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Abstract

In this paper, a high-order moment-based multi-resolution Hermite weighted essentially
non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws. The main
idea of this scheme is derived from our previous work [J. Comput. Phys., 446 (2021) 110653],
in which the integral averages of the function and its first order derivative are used to re-
construct both the function and its first order derivative values at the boundaries. However,
in this paper, only the function values at the Gauss-Lobatto points in the one or two di-
mensional case need to be reconstructed by using the information of the zeroth and first
order moments. In addition, an extra modification procedure is used to modify those first
order moments in the troubled-cells, which leads to an improvement of stability and an en-
hancement of resolution near discontinuities. To obtain the same order of accuracy, the size
of the stencil required by this moment-based multi-resolution HWENO scheme is still the
same as the general HWENO scheme and is more compact than the general WENO scheme.
Moreover, the linear weights are not unique and are independent of the node position, and
the CFL number can still be 0.6 whether for the one or two dimensional case, which has to be
0.2 in the two dimensional case for other HWENO schemes. Extensive numerical examples
are given to demonstrate the stability and resolution of such moment-based multi-resolution

HWENO scheme.
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1 Introduction

In this paper, a high-order moment-based multi-resolution Hermite weighted essentially

non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws

u+ V- f(u) =0,
(1.1)

w(zy, .y g, 0) = ug(z1, ...\ Tq).
We concentrate our attention on the one and two dimensional cases (d = 1 or 2), and in
these cases we denote x; as x and x5 as y.

Conservation laws arise from the physical law that the conservative quantity in any control
body can change only due to the flux passing through its boundaries, which naturally hold
for many fundamental physical quantities, such as the mass, momentum, energy and so
on. Such conservation laws are widely used in a broad spectrum of disciplines where wave
motion or advective transport is important: gas dynamics, acoustics, elastodynamics, optics,
geophysics, and biomechanics, to name but a few.

The differential equation (1.1) can be derived from the integral equation by simple ma-
nipulations provided that the conservative quantity and its corresponding flux are sufficiently
smooth. This proviso is important because in practice many interesting solutions are not
smooth, but contain discontinuities such as shock waves. A fundamental feature of nonlinear
conservation laws is that discontinuities can easily develop spontaneously even from smooth
initial data, and must be dealt with carefully both mathematically and computationally. At
a discontinuity in the conservative quantity, the differential equation does not hold in the
classical sense and it is important to remember that the integral form of the conservation
laws does continue to hold which is more fundamental. This is also why we choose conser-
vative schemes, such as the finite volume method considered in this paper, which is based
on the integral form of the conservation laws.

Since conservation laws have a very wide range of applications and it is almost impossible
in general to get their exact solutions, many scholars have explored and proposed a series of

numerical methods and are still trying to improve the performance of these algorithms. In



1994, Liu et al. proposed the first finite volume WENO scheme in [17], and then, in 1996,
Jiang and Shu improved this WENO scheme to fifth order and to conservative finite difference
formulation (which is more efficient in multi-dimensions), and gave a general definition of
the smoothness indicators and nonlinear weights in [12]. The methodology of such WENO
schemes is to use a nonlinear convex combination of all the candidate stencils to improve the
order of accuracy in smooth regions without destroying the non-oscillatory behavior near
discontinuities. This is also the difference of such WENO schemes from the ENO schemes
in [10, 22, 23|, which only choose the locally smoothest stencil automatically among all the
central and biased spatial stencils. Thereafter, different kinds of WENO schemes have been
developed in, e.g. [3, 18, 6, 28, 29, 2, 1]. Although these WENO schemes work well for most
of the problems we encountered, there is still room for improvement. For example, if we
want to obtain a higher order scheme, we must further expand the stencil. This will make
our scheme not very compact and will also bring trouble to the processing of the boundary
conditions. In order to overcome this drawback, Qiu and Shu proposed the first HWENO
scheme and apply it as limiter for discontinuous Galerkin (DG) method for one-dimensional
problems in [19] and then, in 2005, they extended this HWENO scheme to two-dimensional
problems in [20], where two different stencils were used to reconstruct the function and its
first order derivative values, respectively. The scheme evolves lower degree polynomials while
reconstructing higher degree polynomials to approximate the solution. Dumbser et al. [§]
extended the scheme to a new family of in-cell recovery DG method, referred to as Py Py
methods, which yields a general, unified framework that contains two important special
cases, the classical high order finite volume (FV) schemes (N = 0) and the conventional
discontinuous Galerkin (DG) method (N = M), and the HWENO schemes can be seen as
the P, Py method. The main difference of such HWENO scheme from the WENO scheme
is that both the function and its first order derivative values are evolved in time and used
in the reconstruction process, not like the WENO scheme in which only the function values

are evolved and used. This allows the HWENO scheme to obtain the same order of accuracy



as the WENO scheme with relatively narrower stencils. But there occurs a new issue, that
is this HWENO scheme is not stable enough when simulating certain severe problems with
strong discontinuities, including the double Mach and forward step problems. This difficulty
is largely due to the fact that the first order derivative values may become very large near
these discontinuities. Thus, the stability issue may arise, if these large values are used
straightforwardly without any modification. Driven by the goal of solving this issue, many
effective methods based on the idea of the original HWENO scheme have emerged. For
example, the scheme with a new procedure to reconstruct the first order derivative values by
Zhu and Qiu in [27] in 2008, the scheme with an additional positivity-preserving limiter by
Liu and Qiu in [15, 16] in 2015 and 2016, the scheme with a troubled-cell indicator to modify
the first order moments near the discontinuities before the reconstruction algorithm by Zhao
et al. in [25, 26] in 2020, the scheme with a hierarchy of nested central spatial stencils by Li
et al. in [14] in 2021 and so on, have been developed.

In 2018 and 2019, Zhu and Shu proposed a new type of high-order finite difference and
finite volume multi-resolution WENO schemes in [28; 29], which only use the information
on a hierarchy of nested central spatial stencils and can not only obtain high order accuracy
in smooth regions but also allow the accuracy near discontinuities to degrade gradually.
Following the idea of these multi-resolution WENO schemes, we designed a new type of
high-order finite volume and finite difference multi-resolution HWENO schemes in [14] in
2021, for which only the function values need to be reconstructed by the HWENO schemes,
and the first order derivative values are obtained directly from the polynomial with the
highest degree in the hierarchy. This can improve the resolution of the scheme but does not
have much effect on its stability, since the first two layers in the hierarchy do not contain
the information of the first order derivative. In this paper, the function and its first order
moment values are used in our reconstruction algorithm, and only the function values are
needed to be reconstructed according to our control equations. Thus, the coupling between

the function and its first order moment is stronger.



There are two issues to be addressed. The first one is that, although the bigger the linear
weights are for higher degree polynomials, the steeper the shock transitions become near
the discontinuities, the gap between these linear weights cannot be too large, otherwise the
corresponding nonlinear weights will still be too close to the linear weights near the discon-
tinuities. This will cause problems, since the higher degree polynomials, which require the
information of the first order derivative or moment, account for too much in the final recon-
struction polynomial, but such first order derivative or moment values may be very large near
the discontinuities. The other one is that with the suitable choice of the linear weights, the
order of the final reconstruction polynomial will degrade gradually near the discontinuities
until it drops to first order, which will smooth out these discontinuities to a certain extent.
Guided by the idea of Zhao et al. in [25, 26], we first perform the reconstruction algorithm,
and then modify the first order moments of the troubled-cells and repeat the reconstruction
algorithm for these troubled-cells to update the corresponding Gauss-Lobatto point values.
After such a modification procedure, the proportion of the last two layers will become much
higher than that of the first two layers in the reconstruction process, thus the resolution
near the discontinuities can be increased significantly. In the meantime, this modification
procedure can also improve the stability of the scheme by reducing the magnitude of the
first order moments near the discontinuities. In order to better adapt to our high order
scheme, we choose the HLLC-flux (Harten-Lax-van Leer-contact flux) to be our numerical
flux, which is an approximate Riemann solver by assuming that there are four states in the
transition from the left to the right states, thus staying closer to the real physical situation.

The organization of this paper is as follows: In Section 2, we describe the reconstruction
procedure of the moment-based multi-resolution HWENO scheme for hyperbolic conservation
laws in the one and two dimensions in detail. In Section 3, we propose a number of numerical
examples to illustrate the accuracy and resolution of our HWENO scheme. Concluding

remarks are given in Section 4.



