Both specify the window cell’s visible and invisible sides, then clip the target cell

using each face of the window cell in turn. Now we will go over the flow chart for clipping

the target tetrahedral cell Ĩj with one of the window cell’s plane face P . Notice that the

barycenter of the window cell Wc must be in the visible side of the plane face P , so the

points which have the same signs of the directional distance with the barycenter Wc are in

the visible side, otherwise, they are in the invisible side.

1. We calculate the directional distance dl between the plane face P and each vertex

ṽl, l = 1, 2, 3, 4 of the target tetrahedral cell Ĩj. After that, we calculate the directional

distance dc between the plane face P and the barycenter of the window cell Wc.

2. If the signs of the directional distance at both ends of an edge are different, which

indicates that they are on the different sides of the plane face P , we put them in

the list of the visible points and the list of the invisible points, respectively. Then

we calculate the crosspoint ṽ0 between that edge and the plane face P , and put the

crosspoint ṽ0 to the list of the visible points.

3. Once a new point ṽ0 is added, we will connect ṽ0 with the other points in the list of

the visible points.

4. We remove all the points in the list of the invisible points.

5. Finally, we get a new polyhedron within the visible side of the plane face P .
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By performing the above processes in turn for each plane face of the window cell Ii, we will

find the intersection polyhedron of the target cell Ĩj and the window cell Ii.

In the schematic Figure 2.2, we mark the target cell in blue and the window cell in green.

For each iteration, we utilize one face in the window cell to cut against the target cell and

gain a new visible polyhedron marked in red with the common face marked in black, which

will act as the new target cell in the next iteration.

(a) (b)

(c) (d)

Figure 2.2: The clipping procedure. The blue polyhedron is the target cell, the green poly-
hedron is the window cell, the red polyhedron is the clipping result and the black face is the
common face.

The error of the clipping method is close to machine zero and is unaffected by the mesh

size or other mesh qualities. Therefore our intersection-based remapping process is simpler

to achieve high-order precision, particularly when the mesh is extensively deformed.
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2.4 Numerical integration

After the high-order reconstruction step and the clipping step, we only need to calculate

the new cell averages ¯̃uj on the new cell Ĩj by integrating the reconstruction polynomials

ui(x, y, z) over the intersections Ĩj
⋂
Ii for i = 1, · · · , N ,

¯̃uj =
1

|Ĩj|

N∑

i=1

∫

Ĩj
⋂

Ii

ui(x, y, z)dxdydz. (2.8)

The intersection Ĩj
⋂

Ii of any two tetrahedral cells may have a complicated shape, which

makes the numerical integration difficult to compute. Actually, by linking the barycenter

with the vertices of the intersection, we divide the intersection into a few tetrahedrons and

integrate ui(x, y, z) on each of these tetrahedrons. The above solution only works for convex

polyhedrons, for non-convex polyhedrons, care must be taken to divide them into several

tetrahedrons by connecting the vertices. In practice, we have designed a loop, and each

time we cut off one piece of the tetrahedral by connecting the vertices from the non-convex

polyhedron until we end up with a tetrahedral.

We will then perform a numerical integration on the tetrahedral T , which is required to

be exact for polynomials of degree 2 in our third order remapping method,

∫

T

ui(x, y, z)dxdydz =
|T |

6

L∑

l=1

ωlu
i(xl, yl, zl), ωl ≥ 0, (2.9)

where we take the L = 4 quadrature points proposed in [10]. Suppose P1, P2, P3, P4 are the

vertices of the tetrahedron T , then the four quadrature points have the following coordinates

(x1, y1, z1) = 0.5854101966249685× P1 + 0.1381966011250105× (P2 + P3 + P4),
(x2, y2, z2) = 0.5854101966249685× P2 + 0.1381966011250105× (P1 + P3 + P4),
(x3, y3, z3) = 0.5854101966249685× P3 + 0.1381966011250105× (P1 + P2 + P4),
(x4, y4, z4) = 0.5854101966249685× P4 + 0.1381966011250105× (P1 + P2 + P3),

and the weights are ω1 = ω2 = ω3 = ω4 = 0.25. In Figure 2.3, we show the quadrature

points in the tetrahedral with the red color. When using this high-order quadrature rule,

the integration error can be ignored because the degree of the reconstruction polynomials

is at most 2. The remapping method without the positivity-preserving modification phase
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Figure 2.3: Schematic figure of the quadrature rule. The red points are the quadrature
points.

has now been completed, and we will refer to it as the ‘WENO-Remap’ algorithm in the

following.

