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Abstract

In this paper, a high-order moment-based multi-resolution Hermite weighted essentially

non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws. The main

idea of this scheme is derived from our previous work [J. Comput. Phys., 446 (2021) 110653],

in which the integral averages of the function and its first order derivative are used to re-

construct both the function and its first order derivative values at the boundaries. However,

in this paper, only the function values at the Gauss-Lobatto points in the one or two di-

mensional case need to be reconstructed by using the information of the zeroth and first

order moments. In addition, an extra modification procedure is used to modify those first

order moments in the troubled-cells, which leads to an improvement of stability and an en-

hancement of resolution near discontinuities. To obtain the same order of accuracy, the size

of the stencil required by this moment-based multi-resolution HWENO scheme is still the

same as the general HWENO scheme and is more compact than the general WENO scheme.

Moreover, the linear weights are not unique and are independent of the node position, and

the CFL number can still be 0.6 whether for the one or two dimensional case, which has to be

0.2 in the two dimensional case for other HWENO schemes. Extensive numerical examples

are given to demonstrate the stability and resolution of such moment-based multi-resolution

HWENO scheme.
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1 Introduction

In this paper, a high-order moment-based multi-resolution Hermite weighted essentially

non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws






ut +∇ · f(u) = 0,

u(x1, ..., xd, 0) = u0(x1, ..., xd).
(1.1)

We concentrate our attention on the one and two dimensional cases (d = 1 or 2), and in

these cases we denote x1 as x and x2 as y.

Conservation laws arise from the physical law that the conservative quantity in any control

body can change only due to the flux passing through its boundaries, which naturally hold

for many fundamental physical quantities, such as the mass, momentum, energy and so

on. Such conservation laws are widely used in a broad spectrum of disciplines where wave

motion or advective transport is important: gas dynamics, acoustics, elastodynamics, optics,

geophysics, and biomechanics, to name but a few.

The differential equation (1.1) can be derived from the integral equation by simple ma-

nipulations provided that the conservative quantity and its corresponding flux are sufficiently

smooth. This proviso is important because in practice many interesting solutions are not

smooth, but contain discontinuities such as shock waves. A fundamental feature of nonlinear

conservation laws is that discontinuities can easily develop spontaneously even from smooth

initial data, and must be dealt with carefully both mathematically and computationally. At

a discontinuity in the conservative quantity, the differential equation does not hold in the

classical sense and it is important to remember that the integral form of the conservation

laws does continue to hold which is more fundamental. This is also why we choose conser-

vative schemes, such as the finite volume method considered in this paper, which is based

on the integral form of the conservation laws.

Since conservation laws have a very wide range of applications and it is almost impossible

in general to get their exact solutions, many scholars have explored and proposed a series of

numerical methods and are still trying to improve the performance of these algorithms. In
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1994, Liu et al. proposed the first finite volume WENO scheme in [17], and then, in 1996,

Jiang and Shu improved this WENO scheme to fifth order and to conservative finite difference

formulation (which is more efficient in multi-dimensions), and gave a general definition of

the smoothness indicators and nonlinear weights in [12]. The methodology of such WENO

schemes is to use a nonlinear convex combination of all the candidate stencils to improve the

order of accuracy in smooth regions without destroying the non-oscillatory behavior near

discontinuities. This is also the difference of such WENO schemes from the ENO schemes

in [10, 22, 23], which only choose the locally smoothest stencil automatically among all the

central and biased spatial stencils. Thereafter, different kinds of WENO schemes have been

developed in, e.g. [3, 18, 6, 28, 29, 2, 1]. Although these WENO schemes work well for most

of the problems we encountered, there is still room for improvement. For example, if we

want to obtain a higher order scheme, we must further expand the stencil. This will make

our scheme not very compact and will also bring trouble to the processing of the boundary

conditions. In order to overcome this drawback, Qiu and Shu proposed the first HWENO

scheme and apply it as limiter for discontinuous Galerkin (DG) method for one-dimensional

problems in [19] and then, in 2005, they extended this HWENO scheme to two-dimensional

problems in [20], where two different stencils were used to reconstruct the function and its

first order derivative values, respectively. The scheme evolves lower degree polynomials while

reconstructing higher degree polynomials to approximate the solution. Dumbser et al. [8]

extended the scheme to a new family of in-cell recovery DG method, referred to as PNPM

methods, which yields a general, unified framework that contains two important special

cases, the classical high order finite volume (FV) schemes (N = 0) and the conventional

discontinuous Galerkin (DG) method (N = M), and the HWENO schemes can be seen as

the P1PM method. The main difference of such HWENO scheme from the WENO scheme

is that both the function and its first order derivative values are evolved in time and used

in the reconstruction process, not like the WENO scheme in which only the function values

are evolved and used. This allows the HWENO scheme to obtain the same order of accuracy
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as the WENO scheme with relatively narrower stencils. But there occurs a new issue, that

is this HWENO scheme is not stable enough when simulating certain severe problems with

strong discontinuities, including the double Mach and forward step problems. This difficulty

is largely due to the fact that the first order derivative values may become very large near

these discontinuities. Thus, the stability issue may arise, if these large values are used

straightforwardly without any modification. Driven by the goal of solving this issue, many

effective methods based on the idea of the original HWENO scheme have emerged. For

example, the scheme with a new procedure to reconstruct the first order derivative values by

Zhu and Qiu in [27] in 2008, the scheme with an additional positivity-preserving limiter by

Liu and Qiu in [15, 16] in 2015 and 2016, the scheme with a troubled-cell indicator to modify

the first order moments near the discontinuities before the reconstruction algorithm by Zhao

et al. in [25, 26] in 2020, the scheme with a hierarchy of nested central spatial stencils by Li

et al. in [14] in 2021 and so on, have been developed.

In 2018 and 2019, Zhu and Shu proposed a new type of high-order finite difference and

finite volume multi-resolution WENO schemes in [28, 29], which only use the information

on a hierarchy of nested central spatial stencils and can not only obtain high order accuracy

in smooth regions but also allow the accuracy near discontinuities to degrade gradually.

Following the idea of these multi-resolution WENO schemes, we designed a new type of

high-order finite volume and finite difference multi-resolution HWENO schemes in [14] in

2021, for which only the function values need to be reconstructed by the HWENO schemes,

and the first order derivative values are obtained directly from the polynomial with the

highest degree in the hierarchy. This can improve the resolution of the scheme but does not

have much effect on its stability, since the first two layers in the hierarchy do not contain

the information of the first order derivative. In this paper, the function and its first order

moment values are used in our reconstruction algorithm, and only the function values are

needed to be reconstructed according to our control equations. Thus, the coupling between

the function and its first order moment is stronger.
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There are two issues to be addressed. The first one is that, although the bigger the linear

weights are for higher degree polynomials, the steeper the shock transitions become near

the discontinuities, the gap between these linear weights cannot be too large, otherwise the

corresponding nonlinear weights will still be too close to the linear weights near the discon-

tinuities. This will cause problems, since the higher degree polynomials, which require the

information of the first order derivative or moment, account for too much in the final recon-

struction polynomial, but such first order derivative or moment values may be very large near

the discontinuities. The other one is that with the suitable choice of the linear weights, the

order of the final reconstruction polynomial will degrade gradually near the discontinuities

until it drops to first order, which will smooth out these discontinuities to a certain extent.

Guided by the idea of Zhao et al. in [25, 26], we first perform the reconstruction algorithm,

and then modify the first order moments of the troubled-cells and repeat the reconstruction

algorithm for these troubled-cells to update the corresponding Gauss-Lobatto point values.

After such a modification procedure, the proportion of the last two layers will become much

higher than that of the first two layers in the reconstruction process, thus the resolution

near the discontinuities can be increased significantly. In the meantime, this modification

procedure can also improve the stability of the scheme by reducing the magnitude of the

first order moments near the discontinuities. In order to better adapt to our high order

scheme, we choose the HLLC-flux (Harten-Lax-van Leer-contact flux) to be our numerical

flux, which is an approximate Riemann solver by assuming that there are four states in the

transition from the left to the right states, thus staying closer to the real physical situation.

The organization of this paper is as follows: In Section 2, we describe the reconstruction

procedure of the moment-based multi-resolution HWENO scheme for hyperbolic conservation

laws in the one and two dimensions in detail. In Section 3, we propose a number of numerical

examples to illustrate the accuracy and resolution of our HWENO scheme. Concluding

remarks are given in Section 4.
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2 Moment-based multi-resolution HWENO scheme

In this section, we describe the reconstruction procedure of the moment-based multi-

resolution HWENO scheme for the one and two dimensional hyperbolic conservation laws,

which has sixth order of accuracy in smooth regions and high resolution near discontinuities.

