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• The ILW outflow boundary treatment behave similarly to the far-field strategy
• The domain size can be reduced significantly
• Dimensional flows can be solved with the employed methods
• High-resolution viscous terms discretization and ILW are promising in solving engineering problems
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ABSTRACT
WENO schemes have high-resolution and great capability of capturing unsteady and non-linear phe-
nomena. These phenomena occur in elaborated flows, such as cascade and external aerodynamic flows.
Thus, high-resolution methods play an important role in modern CFD. Easiness and effectiveness
are reached when implementing these methods in rectangular meshes. However, one has the non-
boundary-conforming issue. To overcome it the ILW procedure can be employed. We showed that
the ILW has a similar behavior to the far-field boundary treatment. Then, we proposed and tested
a new ILW outflow boundary treatment and an WENO-type extrapolation. We employed the finite
difference method with the positivity-preserving Lax–Friedrichs splitting, high-resolution viscous
terms discretization, multi-resolution WENO scheme, and third-order strong stability preserving
Runge–Kutta time discretization. We tested the proposed methods in a smooth test case, supersonic
flow past a cylinder, NACA 0012 nitrogen flows with 0 and 12 ◦ angle of attack, and a NACA 9520
cascade airflow. The proposedmethods have high order and resolution, allowed domain size reduction,
and captured unsteady and non-linear phenomena. Although preliminary, the NACA 0012 and 9520
flows showed the methods are promising. Common issues with other methods are also reported and
further improvements are needed. For example, local mesh refinement, high-order wall boundary
treatment, and turbulence modeling.

1. Introduction
High-order and -resolution boundary treatments for CFD

are an active research field. Among them, we focus on
non-boundary-conforming grid methods, i.e., to handle the
cut cell problem [21, 34, 16, 5]. Their advantage is the
use of rectangular meshes, whose structure and generation
are simpler. Furthermore, high-order and -resolution inte-
rior schemes are easily implemented on structured meshes.
Among the non-boundary-conforming grid methods, we
have the Inverse Lax-Wendroff (ILW) procedure. Its recent
foundation started with the works of [26], [27], and [28]
for conservation laws and was expanded to viscous flows in
[15]. Improvements and modifications were made in [16],
[6], and [5]. Several tests were carried on in many different
CFD problems. Still, one can perform a few improvements
and tests, e.g., outflow boundaries and high-magnitude flow
properties.

For the Euler equations, well-established and well-tested
strategies are available. In [20], the authors established the
number and type of boundary conditions for the Navier–
Stokes equations. In [15], the authors separated convective
and diffusive boundary requirements. This elegant strategy
also eases the boundary treatment. Therefore, before fulfill-
ing the boundary requirements, wemust identify its type. For
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example, a common boundary type is a solid wall. Strategies
for the Euler equations and Navier–Stokes are available in
[16], [6], and [5]. Another common type is the outflow
boundary in external flows, which is usually handled with
far-field strategies.

Without proper handling, the outflow boundary condi-
tion can produce an unphysical behavior. This can contami-
nate the whole computational domain or cause the solution
to blow up. For example, in a supersonic external flow
modelled by the Euler equations. If one extrapolates all the
characteristic variables using high-order methods, it may
cause the flow to over-expand and the solution can blow up,
even if the solution at the outflow is supersonic. Marching
from the initial guess to the steady solution can generate
subsonic regions. The subsonic regions will need to cross the
outflow boundary, causing overexpansion. For this purpose,
far-field boundary conditions are a class of popular and
robust strategies [3, 33, 29, 9, 14, 25, 12].

A common building block for far-field strategies is the
Riemann invariants (or variables). They are also found in ex-
act and approximate Riemann solvers. For example, consider
the following Riemann invariants [29, 14, 12]

Ri± = û ± 2a

 − 1

, (1)

where û is the normal velocity to the boundary, a is the speed
of sound, and 
 is the specific heat ratio.