We can easily prove that the WENO-Remap algorithm is conservative, module the round-

off error in the clipping step and the numerical integration which is mathematically exact

for our reconstruction polynomials,
∑N

i=1 ūi|Ii| =
∑N

i=1

∫
Ii
ui(x, y, z)dxdydz

=
∑N

i=1

∑Ñ

j=1

∫
Ii

⋂
Ĩj
ui(x, y, z)dxdydz

=
∑Ñ

j=1

∑N

i=1

∫
Ii

⋂
Ĩj
ui(x, y, z)dxdydz

=
∑Ñ

j=1
¯̃uj|Ĩj |.

(2.10)

2.5 Positivity-preserving modification

After the reconstruction step, we obtain the high-order polynomials ui(x, y, z) satisfying
∫
Ii
ui(x, y, z)dxdydz = ūi|Ii|. However, when the cells are close to the local extrema and near

zero, these high-order polynomials may generate negative cell averages on the new mesh,

which might violate physical principles. As a result, the above WENO-Remap technique
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requires a positivity-preserving modification step for the physically positive variables, which

should maintain both positivity and the original high order accuracy in smooth regions.

To modify the high-order polynomials ui(x, y, z) without violating conservation and high-

order accuracy, a positivity-preserving limiter is required [15, 20, 21]. The core concept of

this limiter is to compress the reconstruction polynomial ui(x, y, z) toward its non-negative

cell average ūi ≥ 0 until the polynomial’s minimum across the cell Ii is greater than ε,

ũi(x, y, z) = θui(x, y, z) + (1− θ)ūi,

θ = min

{
1,

|ūi − ε|

|ūi −m|

}
, m = min

(x,y,z)∈Ii
ui(x, y, z),

(2.11)

where ε is a very small positive constant satisfying ūi ≥ ε. In our numerical tests we take

ε = 10−14. It is proved in [20, 21] that this limiter maintains the original high order accuracy.

One thing to keep in mind is that we can only make this adjustment when the cell averages

are not negative ūi ≥ 0. For example, in the ALE framework, the cell averages calculated by

the Lagrangian step should be non-negative because they are the input of the next remapping

step. If we need to remap continually for several times, the positivity-preserving modification

step should be applied in every remapping step.

As shown in Remark 2.1 of [15], the above modification methods can preserve ũi(z, y, z) ≥

ε for all (x, y, z) ∈ Ii, and these new polynomials are still conservative since

∫

Ii

ũi(x, y, z)dxdydz = θ

∫

Ii

ui(x, y, z)dxdydz + (1− θ)|Ii|ūi

= θ|Ii|ūi + (1− θ)|Ii|ūi

= |Ii|ūi

=

∫

Ii

ui(x, y, z)dxdydz.

In the following numerical experiments, we will verify that this adjustment can keep the

original high-order accuracy.

Finding the minimum of ui(x, y, z) over cell Ii is not practical in reality and the cost may

be prohibitive. The numerical integration is made up of the values of the polynomials at the

quadrature points, according to the quadrature rule (2.9). So, as indicated in [20, 21], we will
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replace the minimum over the whole cell m = min
(x,y,z)∈Ii

ui(x, y, z) by the minimum over such

quadrature points m = min
(xl,yl,zl)∈Ga(Ii)

ui(xl, yl, zl), where Ga(Ii) is the set of the quadrature

points over the cell Ii. Conservation and high order accuracy are still maintained by this

change, as indicated in [15, 20, 21].

By following the flow chart in Subsection 2.1, we have created a third-order accurate

positivity-preserving conservative WENO remapping method. We have presented the nu-

merical integration step after the positivity-preserving modification step in Subsection 2.1,

which is the correct order of the algorithm. However, to save computational cost, we could

also first perform a preliminary numerical integration step, and then perform the positivity-

preserving modification only in those cells of the old mesh which intersect with any new cell

with a negative cell average, followed by a recomputation of the numerical integration over

all affected intersections. In most cases there are only a very small number of cells in the

new mesh which have negative cell averages, thus this alternative procedure may lead to a

significant saving of computational cost.

In the next section we will present several positivity-preserving tests to see if our remap-

ping approach is third-order accurate with or without this modification step. In addition,

discontinuity test, dissipation test and cost analysis will also be shown in the next section.