Here sixth order is simply taken as an example, arbitrarily high order HWENO schemes can

be designed following the same lines.

2.1 One dimensional case

In this subsection, we first consider the following relatively simple one-dimensional hy-

perbolic conservation laws







ut + f(u)x = 0,

u(x, 0) = u0(x).
(2.1)

For simplicity, the computational domain is divided by a uniform mesh Ii = [xi−1/2, xi+1/2]

with the uniform mesh size △x = xi+1/2−xi−1/2, and the corresponding cell center is denoted

by xi =
1
2
(xi−1/2 + xi+1/2).

Firstly, multiply the governing equation (2.1) by 1
△x

and 1
△x

x−xi

△x
, respectively. Then,

integrate the resulting equations over the target cell Ii and perform the integration by parts,

obtaining the following equations















1

△x

∫

Ii

utdx = − 1

△x

[

f
(

u(xi+1/2, t)
)

− f
(

u(xi−1/2, t)
)

]

,

1

△x

∫

Ii

ut
x− xi

△x
dx = − 1

2△x

[

f
(

u(xi+1/2, t)
)

+ f
(

u(xi−1/2, t)
)

]

+
1

(△x)2

∫

Ii

f(u)dx.

(2.2)

Next, define the zeroth and first order moments as follows















ui(t) =
1

△x

∫

Ii

u(x, t)dx,

vi(t) =
1

△x

∫

Ii

u(x, t)
x− xi

△x
dx,

(2.3)
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and then, swap the spatial integration and time derivation and approximate the flux by a

numerical flux, obtaining the following semi-discrete conservative scheme














dui(t)

dt
= − 1

△x
(f̂i+1/2 − f̂i−1/2),

dvi(t)

dt
= − 1

2△x
(f̂i+1/2 + f̂i−1/2) +

1

△x
Fi(u).

(2.4)

Here, the numerical flux is taken to be the HLLC flux f̂i+1/2 = f̂HLLC(u−
i+1/2, u

+
i+1/2). As an

example, for Euler equations

∂

∂t





ρ
ρµ
E



+
∂

∂x





ρµ
ρµ2 + p
µ(E + p)



 = 0, (2.5)

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure, the

specific expression of the HLLC flux is as follows:

f̂HLLC(uL, uR) =



































fL, 0 ≤ sL,

f ∗
L, sL ≤ 0 ≤ s∗,

f ∗
R, s∗ ≤ 0 ≤ sR,

fR, sR ≤ 0,

(2.6)

where fL/R = f(uL/R), f
∗
L/R = fL/R + sL/R ∗ (u∗

L/R − uL/R); sL = µL − cL ∗ coefL, sR =

µR + cR ∗ coefR,

coefL/R =











1, p∗ ≤ pL/R,
√

1 +
(γ + 1) ∗ (p∗/pL/R − 1)

2γ
, otherwise,

(2.7)

u∗
L/R = ρL/R ∗ sL/R − µL/R

sL/R − s∗
∗







1
s∗

EL/R

ρL/R
+ (s∗ − µL/R) ∗

(

s∗ +
pL/R

ρL/R∗(sL/R−µL/R)

)






, (2.8)

where p∗ = pL+pR+(µL−µR)∗(c∗∗ρ∗)
2

, s∗ = µL+µR+(pL−pR)/(c∗∗ρ∗)
2

; ρ∗ = ρL+ρR
2

, c∗ = cL+cR
2

; and

γ is the ratio of specific heats. The integral term Fi(u) is approximated by a four-point

Gauss-Lobatto integration

Fi(u) =
1

△x

∫

Ii

f(u)dx ≈
4

∑

l=1

ωlf
(

u(xGL
l , t)

)

, (2.9)
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where the weights are ω1 = ω4 =
1
12
, ω2 = ω3 =

5
12

and the quadrature points on the target

cell Ii are

xGL
1 = xi−1/2, x

GL
2 = xi−

√
5/10, x

GL
3 = xi+

√
5/10, x

GL
4 = xi+1/2,

where xi+ξ = xi + ξ△x.

Finally, we present the spatial reconstruction procedure of the point values {u+
i−1/2,

ui−
√
5/10, ui+

√
5/10, u

−
i+1/2} from the given moment values {u, v|i−1; u, v|i; u, v|i+1} in detail

as follows:

The 1D Reconstruction Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u.

Step 1.1. Reconstruct a series of polynomials of different degrees.

First, select a series of central spatial stencils and reconstruct a zeroth degree polynomial

q1(x), a quadratic polynomial q2(x), a cubic polynomial q3(x) and a quintic polynomial q4(x),

respectively, such that

1

△x

∫

Ik

q1(x)dx = uk, k = i;

1

△x

∫

Ik

q2(x)dx = uk, k = i− 1, i, i+ 1;

1

△x

∫

Ik

q3(x)dx = uk, k = i− 1, i, i+ 1;
1

△x

∫

Ikx

q3(x)
x− xkx

△x
dx = vkx , kx = i;

1

△x

∫

Ik

q4(x)dx = uk, k = i− 1, i, i+ 1;
1

△x

∫

Ikx

q4(x)
x− xkx

△x
dx = vkx , kx = i− 1, i, i+ 1.

(2.10)

Then, the polynomials ql2(x) are transformed to obtain a new set of polynomials pl2(x),

whose expressions are given by (2.11)

pl2(x) =















q1(x), l2 = 1,

1

γl2,l2
ql2(x)−

l2−1
∑

l=1

γl,l2
γl2,l2

pl(x), l2 = 2, 3, 4,
(2.11)

with
∑l2

l=1 γl,l2 = 1, γl2,l2 6= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are

the linear weights and are defined as

γl1,l2 =
γl1,l2

∑l2
l=1 γl,l2

; γl1,l2 = 10l1−1; l1 = 1, ..., l2; l2 = 2, 3, 4. (2.12)
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As for why we choose such a set of linear weights, we will discuss in detail in Remark 1

later. Putting these linear weights into (2.11), obtain the following relations

p1(x) = q1(x),

p2(x) =
11

10
q2(x)−

1

10
q1(x),

p3(x) =
111

100
q3(x)−

11

100
q2(x),

p4(x) =
1111

1000
q4(x)−

111

1000
q3(x).

(2.13)

Step 1.2. Compute the corresponding nonlinear weights of the above polynomials.

First, compute the smoothness indicator βl2 of function pl2(x) in the interval Ii:

βl2 =
κ

∑

α=1

∫

Ii

△x2α−1

(

dαpl2(x)

dxα

)2

dx, l2 = 2, 3, 4, (2.14)

where κ = 2, 3, 5 for l2 = 2, 3, 4. It is important to note that the definition of β1 is different,

where a new polynomial qnew1 (x) is required and is defined as follows:

(1) Reconstruct two polynomials q1L(x) and q1R(x), such that

1

△x

∫

Ik

q1L(x)dx = uk, k = i− 1, i;

1

△x

∫

Ik

q1R(x)dx = uk, k = i, i+ 1,

(2.15)

and then, obtain their associated smoothness indicators

β1L = (ui − ui−1)
2, β1R = (ui+1 − ui)

2, (2.16)

and the absolute difference τ1 between β1L and β1R

τ1 = |β1R − β1L|2, (2.17)

where the selection of the power is to be consistent with the definition (2.23) of τ4 later.

(2) Give these two polynomials q1L(x) and q1R(x) the same linear weights γ1L = γ1R = 1
2

and calculate the corresponding nonlinear weights as

ω1L =
ω1L

ω1L + ω1R

, ω1R =
ω1R

ω1L + ω1R

, (2.18)
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ω1L = γ1L

(

1 +
τ1

β1L + ε

)

, ω1R = γ1R

(

1 +
τ1

β1R + ε

)

, (2.19)

where ε = 10−10 is applied to avoid the denominator of (2.19) to be zero.

(3) Obtain a new polynomial

qnew1 (x) = ω1Lq1L(x) + ω1Rq1R(x), (2.20)

and set β1 to be

β1 =

∫

Ii

△x

(

dqnew1 (x)

dx

)2

dx =
(

ω1L

(

ui − ui−1

)

+ ω1R

(

ui+1 − ui

)

)2

. (2.21)

Then, we still adopt the idea of WENO-Z as shown in [6] to define the corresponding

nonlinear weights

ωl1,4 =
ωl1,4

∑4
l=1 ωl,4

, ωl1,4 = γl1,4

(

1 +
τ4

βl1 + ε

)

, l1 = 1, ..., 4, (2.22)

where ε is also taken to be 10−10 and the quantity τ4 is defined to be the absolute difference

among above smoothness indicators

τ4 =

(

∑3
l=1 |β4 − βl|

3

)2

. (2.23)

Step 1.3. Obtain an approximation polynomial ui(x) of u(x).