Consider the Riemann problem for the Euler equations.
The Riemann invariants of (1) are constant between rarefac-
tion waves and the star region [30]. That is sufficient for
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testing exact Riemann solvers as a building block. However,
the computational cost may be limiting. The exact Riemann
solver assesses the type and wave direction. Approximate
solvers or the characteristic boundary can also assess them.
The latter is already incorporated in the ILW procedure.

The boundary treatment success also depends on the ex-
trapolation and variable types. For example, [16] and [5] pro-
posed the approximation of conservative variables, fluxes,
and viscous terms. If the problem is nondimensionalized or
one applies a normalization, working with those variables
will not be a problem. However, for dimensional problems
the magnitude of, e.g., pressure will be high. This leads to
a problem when performing one- or two-dimensional ap-
proximations. For the extrapolation, one common drawback
of the WENO-type extrapolation is the dependency of the
non-linear weights on the smaller substencils smoothness
indicators [26, 16].

The objective of this work is to present a strategy for
imposing high-order and -resolution outflow ILW boundary
treatment for the Navier–Stokes equations, suitable for high-
magnitude variables. To do so, we split our effort into two
situations. First, we show the similarities between the exact
Riemann solver and a far-field strategy. Then, we extrapolate
only characteristic variables in the ILW procedure. We also
propose a newWENO-type extrapolation with more generic
non-linear weights. We test the proposed strategies in a
smooth problem, supersonic flow past a cylinder, subsonic
flows past a NACA 0012 airfoil, and a NACA 9520 cas-
cade flow. We construct rectangular meshes and employ
the finite difference method with the positivity-preserving
Lax–Friedrichs splitting [35], high-resolution viscous terms
discretization [5], fifth-order multi-resolution WENO [36],
and the third-order strong stability preserving Runge–Kutta
[23].

2. A comparison between the far-field
boundary condition and the exact Riemann
solver
In this work, we are interested in the Navier–Stokes

equations
U t + F (U )x +G(U )y = S1x + S2y + S(U ), (2)

where

U =

⎡

⎢

⎢

⎢

⎣

�
�u
�v
E

⎤

⎥

⎥

⎥

⎦

, F (U ) =
⎡

⎢

⎢

⎢

⎣

�u
�u2 + p
�uv

u(E + p)

⎤

⎥

⎥

⎥

⎦

, G(U ) =
⎡

⎢

⎢

⎢

⎣

�v
�uv

�v2 + p
v(E + p)

⎤

⎥

⎥

⎥

⎦

, (3)

S1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
�xx
�xy

u�xx + v�xy +
�

P r(
 − 1)
)(a2)
)x

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

S2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
�xy
�yy

u�xy + v�yy +
�

P r(
 − 1)
)(a2)
)y

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (5)

where the source term S(U ) depends on the problem, and �,
u, v, and p are the density, x and y velocities, and pressure.E,
� , and a are the the total energy per unit of volume, viscous
tensor, and speed of sound, given as

E =
p


 − 1
+
�
2
(u2+v2), �xx = �

(

4
3
)u
)x

− 2
3
)v
)y

)

, (6)
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+ )v
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)

, �yy = �
(

4
3
)v
)y
− 2
3
)u
)x

)

, (7)

a =
√


p
�
, (8)

where � and Pr are the absolute viscosity and the Prandtl
number.

For the inviscid flux and viscous term discretization,
time integration, and other details, the reader is referred to
[23], [35], [36], and [5].

Our goal is to solve a similar supersonic flow past a
cylinder as in [5]. For simplicity, we use the lower-order
characteristic boundary condition at the left and upper do-
main boundaries. The average state is U avg = (U near +
U∞)∕2, where near means the nearest point to the boundary
and ∞ means free-stream property. Then, we do a local
characteristic decomposition. That is, we compute the eigen-
values and left and right eigenvectors. For the left boundary,
the inflow is supersonic and we impose all four characteristic
variables:

V ∞ = L(U avg)U∞, (9)

V i,j = V ∞, (10)
where i = −2,… , 0 are the ghost points for a fixed j. Then,
we transform back to the conservative variables

U i,j = R(U avg)V i,j . (11)
We can approximate v ≈ 0, since the oblique shock does

not cross the upper boundary. Therefore,
(Vm)i,j = (Vnear)m, m = 2, 3, 4, (12)

(V1)i,j = (V∞)1, (13)
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Figure 1: Eigenvalues and wall boundary con�guration.

where j = Ny + 1,… , Ny + 3 for a fixed i. Then, we
transform back.