3 Numerical results

In this section, we will show numerical tests to verify the performance of our remapping

algorithm on tetrahedral meshes. Suppose (xp, yp, zp) is the coordinate of an interior node

of the computational domain Ω, and h = min
Ii∈Ω

hi is the minimum of the diameter hi, where

hi is the circumscribed sphere’s diameter of the tetrahedral Ii. In order to represent the

remapping procedure, we design two different mesh movements to emulate the rezoned mesh

from the ALE method.

17



1. The randomly moving mesh (xp, yp, zp)
t
R,

(xp, yp, zp)
t+1
R = (xp, yp, zp)

0 + cRh(rx, ry, rz)
t.

2. The smoothly moving mesh (xp, yp, zp)
t
S,

xt+1
p,S = x0

p + cSh
max{t,T−t}

T
sin(π

2
x0
p)

yt+1
p,S = y0p + cSh

max{t,T−t}
T

sin(π
2
y0p)

zt+1
p,S = z0p + cSh

max{t,T−t}
T

sin(π
2
z0p).

The superscript t represents the remapping times, for example, we use (xp, yp, zp)
0 to repre-

sent the origin coordinate. rx, ry, rz ∈ [−1, 1] are random numbers with uniform distribution,

t, T are the current remapping times and the total remapping times. In our numerical test,

the constants cR, cS are taken as cR = 0.1, cS = 0.5.

3.1 Accuracy test

First, we verify the high-order accuracy of our remapping algorithm. Suppose the original

cell averages are calculated by the function

u0(x, y, z) = cos2(
π

2
x) cos2(

π

2
y) cos2(

π

2
z), −2 ≤ x, y, z ≤ 2. (3.1)

Initially, the computational domain Ω = [−2, 2] × [−2, 2] × [−2, 2] is equally divided into

small cubes with mesh size d = 4
Nx

, where Nx = Ny = Nz are the number of cells in the

x, y, z directions, then each small cube is divided into six tetrahedrons with the same volume.

After remapping T times on the randomly moving mesh or the smoothly moving mesh, we

require the final mesh to move back to the original mesh in the accuracy tests, to compare

the remapping results.

Figure 3.1 shows the profiles of the randomly moving mesh and the smoothly moving

mesh with 6,000 tetrahedral cells at z = 0, respectively. Figure 3.2 is the three dimensional

view of these meshes without the first layer in the z direction.

The original cell average over Ii is obviously positive ū0
i = 1

|Ii|

∫
Ii
u0(x, y, z)dxdydz > 0,

that means the final remapping results ūT
i should also be positive after being remapped T

times.
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Figure 3.1: Profiles of the mesh at z = 0. Left: the initial mesh; Middle: the randomly
moving mesh; Right: the smoothly moving mesh.

Figure 3.2: Three dimensional view of the tetrahedral meshes without the first layer in the
z direction. Left: the randomly moving mesh; Right: the smoothly moving mesh.
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We compare the performance of our multi-resolution WENO remapping algorithm with

or without the positivity-preserving modification and these two algorithms are denoted as

‘WENO-Remap’ and ‘P-WENO-Remap’ in the following. Table 3.1 shows the L1 and L∞

norms of the remapping error on the randomly moving mesh with T = 10 remapping times,

and Table 3.2 shows the corresponding results on the smoothly moving mesh. We use Errorc

to represent the conservation error

Errorc =
N∑

i=1

|Ii| ·
∣∣ūT

i − ū0
i

∣∣ ,

and use ‘PP’ to represent the percentage of the cells being modified in the positivity-

preserving step.

Table 3.1: Accuracy test: error and order of the WENO-Remap and P-WENO-Remap
algorithms on the randomly moving tetrahedral meshes with T = 10.

WENO-Remap

N L1 error order L∞ error order Errorc PP(%)

750 1.4365E-2 1.3841E-1 2.6645E-14 -
6000 3.6379E-3 1.98 5.2788E-2 1.39 2.8422E-14 -
20250 9.6994E-4 3.26 2.3215E-2 2.03 1.9540E-14 -
48000 3.5056E-4 3.54 9.5046E-3 3.10 1.4566E-13 -

P-WENO-Remap

N L1 error order L∞ error order Errorc PP(%)

750 1.4431E-2 1.3874E-1 1.8652E-14 0.22
6000 3.6377E-3 1.99 5.2787E-2 1.39 1.2434E-14 1.91
20250 1.0084E-3 3.16 2.3215E-2 2.03 2.3981E-14 2.65
48000 4.1878E-4 3.05 9.5046E-3 3.10 2.7001E-13 1.74

From Table 3.1 and Table 3.2, we observe that our multi-resolution WENO remapping

algorithm achieves the designed third-order accuracy on both randomly moving and smoothly

moving meshes, regardless of whether the positivity-preserving modification step is involved.