2 Moment-based multi-resolution HWENO scheme

In this section, we describe the reconstruction procedure of the moment-based multi-
resolution HWENO scheme for the one and two dimensional hyperbolic conservation laws,
which has sixth order of accuracy in smooth regions and high resolution near discontinuities.
Here sixth order is simply taken as an example, arbitrarily high order HWENO schemes can

be designed following the same lines.

2.1 One dimensional case

In this subsection, we first consider the following relatively simple one-dimensional hy-

perbolic conservation laws

U + f(u):c =0,
(2.1)

u(x,0) = ug(x).
For simplicity, the computational domain is divided by a uniform mesh I; = [x;_1 /2, Z;11 /2]
with the uniform mesh size Az = ;412 —2;_1/2, and the corresponding cell center is denoted
by z; = %(%‘—1/2 + Tit1/2)-

T—x;

Firstly, multiply the governing equation (2.1) by ﬁ and ﬁ -+, respectively. Then,

integrate the resulting equations over the target cell I; and perform the integration by parts,

obtaining the following equations
L udr = L Sfu(wigrye, t) = fulzimiye.t))],
Az ), AV

! — T 1 1
Az /1 utxﬁxx M= |:f(u(l'i+1/2,t)) + f(“(xi—l/%t))} MRVNSE /1 flu)dz.

Next, define the zeroth and first order moments as follows
w(t) = 5 [ a0
u;(t) = — [ wu(x, t)dx,
Az ),

_ 1 T — x;
Ti(t) = A—gj/ju(m,t) Ay dz,




and then, swap the spatial integration and time derivation and approximate the flux by a

numerical flux, obtaining the following semi-discrete conservative scheme

du; (t 1 A
dzf ) = _A—x(fi+l/2 — fic1/2),

5 (4) o i | (24)
F7E (fig1y2 + fic1y2) + A—sz(U)

Here, the numerical flux is taken to be the HLLC flux fi 1/, = fHLLC(uZ.H/Q, “;1/2)- As an

example, for Euler equations

p 5 i

pp |+ pP+p | =0, (2.5)
ot %)

E 1(E +p)

where p is the density, u is the velocity, E is the total energy and p is the pressure, the

specific expression of the HLLC flux is as follows:
( fr, 0<sy,

. fza SL S 0 S S*
fHLLC(uL,uR) —

(2.6)
IRy 87 <0< spg,

\fRa SRSO

where fL/R = f(UL/R), fZ/R = fL/R + SL/R * (U*L/R - UL/R); Sp = ji, — cp * coefr, sp =
KR + Cr * coefg,

17 p* < PL/R,
coefr/r = + 1) * (p* —1 (2.7)
/ \/1 + (v )+ (p /pL/R ), otherwise,
2y

1

% SL/R — ML/R 5*
et X —mM8M8 % 5 28
Ur/r = PL/R R Bun | (s o (8* N . ) (2.8)

PL/R HL/R prL/R*(SL/R—IL/R)

where p* = PLARIHRLZMONEST) g o Rt RLZ PR E), g o pen | or = Cgen; and

7 is the ratio of specific heats. The integral term F;(u) is approximated by a four-point
Gauss-Lobatto integration

Filw) = 5> [ e~ Y af (ulaf,0) (29)
Ii =1
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ws = wy = = and the quadrature points on the target

where the weights are wy = wy = >

1
12
cell I; are

GL __ GL _ GL _ GL _
Ty = Ti—1/2, Ly = L5100 T3 = Tipy5100La = Lit1/2,

where ;¢ = z; + {Ax.

Finally, we present the spatial reconstruction procedure of the point values {u; /2>
U /51100 Yity/B/100 ui_+1/2} from the given moment values {@,v|;_1;4,v|;;@,v|;11} in detail
as follows:

The 1D Reconstruction Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of u.

Step 1.1. Reconstruct a series of polynomials of different degrees.

First, select a series of central spatial stencils and reconstruct a zeroth degree polynomial
¢1 (), a quadratic polynomial ¢ (), a cubic polynomial g3(z) and a quintic polynomial g4(x),

respectively, such that
1
A
1 _ o
A—I/qug(x)d:)s:uk,k:z—l,z,l—l—l7
1 _ : R | T — T, _ N
A—I/qug(x)dx:uk,k:z—l,z,H—L A—SU/Ikzqg(I) . dr =Ty, , ky = 1
1
Az

¢ (x)dx =g, k = 1;

1 —

(2.10)

Then, the polynomials ¢, (x) are transformed to obtain a new set of polynomials py, (z),

whose expressions are given by (2.11)
a(z), =1,
lo—1
x) = 1 2.11
plz( ) qlz(x) _ Z Mpl(x)a l2 — 2’3’4’ ( )

Yzl 1 il

with 252:1 Yis = Lm0, # 0,10 = 2,3,4, where these 7, ,, for [ = 1,..., 15l = 2,3,4 are
the linear weights and are defined as

Yoy = =y g0 L =1y = 2,34 (2.12)

la —
212:1 Vi,



As for why we choose such a set of linear weights, we will discuss in detail in Remark 1

later. Putting these linear weights into (2.11), obtain the following relations

pl(x) = (h(fb’)’

11 1
pg(x) = E%(x) - qu(x)a
)= MLy - 1 (2.13)
P3(x) = 100613 x 100612 x),
1111 111
Pa(®) = 15004(®) = 150 B ()

Step 1.2. Compute the corresponding nonlinear weights of the above polynomials.

First, compute the smoothness indicator J3;, of function p,(x) in the interval I;:

- a— daplz (I) ’
512 = Z : A,’L‘2 1 (W d,ﬁU, l2 = 2, 3, 4, (214)
a=1 z

where k = 2, 3,5 for [, = 2,3,4. It is important to note that the definition of 3; is different,

where a new polynomial ¢7**(x) is required and is defined as follows:

(1) Reconstruct two polynomials ¢z (z) and ¢z(x), such that

1
A—x/I qip(x)de =g, k=1i—1,1;
o (2.15)
N /Ik qr(z)de =1y, k=1i,i+1,
and then, obtain their associated smoothness indicators
B = (W —w1)?, i = (Ui — )%, (2.16)
and the absolute difference 7 between (517, and 1z
= \51}2 - 51L‘27 (2-17)

where the selection of the power is to be consistent with the definition (2.23) of 7, later.

(2) Give these two polynomials i1 (z) and ¢ir(x) the same linear weights v, = 1z = 3

and calculate the corresponding nonlinear weights as

wir W1iR
L, = ——— WR—= ————— (218)
) )
Wir + WiR Wi, + Wir



w , W , .
1L YiL 61 1R ViR 51

where e = 1071 is applied to avoid the denominator of (2.19) to be zero.

(3) Obtain a new polynomial

new

() = wiqiL(v) + wirqir(2), (2.20)

and set 3; to be

new

B = /I Az <dQ1T(I))2dx = (wlL(m — Ti_1) + wig (Uit —UZ-)>2. (2.21)

Then, we still adopt the idea of WENO-Z as shown in [6] to define the corresponding

nonlinear weights

Wiy 4 _ T4
wpa = = g = (1 ), h=1,..4, 2.22
o Z?:l Wi4 . o ( B +e 1 ( )

where ¢ is also taken to be 107! and the quantity 74 is defined to be the absolute difference

among above smoothness indicators

MI(Z&%zﬁg, (2.23)

Step 1.3. Obtain an approximation polynomial u;(x) of u(x).