One should notice that we only considered the con-
vective part. This provides a simple lower-order boundary
treatment and we can focus on wall and outflow boundary
treatments. For the solid wall, we use a lower-order fixed
wall boundary treatment based on [5]. That is, we first do
a local characteristic decomposition based on U near. Toimprove readability, we use a simplified notation for the
eigenvectors. Then,

U1 =
(Vnear)1

l11 + l14
RTwall

−1

, (14)

U2 = 0, U3 = 0, U4 =
U1RTwall

 − 1

. (15)

We remark that (14) is valid for the lower boundaries of
Fig. 1a and 1b, and left boundary of Fig. 1b. For the right
boundary,

U1 =
(Vnear)4

l41 + l44
RTwall

−1

. (16)

After updating the conservative variables, we compute
the convective part of the convex combination, V ccc =
LU . This strategy is valid for the convective terms. For the
diffusive terms we also do a local decomposition with U near[5]

V d = LdU near. (17)
Then,

(Ud)1 =
(Vd)1

ld11 + ld14
RTwall

−1

, (18)

(Ud)2 = 0, (Ud)3 = 0, (Ud)4 =
(Ud)1RTwall


 − 1
, (19)

V ccd = LUd . (20)
We combine convective and diffusive contributions through

a convex combination [15]
V = �V ccc + (1 − �)V ccd , (21)

with � = diag(�1, �2, �3, �4), [5, 15]

�r =
br

br + �r
, (22)

br =
(

B2r1 + B
2
r2 + B

2
r3 + B

2
r4
)

Δx2, r = 1, 3, 4, (23)

b2 =
1
3
(

b1 + b3 + b4
)

, (24)

�r = 9(�d)2r , for r = 2, 3, 4, (25)

�1 = 3
[

(�d)22 + (�d)
2
3 + (�d)

2
4
]

, (26)

B = LdF ′(U )Rd =
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(
 − 1) u

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

Then, we have at the boundary
U i,j = RV , (28)

for a fixed i or j.
We described the simplest albeit lower-order wall bound-

ary treatment based on [5]. Regarding that inflow and upper
boundaries are lower order, this wall boundary treatment will
be enough.

For the Navier–Stokes equations, the number of bound-
ary conditions to be imposed depends on the boundary [20].
For an outflow, we shall impose three boundary conditions
for the diffusive terms. For the inviscid terms, the number
of boundary conditions follows the Euler equations strategy.
If the outflow is supersonic, we shall impose no boundary
conditions, which can be easily done with extrapolation.
However, we need more information for a subsonic outflow
and the diffusive terms. This information is usually available
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Figure 2: Mach number color map and contours from 0 to 3 every 0.55 for the cylinder �ow with Δx = 3∕80 and tf = 0.2 s.

through the far-field boundary treatment. We use the non-
reflecting far-field treatment of [14] and [12]

Ri−∞ = u∞−
2


 − 1
a∞, Ri+near = unear−

2

 − 1

anear, (29)

u =
Ri−∞ + Ri

+near
2

, v = vnear + (u − unear), (30)

a =

 − 1
4

(

Ri−∞ + Ri
+
near

)

, (31)

� =
(

�
neara2

pnear

)1∕
−1

, (32)

p =
�a2



. (33)

Then, we compute the conservative variables and use them
at the ghost points for i = Nx + 1,… , Nx + 3 and a fixed j.Now, we change how the primitive variables are obtained
at the boundary. We use the nearest point as the left state,
W L, and use the free-stream data as the right state, W R.Then, we employ Numerica’s exact Riemann solver to com-
pute the intermediary state,W [30].