According to the numerical results, we can see that about 2% of the cells may emerge

negative cell averages during the remapping and there is no significant difference of the

remapping error between the WENO-Remap and the P-WENO-Remap algorithms, that
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Table 3.2: Accuracy test: error and order of the WENO-Remap and P-WENO-Remap
algorithms on the smoothly moving tetrahedral meshes with T = 10.

WENO-Remap

N L1 error order L∞ error order Errorc PP(%)

750 1.0261E-2 5.8618E-2 2.3093E-14 -
6000 2.0097E-3 2.35 1.0261E-2 2.51 4.0856E-14 -
20250 4.5928E-4 3.64 2.8426E-3 3.17 4.2633E-14 -
48000 1.6958E-4 3.46 1.2820E-3 2.77 2.1316E-13 -

P-WENO-Remap

N L1 error order L∞ error order Errorc PP(%)

750 1.0347E-2 5.8640E-1 3.3751E-14 0.22
6000 1.9876E-3 2.38 1.0277E-2 2.51 8,8818E-15 2.07
20250 4.8623E-4 3.47 2.8426E-3 3.17 7.9937E-14 3.05
48000 2.1533E-4 2.83 1.3354E-3 2.63 2.7445E-13 2.08

means our positivity-preserving modification step will not destroy the original high-order

accuracy. The conservation error Errorc in these tables are small enough to be neglected.

To verify that our remapping method has no limits on the mesh movements, where the

flux-based method requires the node movement should not exceed the size of its neighboring

cells, we still divide Ω into small cubes, but we divide unequally in the x direction with mesh

size

dx1 < dx2 < · · · < dxNx
, dxNx

= 2dx1 ,

and Nx = Ny = Nz are the number of cells in each direction. Then, we design a flipping

mesh with mesh size

d̃x1 = dxNx
, · · · , d̃xNx

= dx1.

The y and z directions are still divided equally dy = d̃y = 4
Ny

, dz = d̃z = 4
Nz

. Figure 3.3

shows the profiles of these two meshes with 6,000 tetrahedral cells at z = 0. This time, we

remap from the initial mesh to the flipping mesh and return to the initial mesh for T times.

Table 3.3 shows the remapping results for the WENO-Remap algorithm and the P-

WENO-Remap algorithm. Both of them are conservative and third-order accurate.

Above all, the accuracy tests verify that our positivity-preserving multi-resolution WENO
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Figure 3.3: Profiles of the mesh at z = 0. Left: the initial mesh; Right: the flipping mesh in
the x direction.

Table 3.3: Accuracy test: error and order of the WENO-Remap and P-WENO-Remap
algorithms on the flipping tetrahedral meshes with T = 10.

WENO-Remap

N L1 error order L∞ error order Errorc PP(%)

750 3.9356E-02 2.5904E-01 5.3291E-15 -
6000 1.2791E-02 1.62 1.2652E-01 1.03 2.0428E-14 -
20250 3.5085E-03 3.19 4.9805E-02 2.30 2.7534E-14 -
48000 1.2536E-03 3.58 2.0021E-02 3.17 2.3981E-14 -

P-WENO-Remap

N L1 error order L∞ error order Errorc PP(%)

750 3.9433E-02 2.5902E-01 8.8818E-15 1.60
6000 1.3133E-02 1.59 1.2642E-01 1.03 2.0428E-14 4.33
20250 4.1491E-03 2.84 4.9695E-02 2.30 5.6843E-14 4.40
48000 1.5617E-03 3.40 2.1620E-02 2.89 2.1316E-14 2.59
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remapping algorithm P-WENO-Remap is third-order accurate, positivity-preserving and

conservative.