The new reconstruction polynomial ui(x) of u(x) is defined as

ui(x) =
4

∑

l=1

ωl,4pl(x), (2.24)

and the Gauss-Lobatto point values that we need are taken to be

u+
i−1/2 = ui(xi−1/2), ui∓

√
5/10 = ui(xi∓

√
5/10), u

−
i+1/2 = ui(xi+1/2). (2.25)

Step 2. Update the Gauss-Lobatto point values of u in the troubled-cells.

Step 2.1. Identify the troubled-cells.

The so-called troubled-cells are those cells that may contain discontinuities. In 2005,

Qiu and Shu systematically investigated and compared a few troubled-cell indicators for the
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Runge-Kutta discontinuous Galerkin method in [20]. Here, we choose the KXRCF troubled-

cell indicator proposed by Krivodonova et al. in [13] to identify the troubled-cells, and its

judgment criterion is that the target cell Ii is identified to be a troubled-cell, if

ℵi =

∣

∣

∫

∂I−i

(

ui(x)− uni
(x)

)

ds
∣

∣

h
p+1
3

i

∣

∣∂I−i
∣

∣||ui(x)||
> 1, (2.26)

where ∂I−i is the inflow boundary (−→v · −→n < 0, −→v is the velocity of the flow and −→n is the

outer normal vector to ∂Ii), Ini
is the neighbor of Ii on the side of ∂I−i , hi is the length of the

cell Ii, the parameter p (i.e. the degree of ui(x)) is taken to be 5, ui(x) is the approximation

polynomial of u(x) obtained in Step 1 above and the norm is taken to be the L∞ norm.

Step 2.2. Modify the first order moments in the troubled-cells.

If the target cell Ii is identified to be a troubled-cell, we would like to modify the first

order moment vi in it. First, obtain a quartic polynomial by linear interpolation, which

satisfies

1

△x

∫

Ik

p0(x)dx = uk, k = i−1, i, i+1;
1

△x

∫

Ikx

p0(x)
x− xkx

△x
dx = vkx , kx = i−1, i+1,

(2.27)

and then, modify the first order moment vi as

vi =
1

△x

∫

Ii

p0(x)
x− xi

△x
dx = − 5

76
ui−1 +

5

76
ui+1 −

11

38
vi−1 −

11

38
vi+1. (2.28)

Step 2.3. Update the Gauss-Lobatto point values of u for these troubled-cells.

After modifying the first order moments in the troubled-cells, repeat the reconstruction

process Step 1 for these troubled-cells to update corresponding Gauss-Lobatto point values

of u.

Step 3. Discretize the semi-discrete scheme in time.

After all these Gauss-Lobatto point values are obtained, substitute them into the formula

of the numerical flux. Then, discretize (2.4) by a third-order TVD Runge-Kutta method in
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time






















U (1) = Un +∆tL(Un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)),

(2.29)

to obtain a fully discrete scheme.

Remark 1. In Step 1 above, through a series of Taylor expansion analyses, we can

verify that βl = u
′2△x2 + O(△x4), l = 1, 2, 3, 4, thus β4 − βl = O(△x4) for l < 4 and

τ4 = O(△x8), then

u(x)− ui(x) = u(x)−
4

∑

l=1

ωl,4pl(x)

=

[

u(x)−
4

∑

l=1

γl,4pl(x)

]

+
4

∑

l=1

(ωl,4 − γl,4)
(

u
(

x
)

− pl
(

x
)

)

= O(△x6) +O(△x6) ∗O(△x)

= O(△x6).

(2.30)

According to above Taylor expansion analyses, we can prove that our reconstruction algo-

rithm can obtain sixth order of accuracy in smooth regions. When there is a discontinuity

in the target cell Ii, the modified first order moment vi in (2.28) will become O(1), for the

difference between ui−1 and ui+1 is O(1).

As in our previous paper [14], the linear weights are not unique and are independent of

the node position. We have also tried other choices of the linear weights with γl1,l2 = 2l1−1,

γl1,l2 = 4l1−1, γl1,l2 = 6l1−1, γl1,l2 = 8l1−1. From our numerical experiments, we find that even

though different choices of the linear weights do not affect the order of accuracy in smooth

regions, they do affect the resolution near discontinuities. That is to say, the bigger the linear

weights are for higher-degree polynomials, the steeper the shock transitions become, but also

the more unstable the scheme becomes. Thus, the gap between these linear weights should

not be too large, otherwise it could become too close to the linear interpolation, which could

cause oscillations. We must find a balance. However, due to the space limitation, we only

show the results of one choice, which is also the choice in [28, 29] and our previous paper
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[14]. We choose these series of linear weights for fair comparison and they do work well for

all our numerical examples. It is worth mentioning that this modification procedure can also

improve the stability of the scheme by reducing the magnitude of the first order moments

near the discontinuities.

Remark 2. In Step 2 above, we can also choose other indicators to identify troubled-

cells, such as the minmod-based total variation bounded (TVB) limiter in [7], moment limiter

of Biswas, Devine and Flaherty in [4], a modification of the moment limiter by Burbeau,

Sagaut and Bruneau in [5], the monotonicity-preserving(MP) limiter in [24], a modification

of the MP limiter in [21], a troubled-cell indicator based on Harten’s subcell resolution idea

in [9] and so on. But as shown in Section 3, the KXRCF troubled-cell indicator works pretty

well for our scheme in the one-dimensional case. What needs a special attention is that, for

the one dimensional scalar equation, the solution u is defined as our indicator variable, and

then the corresponding −→v = f
′

(u); for the one dimensional Euler system, only the density ρ

is set to be our indicator variable, and then the corresponding −→v = µ is the velocity of the

fluid. In short, for the one dimensional case, the line integral average in the formula (2.26)

is actually the boundary point value, that is

1
∣

∣∂I−i
∣

∣

∣

∣

∣

∣

∣

∫

∂I−i

(

ui(x)− uni
(x)

)

ds

∣

∣

∣

∣

∣

=
∣

∣

∣
(u+

i− 1
2

− u−
i− 1

2

) ∗ sf(−→v i− 1
2
) + (u−

i+ 1
2

− u+
i+ 1

2

) ∗ sf(−−→v i+ 1
2
)
∣

∣

∣
,

(2.31)

where the switch function sf(x) is defined as

sf(x) =







1, x > 0,

0, others,
(2.32)

and the norm ||ui(x)|| is taken to be the maximum norm of all the Gauss-Lobatto point

values in the cell Ii (i.e. ||ui(x)|| ≈ max{|u+
i−1/2|, |ui−

√
5/10|, |ui+

√
5/10|, |u−

i+1/2|}). Note that

all the values used in the troubled-cell indicator are already obtained in the reconstruction

process Step 1, thus there is no need to reconstruct an extra polynomial as in [25, 26].
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According to [13],

∫

∂I−i

(

ui − uni

)

ds =

∫

∂I−i

(

ui − u
)

ds+

∫

∂I+ni

(

u− uni

)

ds (2.33)

=







O(hp+2) +O(h2p+2) = O(hp+2), u|∂Ii is smooth,

O(h) +O(h) = O(h), u|∂Ii is discontinuous.

where the parameter p also represents the degree of ui(x) and is taken to be 5. Here, we

let the troubled-cell indicator converge to the smooth case twice as fast as the discontinuous

case, then as either h → 0 or p → ∞

ℵi =











O(h
2(p+1)

3 ) −→ 0, u|∂Ii is smooth,

1

O(h
p+1
3 )

−→ ∞, u|∂Ii is discontinuous,
(2.34)

thus the troubled-cell indicator can be defined as







ℵi < 1, Ii is not a troubled-cell,

ℵi > 1, Ii is a troubled-cell.
(2.35)

2.2 Two dimensional case

In this subsection, we then consider the following more complicated two-dimensional

hyperbolic conservation laws






ut + f(u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).
(2.36)

Still for the sake of simplicity, the computational domain is divided by a uniform mesh

Ii,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] with the uniform mesh sizes △x = xi+1/2−xi−1/2 in the

x-direction and △y = yj+1/2 − yj−1/2 in the y-direction, and the corresponding cell center is

denoted by (xi, yj) =
(

1
2

(

xi−1/2 + xi+1/2

)

, 1
2

(

yj−1/2 + yj+1/2

)

)

.