We show the Mach number color map, contours, and
recirculation for the flow past a cylinder with �x = 3∕80,
tf = 2 s, the far-field, and the exact Riemann solver bound-
ary treatments in Fig. 2. We also show the Mach number
profile at the symmetry line (y = 0) in Fig. 3. Both
boundary treatments show similar behavior. Furthermore,
the characteristic boundary also share similarities with the
exact Riemann solver.

3. The ILW outflow boundary treatment
Inspired by our previous analysis, one could propose

a high-order and -resolution ILW procedure using the ex-
act Riemann solver. However, we do not see it in interior
schemes because of the cost. Several alternatives to the
exact Riemann solver are available, e.g., approximate Rie-
mann solvers. Here, we employ the characteristic boundary
condition, which is a common building block for the ILW
procedure.

Suppose we want to impose the boundary conditions at
the outflow of Fig. 4. We need an average state to perform a
local characteristic decomposition. Following the same idea
as before, we need to assess the eigenvalues signs to correctly
impose the boundary conditions.

Since we have an outflow, there are two possibilities
u− a < 0 and u− a ≥ 0 for convective terms. For u− a < 0,
we shall impose one boundary condition

(Vccc)1 = (V∞)1, (34)
and (Vccc)m for m = 2, 3, 4 are computed with an WENO-
type extrapolation. Otherwise, allV ccc components are com-
puted with an WENO-type extrapolation.

With V ccc one could proceed as in Section 2 and im-
pose lower-order boundary conditions. Here, we take a step
further and propose a high-order and -resolution boundary
treatment. We begin describing a new WENO-type extrap-
olation. Consider the smoothness indicators [26, 28, 10, 16]

�r =
r
∑

l=1
Δx2l−1 ∫

b

a

(

dl

dxl
q(x)

)2
dx r = 1,… , 4. (35)

The smoothness indicator for WENO-type extrapola-
tions is not computed for the smaller stencil, r = 0, since
it is a constant approximation. Usually, it depends on mesh
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Figure 3: Mach number pro�le at the symmetry line for the cylinder �ow with Δx = 3∕80 and tf = 0.2 s.

xNx , yj xb
xNx−1, yjxNx−2, yjxNx−3, yjxNx−4, yj

U
near

V ∞

Figure 4: Out�ow boundary.

size or other stencils. This is a challenge for determining
how smooth the stencils. Also, we will approximate values
away from the stencils, e.g., at the ghost points. First, let us
assess the smoothness indicators for approximating values
far away from the stencils, say b→∞. Since q(x) are usually
Lagrange polynomials, �r → ∞. Therefore, we propose
a = xN−1∕2 and b = xN+7∕2.We expect that b will increase the �r magnitude for
smooth and non-smooth stencils. Then, we can remove
the dependency on smaller stencil smoothness indicators
through the following non-linear weights

!r = exp(−�pr ), r = 1,… , 4, (36)
where p > 1 is a power parameter and even.

We remark that !r → 1 if �r → 0 and !r → 0
if �r → ∞. One advantage of the WENO-Z+ of [1] is
that the weight of less-smooth substencils are increased to
improve the resolution at smooth waves. In our case, if the
substencil is smooth enough !r > 0, it will contribute to theapproximation, and increase the resolution in a similar way.

The resulting approximation is

s(x) = p0 +
4
∑

r=1
!rpr(x), (37)

with
p0 = q0, pr(x) = qr(x)− qr−1(x), r = 1,… , 4. (38)
For comparison purpose, we show the new WENO-

type extrapolation and the one of Tan et al. (2012) [28]
in Fig. 5 for a �x = 2∕320 mesh. The problem is an 1D
Euler flow with [−1, 1] as domain and

�(x) =
{

1.1(x+ 0.5) + 0.3 if − 0.5 ≤ x ≤ 0,
0.3 otherwise,

u(x) = 1, p(x) = 2,
(39)

as initial condition. The analytical solution is a trans-
lation of the initial condition. We set the final time in
a way that there is one point after the shock. This a
severe test case and the new WENO-type extrapolation
performed slightly better than Tan et al., as the last point
is more close to the analytical solution. Furthermore,
the dependencies on mesh size and other stencils were
removed.