3.2 Discontinuity test

In this subsection, we test a function with discontinuity which is typical for the numerical

simulation of hyperbolic equations. Inspired by [16], we put a ball and a cube in the compu-

tational domain Ω = [−2, 2]× [−2, 2]× [−2, 2]. The center of the ball is (1, 1, 1) with radius

R = 0.75 and the center of the cube is (−1,−1,−1) with the edge size L = 1.5,

u0(x, y, z) =





1 r ≤ 0.75
1 −1.75 ≤ x, y, z ≤ −0.25

10−12 else
, −2 ≤ x, y, z ≤ 2, (3.2)

where r =
√

(x− 1)2 + (y − 1)2 + (z − 1)2. In this test, we use the same equally divided

tetrahedral meshes as the accuracy test with 48,000 cells and remap on the randomly moving

meshes for 10 times.

In Figure 3.4 and Figure 3.5, the blue cells represent the cell averages with ūi > 0.01

and the red cells represent the negative cell averages with ūi < −10−4. The right subfigure

of Figure 3.4 is based on the third-order reconstruction polynomial qi3(x, y, z), and these

remapping results do not involve the WENO method and the positivity-preserving modifi-

cation. Figure 3.5 shows the remapping results of the third-order WENO-Remap and the

P-WENO-Remap methods.

As one can see, there are fewer red cells in the remapping results of the third-order

WENO-Remap method (left of Figure 3.5), compared with the third-order remapping results

(right of Figure 3.4), because the numerical oscillations produced from the high-order recon-

struction have been largely eliminated by the WENO method. After adding the positivity-

preserving modification phase, there are no negative cell averages in the remapping results

of the P-WENO-Remap method (right of Figure 3.5).
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Figure 3.4: Discontinuity test: we mark the tetrahedral cells in blue with cell averages
ūi > 0.01 and mark the tetrahedral cells in red with cell averages ūi < −10−4. Left: the initial
cell averages; Right: the remapping results of the third-order reconstruction polynomial
qi3(x, y, z).

Figure 3.5: Discontinuity test: we mark the tetrahedral cells in blue with cell averages
ūi > 0.01 and mark the tetrahedral cells in red with cell averages ūi < −10−4. Left:
the third-order WENO-Remap remapping results; Right: the third-order P-WENO-Remap
remapping results.
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3.3 Dissipation test

In this subsection, we compare the first-order reconstruction polynomials qi1(x, y, z), denoted

as ‘P0’ and our third-order P-WENO reconstruction remapping method with the positivity-

preserving modification. To do this, we give an initial function:

u0(x, y, z) = e−αr2, r =
√
x2 + y2 + z2, (3.3)

where the computational domain and the mesh are the same as those in Subsection 3.2

and we remap on the randomly moving meshes for 50 times with 6,000 cells. We take only

10 cells on the cut line y = z = 0 and plot the reconstruction polynomials with constant

α = 0.5. As one can see from Figure 3.6, there are different degrees of dissipation near the

origin after remapping, but the dissipation of the higher-order algorithm noted as ‘P-WENO’

in the figure is obviously smaller than that of the lower-order algorithm noted as ‘P0’. In

the meantime, our remapping algorithm can maintain sharper edge transition, indicating a

smaller numerical dissipation by the high order remapping method.

Figure 3.6: The dissipation test on the function (3.3) by the P0 and P-WENO-Remap
remapping methods, reconstruction polynomials on the cut line y = z = 0.
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3.4 Positivity-preserving tests

In this subsection, we verify our remapping algorithm P-WENO-Remap can preserve pos-

itivity for the physically positive variables such as density or internal energy on different

types of tetrahedral meshes.

First, we design a ‘ball’ function

u0(x, y, z) =

{
1 r ≤ 0.8

10−12 r > 0.8
, r =

√
(x− 1)2 + (y − 1)2 + (z − 1)2, 0 ≤ x, y, z ≤ 2. (3.4)

This time, we use a more general unstructured tetrahedral mesh with 5,800 cells and remap

on the randomly moving meshes for 10 times. Since such a discontinuous ball function is easy

to become negative near the discontinuity during the remapping process, it is necessary to

add the positivity-preserving modification step so that the result after remapping preserves

positivity which is essential in the simulation of computational fluid dynamics.

Figure 3.7 shows the initial cell averages in the three-dimensional view and the two-

dimensional cut planes at x = 0 and y = 0. Figure 3.8 and Figure 3.9 show the remapping

results of the WENO-Remap and the P-WENO-Remap remapping algorithms, respectively.

The white symbols near the discontinuity in Figure 3.8 represent the cells in which the

averages are negative without the positivity-preserving modification. It can be seen that our

P-WENO-Remap algorithm achieves good positivity-preserving property. In the meantime,

our remapping does a good job on maintaining a sharp discontinuity of the ball function

(3.4).