The new reconstruction polynomial u;(x) of u(x) is defined as

wi(x) =Y wap(x), (2.24)

and the Gauss-Lobatto point values that we need are taken to be

“j—l/z = ui(Ti-1/2), Uiz /5710 = ui(%:p\/g/m% Uip1/9 = ui(Tis1/2)- (2.25)

Step 2. Update the Gauss-Lobatto point values of u in the troubled-cells.
Step 2.1. Identify the troubled-cells.
The so-called troubled-cells are those cells that may contain discontinuities. In 2005,

Qiu and Shu systematically investigated and compared a few troubled-cell indicators for the
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Runge-Kutta discontinuous Galerkin method in [20]. Here, we choose the KXRCF troubled-
cell indicator proposed by Krivodonova et al. in [13] to identify the troubled-cells, and its
judgment criterion is that the target cell I; is identified to be a troubled-cell, if
| Jor- (wi(@) =, () ds|
Ni = L L >
hi* 0T || us()]

1, (2.26)

where 0I; is the inflow boundary (7 -7 < 0, ¥ is the velocity of the flow and 7 is the
outer normal vector to 0I;), I, is the neighbor of I; on the side of 91", h; is the length of the
cell I;, the parameter p (i.e. the degree of u;(z)) is taken to be 5, u;(x) is the approximation
polynomial of u(z) obtained in Step 1 above and the norm is taken to be the L*> norm.
Step 2.2. Modify the first order moments in the troubled-cells.
If the target cell I; is identified to be a troubled-cell, we would like to modify the first

order moment v; in it. First, obtain a quartic polynomial by linear interpolation, which

satisfies
1/()d T, k=i—1,4,i+1 1/ (@)L gy =Ty, ky=i—1,i+1
— x)dr =71 =i—1,4,i+1; — x rT=T e =1—1,i+1,
Az Ikp(] ks ) by ) Azx Ikxp(] Az kz»
(2.27)
and then, modify the first order moment v; as
1 T —x 5 5 11 11
Ty = — At = ——T_1 + —Tip1 — — Vi1 — —Tis1. 2.28
v AI[ipO(x) N 76 L=t T mplitt — 5glicl — 5e Uit (2.28)

Step 2.3. Update the Gauss-Lobatto point values of u for these troubled-cells.

After modifying the first order moments in the troubled-cells, repeat the reconstruction
process Step 1 for these troubled-cells to update corresponding Gauss-Lobatto point values
of w.

Step 3. Discretize the semi-discrete scheme in time.

After all these Gauss-Lobatto point values are obtained, substitute them into the formula

of the numerical flux. Then, discretize (2.4) by a third-order TVD Runge-Kutta method in

11



time
UY = U+ ALL(U™),
3

n 1)
4U +4U( + AtL(U ), (2.29)

n+1:_ n “r7(2) “ (2)
e +3U +3AtL(U ),

U@ =

to obtain a fully discrete scheme.

Remark 1. In Step 1 above, through a series of Taylor expansion analyses, we can
verify that 8, = u?Az? + O(Az*),l = 1,2,3,4, thus ; — f; = O(Azx?) for | < 4 and
= O(Ax®), then

u(x) — ui(xr) = u(z) — ZwlApl(x)

— [u(x) - Z%APZ + Z W4 = V4 ( () — m (93)) (2.30)

= O(Ax%) + O(Ax ) *x O(Ax)

= O0(Az%).
According to above Taylor expansion analyses, we can prove that our reconstruction algo-
rithm can obtain sixth order of accuracy in smooth regions. When there is a discontinuity
in the target cell I;, the modified first order moment ; in (2.28) will become O(1), for the
difference between w;_; and w;,; is O(1).

As in our previous paper [14], the linear weights are not unique and are independent of
the node position. We have also tried other choices of the linear weights with 7, ,, = 2h—1
Vg, =4 7, = 6071 7, = 8871 From our numerical experiments, we find that even
though different choices of the linear weights do not affect the order of accuracy in smooth
regions, they do affect the resolution near discontinuities. That is to say, the bigger the linear
weights are for higher-degree polynomials, the steeper the shock transitions become, but also
the more unstable the scheme becomes. Thus, the gap between these linear weights should
not be too large, otherwise it could become too close to the linear interpolation, which could
cause oscillations. We must find a balance. However, due to the space limitation, we only

show the results of one choice, which is also the choice in [28, 29] and our previous paper
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[14]. We choose these series of linear weights for fair comparison and they do work well for
all our numerical examples. It is worth mentioning that this modification procedure can also
improve the stability of the scheme by reducing the magnitude of the first order moments
near the discontinuities.

Remark 2. In Step 2 above, we can also choose other indicators to identify troubled-
cells, such as the minmod-based total variation bounded (TVB) limiter in [7], moment limiter
of Biswas, Devine and Flaherty in [4], a modification of the moment limiter by Burbeau,
Sagaut and Bruneau in [5], the monotonicity-preserving(MP) limiter in [24], a modification
of the MP limiter in [21], a troubled-cell indicator based on Harten’s subcell resolution idea
in [9] and so on. But as shown in Section 3, the KXRCF troubled-cell indicator works pretty
well for our scheme in the one-dimensional case. What needs a special attention is that, for
the one dimensional scalar equation, the solution u is defined as our indicator variable, and
then the corresponding v = f’ (u); for the one dimensional Euler system, only the density p
is set to be our indicator variable, and then the corresponding v = 1 is the velocity of the
fluid. In short, for the one dimensional case, the line integral average in the formula (2.26)

is actually the boundary point value, that is

BT |, (000 o a)s| =l o A (T oy ) f Ty,
(2.31)
where the switch function sf(x) is defined as
1,z >0,
sf(z) = (2.32)
0, others,

and the norm ||u;(z)|| is taken to be the maximum norm of all the Gauss-Lobatto point
values in the cell I; (i.e. |Ju;(z)]] =~ max{|u;r_1/2|, i 510l Wity 1005 Ui 0l }). Note that
all the values used in the troubled-cell indicator are already obtained in the reconstruction

process Step 1, thus there is no need to reconstruct an extra polynomial as in [25, 26].
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According to [13],

/ (wi — un,)ds = / (u; — u)ds + / (u — up,)ds (2.33)
oI, oI, oLy,

O(hP*2) + O(R**2) = O(h?*?), ulsy, is smooth,
O(h) + O(h) = O(h), ulsy, is discontinuous.
where the parameter p also represents the degree of u;(z) and is taken to be 5. Here, we

let the troubled-cell indicator converge to the smooth case twice as fast as the discontinuous

case, then as either h — 0 or p — o0

O(hz(pBH)) — 0, ulgy, is smooth,

N; = 1 (2.34)

—— — 00, ulgy, is discontinuous,

O(h™s)

thus the troubled-cell indicator can be defined as

N; <1, [; is not a troubled-cell,
(2.35)
N, > 1, I; is a troubled-cell.

2.2 Two dimensional case

In this subsection, we then consider the following more complicated two-dimensional

hyperbolic conservation laws

ue+ f()e + g(u)y =0,
(2.36)
U(l’,y, 0) - uo(x,y).

Still for the sake of simplicity, the computational domain is divided by a uniform mesh
Li; = [xic1/2: Tivay2) X [Yj-1/2, Yj+1/2) with the uniform mesh sizes Ax = 41/ — ;1) in the
x-direction and Ay = y;41/2 — y;—1/2 in the y-direction, and the corresponding cell center is
denoted by (z;,y;) = <%(SC¢_1/2 + SCz'+1/2)v %(yj—lﬁ + yj+1/2)>'

Firstly, multiply the governing equation (2.36) by A;Ay, A;Ay 2 and A;Ay y;zj, re-

spectively. Then, integrate the resulting equations over the target cell I; ; and perform the

14



integration by parts, obtaining the following equations

( Yj+1/2

1 1
Azdy /Utdfdy = _AxAy / [f(u(ifiﬂ/z,y,t)) - f(u(xi—l/%yat))]dy
L; Yj—1/2
Tit1/2
- ! g(u(xayj-l-l/%t)) _g(u(xayj—l/%t)) d!lﬁ',
YAV AN
Ti—1/2
1 1 Yj+1/2
Aziy /uthd:):dy RGN / [f(u(xlﬂ/%y,t)) + f(u(xz—l/%yat))}dy
1; j Yj—1/2
1 ] Tiy1/2
Xr — ;
+ m/f@)dxdy - Azly / [g(u(if,yjﬂ/z,t)) —g(u(f’f,yj—l/mt))] Tzd%
I; ; Ti—1/2
1 Yj+1/2
YU _ . _ ' Y—UYj
Azly /Ut Ay drdy = Azly / [f(u(l"zﬂ/z, Y, t)) f(u(ifz—l/2>y>t))] Ay dy
L j Yj—1/2
Tiy1/2
— L / [g(u(x Yjt1/2 t)) —l—g(u(m Yj—1/2 t))}dij B /g(u)dxdy.
2Ax Ny PO P Az(Ly)?
\ Ti—1/2 I
(2.37)
Next, define the zeroth and first order moments in the x and y directions as follows
(Tt ! t)dxd
ui,j( ) - AZL’Ay /[‘m- U(l‘,y, ) T Y,
~ 1 T — T;
Ti(t) = Ly, t “dxdy, .
~ 1 / Yy—Y;
W; () = —— u(x,y,t dxdy,
\ J() AZI:Ay [iyj ( ) Ay

and then, swap the spatial integration and time derivation and approximate the flux by a

numerical flux, obtaining the following semi-discrete conservative scheme

15



(du; (t) 1

/yj+1/2 [f(u(xi+1/27 y)) - f(u(xi_l/% y))] dy

dt Dby ),
1 Tit1/2 - A
N A:cAy/ [9(“(95>?/j+1/2)) —g(u(ﬂf,yj—l/z))}da:,
Ti—1/2
d:i (T 1 Yiv1/2 - X
Ud]t( ) _ _QA:L"Ay /yjl/2 [f(u(l'i—i-l/%y)) + f(u(:)si_1/2,y))}dy