Now, we return to the boundary treatment. We al-
ready have )(k)x {V ccc}4k=0 at the boundary. For the convec-tive terms, if u − a ≥ 0 we shall impose no boundary
condition. Otherwise, with the ILW we update [15, 16, 5]
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)(1)x (Vccc)1 =
−(U1)t − (G1)y − r12ub)

(1)
x (Vccc)2

r11(ub − arb)

−
r13ub)

(1)
x (Vccc)3 + r14(ub + arb))

(1)
x (Vccc)4

r11(ub − arb)
.

(40)

As in [5], the U t are zero because we impose steady
boundary conditions. We still need approximations to the
fluxes, F (U ) and G(U ), and the viscous terms, S1 and S2,derivatives. Similarly as in [5], we propose to compute V
in the vicinity of xb and use it to obtain 2D least squares
polynomials, Pr, with r = 1,… , 4. This, because the high
magnitude of the pressure can cause difficulties with the least
squares and extrapolation. Then, we can approximateV y and
V yy on different substencils [16, 5]. For instance,

S0 = {0}, S1 = {P1(xNx−1, yj)y, P1(xNx
, yj)y},

(41)
S2 = {P2(xNx−2, yj)y, P2(xNx−1, yj)y, P2(xNx

, yj)y},
(42)

S3 = {P3(xNx−3, yj)y, P3(xNx−2, yj)y, (43)
P3(xNx−1, yj)y, P3(xNx

, yj)y}, (44)

S4 = {P4(xNx−4, yj)y, P4(xNx−3, yj)y, (45)
P4(xNx−2, yj)y, P4(xNx−1, yj)y, P4(xNx

, yj)y}. (46)
Then, we use the WENO-type extrapolation to obtain

)(k)x {V y}1k=0 and )(0)x V yy at the boundary. Now, we can
compute U , Ux, U y, Uxy, U yy, and the remaining terms at
the boundary [5]

G(U )y = G′(U )U y, F (U )x = F ′(U )Ux, (47)

S1x =  1
)W
)U

Uxy +  2
)W
)U

Uxx +N1, (48)

S2y =  3
)W
)U

Uxy +  4
)W
)U

U yy +N2, (49)

where the formulae for  1, )W ∕)U ,  2, N1,  3,  4, and
N2 can be found in the Appendix.

For the diffusive terms, we use U avg to perform a
decomposition and a WENO-type extrapolation to obtain
)(k)x {V d}4k=0 at the boundary. Then,

V d∞ = LdU∞, (50)
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)(0)x (Vd)m = (Vd∞)m, m = 2, 3, 4. (51)
With the ILW and Appendix formulae, we update [15, 16, 5]

ld1)
(2)
x Ud = )(2)x (Vd)1,

Ψ1m)
(2)
x Ud = (Um)t + Fm(U )x + Gm(U )y−

Ψ2mU yy − Ψ3mUxy −Nm, m = 2, 3, 4,

(52)

)(k)x Ud = Rd)
(k)
x V d , k = 0, 1, 3, 4. (53)

Here, we take
)(k)x {V ccd}4k=0 = L)

(k)
x {Ud}4k=0, (54)

and the convex combination is
)(k)x {V }4k=0 = �)

(k)
x {V ccc}4k=0+(1−�))

(k)
x {V ccd}4k=0. (55)

With a Taylor expansion, we compute V , V x, and V y atthe ghost points for a fixed j, e.g.,

V i,j =
4
∑

k=0

(xi,j − xb)k

k!
)(k)x V ,

(V x)i,j =
3
∑

k=0

(xi,j − xb)k

k!
)(k+1)x V .