Firstly, multiply the governing equation (2.36) by 1
△x△y

, 1
△x△y

x−xi

△x
and 1

△x△y

y−yj
△y

, re-

spectively. Then, integrate the resulting equations over the target cell Ii,j and perform the

14



integration by parts, obtaining the following equations























































































































































1

△x△y

∫

Ii,j

utdxdy = − 1

△x△y

yj+1/2
∫

yj−1/2

[

f
(

u(xi+1/2, y, t)
)

− f
(

u(xi−1/2, y, t)
)

]

dy

− 1

△x△y

xi+1/2
∫

xi−1/2

[

g
(

u(x, yj+1/2, t)
)

− g
(

u(x, yj−1/2, t)
)

]

dx,

1

△x△y

∫

Ii,j

ut
x− xi

△x
dxdy = − 1

2△x△y

yj+1/2
∫

yj−1/2

[

f
(

u(xi+1/2, y, t)
)

+ f
(

u(xi−1/2, y, t)
)

]

dy

+
1

(△x)2△y

∫

Ii,j

f(u)dxdy − 1

△x△y

xi+1/2
∫

xi−1/2

[

g
(

u(x, yj+1/2, t)
)

− g
(

u(x, yj−1/2, t)
)

]x− xi

△x
dx,

1

△x△y

∫

Ii,j

ut
y − yj
△y

dxdy = − 1

△x△y

yj+1/2
∫

yj−1/2

[

f
(

u(xi+1/2, y, t)
)

− f
(

u(xi−1/2, y, t)
)

]y − yj
△y

dy

− 1

2△x△y

xi+1/2
∫

xi−1/2

[

g
(

u(x, yj+1/2, t)
)

+ g
(

u(x, yj−1/2, t)
)

]

dx+
1

△x(△y)2

∫

Ii,j

g(u)dxdy.

(2.37)

Next, define the zeroth and first order moments in the x and y directions as follows



































ũi,j(t) =
1

△x△y

∫

Ii,j

u(x, y, t)dxdy,

ṽi,j(t) =
1

△x△y

∫

Ii,j

u(x, y, t)
x− xi

△x
dxdy,

w̃i,j(t) =
1

△x△y

∫

Ii,j

u(x, y, t)
y − yj
△y

dxdy,

(2.38)

and then, swap the spatial integration and time derivation and approximate the flux by a

numerical flux, obtaining the following semi-discrete conservative scheme
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

































































































dũi,j(t)

dt
= − 1

△x△y

∫ yj+1/2

yj−1/2

[

f̂
(

u(xi+1/2, y)
)

− f̂
(

u(xi−1/2, y)
)

]

dy

− 1

△x△y

∫ xi+1/2

xi−1/2

[

ĝ
(

u(x, yj+1/2)
)

− ĝ
(

u(x, yj−1/2)
)

]

dx,

dṽi,j(t)

dt
= − 1

2△x△y

∫ yj+1/2

yj−1/2

[

f̂
(

u(xi+1/2, y)
)

+ f̂
(

u(xi−1/2, y)
)

]

dy

+
1

△x
Fi,j(u)−

1

△x△y

∫ xi+1/2

xi−1/2

[

ĝ
(

u(x, yj+1/2)
)

− ĝ
(

u(x, yj−1/2)
)

]x− xi

△x
dx,

dw̃i,j(t)

dt
= − 1

△x△y

∫ yj+1/2

yj−1/2

[

f̂
(

u(xi+1/2, y)
)

− f̂
(

u(xi−1/2, y)
)

]y − yj
△y

dy

− 1

2△x△y

∫ xi+1/2

xi−1/2

[

ĝ
(

u(x, yj+1/2)
)

+ ĝ
(

u(x, yj−1/2)
)

]

dx+
1

△y
Gi,j(u).

(2.39)

Here the numerical fluxes are still taken to be the HLLC fluxes, and the integral terms are

also approximated by a four-point Gauss-Lobatto integration, for instance

Fi,j(u) =
1

△x△y

∫

Ii,j

f(u)dxdy ≈
4

∑

k=1

4
∑

l=1

ωkωlf
(

u(xGL
k , yGL

l )
)

, (2.40)

1

△y

∫ yj+1/2

yj−1/2

f̂
(

u(xi+1/2, y)
)

dy ≈
4

∑

l=1

ωlf̂
(

u(xi+1/2, y
GL
l )

)

, (2.41)

1

△x

∫ xi+1/2

xi−1/2

x− xi

△x
ĝ
(

u(x, yj+1/2)
)

dx ≈
4

∑

k=1

ωk
xGL
k − xi

△x
ĝ
(

u(xGL
k , yj+1/2)

)

, (2.42)

where the weights are ω1 = ω4 =
1
12
, ω2 = ω3 =

5
12

and the quadrature points on the target

cell Ii,j are

xGL
1 = xi−1/2, x

GL
2 = xi−

√
5/10, x

GL
3 = xi+

√
5/10, x

GL
4 = xi+1/2;

yGL
1 = yj−1/2, y

GL
2 = yj−

√
5/10, y

GL
3 = yj+

√
5/10, y

GL
4 = yj+1/2,

where xi+ξ = xi + ξ△x and yj+η = yj + η△y.

Finally, we present the spatial reconstruction procedure of the point values {u±
i∓1/2,j+ηl

|l =

1, 2, 3, 4}, {u±
i+ξk,j∓1/2|k = 1, 2, 3, 4} and {ui+ξk,j+ηl|k = 2, 3; l = 2, 3} (ξ1 = η1 = −1/2,

ξ2 = η2 = −
√
5/10, ξ3 = η3 =

√
5/10 and ξ4 = η4 = 1/2) from the given cell-average values

{ũ, ṽ, w̃|kx,ky ; kx = i− 1, i, i+ 1; ky = j − 1, j, j + 1} in detail as follows:
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The 2D Reconstruction Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u.

7 8 9 j + 1
4 5 6 j
1 2 3 j − 1

i− 1 i i+ 1
The big stencil and its new labels.

Step 1.1. Reconstruct a series of polynomials of different degrees.

Step 1.1.1. Reconstruct a zeroth degree polynomial q1(x, y) such that

1

△x△y

∫

Ik

q1(x, y)dxdy = ũk, k = 5. (2.43)

Step 1.1.2. Reconstruct a quadratic polynomial q2(x, y) such that

1

△x△y

∫

Ik

q2(x, y)dxdy = ũk, k = 1, ..., 9. (2.44)

Step 1.1.3. Reconstruct a cubic polynomial q3(x, y) such that

1

△x△y

∫

Ik

q3(x, y)dxdy = ũk, k = 1, ..., 9;

1

△x△y

∫

Ikx

q3(x, y)
x− xkx

△x
dxdy = ṽkx, kx = 5; (2.45)

1

△x△y

∫

Iky

q3(x, y)
y − yky
△y

dxdy = w̃ky , ky = 5.

Step 1.1.4. Reconstruct a quintic polynomial q4(x, y) such that

1

△x△y

∫

Ik

q4(x, y)dxdy = ũk, k = 1, ..., 9;

1

△x△y

∫

Ikx

q4(x, y)
x− xkx

△x
dxdy = ṽkx , kx = 1, 3, 4, 5, 6, 7, 9; (2.46)

1

△x△y

∫

Iky

q4(x, y)
y − yky
△y

dxdy = w̃ky , ky = 1, 2, 3, 5, 7, 8, 9.

What needs special attention is that the number of equations is greater than the number

of unknowns when we reconstruct the quadratic polynomial q2(x, y), the cubic polynomial
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q3(x, y) and the quintic polynomial q4(x, y). To solve this problem, we require these polyno-

mials must have the same cell average as u on the target cell Ii,j (to maintain conservation)

and match the other conditions in a least square sense as described in [11].

Step 1.1.5. Then, further manipulate the above reconstructed polynomials to obtain a

new set of polynomials pl2(x, y) as follows

pl2(x, y) =















q1(x, y), l2 = 1,

1

γl2,l2
ql2(x, y)−

l2−1
∑

l=1

γl,l2
γl2,l2

pl(x, y), l2 = 2, 3, 4,
(2.47)

with
∑l2

l=1 γl,l2 = 1, γl2,l2 6= 0, l2 = 2, 3, 4, where these γl1,l2 for l1 = 1, ..., l2; l2 = 2, 3, 4 are

still the linear weights and are defined as (2.12). Likewise putting these linear weights into

(2.47), obtain the following relations

p1(x, y) = q1(x, y),

p2(x, y) =
11

10
q2(x, y)−

1

10
q1(x, y),

p3(x, y) =
111

100
q3(x, y)−

11

100
q2(x, y),

p4(x, y) =
1111

1000
q4(x, y)−

111

1000
q3(x, y).