(2.39)

1 1 Tit1/2 . A —
+ A—:L'F”(u) - NN /ril/z [g(u(1’>yj+1/2)) - g(u(a:, yj_1/2))] Txdz’

dﬁ%](t) _ 1 Yj+1/2 ' o | y—y;
dt - AZL’Ay /yj1/2 [f(u(zz+l/2a y)) f(u(zz—l/2>y))} Ay dy
1 Tit1/2 R X 1
\  2Az/Ay /xiw [g(u($>yj+l/2)) + g(u(ff,yj—l/z))]diﬂ + A—yGi,j(U).

Here the numerical fluxes are still taken to be the HLLC fluxes, and the integral terms are

also approximated by a four-point Gauss-Lobatto integration, for instance

4 4
1 GL | GL
Fyj(u) = m /1” f(uw)dzdy ~ ;;wkwlf(u(a:k Y )), (2.40)
1 Yi+1/2 4 N GL
A—/ f(u(xi-i-l/%y))dy ~ Zwlf(u(xi—i-l/%yl )), (2-41)
Y Yj—1/2 =1
. 4
| R ¢l — 2,
_ Ly . dr ~ Tk s GL’ . ’ 2.49
N /IH/2 N 9(“(5’5>yg+1/2)) z ;Wk N g(u(xk yg+1/2)) ( )
where the weights are w; = wy = %, Wy = W3 = % and the quadrature points on the target
cell 1; ; are
ot = Li-1/2, w5t = Li—\/5/109 vyt = Lit\/5/10) ait = Lit1/2;

GL GL GL GL
Y1 = Yi-12Y =Y 5r00Y3 T Ym0 Y1 = Yi+1/2,

where z;,¢ = x; + {Ax and y;4, = y; + nly.

. . . . :t .
Finally, we present the spatial reconstruction procedure of the point values {uijFl J2.jm |l =
1,2,3,4}, {uiﬁ%jﬂ/z\k = 1,2,3,4} and {wite, jinlk = 2,3;0 = 2,3} (& = m = —1/2,

& =1m = —/5/10, & = 13 = v/5/10 and & = ny = 1/2) from the given cell-average values

{ﬁ,%,ﬁkmky; ky=1—1,i,i4+1;k, =j—1,7,7 + 1} in detail as follows:
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The 2D Reconstruction Algorithm:

Step 1. Reconstruct the Gauss-Lobatto point values of w.

7 (8] 9 |j+1
I |5 6 j
T (2] 3 |j—-1
i—1 i i+1

The big stencil and its new labels.

Step 1.1. Reconstruct a series of polynomials of different degrees.

Step 1.1.1. Reconstruct a zeroth degree polynomial ¢;(x,y) such that

1 P

Step 1.1.2. Reconstruct a quadratic polynomial ¢z(x,y) such that

1
JAVANY

/ ¢z, y)dedy =0, k=1,..,9.
I,

Step 1.1.3. Reconstruct a cubic polynomial g3(x,y) such that

1 -
AZE’Ay I q3 ([L’, y)dl’d’y U, k IEERED) 97
1 T — T, = L
A:L’Ay /Ikz qg(x7 y) A:lj dxdy - Uk;c? k:c - 5?
1 Y — Yk ~
Ldxdy = k, = 5.

Step 1.1.4. Reconstruct a quintic polynomial g4(x,y) such that

1 -
dxdy =u k=1,....9;
A.Z'Ay /qu4('r7y) xray Uk, ) 797
1 T — Tk, ~
“dxdy = km:17 747777;

1 Y — Yk, ~
Ydxdy = k,=1,2,3,57,8,9.
A[L’Ay /[vky Q4(Zl§',y) A’y ray wky7 Y g Ly 9y, 1, O,

(2.43)

(2.44)

(2.45)

(2.46)

What needs special attention is that the number of equations is greater than the number

of unknowns when we reconstruct the quadratic polynomial go(z,y), the cubic polynomial
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q3(x,y) and the quintic polynomial g4(x,y). To solve this problem, we require these polyno-
mials must have the same cell average as u on the target cell ; ; (to maintain conservation)
and match the other conditions in a least square sense as described in [11].

Step 1.1.5. Then, further manipulate the above reconstructed polynomials to obtain a

new set of polynomials p;,(x,y) as follows

q1($,y), l2: ]-7
lo—1
p(z,y) = 1 (2.47)
’ di, (.flf,y) - Z Thlz pl(x7 y)7 l2 - 27 3747
Via,la -1 Vig,lo

with 252:1 Yis = L0, # 0,10 = 2,3,4, where these 7, ,, for [ = 1,..., 151y = 2,3,4 are
still the linear weights and are defined as (2.12). Likewise putting these linear weights into
(2.47), obtain the following relations

pi(z,y) = au(z,y),
11 1

o= e Lo, (2.48)
pa(,y) = 75543(2:y) = 75542(@:y

1111 111
pdz,y)——165aqdluy)—-1000@4$,y)

Step 1.2. Compute the corresponding nonlinear weights of the above polynomials.
First, compute the smoothness indicator /3, of the function pj,(z,y) in the interval I, ;:

glel 2
=3 [ e (e te) deiy, b2 24

|al=1

where a = (o, o), |a| = o, + o and kK = 2,3,5 for I, = 2,3,4. Note that the definition of
f1 is an exception, where a new polynomial ¢"“*(x,y) is required and is defined as follows:

(1) Reconstruct four polynomials qix(z,y) for k = 1,2, 3,4, such that

AWA /qnxywﬂwzu k=4,5,8;
AxAy /I q12(z, y)dedy = u,, k=05,6,8;
¢ (2.50)
NN /Ik qi3(x,y)dedy = u, k=2,5,6;
1 5
Al’Ay I q14($a y)dl’d’y Uk, k s Ty 5a
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and then, obtain their associated smoothness indicators
B = (ﬁzg - iz‘—l,j>2 + (ﬁi,j—l—l - ﬁi,j)27
Bi2 = (ﬁi+1,j - ii,j>2 + (ﬁz‘,jﬂ - ﬁi,j)2v
) ) 3 3 (2.51)
Bz = (Wipry — Wig)? + (Uij — Ui j-1)°,
Bra = (Wi —Uio1;)? + (Uij — Ui j-1)°,

and the absolute difference 7 among these smoothness indicators

2
. (Zk;ﬁl |5ék - ﬁll|) | (2.52)

where the selection of the power is to be consistent with the definition (2.17) of 7y in the one
dimension.
(2) Give these four polynomials ¢y (x,y) the same linear weights 7, = i for k =1,2,3,4

and calculate the corresponding nonlinear weights as

g = =k (2.53)

Y/ —
> i1 W

-
Bk +¢€

where ¢ is still taken to be 1071° as in the one dimensional case.

wlk = Y1k (1 + ) ) k= 1727 3747 (254)

(3) Obtain a new polynomial

a7 Zwllqll x,y), (2.55)

and set 3; to be

oled 2
lov] new
Z ‘I ’3| <8xaw ayay a4 ( Z, y)) ) (256)

laf=1

where a = (o, o), |a| = o, + oy,
Then, define the corresponding nonlinear weights as (2.22).
Step 1.3. Obtain an approximation polynomial u, j(x,y) of u(z,y).