(56)

Then,
U = RV , Ux = RV x, U y = RV y, (57)

W x =
)W
)U

Ux, W y =
)W
)U

U y, (58)
and F (U ) and S1 can be computed at the ghost points.

Our interior scheme demands U , F (U ), and S1 at the
ghost points. Therefore, the ILW outflow boundary treat-
ment is complete.

4. Numerical problems
4.1. Smooth test case

We first solve a smooth test case for checking the new
WENO-type extrapolation and the ILW outflow boundary
treatment accuracies. The steady-state analytical solution is
[5, 16]

�(x, y) =
(11
10

)sin (x) cos (y)
, u(x, y) = 200 + 2(x2 − �2),

v(x, y) = 100 + (y2 − �2), p(x, y) = 101325.
(59)

We insert (59) in the Navier–Stokes equations and obtain
four source terms. Using the source terms in the discretized
equations, the Navier–Stokes will be analytically satisfied.

For this problem, the analytical solution is known.
Therefore, U avg is replaced by the analytical solution at the
boundary. The accuracy analysis is shown in Tab. 1, where
one can see the convergence towards the designed order.

4.2. Flow past a cylinder
We revisit the supersonic airflow past a cylinder to test

our ILW outflow boundary treatment. The initial estimate is
[5, 15]

M(x, y) =

{

x2 + y2 − 1, if 1 < x2 + y2 ≤M∞ + 1,
M∞, otherwise,

�(x, y) = �0

(

1 +

 − 1
2

M2
)−1∕(
−1)

,

p(x, y) = p0

(

1 +

 − 1
2

M2
)−
∕(
−1)

,

u(x, y) =Ma, v = 0,
(60)

where the cylinder radius is one and �0 and p0 are computed
with free-stream data: T∞ = 800 K , p∞ = 101.325 kPa
andM∞ = 3. The gas constant, specific heat ratio, Prandtl
number, and viscosity were obtained with CoolProp library
and based on free-stream data [4].

The Mach number color map for �x = 3∕80 is shown
in Fig. 6, where one can see that the oblique shock, wake
region, and the recirculation are well captured. We also
compare the Mach number profile at the symmetry line for
the far-field, Riemann solver, and ILW boundary treatments
in Fig. 7. The ILW profile is similar to the other boundary
treatments in extended domains. However, the far-field
boundary treatment in a small domain shows different
behavior than other solutions.

We remark that the domain size is significantly small for
the ILW outflow boundary treatment. However, one should
respect the phenomena and speed regime. For example, the
flow is subsonic for x ≲ 9. If the right domain is smaller than
that, V ∞ will not be a good approximation and the outflow
will not behave as in Fig. 7. On other hand, if the domain is
bigger, the boundary treatment will handle subsonic regions
when marching from the initial estimate.
4.3. NACA 0012 airfoil

To compare the ILW outflow boundary treatment with
more practical applications, we solved nitrogen flows around
a NACA 0012 airfoil and compared the results with ex-
perimental data of [13]. The free-stream data is T∞ =
200.2967 K , M∞ = 0.3018, and p∞ ≈ 366.37 kPa [13].
The first test has an angle of attack of 0 ◦, c = 0.1524m chord
length, and [−c, 2c] × [−c, c] as domain. For simplicity, we
use constant viscosity and lower-order boundary treatment
for inflow, wall, lower, and upper boundaries. At the wall,
we impose an adiabatic condition using the nearest point
to it. The right boundary is handled by the ILW outflow
boundary treatment. TheMach number color map, contours,
and pressure coefficient for �x ≈ 4.94 × 10−4 m are shown
in Fig. 8.