(2.48)

Step 1.2. Compute the corresponding nonlinear weights of the above polynomials.

First, compute the smoothness indicator βl2 of the function pl2(x, y) in the interval Ii,j:

βl2 =

κ
∑

|α|=1

∫

Ii,j

|Ii,j||α|−1

(

∂|α|

∂xαx∂yαy
pl2(x, y)

)2

dxdy, l2 = 2, 3, 4, (2.49)

where α = (αx, αy), |α| = αx + αy and κ = 2, 3, 5 for l2 = 2, 3, 4. Note that the definition of

β1 is an exception, where a new polynomial qnew1 (x, y) is required and is defined as follows:

(1) Reconstruct four polynomials q1k(x, y) for k = 1, 2, 3, 4, such that

1

△x△y

∫

Ik

q11(x, y)dxdy = ũk, k = 4, 5, 8;

1

△x△y

∫

Ik

q12(x, y)dxdy = ũk, k = 5, 6, 8;

1

△x△y

∫

Ik

q13(x, y)dxdy = ũk, k = 2, 5, 6;

1

△x△y

∫

Ik

q14(x, y)dxdy = ũk, k = 2, 4, 5,

(2.50)
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and then, obtain their associated smoothness indicators

β11 = (ũi,j − ũi−1,j)
2 + (ũi,j+1 − ũi,j)

2,

β12 = (ũi+1,j − ũi,j)
2 + (ũi,j+1 − ũi,j)

2,

β13 = (ũi+1,j − ũi,j)
2 + (ũi,j − ũi,j−1)

2,

β14 = (ũi,j − ũi−1,j)
2 + (ũi,j − ũi,j−1)

2,

(2.51)

and the absolute difference τ1 among these smoothness indicators

τ1 =

(

∑

k 6=l |β1k − β1l|
6

)2

, (2.52)

where the selection of the power is to be consistent with the definition (2.17) of τ1 in the one

dimension.

(2) Give these four polynomials q1k(x, y) the same linear weights γ1k = 1
4
for k = 1, 2, 3, 4

and calculate the corresponding nonlinear weights as

ω1k =
ω1k

∑4
l=1 ω1l

, (2.53)

ω1k = γ1k

(

1 +
τ1

β1k + ε

)

, k = 1, 2, 3, 4, (2.54)

where ε is still taken to be 10−10 as in the one dimensional case.

(3) Obtain a new polynomial

qnew1 (x, y) =
4

∑

l=1

ω1lq1l(x, y), (2.55)

and set β1 to be

β1 =
∑

|α|=1

|Ii,j||α|
(

∂|α|

∂xαx∂yαy
qnew1 (x, y)

)2

, (2.56)

where α = (αx, αy), |α| = αx + αy.

Then, define the corresponding nonlinear weights as (2.22).

Step 1.3. Obtain an approximation polynomial ui,j(x, y) of u(x, y).

The new reconstruction polynomial ui,j(x, y) of u(x, y) is defined as

ui,j(x, y) =

4
∑

l=1

ωl,4pl(x, y), (2.57)
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and the Gauss-Lobatto point values that we need are taken to be

u±
i∓1/2,j+ηl

= ui,j(xi∓1/2, yj+ηl), l = 1, 2, 3, 4;

u±
i+ξk,j∓1/2 = ui,j(xi+ξk , yj∓1/2), k = 1, 2, 3, 4;

ui+ξk,j+ηl = ui,j(xi+ξk , yj+ηl), k = 2, 3; l = 2, 3,

(2.58)

where ξ1 = η1 = −1/2, ξ2 = η2 = −
√
5/10, ξ3 = η3 =

√
5/10 and ξ4 = η4 = 1/2.

Step 2. Update the Gauss-Lobatto point values of u in the troubled-cells.

Here, we still choose the KXRCF troubled-cell indicator to identify the troubled-cells as

in the one dimensional case, that is the target cell Ii,j is identified to be a troubled-cell, if

ℵi,j =

∣

∣

∫

∂I−i,j

(

ui,j(x, y)− uni,j
(x, y)

)

ds
∣

∣

h
p+1
3

i,j

∣

∣∂I−i,j
∣

∣||ui,j(x, y)||
> 1, (2.59)

where ∂I−i,j is the inflow boundary (−→v · −→n < 0, −→v is the velocity of the flow and −→n is

the outer normal vector to ∂Ii,j), Ini,j
is the neighbor of Ii,j on the side of ∂I−i,j , hi,j is

the length of the cell Ii,j, the parameter p (i.e. the degree of ui,j(x, y)) is also taken to

be 5, ui,j(x, y) is the approximation polynomial of u(x, y) obtained in Step 1 and the

norm is still taken to be the L∞ norm. If the target cell Ii,j is identified to be a troubled-

cell, we would like to modify the first order moment ṽi,j in the x direction by using the

information of {ũi−1,j, ũi,j, ũi+1,j, ṽi−1,j , ṽi+1,j} and modify the first order moment w̃i,j in the

y direction by using the information of {ũi,j−1, ũi,j, ũi,j+1, w̃i,j−1, w̃i,j+1} in a dimension-by-

dimension manner. After modifying the first order moments in the troubled-cells, repeat the

reconstruction process Step 1 for these troubled-cells to update the corresponding Gauss-

Lobatto point values of u.

Step 3. Discretize the semi-discrete scheme in time.

After all these Gauss-Lobatto point values are obtained, put them into the formula of

the numerical flux. Then, discretize (2.39) by the third-order TVD Runge-Kutta method

(2.29) in time to complete the entire discretization process.

Remark 3. In Step 2 above, we still choose the KXRCF troubled-cell indicator to

identify troubled-cells. As shown in Section 3, the KXRCF troubled-cell indicator works
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pretty well for our scheme in the two-dimensional case as well. What needs a special attention

is that, for the two dimensional scalar equation, the solution u is defined as our indicator

variable, and then the corresponding −→v = f
′

(u) in the x-direction and −→v = g
′

(u) in the y-

direction; for the two dimensional Euler system, only the density ρ is set to be our indicator

variable, and then the corresponding −→v = µ is the velocity in the x-direction of the fluid and

−→v = ν is the velocity in the y-direction of the fluid. In short, for the two dimensional case,

the line integral average in the formula (2.59) is approximated by a four-point Gauss-Lobatto

integration, that is

1
∣

∣∂I−i,j
∣

∣

∣

∣

∣

∣

∣

∫

∂I−i,j

(

ui,j(x, y)− uni,j
(x, y)

)

ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4
∑

l=1

△yωl(u
+
i− 1

2
,j+ηl

− u−
i− 1

2
,j+ηl

) ∗ sf(−→v i− 1
2
,j)

+
4

∑

l=1

△yωl(u
−
i+ 1

2
,j+ηl

− u+
i+ 1

2
,j+ηl

) ∗ sf(−−→v i+ 1
2
,j)

+
4

∑

k=1

△xωk(u
+
i+ξk,j− 1

2

− u−
i+ξk,j− 1

2

) ∗ sf(−→v i,j− 1
2
)

+
4

∑

k=1

△xωk(u
−
i+ξk,j+

1
2

− u+
i+ξk,j+

1
2

) ∗ sf(−−→v i,j+ 1
2
)

∣

∣

∣

∣

∣

1
∣

∣∂I−i,j
∣

∣

,

(2.60)

where the switch function sf(x) is defined as (2.32) and the norm ||ui,j(x, y)|| is taken to be

the maximum norm of all the Gauss-Lobatto point values in the cell Ii,j(i.e. ||ui,j(x, y)|| ≈

max{|u±
i∓1/2,j+ηl

| : l = 1, 2, 3, 4; |u±
i+ξk,j∓1/2| : k = 1, 2, 3, 4; |ui+ξk,j+ηl| : k = 2, 3; l = 2, 3}).

Note that all the values used in the troubled-cell indicator are also already obtained in the

reconstruction process Step 1, thus there is no need to reconstruct an extra polynomial as

in [25, 26].

3 Numerical tests

In this section, a number of typical numerical examples are given to demonstrate the

stability and resolution of our moment-based multi-resolution HWENO scheme. Here, the

scheme termed as “WENO5-Z” represents the fifth order WENO-Z scheme, the scheme

termed as “HWENO6” represents the sixth order moment-based multi-resolution HWENO
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scheme without Step 2 i.e. without the modification process, and the scheme termed as

“HWENO6-M5-I/NI” represents the sixth order moment-based multi-resolution HWENO

scheme with the first order moments of the troubled-cells are modified by a quartic polyno-

mial, where “I” means only the first order moments of the troubled-cells are modified while

“NI” means the first order moments of all the cells are modified without judgment. Before

we start to show the results of the examples we have calculated, let us first explain some of

the parameters in particular: the first one is that we set the CFL number as 0.6 for both the

one and two dimensional cases, but note that for the accuracy tests a suitably reduced time

step is used in order to ensure the dominance of the spatial error; the second one is that we

take the linear weights as γ1,4 = 1, γ2,4 = 10, γ3,4 = 100 and γ4,4 = 1000 both in the one

and two dimensions in this paper.