The new reconstruction polynomial w; ;(z,y) of u(x,y) is defined as

;i (2, y) Zwl (7, y), (2.57)
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and the Gauss-Lobatto point values that we need are taken to be
Uity o gy = Wi (Tig12s Yjam )y 1=1,2,3,4;
uiﬁﬂ¢u2:z%ﬂxH&,%¢uﬁ,k::L2ﬁ&4; (2.58)
Uirgyjrm = Wig(Tivey, Yjm), b =2,3; 1=2,3,
where £, = = —1/2, & =y = —/5/10, & =13 = /5/10 and & =1y = 1/2.
Step 2. Update the Gauss-Lobatto point values of u in the troubled-cells.

Here, we still choose the KXRCF troubled-cell indicator to identify the troubled-cells as

in the one dimensional case, that is the target cell [; ; is identified to be a troubled-cell, if

} fa[.*. (u@j(iﬁ, y) — Unp, ; (QU, y))ds‘
Nij = — 3 > 1, (2.59)
hiJ |01 | l|uij(z, y)|

where 01 is the inflow boundary (7 .7 < 0, U is the velocity of the flow and 7 is

the outer normal vector to 9I;;), I, is the neighbor of I;; on the side of 9I;,

hi ; is
the length of the cell [;;, the parameter p (i.e. the degree of u; (x,y)) is also taken to
be 5, u;j(x,y) is the approximation polynomial of u(z,y) obtained in Step 1 and the
norm is still taken to be the L> norm. If the target cell [; ; is identified to be a troubled-
cell, we would like to modify the first order moment %m in the z direction by using the
information of {ii_u, im, ﬁiﬂ,j, ﬁ-_l,j, %Z-HJ} and modify the first order moment ﬁi,j in the
y direction by using the information of {W; ; 1, j, Ui j+1, Wi j—1,W; 1} in a dimension-by-
dimension manner. After modifying the first order moments in the troubled-cells, repeat the
reconstruction process Step 1 for these troubled-cells to update the corresponding Gauss-
Lobatto point values of w.

Step 3. Discretize the semi-discrete scheme in time.

After all these Gauss-Lobatto point values are obtained, put them into the formula of
the numerical flux. Then, discretize (2.39) by the third-order TVD Runge-Kutta method
(2.29) in time to complete the entire discretization process.

Remark 3. In Step 2 above, we still choose the KXRCF troubled-cell indicator to

identify troubled-cells. As shown in Section 3, the KXRCF troubled-cell indicator works

20



pretty well for our scheme in the two-dimensional case as well. What needs a special attention
is that, for the two dimensional scalar equation, the solution w is defined as our indicator
variable, and then the corresponding ¥ = f'(u) in the z-direction and ¥ = ¢'(u) in the y-
direction; for the two dimensional Euler system, only the density p is set to be our indicator
variable, and then the corresponding o = (1t is the velocity in the z-direction of the fluid and
o = v is the velocity in the y-direction of the fluid. In short, for the two dimensional case,
the line integral average in the formula (2.59) is approximated by a four-point Gauss-Lobatto
integration, that is

1
[ o=t
ol ;

o151

—u. * S
z—— J+m i—3,j+m )

- +
. Z DY 1 = Wt ) * $f(= Vi)

=1

+ —
+ Z Amwk(uiﬂk’j_% — ui+§k’j_%) * sf(?l ._%)

k=1
4 N - 4 o !
2Bl iy~ Wi g) * S Ty ‘8[ oz,
k=1 )
(2.60)

where the switch function sf(z) is defined as (2.32) and the norm ||u; j(x,y)|| is taken to be
the maximum norm of all the Gauss-Lobatto point values in the cell [; ;(i.e. ||u;;(z,y)|| =

max{|uE

g T 1= 1,2,3,45 [u

vl F = 12,34 g janl 0 k= 2,30=2,3}).
Note that all the values used in the troubled-cell indicator are also already obtained in the
reconstruction process Step 1, thus there is no need to reconstruct an extra polynomial as

in [25, 26].
3 Numerical tests

In this section, a number of typical numerical examples are given to demonstrate the
stability and resolution of our moment-based multi-resolution HWENO scheme. Here, the
scheme termed as “WENObJ-Z” represents the fifth order WENO-Z scheme, the scheme

termed as “HWENOG6” represents the sixth order moment-based multi-resolution HWENO
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scheme without Step 2 i.e. without the modification process, and the scheme termed as
“HWENOG6-M5-1/NI” represents the sixth order moment-based multi-resolution HWENO
scheme with the first order moments of the troubled-cells are modified by a quartic polyno-
mial, where “I” means only the first order moments of the troubled-cells are modified while
“NI” means the first order moments of all the cells are modified without judgment. Before
we start to show the results of the examples we have calculated, let us first explain some of
the parameters in particular: the first one is that we set the CFL number as 0.6 for both the
one and two dimensional cases, but note that for the accuracy tests a suitably reduced time
step is used in order to ensure the dominance of the spatial error; the second one is that we
take the linear weights as 7, , = 1, 75, = 10, 734, = 100 and 7, , = 1000 both in the one

and two dimensions in this paper.

Example 3.1. One-dimensional scalar Burgers’ equation:

2

m+(%> —0, 0<u<2, (3.1)

with the initial condition u(z,0) = 0.5 4 sin(mx) and periodic boundary condition. The
solution for this problem remains smooth at time 7" = 0.5/7, and the corresponding errors
and convergence orders when approximating the solution with the WENOb5-Z, HWENOG,
HWENOG6-M5-1 and HWENOG-M5-NI schemes are listed in Table 3.1. However, the solution
becomes discontinuous at time 7" = 1.5/m. The reference solution and its approximation
using the WENO5-Z, HWENO6, HWENO6-M5-1 and HWENOG-M5-NI schemes at this

later time, as well as the time-history of the flagged troubled-cells are plotted in Fig 3.1.

Example 3.2. Two-dimensional scalar Burgers’ equation:

2 2
m+(%) +(%) —0, 0<az,y<4, (3.2)

@ y
with the initial condition p(z,y,0) = 0.5 + sin (7(z + y)/2) and periodic boundary condi-
tion. As in the one dimensional case, the solution for this problem remains smooth at time

T = 0.5/m, and the corresponding errors and convergence orders when approximating the
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Figure 3.1: 1D-Burgers’ equation. 7' = 1.5/m. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds:
WENO5-Z scheme with double cells; gradients: WENObS5-Z scheme; squares: HWENOG
scheme; triangles: HWENOG-M5-1 scheme; circles: HWENOG6-M5-NI scheme. Number of
cells: 200.
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Table 3.1: uy + (”2—2> = 0. The initial condition p(z,0) = 0.5 + sin(7z). Periodic bound-
ary condition. 7" = 0.5/7. WENOb5-Z, HWENO6, HWENOG-M5-1 and HWENOG-M5-NI

schemes. L' and L.

WENOb)-Z scheme
grid points | L' error | order | L™ error | order
10x2 2.57E-04 2.03E-03
20%2 1.62E-05 | 3.99 | 2.15E-04 | 3.23
40%2 718E-07 | 4.49 | 9.94E-06 | 4.44
80x2 2.43E-08 | 4.88 | 3.55E-07 | 4.81
160x2 791E-10 | 4.94 | 1.15E-08 | 4.94
320%2 2.50E-11 | 4.98 | 3.68E-10 | 4.97
WENOb)H-Z scheme HWENOG6 scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
10 6.92E-04 2.93E-03 5.24F-03 2.26E-02
20 2.57E-04 | 1.43 | 2.03E-03 | 0.30 | 5.67E-04 | 3.21 | 4.61E-03 | 2.29
40 1.62E-05 | 3.99 | 2.15E-04 | 3.23 | 1.23E-06 | 8.85 | 1.37TE-05 | 8.40
80 7T18E-07 | 4.49 | 9.94E-06 | 4.44 | 2.90E-09 | 8.72 | 3.27E-08 | 8.71
160 2.43E-08 | 4.88 | 3.55E-07 | 4.81 | 2.46E-11 | 6.88 | 3.52E-10 | 6.54
320 791E-10 | 4.94 | 1.15E-08 | 4.94 | 3.95E-13 | 5.96 | 3.69E-12 | 6.57
HWENOG-M5-1 scheme HWENOG6-M5-NT scheme
grid points | L! error | order | L error | order | L' error | order | L™ error | order
10 5.24E-03 2.26E-02 6.48E-03 3.01E-02
20 5.67E-04 | 3.21 | 4.61E-03 | 2.29 | 3.11E-04 | 4.38 | 9.84E-04 | 4.93
40 1.23E-06 | 8.85 | 1.37E-05 | 840 | 6.97E-06 | 5.48 | 2.55E-05 | 5.27
80 2.90E-09 | 8.72 | 3.27E-08 | 8.71 | 5.96E-08 | 6.87 | 9.36E-07 | 4.77
160 2.46E-11 | 6.88 | 3.52E-10 | 6.54 | 1.88E-09 | 4.98 | 2.95E-08 | 4.99
320 3.95E-13 | 5.96 | 3.69E-12 | 6.57 | 6.02E-11 | 4.97 | 9.53E-10 | 4.95