Although our boundary treatment is steady, solving the
Navier–Stokes equations can result in transient solutions.
Furthermore, this type of equations can be sensitive to
the initial condition. In this work, we employed an Euler
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Δx = Δy L1 norm Order L2 norm Order L∞ norm Order

2�∕10 6.57E−04 − 8.18E−04 − 1.85E−03 −
2�∕20 2.46E−05 4.74 2.97E−05 4.79 6.36E−05 4.87
2�∕40 7.93E−07 4.95 9.74E−07 4.93 2.35E−06 4.75
2�∕80 2.46E−08 5.01 3.06E−08 4.99 7.64E−08 4.95
2�∕160 7.65E−10 5.01 9.55E−10 5.00 2.39E−09 5.00

Table 1

Density L1, L2, and L∞ norms and orders for the smooth test case.
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Figure 6: Mach number color map, contours from 0 to 3 every 0.55, and recirculation for the cylinder �ow with Δx = 3∕80 and

tf = 0.2 s.

solution initial guess. The Euler solver was first-order ev-
erywhere with adiabatic and no-slip conditions at the walls.
The Navier–Stokes simulation time is showed for reference.

In the color maps, we can see that the symmetry is
preserved until a certain time, even with the WENO multi-
resolution good hold of symmetry [36, 5]. The symmetry
break impacts the pressure coefficient, flow properties, and
unsteady structures. The symmetry break could be caused

by, e.g., floating-point errors [11]. For the pressure coeffi-
cient, it causes the upper and lower pressure coefficients to
behave differently, as we can see in Fig. 8d. We can also see
that the numerical solution is far from the experimental data
at certain regions. This may happen because the mesh is not
fine enough near the wall, the wall boundary treatment is
only first order, and/or the viscous effects are overestimated.
The boundary layer thickness appears to be bigger than it
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Figure 8: Mach number color maps and contours from 0 to 0.4 every 0.05 and pressure coe�cients for the NACA 0012 airfoil at

0 ◦ angle of attack with Δx ≈ 4.94 × 10−4 m.
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Figure 9: Mach number color maps and contours from 0 to 0.8 every 0.05 for the NACA 0012 airfoil at 12.026 ◦ angle of attack

with �x ≈ 4.94 × 10−4 m and tf = 0.0286 s.

should. Especially, for the mid to end airfoil region. These
can also be explained by the absence of a turbulence model.

We also solve the same airfoil problem at 12.026 ◦ angle
of attack [13]. Now, the upper boundary is also handled by
the ILW outflow boundary treatment and the computational
domain is [−c, 2c] × [−2c, c]. For this particular analysis,
we have an interesting unsteady phenomenon known as a
separation bubble [31, 22]. The Mach number color map,
contours, and pressure coefficient for �x = 4.94 × 10−4 are
shown in Fig. 9 and 10.

We can see a recirculation near the leading edge at the
upper surface in Fig. 9. This gives rise to unsteady phenom-
ena. In [22], the authors refer to the unsteady phenomena
as Kelvin–Helmholtz instabilities and von Kármán vortices.
We can also see how the instabilities affect the pressure
coefficient and a certain distance from experimental data. As
stated in [17], even RANS can overpredict the lift and drag at
post-stall angles of attack. Despite these preliminary results
being promising, further analysis and methods are needed to
improve the agreement with experimental data.
4.4. NACA 9520 cascade flow

Our final numerical problem is also a preliminary result
for a practical application. The cascade flow is often solved

when studying turbine blades. Cold and hot airflow around
the VKI LS-94 turbine blade is a common CFD analysis [24,
32, 8, 7]. For simplicity, we employ a 280 mm chord NACA
9520 profile rotated 36 ◦ and spaced 0.2 m horizontally. The
total temperature and pressure are 772 K and 470 kPa [8].
At the outflow, the Mach number is set to 0.79 [8]. The
computational domain is [0.1, Cax + 0.1] × [−0.175, 0.025],where Cax is the axial chord length. Flow parameters and
other properties are computed with CoolProp library and
total properties [4]. The viscosity and Prandtl number are
constant.