Example 3.1. One-dimensional scalar Burgers’ equation:

µt +

(

µ2

2

)

x

= 0, 0 < x < 2, (3.1)

with the initial condition µ(x, 0) = 0.5 + sin(πx) and periodic boundary condition. The

solution for this problem remains smooth at time T = 0.5/π, and the corresponding errors

and convergence orders when approximating the solution with the WENO5-Z, HWENO6,

HWENO6-M5-I and HWENO6-M5-NI schemes are listed in Table 3.1. However, the solution

becomes discontinuous at time T = 1.5/π. The reference solution and its approximation

using the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes at this

later time, as well as the time-history of the flagged troubled-cells are plotted in Fig 3.1.

Example 3.2. Two-dimensional scalar Burgers’ equation:

µt +

(

µ2

2

)

x

+

(

µ2

2

)

y

= 0, 0 < x, y < 4, (3.2)

with the initial condition µ(x, y, 0) = 0.5 + sin
(

π(x + y)/2
)

and periodic boundary condi-

tion. As in the one dimensional case, the solution for this problem remains smooth at time

T = 0.5/π, and the corresponding errors and convergence orders when approximating the

22



x

u

0 0.5 1 1.5 2

­0.5

0

0.5

1

1.5

x

u

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

­0.5

0

0.5

1

1.5

x

t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.1: 1D-Burgers’ equation. T = 1.5/π. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds:
WENO5-Z scheme with double cells; gradients: WENO5-Z scheme; squares: HWENO6
scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme. Number of
cells: 200.
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Table 3.1: µt +
(

µ2

2

)

x
= 0. The initial condition µ(x, 0) = 0.5 + sin(πx). Periodic bound-

ary condition. T = 0.5/π. WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI
schemes. L1 and L∞.

WENO5-Z scheme
grid points L1 error order L∞ error order

10×2 2.57E-04 2.03E-03
20×2 1.62E-05 3.99 2.15E-04 3.23
40×2 7.18E-07 4.49 9.94E-06 4.44
80×2 2.43E-08 4.88 3.55E-07 4.81
160×2 7.91E-10 4.94 1.15E-08 4.94
320×2 2.50E-11 4.98 3.68E-10 4.97

WENO5-Z scheme HWENO6 scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

10 6.92E-04 2.93E-03 5.24E-03 2.26E-02
20 2.57E-04 1.43 2.03E-03 0.30 5.67E-04 3.21 4.61E-03 2.29
40 1.62E-05 3.99 2.15E-04 3.23 1.23E-06 8.85 1.37E-05 8.40
80 7.18E-07 4.49 9.94E-06 4.44 2.90E-09 8.72 3.27E-08 8.71
160 2.43E-08 4.88 3.55E-07 4.81 2.46E-11 6.88 3.52E-10 6.54
320 7.91E-10 4.94 1.15E-08 4.94 3.95E-13 5.96 3.69E-12 6.57

HWENO6-M5-I scheme HWENO6-M5-NI scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

10 5.24E-03 2.26E-02 6.48E-03 3.01E-02
20 5.67E-04 3.21 4.61E-03 2.29 3.11E-04 4.38 9.84E-04 4.93
40 1.23E-06 8.85 1.37E-05 8.40 6.97E-06 5.48 2.55E-05 5.27
80 2.90E-09 8.72 3.27E-08 8.71 5.96E-08 6.87 9.36E-07 4.77
160 2.46E-11 6.88 3.52E-10 6.54 1.88E-09 4.98 2.95E-08 4.99
320 3.95E-13 5.96 3.69E-12 6.57 6.02E-11 4.97 9.53E-10 4.95

solution with the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes are

listed in Table 3.2. However, the solution becomes discontinuous at time T = 1.5/π. The

reference solution and its approximation using the WENO5-Z, HWENO6, HWENO6-M5-I

and HWENO6-M5-NI schemes at x = y at this later time, as well as the time-history of the

flagged troubled-cells at x = y and the locations of the troubled-cells at the final time are

plotted in Fig 3.2.
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Figure 3.2: 2D-Burgers’ equation. T = 1.5/π. Top: density, density zoomed in at
x = y; bottom: the time-history of the flagged troubled-cells at x = y, the locations of
the troubled-cells at the final time. Solid line: the exact solution; diamonds: WENO5-Z
scheme with double cells; gradients: WENO5-Z scheme; squares: HWENO6 scheme; trian-
gles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme. Number of cells: 200×200.
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Table 3.2: µt +
(

µ2

2

)

x
+
(

µ2

2

)

y
= 0. The initial condition µ(x, y, 0) = 0.5+ sin

(

π(x+ y)/2
)

.

Periodic boundary condition. T = 0.5/π. WENO5-Z, HWENO6, HWENO6-M5-I and
HWENO6-M5-NI schemes. L1 and L∞.

WENO5-Z scheme
grid points L1 error order L∞ error order

10
√
3× 10

√
3 3.26E-04 1.62E-03

20
√
3× 20

√
3 3.07E-05 3.40 2.13E-04 2.93

40
√
3× 40

√
3 1.29E-06 4.47 1.65E-05 3.61

80
√
3× 80

√
3 4.69E-08 4.78 6.75E-07 4.61

160
√
3×160

√
3 1.54E-09 4.90 2.24E-08 4.88

320
√
3×320

√
3 4.94E-11 4.97 7.21E-10 4.96

WENO5-Z scheme HWENO6 scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
10× 10 1.69E-03 5.84E-03 1.03E-02 2.96E-02
20× 20 2.01E-04 3.07 1.42E-03 2.03 7.78E-05 7.05 2.65E-04 6.80
40× 40 1.52E-05 3.72 1.46E-04 3.27 2.41E-06 5.01 1.56E-05 4.09
80× 80 6.30E-07 4.59 8.57E-06 4.09 3.86E-08 5.97 5.42E-07 4.84
160×160 2.29E-08 4.77 3.27E-07 4.71 5.62E-10 6.10 9.83E-09 5.78
320×320 7.52E-10 4.93 1.10E-08 4.89 6.83E-12 6.36 1.24E-10 6.31

HWENO6-M5-I scheme HWENO6-M5-NI scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
10× 10 1.03E-02 2.96E-02 1.08E-02 4.31E-02
20× 20 7.78E-05 7.05 2.65E-04 6.80 1.42E-04 6.25 8.03E-04 5.74
40× 40 2.41E-06 5.01 1.56E-05 4.09 6.62E-06 4.42 3.84E-05 4.39
80× 80 3.86E-08 5.97 5.42E-07 4.84 1.03E-07 6.00 8.33E-07 5.53
160×160 5.62E-10 6.10 9.83E-09 5.78 2.87E-09 5.17 2.30E-08 5.18
320×320 6.83E-12 6.36 1.24E-10 6.31 9.77E-11 4.88 7.42E-10 4.95

Example 3.3. One-dimensional Euler equations:

∂

∂t





ρ
ρµ
E



 +
∂

∂x





ρµ
ρµ2 + p
µ(E + p)



 = 0, 0 < x < 2π, (3.3)

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure. The

initial conditions are

ρ(x, 0) = 1+0.2 sin(x)

2
√
3

, µ(x, 0) =
√
γρ(x, 0), p(x, 0) = ρ(x, 0)γ, (3.4)

and the boundary conditions are periodic. The exact solution of above Euler equations is

given in [14]. The solution for this problem remains smooth at time T = 3, and the corre-
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sponding errors and convergence orders when approximating the solution with the WENO5-

Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes are listed in Table 3.3.

Table 3.3: 1D-Euler equations: The initial condition ρ(x, 0) = 1+0.2 sin(x)

2
√
3

, µ(x, 0) =
√
γρ(x, 0)

and p(x, 0) = ρ(x, 0)γ. Periodic boundary condition. T = 3. WENO5-Z, HWENO6,
HWENO6-M5-I and HWENO6-M5-NI schemes. L1 and L∞.