solution with the WENO5-Z, HWENO6, HWENOG6-M5-1 and HWENOG6-M5-NI schemes are
listed in Table 3.2. However, the solution becomes discontinuous at time 7" = 1.5/m. The
reference solution and its approximation using the WENO5-Z, HWENO6, HWENOG6-M5-1
and HWENOG-M5-NI schemes at x = y at this later time, as well as the time-history of the
flagged troubled-cells at x = y and the locations of the troubled-cells at the final time are

plotted in Fig 3.2.
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Figure 3.2:  2D-Burgers’ equation. 7" = 1.5/w. Top: density, density zoomed in at
x = y; bottom: the time-history of the flagged troubled-cells at © = y, the locations of
the troubled-cells at the final time. Solid line: the exact solution; diamonds: WENOb5-Z
scheme with double cells; gradients: WENObS-Z scheme; squares: HWENOG scheme; trian-
gles: HWENOG-M5-1 scheme; circles: HWENOG-M5-NI scheme. Number of cells: 200x200.
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2

Table 3.2: p; + <”72)m + (%)y = 0. The initial condition p(z,y,0) = 0.5+ sin (7(z + y)/2).

Periodic boundary condition. 7" = 0.5/7. WENO5-Z, HWENO6, HWENO6-M5-1 and
HWENOG6-M5-NI schemes. L' and L.

WENO5-Z scheme
grid points L' error | order | L™ error | order
10v/3x 103 | 3.26E-04 1.62E-03
20v/3x 204/3 | 3.07E-05 | 3.40 | 2.13E-04 | 2.93
40v/3x 404/3 | 1.29E-06 | 4.47 | 1.65E-05 | 3.61
80v/3x 803 | 4.69E-08 | 4.78 | 6.75E-07 | 4.61
160v/3x160v/3 | 1.54E-09 | 4.90 | 2.24E-08 | 4.88
320v/3x320v/3 | 4.94E-11 | 4.97 | 7.21E-10 | 4.96
WENOb5-Z scheme HWENOG6 scheme
grid points | L! error | order | L error | order | L' error | order | L™ error | order
10x 10 1.69E-03 5.84E-03 1.03E-02 2.96E-02
20x 20 | 2.01E-04 | 3.07 | 1.42E-03 | 2.03 | 7.78E-05 | 7.05 | 2.65E-04 | 6.80
40x 40 1.52E-05 | 3.72 | 1.46E-04 | 3.27 | 2.41E-06 | 5.01 | 1.56E-05 | 4.09
80x 80 | 6.30E-07 | 4.59 | 8.57E-06 | 4.09 | 3.86E-08 | 5.97 | 5.42E-07 | 4.84
160x160 | 2.29E-08 | 4.77 | 3.27E-07 | 4.71 | 5.62E-10 | 6.10 | 9.83E-09 | 5.78
320320 | 7.52E-10 | 4.93 | 1.10E-08 | 4.89 | 6.83E-12 | 6.36 | 1.24E-10 | 6.31
HWENOG6-M5-1 scheme HWENOG6-M5-NI scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
10x 10 1.03E-02 2.96E-02 1.08E-02 4.31E-02
20x 20 7.78E-05 | 7.05 | 2.65E-04 | 6.80 | 1.42E-04 | 6.25 | 8.03E-04 | 5.74
40x 40 | 2.41E-06 | 5.01 | 1.56E-05 | 4.09 | 6.62E-06 | 4.42 | 3.84E-05 | 4.39
80x 80 | 3.86E-08 | 5.97 | 5.42E-07 | 4.84 | 1.03E-07 | 6.00 | 8.33E-07 | 5.53
160x160 | 5.62E-10 | 6.10 | 9.83E-09 | 5.78 | 2.87E-09 | 5.17 | 2.30E-08 | 5.18
320x320 | 6.83E-12 | 6.36 | 1.24E-10 | 6.31 | 9.77E-11 | 4.88 | 7.42E-10 | 4.95
Example 3.3. One-dimensional Euler equations:
p i
prl B e p>+p | =0, 0<x<2m, (3.3)
E u(E + p)

where p is the density, p is the velocity, E is the total energy and p is the pressure. The

initial conditions are

140.2 sin(x)

T3 ,LL(ZL', 0) = ﬁp(xv 0)7 p(l’, 0) = p(x’o)’y’ (34)

p(z,0) =

and the boundary conditions are periodic. The exact solution of above Euler equations is

given in [14]. The solution for this problem remains smooth at time 7' = 3, and the corre-
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sponding errors and convergence orders when approximating the solution with the WENO5-

Z, HWENO6, HWENOG6-M5-1 and HWENOG6-M5-NI schemes are listed in Table 3.3.

Table 3.3: 1D-Euler equations: The initial condition p(z,0) = %\j‘?@), w(z,0) = /yp(x,0)
and p(x,0) = p(x,0)?. Periodic boundary condition. 7" = 3. WENO5-Z, HWENOG,
HWENOG-M5-1 and HWENOQOG6-M5-NT schemes. L' and L.

WENObS-Z scheme
grid points | L' error | order | L™ error | order
10x2 4.24E-04 2.15E-03
20x2 3.72E-05 | 3.51 | 3.10E-04 | 2.79
40%2 2.02E-06 | 4.20 | 3.23E-05 | 3.26
80x2 7.04E-08 | 4.84 | 1.46E-06 | 4.47
160x2 2.13E-09 | 5.05 | 5.15E-08 | 4.83
320%2 6.96E-11 | 4.93 | 1.66E-09 | 4.95
WENOb)-Z scheme HWENOG6 scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
10 2.87TE-03 1.03E-02 8.54E-04 2.95E-03
20 4.24E-04 | 2.76 | 2.15E-03 | 2.26 | 1.87E-05 | 5.52 | 1.41E-04 | 4.39
40 3.72E-05 | 3.51 | 3.10E-04 | 2.79 | 4.99E-07 | 5.23 | 9.01E-06 | 3.97
80 2.02E-06 | 4.20 | 3.23E-05 | 3.26 | 7.57E-09 | 6.04 | 1.95E-07 | 5.53
160 7.04E-08 | 4.84 | 1.46E-06 | 4.47 | 1.10E-10 | 6.10 | 2.60E-09 | 6.23
320 2.13E-09 | 5.05 | 5.15E-08 | 4.83 | 1.69E-12 | 6.03 | 3.65E-11 | 6.15
HWENOG6-M5-1 scheme HWENOG-M5-NI scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
10 8.54E-04 2.95E-03 8.76E-04 3.67E-03
20 1.87E-05 | 5.52 | 1.41E-04 | 4.39 | 1.09E-04 | 3.01 | 5.35E-04 | 2.78
40 4.99E-07 | 5.23 | 9.01E-06 | 3.97 | 8.44E-06 | 3.69 | 1.05E-04 | 2.35
80 7.57E-09 | 6.04 | 1.95E-07 | 5.53 | 2.49E-07 | 5.08 | 5.37E-06 | 4.28
160 1.10E-10 | 6.10 | 2.60E-09 | 6.23 | 7.12E-09 | 5.13 | 1.66E-07 | 5.02
320 1.69E-12 | 6.03 | 3.65E-11 | 6.15 | 2.15E-10 | 5.05 | 5.03E-09 | 5.05
Example 3.4. Two-dimensional Euler equations:
0 g 0 gﬂ 0 "
P pp= +p PRy
a v % v + a—y pl/2 Tp =0, 0<uz,y<dm, (35)
E u(E +p) v(E +p)

where p is the density, p is the velocity in the xz-direction, v is the velocity in the y-direction,
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E is the total energy and p is the pressure. The initial conditions are

_ 140.2sin(ZH)

o V6

= /Zp(x,y,0),

x y? 0) = p(x7 y? O)Py7
(3.6)

p(l’,y,O) ) ,u(x,y,O) _V x, ya

and the boundary conditions are periodic in both directions. The exact solution of above
Euler equations is given in [14]. The solution for this problem continues to remain smooth at
time T' = 3, and the corresponding errors and convergence orders when approximating the

solution with the WENO5-Z, HWENO6, HWENOG6-M5-1 and HWENOG-M5-NI schemes are
listed in Table 3.4.