Next, we dig a ball of radius 1.4 centered at (0, 0, 0) in the cube computational domain

[−2, 2]× [−2, 2]× [−2, 2] and design a positive initial function

u0(x, y, z) =

{
10−12 r ≤ 1.8
r r > 1.8

, r =
√
x2 + y2 + z2, −2 ≤ x, y, z ≤ 2. (3.5)

Just as before, we move the interior nodes randomly for 10 times and return to the initial

tetrahedral mesh. We only show the part of the computational domain that is in [0, 2] ×

[0, 2] × [0, 2] and the two-dimensional cut planes at x = 0 and y = 0, in Figure 3.10, 3.11
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Figure 3.7: Positivity-preserving test on the ball function (3.4). Left: the 3D view of the
initial cell averages {ū0

i }
N
i=1; Middle: the 2D cut plane at x = 0; Right: the 2D cut plane at

y = 0.

Figure 3.8: Positivity-preserving test on the ball function (3.4). Left: the 3D view of the cell
averages {ū10

i }Ni=1 after remapping 10 times by the WENO-Remap procedure; Middle: the
2D cut plane at x = 0; Right: the 2D cut plane at y = 0. White symbols represent the cells
where the cell-averages are negative without the positivity-preserving modification.

Figure 3.9: Positivity-preserving test on the ball function (3.4). Left: the 3D view of the
cell averages {ū10

i }Ni=1 after remapping 10 times by the P-WENO-Remap procedure; Middle:
the 2D cut plane at x = 0; Right: the 2D cut plane at y = 0.
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Figure 3.10: Positivity-preserving test on the function (3.5) in [0, 2]× [0, 2]× [0, 2]. Left: the
3D view of the initial cell averages {ū0

i }
N
i=1; Middle: the 2D cut plane at x = 0; Right: the

2D cut plane at y = 0.

Figure 3.11: Positivity-preserving test on the function (3.5) in [0, 2] × [0, 2] × [0, 2]. Left:
the 3D view of the initial cell averages {ū10

i }Ni=1 after remapping 10 times by the WENO-
Remap procedure; Middle: the 2D cut plane at x = 0; Right: the 2D cut plane at y = 0.
White symbols represent the cells where the cell-averages are negative without the positivity-
preserving modification.

and 3.12. Near the discontinuity, there are many negative cell averages marked in white

in Figure 3.11 without the positivity-preserving modification. On the other hand, our P-

WENO-Remap algorithm preserves positivity property well on this special computational

domain.

3.5 Cost analysis

In this subsection, we will compare the costs of the four parts in our remapping algorithm. We

denote the cost of the high-order multi-resolution WENO reconstruction step, the clipping

step, the numerical integration step and the positivity-preserving modification step in the

P-WENO-Remap and the WENO-Remap algorithms as ‘WENO’, ‘Clip’, ‘Int’ and ‘Pos’,
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Figure 3.12: Positivity-preserving test on the function (3.5) in [0, 2]× [0, 2]× [0, 2]. Left: the
3D view of the initial cell averages {ū10

i }Ni=1 after remapping 10 times by the P-WENO-Remap
procedure; Middle: the 2D cut plane at x = 0; Right: the 2D cut plane at y = 0.

respectively. Compared with the P-WENO-Remap algorithm, the WENO-Remap algorithm

consists of the first three steps without the ‘Pos’ step.

Table 3.4 shows the cost of the WENO-Remap, P-WENO-Remap algorithms and their

separate parts with different mesh scales. The second to last column ‘Ratio’ means the ratio

of the total cost of the P-WENO-Remap algorithm and that of the WENO-Remap algorithm.

The meaning of ‘PP’ in the last column has been mentioned in Subsection 3.1. The cost of the

numerical integration step is much less than the other three parts. For a sufficiently refined

mesh, the costs of the ‘Clip’ part and the ‘WENO’ part are roughly equivalent, that means

the cost of the clipping step is not too high towards the total cost. After the introduction

of the positivity-preserving modification step, the cost of the P-WENO-Remap algorithm is

about 5% more than the cost of the WENO-Remap algorithm. Overall, we claim that our

modification step can achieve the positivity-preserving property efficiently.

Table 3.4: The cost of the WENO-Remap, P-WENO-Remap algorithm and their separate
parts.