WENO5-Z scheme
grid points L1 error order L∞ error order

10×2 4.24E-04 2.15E-03
20×2 3.72E-05 3.51 3.10E-04 2.79
40×2 2.02E-06 4.20 3.23E-05 3.26
80×2 7.04E-08 4.84 1.46E-06 4.47
160×2 2.13E-09 5.05 5.15E-08 4.83
320×2 6.96E-11 4.93 1.66E-09 4.95

WENO5-Z scheme HWENO6 scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

10 2.87E-03 1.03E-02 8.54E-04 2.95E-03
20 4.24E-04 2.76 2.15E-03 2.26 1.87E-05 5.52 1.41E-04 4.39
40 3.72E-05 3.51 3.10E-04 2.79 4.99E-07 5.23 9.01E-06 3.97
80 2.02E-06 4.20 3.23E-05 3.26 7.57E-09 6.04 1.95E-07 5.53
160 7.04E-08 4.84 1.46E-06 4.47 1.10E-10 6.10 2.60E-09 6.23
320 2.13E-09 5.05 5.15E-08 4.83 1.69E-12 6.03 3.65E-11 6.15

HWENO6-M5-I scheme HWENO6-M5-NI scheme
grid points L1 error order L∞ error order L1 error order L∞ error order

10 8.54E-04 2.95E-03 8.76E-04 3.67E-03
20 1.87E-05 5.52 1.41E-04 4.39 1.09E-04 3.01 5.35E-04 2.78
40 4.99E-07 5.23 9.01E-06 3.97 8.44E-06 3.69 1.05E-04 2.35
80 7.57E-09 6.04 1.95E-07 5.53 2.49E-07 5.08 5.37E-06 4.28
160 1.10E-10 6.10 2.60E-09 6.23 7.12E-09 5.13 1.66E-07 5.02
320 1.69E-12 6.03 3.65E-11 6.15 2.15E-10 5.05 5.03E-09 5.05

Example 3.4. Two-dimensional Euler equations:

∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2 + p
ρµν

µ(E + p)









+
∂

∂y









ρν
ρµν

ρν2 + p
ν(E + p)









= 0, 0 < x, y < 4π, (3.5)

where ρ is the density, µ is the velocity in the x-direction, ν is the velocity in the y-direction,
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E is the total energy and p is the pressure. The initial conditions are

ρ(x, y, 0) =
1+0.2 sin(x+y

2
)√

6
, µ(x, y, 0) = ν(x, y, 0) =

√

γ
2
ρ(x, y, 0), p(x, y, 0) = ρ(x, y, 0)γ,

(3.6)

and the boundary conditions are periodic in both directions. The exact solution of above

Euler equations is given in [14]. The solution for this problem continues to remain smooth at

time T = 3, and the corresponding errors and convergence orders when approximating the

solution with the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes are

listed in Table 3.4.

Table 3.4: 2D-Euler equations: The initial condition ρ(x, y, 0) =
1+0.2 sin(x+y

2
)√

6
, µ(x, y, 0) =

ν(x, y, 0) =
√

γ
2
ρ(x, y, 0) and p(x, y, 0) = ρ(x, y, 0)γ. Periodic boundary condition. T = 3.

WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes. L1 and L∞.
WENO5-Z scheme

grid points L1 error order L∞ error order

10
√
3× 10

√
3 7.80E-04 5.28E-03

20
√
3× 20

√
3 9.76E-05 2.99 9.45E-04 2.48

40
√
3× 40

√
3 6.72E-06 3.78 9.69E-05 3.21

80
√
3× 80

√
3 2.56E-07 4.71 5.30E-06 4.19

160
√
3×160

√
3 7.67E-09 5.03 1.82E-07 4.83

320
√
3×320

√
3 2.32E-10 5.04 5.64E-09 5.01

WENO5-Z scheme HWENO6 scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
10× 10 5.04E-03 1.56E-02 6.56E-03 1.74E-02
20× 20 4.86E-04 3.37 3.78E-03 2.04 2.54E-04 4.69 1.78E-03 3.29
40× 40 5.54E-05 3.13 5.62E-04 2.74 1.13E-05 4.50 1.13E-04 3.97
80× 80 3.50E-06 3.98 5.70E-05 3.30 2.70E-07 5.38 6.06E-06 4.22
160×160 1.22E-07 4.83 2.65E-06 4.42 4.18E-09 6.01 1.14E-07 5.73
320×320 3.69E-09 5.05 8.83E-08 4.90 4.67E-11 6.49 1.37E-09 6.39

HWENO6-M5-I scheme HWENO6-M5-NI scheme
grid points L1 error order L∞ error order L1 error order L∞ error order
10× 10 6.56E-03 1.74E-02 6.70E-03 2.20E-02
20× 20 2.54E-04 4.69 1.78E-03 3.29 4.20E-04 4.00 2.73E-03 3.01
40× 40 1.13E-05 4.50 1.13E-04 3.97 2.47E-05 4.09 2.23E-04 3.61
80× 80 2.70E-07 5.38 6.06E-06 4.22 7.57E-07 5.03 1.47E-05 3.93
160×160 4.18E-09 6.01 1.14E-07 5.73 2.14E-08 5.14 4.76E-07 4.95
320×320 4.67E-11 6.49 1.37E-09 6.39 6.24E-10 5.10 1.30E-08 5.20
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Comment: According to the results listed in above four tables 3.1 − 3.4, we can see that

both the HWENO6 and HWENO6-M5-I schemes can reach sixth order accuracy, this is

because the reconstruction process is of the sixth order and the ratio of the troubled-cells

of the HWENO6-M5-I scheme is always 0 i.e. the modification procedure has not been

enacted for these smooth cases. If we modify the first order moments of all the cells without

judgment, we can see that the HWENO6-M5-NI scheme can reach fifth order accuracy as

expected, this is because the first order moments of all the cells are modified by a quartic

polynomial, which leads to the decrease in the order of accuracy. Moreover, the error of this

HWENO6-M5-NI scheme is lower than that of the WENO5-Z scheme with the same meshes,

but higher than that of the WENO5-Z scheme with the same degree of freedoms i.e. with

doubled (1D) or tripled (2D) meshes.

From Fig 3.1 and Fig 3.2, we can observe that all the schemes work well in comparison

with the exact solution with the results from all the schemes being almost indistinguishable

and the moment modification process does not happen when the solution is still smooth from

the corresponding time-history of the flagged troubled-cells.

Example 3.5. The Lax problem: one-dimensional Euler equations (3.3) with the Riemann

initial condition:

(ρ, µ, p)T =

{

(0.445, 0.698, 3.528)T , −0.5 < x < 0,
(0.5, 0, 0.571)T , 0 < x < 0.5.

(3.7)

The reference solution and its approximation of the density ρ using theWENO5-Z, HWENO6,

HWENO6-M5-I and HWENO6-M5-NI schemes at the final time T = 0.16, as well as the

time-history of the flagged troubled-cells are plotted in Fig 3.3.

Example 3.6. The shock density wave interaction problem: one-dimensional Euler equa-

tions (3.3) with a moving Mach=3 shock interaction containing sine waves in the density:

(ρ, µ, p)T =

{

(3.857143, 2.629369, 10.333333)T, −5 < x < −4,
(

1 + 0.2 sin(5x), 0, 1
)T
, −4 < x < 5.

(3.8)
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Figure 3.3: The Lax problem. T = 0.16. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds:
WENO5-Z scheme with double cells; gradients: WENO5-Z scheme; squares: HWENO6
scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme. Number of
cells: 200.

30



The reference solution and its approximation of the density ρ using theWENO5-Z, HWENO6,

HWENO6-M5-I and HWENO6-M5-NI schemes at the final time T = 1.8, as well as the time-

history of the flagged troubled-cells are plotted in Fig 3.4.
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Figure 3.4: The shock density wave interaction problem. T = 1.8. Top: density, density
zoomed in; bottom: the time-history of the flagged troubled-cells. Solid line: the exact
solution; diamonds: WENO5-Z scheme with double cells; gradients: WENO5-Z scheme;
squares: HWENO6 scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI
scheme. Number of cells: 400.

Example 3.7. The blast wave problem: one-dimensional Euler equations (3.3) with the

initial condition:

(ρ, µ, p)T =







(1, 0, 103)T , 0 < x < 0.1,
(1, 0, 10−2)T , 0.1 < x < 0.9,
(1, 0, 102)T , 0.9 < x < 1.

(3.9)
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The reference solution and its approximation of the density ρ using theWENO5-Z, HWENO6,

HWENO6-M5-I and HWENO6-M5-NI schemes at the final time T = 0.038, as well as the

time-history of the flagged troubled-cells are plotted in Fig 3.5.
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Figure 3.5: The blast wave problem. T = 0.038. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds:
WENO5-Z scheme with double cells; gradients: WENO5-Z scheme; squares: HWENO6
scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme. Number of
cells: 800.