14-0.2 sin( 7Ly)

Table 3.4: 2D-Euler equations: The initial condition p(z,y,0) = 7

, p(w,y,0) =

v(z,y,0 fp x,y,0) and p(x,y,0) = p(z,y,0)7. Periodic boundary condition. 7" = 3.
WENO5 7, HWENOG, HWENO6 M5-1 and HWENOG-M5-NI schemes. L' and L.
WENOb5-Z scheme
grid points L' error | order | L* error | order
10v/3x 10v/3 | 7.80E-04 5.28E-03
20v/3x 20v/3 | 9.76E-05 | 2.99 | 9.45E-04 | 2.48
40v/3x 40v/3 | 6.72E-06 | 3.78 | 9.69E-05 | 3.21
80v3x 80v/3 | 2.56E-07 | 4.71 | 5.30E-06 | 4.19
160v/3x160/3 | 7.67E-09 | 5.03 | 1.82E-07 | 4.83
320v/3x320v/3 | 2.32E-10 | 5.04 | 5.64E-09 | 5.01
WENOb5-Z scheme HWENOG scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
10x 10 | 5.04E-03 1.56E-02 6.56E-03 1.74E-02
20x 20 | 4.86E-04 | 3.37 | 3.78E-03 | 2.04 | 2.54E-04 | 4.69 | 1.78E-03 | 3.29
40x 40 5.54E-05 | 3.13 | 5.62E-04 | 2.74 | 1.13E-05 | 4.50 | 1.13E-04 | 3.97
80x 80 | 3.50E-06 | 3.98 | 5.70E-05 | 3.30 | 2.70E-07 | 5.38 | 6.06E-06 | 4.22
160x160 | 1.22E-07 | 4.83 | 2.65E-06 | 4.42 | 4.18E-09 | 6.01 | 1.14E-07 | 5.73
320%x320 | 3.69E-09 | 5.05 | 8.83E-08 | 4.90 | 4.67E-11 | 6.49 | 1.37TE-09 | 6.39
HWENOG6-M5-1 scheme HWENOG6-M5-NI scheme
grid points | L' error | order | L™ error | order | L' error | order | L> error | order
10x 10 | 6.56E-03 1.74E-02 6.70E-03 2.20E-02
20x 20 2.54E-04 | 4.69 | 1.78E-03 | 3.29 | 4.20E-04 | 4.00 | 2.73E-03 | 3.01
40x 40 1.13E-05 | 4.50 | 1.13E-04 | 3.97 | 2.47E-05 | 4.09 | 2.23E-04 | 3.61
80x 80 | 2.70E-07 | 5.38 | 6.06E-06 | 4.22 | 7.57E-07 | 5.03 | 1.47E-05 | 3.93
160x160 | 4.18E-09 | 6.01 | 1.14E-07 | 5.73 | 2.14E-08 | 5.14 | 4.76E-07 | 4.95
320x320 | 4.67E-11 | 6.49 | 1.37E-09 | 6.39 | 6.24E-10 | 5.10 | 1.30E-08 | 5.20
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Comment: According to the results listed in above four tables 3.1 — 3.4, we can see that
both the HWENOG6 and HWENOG-M5-1 schemes can reach sixth order accuracy, this is
because the reconstruction process is of the sixth order and the ratio of the troubled-cells
of the HWENOG-Mb5-1 scheme is always 0 i.e. the modification procedure has not been
enacted for these smooth cases. If we modify the first order moments of all the cells without
judgment, we can see that the HWENOG6-M5-NI scheme can reach fifth order accuracy as
expected, this is because the first order moments of all the cells are modified by a quartic
polynomial, which leads to the decrease in the order of accuracy. Moreover, the error of this
HWENOG6-M5-NI scheme is lower than that of the WENOb5-Z scheme with the same meshes,
but higher than that of the WENOb5-Z scheme with the same degree of freedoms i.e. with
doubled (1D) or tripled (2D) meshes.

From Fig 3.1 and Fig 3.2, we can observe that all the schemes work well in comparison
with the exact solution with the results from all the schemes being almost indistinguishable
and the moment modification process does not happen when the solution is still smooth from

the corresponding time-history of the flagged troubled-cells.

Example 3.5. The Lax problem: one-dimensional Euler equations (3.3) with the Riemann

initial condition:

0.445,0.698,3.528)7. —0.5 < x < 0,
(mmmTz{( )

(0.5,0,0.571)T, 0 <z < 0.5. (3.7)

The reference solution and its approximation of the density p using the WENO5-Z, HWENOG,

HWENOG6-M5-1 and HWENOG-M5-NI schemes at the final time 7" = 0.16, as well as the

time-history of the flagged troubled-cells are plotted in Fig 3.3.

Example 3.6. The shock density wave interaction problem: one-dimensional Euler equa-

tions (3.3) with a moving Mach=3 shock interaction containing sine waves in the density:

(3.857143,2.629369,10.333333)", —5 <z < —4,

3.8
(1+0.2sin(52),0,1)", —4 <z <5. (3:8)

@wmfz{
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Figure 3.3:  The Lax problem. 7" = 0.16. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds:
WENO5-Z scheme with double cells; gradients: WENObS5-Z scheme; squares: HWENOG
scheme; triangles: HWENOG-M5-1 scheme; circles: HWENOG6-M5-NI scheme. Number of
cells: 200.

30



The reference solution and its approximation of the density p using the WENO5-Z, HWENOG,
HWENOG6-M5-1 and HWENOG-M5-NI schemes at the final time 7" = 1.8, as well as the time-

history of the flagged troubled-cells are plotted in Fig 3.4.

Density

05

Figure 3.4: The shock density wave interaction problem. 7" = 1.8. Top: density, density
zoomed in; bottom: the time-history of the flagged troubled-cells. Solid line: the exact
solution; diamonds: WENOS5-Z scheme with double cells; gradients: WENO5-Z scheme;
squares: HWENOG scheme; triangles: HWENOG-Mb5-1 scheme; circles: HWENO6-M5-NI
scheme. Number of cells: 400.

Example 3.7. The blast wave problem: one-dimensional Euler equations (3.3) with the

initial condition:
(1,0, 103)T, 0<x<0.1,

(p,1,p)" =< (1,0,107%)7, 0.1 <2 <0.9, (3.9)
(1,0,10)7, 09<z <1,
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The reference solution and its approximation of the density p using the WENO5-Z, HWENOG,
HWENOG6-M5-1 and HWENOG-M5-NI schemes at the final time 7" = 0.038, as well as the

time-history of the flagged troubled-cells are plotted in Fig 3.5.

Density

065 07 075 08 08 09
X

Coote®f b b b b b by 8001
0O 01 02 03 04 05 06 07 08 09 1
X

Figure 3.5: The blast wave problem. 7" = 0.038. Top: density, density zoomed in; bottom:
the time-history of the flagged troubled-cells. Solid line: the exact solution; diamonds:
WENO5-Z scheme with double cells; gradients: WENObS5-Z scheme; squares: HWENOG
scheme; triangles: HWENOG6-M5-1 scheme; circles: HWENOG-M5-NI scheme. Number of

cells: 800.