At the inflow, W 0 = (p0∕(RT0), 0, 0, p0)T and we
employ a first-order characteristic boundary treatment. The
upper and lower boundaries are periodic and we again use
first-order adiabatic wall boundary treatment. For the out-
flow, we employ the ILW outflow boundary treatment with
W 2. For a viscous flow, the friction will change the total
pressure. However, for our preliminary analysis, it is enough
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Figure 10: Pressure coe�cients for the NACA 0012 airfoil at 12.026 ◦ angle of attack with Δx ≈ 4.94 × 10−4 m.

to approximate pressure and temperature through gas dy-
namics relations

T2 = T0

[

1 +
(
 − 1)
2

M2
2

]−1
,

p2 = p0

[

1 +
(
 − 1)
2

M2
2

]−
∕(
−1)
.

(61)

The density is obtained from the equation of state and
the velocity is approximated as

u =M2a2 cos (36 ◦), v = −M2a2 sin (36 ◦). (62)
W 2 is then used to compute V ∞ in the ILW outflow

boundary treatment. From former discussions, we remark
that V ∞ is an approximate state which will be partially
used to impose the boundary conditions. In fact, most of the
information will come from interior points. Therefore, this
does not mean that the resulting velocity vector will have the
same direction asW 2.The Mach number color map and contours are shown
in Fig. 11 for �x = 5.01 × 10−4. We can see similarities in
the wake region and vortices with common cascade analysis
[24, 32, 8, 18, 2].

As in the NACA 0012 flows, one can still improve the
solution. For instance, with better mesh discretization, high-
order wall boundary treatment, and turbulence modeling.
Issues regarding the cascade flow modeling are not rare
[19, 24]. As stated in [24], difficulties regarding grid con-
vergence for URANS, hard-to-satisfy DES, DDES, and LES
requirements, and deviations from experiments may happen
in cascade flows. The authors also commented that there is
room for more experimental analysis in this type of flow.
Therefore, we can also expect the numerical cascade flow
as an active field of research.

5. Concluding remarks
The far-field boundary treatment is a class of popular

and robust strategies. While providing well-posedness these

strategies can help reducing the domain size. In some of
these strategies, Riemann invariants are employed and they
are similar to Riemann solvers. The boundary treatment
success also depends on the extrapolation and variable types.

We showed similarities between a far-field, exact Rie-
mann solver, and ILW boundary treatments. Also, we pro-
posed and tested an ILW strategy for imposing high-order
and -resolution outflow boundary conditions and anWENO-
type extrapolation. The ILW boundary treatment provides a
good representation of the flow features near the boundary,
it is well-posed, allows small domains, and can handle flows
with high-magnitude properties.

Through a smooth test case, we showed that our strategy
is high-order. In the supersonic flow past a cylinder, one can
see that the oblique shock is well captured and our strategy
has high resolution. The domain size can be reduced without
any problem when marching to steady state. However, the
speed regime and flow phenomena must be respected or a
better approximation to the characteristic variables should
be employed.

In the NACA 0012 and NACA 9520 flows, we showed
a good representation of unsteady phenomena. For instance,
vortices, separation bubble, and wake region. In light of that,
the numerical methods employed in this work are promising
for solving practical CFD applications. Although sharing
issues with other methods, their accuracy still needs to
be improved. This can be done by refining the mesh near
the airfoil surface, high-order wall boundary treatment, and
turbulence modeling.

6. Declaration of Interests
The authors report no conflict of interest.

A. Matrices and vectors for the ILW
For completeness, the required matrices and vectors for

computing the ILW outflow boundary treatment are shown

L.K. Araki, R.B.de R. Borges, N.D.P. da Silva and C.-W. Shu: Preprint submitted to Elsevier Page 11 of 14



High-resolution ILW out�ow boundary treatment for the Navier�Stokes equations

−0.1 0 0.1 0.2 0.3

x

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M

Figure 11: Mach number color maps and contours from 0 to 1.4 every 0.1 for the cascade �ow with Δx ≈ 5.01 × 10−4 m and
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