Example 3.8. The Sedov blast wave problem: one-dimensional Euler equations (3.3) with

the initial condition:

(ρ, µ, E)T =

{

(1, 0, 10−12)T , x ∈ [−2, 2] \ the center cell,
(1, 0, 3200000△x

)T , x ∈ the center cell.
(3.10)
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The reference solution and its approximation of the density ρ, the velocity µ and the pressure

p using the HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes at the final time

T = 0.001, as well as the time-history of the flagged troubled-cells are plotted in Fig 3.6.
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Figure 3.6: The Sedov blast wave problem. T = 0.001. Top: density, velocity; bottom:
pressure, the time-history of the flagged troubled-cells. Solid line: the exact solution; squares:
HWENO6 scheme; triangles: HWENO6-M5-I scheme; circles: HWENO6-M5-NI scheme.
Number of cells: 400.

Example 3.9. Double Mach reflection problem: two-dimensional Euler equations (3.5) in a

computational domain [0, 4]×[0, 1] with a reflection wall lying at the bottom, starting from

the position (x, y) = (1
6
, 0), making a 60◦ angle with the x-axis. For the bottom of the

domain, at the reflection wall the reflection boundary condition is applied, and at the rest

of the bottom the exact post-shock condition is imposed. For the top of the domain, the
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corresponding boundary condition is exactly the motion of a Mach 10 shock with γ = 1.4.

The contours of the computed density ρ and its blow-up region around the double Mach

stem obtained by the WENO5-Z, HWENO6 (with the power of the nonlinear weights (2.22)

set to be 2 i.e. ωl1,4 = γl1,4

(

1 +
(

τ4
βl1

+ε

)2
)

, l1 = 1, ..., 4, since this scheme will blow up

without modification under the parameter conditions given in above section for the double

Mach reflection problem), HWENO6-M5-I and HWENO6-M5-NI schemes, as well as the

corresponding locations of the troubled-cells for the HWENO6-M5-I scheme at the final

time T = 0.2 are plotted in the Figs 3.7-3.11.
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Figure 3.7: Double Mach reflection problem. T = 0.2. WENO5-Z. 30 equally spaced density
contours from 1.5 to 22.7. From top to bottom: density contours, zoom-in density contours
around the Mach stem. Number of cells: 1200

√
3× 300

√
3 in the region of [0, 4]×[0, 1].

Example 3.10. Forward step problem: two-dimensional Euler equations (3.5) in a one

length unit wide and three length units long wind tunnel with a 0.2 length units high step
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Figure 3.8: Double Mach reflection problem. T = 0.2. WENO5-Z. 30 equally spaced
density contours from 1.5 to 22.7. From top to bottom: density contours, zoom-in density
contours around the Mach stem. Number of cells: 1200× 300 in the region of [0, 4]×[0, 1].
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Figure 3.9: Double Mach reflection problem. T = 0.2. HWENO6(with the power of the

nonlinear weights (2.22) set to be 2 i.e. ωl1,4 = γl1,4

(

1 +
(

τ4
βl1

+ε

)2
)

, l1 = 1, ..., 4). 30

equally spaced density contours from 1.5 to 22.7. From top to bottom: density contours,
zoom-in density contours around the Mach stem. Number of cells: 1200×300 in the region
of [0, 4]×[0, 1].
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Figure 3.10: Double Mach reflection problem. T = 0.2. HWENO6-M5-I. 30 equally spaced
density contours from 1.5 to 22.7. From top to bottom: density contours, zoom-in density
contours around the Mach stem, the locations of the troubled-cells at the final time. Number
of cells: 1200×300 in the region of [0, 4]×[0, 1].
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Figure 3.11: Double Mach reflection problem. T = 0.2. HWENO6-M5-NI. 30 equally
spaced density contours from 1.5 to 22.7. From top to bottom: density contours, zoom-
in density contours around the Mach stem. Number of cells: 1200×300 in the region of
[0, 4]×[0, 1].
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located 0.6 length units from the left side of the tunnel. At the beginning, we initialize this

problem by a right-going Mach 3 flow. Along the wall of the tunnel the reflection boundary

condition is applied, and at the entrance the inflow boundary condition is imposed, while at

the exit the outflow boundary condition is imposed. The contours of the computed density

ρ obtained by the WENO5-Z, HWENO6, HWENO6-M5-I and HWENO6-M5-NI schemes,

as well as the corresponding locations of the troubled-cells for the HWENO6-M5-I scheme

at the final time T = 4 are plotted in Figs 3.12-3.16.
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Figure 3.12: Forward step problem. T = 4. WENO5-Z. 30 equally spaced density contours
from 0.32 to 6.15. Number of cells: 600

√
3× 200

√
3 in the region of [0, 3]×[0, 1].
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Figure 3.13: Forward step problem. T = 4. WENO5-Z. 30 equally spaced density contours
from 0.32 to 6.15. Number of cells: 600× 200 in the region of [0, 3]×[0, 1].

Comment: From above six examples 3.5−3.10, we can see that the results of the HWENO6-

M5-I scheme have much better resolutions and sharper shock transitions than those of the
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Figure 3.14: Forward step problem. T = 4. HWENO6. 30 equally spaced density contours
from 0.32 to 6.15. Number of cells: 600×200 in the region of [0, 3]×[0, 1].

x

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 3.15: Forward step problem. T = 4. HWENO6-M5-I. 30 equally spaced density
contours from 0.32 to 6.15. From top to bottom: density contours, the locations of the
troubled-cells at the final time. Number of cells: 600×200 in the region of [0, 3]×[0, 1].
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Figure 3.16: Forward step problem. T = 4. HWENO6-M5-NI. 30 equally spaced density
contours from 0.32 to 6.15. Number of cells: 600×200 in the region of [0, 3]×[0, 1].

HWENO6 scheme without the modification procedure. This might be due to the fact that

after modifying the first order moments of the troubled-cells, the proportion of the last two

layers is much higher than that of the first two layers in the reconstruction process. But if

we modify the first order moments of all the cells without judgment, we can find that for the

two examples 3.9 and 3.10, the resolution of the HWENO6-M5-NI scheme is not significantly

improved compared to the HWENO6 scheme. This is because too much good information

i.e. the first order moments of those good-cells has been edited out. Combined with the

results obtained in the previous four continuous examples 3.1−3.4, modifying the first order

moments of all the cells without judgment will lead to a drop in order, indicating that the

judgment step is very necessary. Moreover, we can also observe that such HWENO6-M5-I

scheme has better resolution than the WENO5-Z scheme with the same meshes and almost

the same resolution as the WENO5-Z scheme with the same degree of freedoms, but better

stability than the WENO5-Z scheme, which can be seen from example 3.8 i.e. the Sedov

blast wave problem, since this example will burst when using the WENO5-Z scheme. Also,

this modification procedure can increase the stability of our scheme according to the double

Mach reflection problem, since this problem will blow up when using the the HWENO6

scheme without modification under the parameter conditions given in above section.
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4 Concluding remarks

In this paper, we have designed a high-order moment-based multi-resolution HWENO

scheme for hyperbolic conservation laws in the one and two dimensional cases on structured

meshes. In comparison with our previous work in [14], the new feature of this HWENO

scheme is that the zeroth and first order moments rather than the first order derivative

are used in the spacial reconstruction algorithm, and only the function values of the Gauss-

Lobatto points in one or two dimensional case are needed to be reconstructed. Also, after the

reconstruction algorithm, an extra modification procedure is used to modify those first order

moments of the troubled-cells and the corresponding Gauss-Lobatto point values of these

troubled-cells need to be updated by repeating the reconstruction algorithm, to enhance

both resolution and stability. At the same time, the linear weights are not unique and

are independent of the node position, and the CFL number can still be 0.6 whether for

the one or two dimensional case, which has to be 0.2 in the two dimensional case for other

HWENO schemes, for example those in [15, 16, 25, 26]. This HWENO scheme is achieved by

reconstructing the Gauss-Lobatto point values, modifying the first order moments of those

cells which are identified to be troubled-cells by the KXRCF troubled-cell indicator and

repeating the reconstruction algorithm to update the corresponding Gauss-Lobatto point

values of these troubled-cells. In comparison with the multi-resolution WENO scheme, our

major advantages are still the compactness of the stencils and smaller errors under the

same mesh and with the same order. The framework of this moment-based multi-resolution

HWENO scheme would be particularly efficient and simple on unstructured meshes, the

study of which is our ongoing work.
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