Example 3.8. The Sedov blast wave problem: one-dimensional Euler equations (3.3) with

the initial condition:

s (1,0,107)T 2z e [-2,2]\ the center cell,
(01 B)” = { (1,0, 3200007 "z ¢ the center cell. (3.10)

Y
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The reference solution and its approximation of the density p, the velocity 4 and the pressure
p using the HWENO6, HWENOG6-M5-1 and HWENOG6-M5-NI schemes at the final time

T = 0.001, as well as the time-history of the flagged troubled-cells are plotted in Fig 3.6.
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Figure 3.6: The Sedov blast wave problem. 7" = 0.001. Top: density, velocity; bottom:
pressure, the time-history of the flagged troubled-cells. Solid line: the exact solution; squares:
HWENOG6 scheme; triangles: HWENOG-Mb5-1 scheme; circles: HWENOG6-M5-NI scheme.
Number of cells: 400.

Example 3.9. Double Mach reflection problem: two-dimensional Euler equations (3.5) in a
computational domain [0,4]x[0, 1] with a reflection wall lying at the bottom, starting from
the position (z,y) = (},0), making a 60° angle with the z-axis. For the bottom of the

domain, at the reflection wall the reflection boundary condition is applied, and at the rest

of the bottom the exact post-shock condition is imposed. For the top of the domain, the
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corresponding boundary condition is exactly the motion of a Mach 10 shock with v = 1.4.
The contours of the computed density p and its blow-up region around the double Mach
stem obtained by the WENO5-Z, HWENOG6 (with the power of the nonlinear weights (2.22)

2
set to be 2 i.e. W4 = Y4 (1 + (ﬁzm#re) ) , 1y =1,...,4, since this scheme will blow up
1

without modification under the parameter conditions given in above section for the double
Mach reflection problem), HWENOG6-M5-1 and HWENOG-M5-NI schemes, as well as the
corresponding locations of the troubled-cells for the HWENOG6-M5-1 scheme at the final

time 1" = 0.2 are plotted in the Figs 3.7-3.11.

Figure 3.7: Double Mach reflection problem. 7" = 0.2. WENOb5-Z. 30 equally spaced density
contours from 1.5 to 22.7. From top to bottom: density contours, zoom-in density contours
around the Mach stem. Number of cells: 1200v/3 x 300+/3 in the region of [0,4]x[0, 1].

Example 3.10. Forward step problem: two-dimensional Euler equations (3.5) in a one

length unit wide and three length units long wind tunnel with a 0.2 length units high step
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Figure 3.8:  Double Mach reflection problem. 7" = 0.2. WENOb5-Z. 30 equally spaced
density contours from 1.5 to 22.7. From top to bottom: density contours, zoom-in density
contours around the Mach stem. Number of cells: 1200 x 300 in the region of [0, 4]x[0, 1].
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Figure 3.9: Double Mach reflection problem. T = 0.2. HWENOG6(with the power of the
2
nonlinear weights (2.22) set to be 2 i.e. W4 = Y4 (1 + (6116) ) , lp=1,..,4). 30
1
equally spaced density contours from 1.5 to 22.7. From top to bottom: density contours,
zoom-in density contours around the Mach stem. Number of cells: 1200300 in the region
of [0,4] %[0, 1].
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Figure 3.10: Double Mach reflection problem. 7" = 0.2. HWENOG6-M5-1. 30 equally spaced
density contours from 1.5 to 22.7. From top to bottom: density contours, zoom-in density
contours around the Mach stem, the locations of the troubled-cells at the final time. Number
of cells: 1200x300 in the region of [0,4]x[0, 1].
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Figure 3.11:  Double Mach reflection problem. 7 = 0.2. HWENOG6-M5-NI. 30 equally
spaced density contours from 1.5 to 22.7. From top to bottom: density contours, zoom-

in density contours around the Mach stem. Number of cells: 1200x300 in the region of
[0,4]x[0, 1].
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located 0.6 length units from the left side of the tunnel. At the beginning, we initialize this
problem by a right-going Mach 3 flow. Along the wall of the tunnel the reflection boundary
condition is applied, and at the entrance the inflow boundary condition is imposed, while at
the exit the outflow boundary condition is imposed. The contours of the computed density
p obtained by the WENO5-Z, HWENO6, HWENOG6-M5-1 and HWENO6-M5-NI schemes,
as well as the corresponding locations of the troubled-cells for the HWENOG-Mb5-1 scheme

at the final time T" = 4 are plotted in Figs 3.12-3.16.
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Figure 3.12: Forward step problem. T'= 4. WENOb5-Z. 30 equally spaced density contours
from 0.32 to 6.15. Number of cells: 600v/3 x 200v/3 in the region of [0, 3]x [0, 1].

Figure 3.13: Forward step problem. T'= 4. WENOb)-Z. 30 equally spaced density contours
from 0.32 to 6.15. Number of cells: 600 x 200 in the region of [0, 3]x[0, 1].

Comment: From above six examples 3.5—3.10, we can see that the results of the HWENQOG6-

M5-I scheme have much better resolutions and sharper shock transitions than those of the
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Figure 3.14: Forward step problem. T'=4. HWENOG. 30 equally spaced density contours
from 0.32 to 6.15. Number of cells: 600x200 in the region of [0, 3]x|0, 1].

Figure 3.15: Forward step problem. 7" = 4. HWENOG6-Mb5-1. 30 equally spaced density
contours from 0.32 to 6.15. From top to bottom: density contours, the locations of the
troubled-cells at the final time. Number of cells: 600x200 in the region of [0, 3]x|0, 1].
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Figure 3.16: Forward step problem. T' = 4. HWENOG6-M5-NI. 30 equally spaced density
contours from 0.32 to 6.15. Number of cells: 600x200 in the region of [0, 3]x]0, 1].

HWENOG6 scheme without the modification procedure. This might be due to the fact that
after modifying the first order moments of the troubled-cells, the proportion of the last two
layers is much higher than that of the first two layers in the reconstruction process. But if
we modify the first order moments of all the cells without judgment, we can find that for the
two examples 3.9 and 3.10, the resolution of the HWENOG-M5-NI scheme is not significantly
improved compared to the HWENOG scheme. This is because too much good information
i.e. the first order moments of those good-cells has been edited out. Combined with the
results obtained in the previous four continuous examples 3.1 — 3.4, modifying the first order
moments of all the cells without judgment will lead to a drop in order, indicating that the
judgment step is very necessary. Moreover, we can also observe that such HWENOG6-M5-I
scheme has better resolution than the WENOS5-Z scheme with the same meshes and almost
the same resolution as the WENO5-Z scheme with the same degree of freedoms, but better
stability than the WENOS5-Z scheme, which can be seen from example 3.8 i.e. the Sedov
blast wave problem, since this example will burst when using the WENOS5-Z scheme. Also,
this modification procedure can increase the stability of our scheme according to the double
Mach reflection problem, since this problem will blow up when using the the HWENOG6

scheme without modification under the parameter conditions given in above section.
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4 Concluding remarks

In this paper, we have designed a high-order moment-based multi-resolution HWENO
scheme for hyperbolic conservation laws in the one and two dimensional cases on structured
meshes. In comparison with our previous work in [14], the new feature of this HWENO
scheme is that the zeroth and first order moments rather than the first order derivative
are used in the spacial reconstruction algorithm, and only the function values of the Gauss-
Lobatto points in one or two dimensional case are needed to be reconstructed. Also, after the
reconstruction algorithm, an extra modification procedure is used to modify those first order
moments of the troubled-cells and the corresponding Gauss-Lobatto point values of these
troubled-cells need to be updated by repeating the reconstruction algorithm, to enhance
both resolution and stability. At the same time, the linear weights are not unique and
are independent of the node position, and the CFL number can still be 0.6 whether for
the one or two dimensional case, which has to be 0.2 in the two dimensional case for other
HWENO schemes, for example those in [15, 16, 25, 26]. This HWENO scheme is achieved by
reconstructing the Gauss-Lobatto point values, modifying the first order moments of those
cells which are identified to be troubled-cells by the KXRCF troubled-cell indicator and
repeating the reconstruction algorithm to update the corresponding Gauss-Lobatto point
values of these troubled-cells. In comparison with the multi-resolution WENO scheme, our
major advantages are still the compactness of the stencils and smaller errors under the
same mesh and with the same order. The framework of this moment-based multi-resolution
HWENO scheme would be particularly efficient and simple on unstructured meshes, the
study of which is our ongoing work.
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