N WENO Clip Int Pos WENO-Remap P-WENO-Remap Ratio PP(%)

750 6.77E-2 1.67E-1 8.95E-3 5.00E-3 2.44E-1 2.49E-1 1.02 0.22
6000 8.70E-1 2.14E+0 4.68E-2 4.03E-1 3.06E+0 3.46E+0 1.13 2.07
20250 5.58E+0 8.88E+0 2.40E-1 1.09E+0 1.47E+1 1.58E+1 1.07 3.05
48000 2.40E+1 2.46E+1 4.75E-1 2.33E+0 4.91E+1 5.14E+1 1.05 2.08
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4 Concluding remarks

Following our previous work [15], we extend our high order positivity-preserving conserva-

tive WENO remapping technique from 2D quadrilateral meshes to 3D tetrahedral meshes.

In comparison with the flux-based remapping algorithm, our intersection-based remapping

algorithm has a broader application, allowing it to cope with more complicated situations

and is more flexible in the ALE method framework.

We reconstruct three polynomials of distinct orders from three nested central stencils,

and mix them with nonlinear weights impacted by the smoothness of the polynomials using

the multi-resolution WENO reconstruction procedure. All of the values of smoothness in-

dicators are small in smooth regions, causing the nonlinear weights to approach the linear

weights and the final reconstruction polynomial to attain the designed third-order accuracy.

Higher-order polynomials have considerably larger values of smoothness indicators than the

lower-order ones in non-smooth regions, hence the latter plays a role in the final reconstruc-

tion polynomial to avoid numerical oscillations. We obtain the intersections of the new and

old cells by clipping every new mesh cell against all of the old mesh cells, then integrate the

reconstruction polynomials over these intersections exactly by suitable numerical quadra-

tures to produce the required cell averages on the new meshes. This remapping method is

conservative, and can yield third-order results, since the errors of the clipping algorithm and

the quadrature rule can be ignored. Then, to retain the positivity property for the relevant

physical variables such as density and internal energy, which are common when using the

ALE method to solve fluid flow problems, we add a positivity-preserving modification step.

This adjustment is conservative and preserves the origin high order accuracy.

Numerical experiments on three-dimensional tetrahedral meshes show that our remapping

approach is conservative, third-order accurate, non-oscillatory, and positivity-preserving. To

test the accuracy of our remapping approach, we have designed two different mesh move-

ment strategies, and the designed third-order accuracy can be observed with or without the

positivity-preserving modification. Several special functions are designed for the discontinu-
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ity test, dissipation test and positivity-preserving test, to show that our algorithm performs

well in maintaining the sharpness of the discontinuity and positivity. Meanwhile, we compare

the costs of different components of our algorithm, demonstrating that the clipping step is

not overly expensive towards the total cost of the algorithm, and the positivity-preserving

step accounts for only a small percentage of the total cost.

One of the major applications of the remapping algorithm developed in this paper is to

serve for the remapping step of high order conservative positivity-preserving ALE methods.

After solving the hyperbolic PDEs in the Lagrangian method, the mesh nodes move with

the local fluid velocity which may make the mesh tangling or distorted at the shock front or

in large gradient regions, especially for the three-dimensional PDEs. Therefore, a rezoning

step is necessary to improve the mesh quality to complete the calculation and to maintain

the original material interfaces. The new rezoned mesh may change significantly or may

have different connectivity from the old mesh, making the remapping algorithm developed

in this paper particularly suitable, which could faithfully maintain high order accuracy, non-

oscillatory, positive and conservative properties of the original Lagrangian or ALE methods.

To be more specific, in the calculation of a hyperbolic PDEs such as the Euler equation,

assume we have a new rezoned mesh {Ĩj} and the cell averages of the physical variables such

as density ρ̄i, momentum ρ~ui and total energy Ēi, which are defined on the old distorted mesh

{Ii} after the Lagrangian step. We can apply the high order positivity-preserving WENO

remapping method developed in this paper to remap these conservative physical variables

one by one to the new mesh and obtain the new cell averages ¯̃ρj , ρ̃~uj,
¯̃
Ej as described in

Section 2. Positivity can be maintained both for the density and for the internal energy (or

pressure) after remapping. Then we can use these new physical variables on the new mesh

to solve the PDEs again in the next Lagrangian step. During the Lagrangian calculation,

we can apply the rezoning step and the remapping step after several time steps, or whenever

necessary to maintain a high mesh quality. The implementation of our remapping procedure

in a three-dimensional ALE solver constitutes our future work.
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