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Abstract

This is a follow-up work of Yuan et al. (SIAM J Sci Comput 38:A2987-A3019, 2016) and Ling et

al. (J Sci Comput 77: 1801-1831, 2018) that further investigates the positivity-preserving discontinuous

Galerkin (DG) methods for stationary hyperbolic equations. In 2016, Yuan et al. proposed a high order

positivity-preserving DG method for stationary hyperbolic equations with constant coefficients, but the

scheme has to be used in combination with a non-conservative rotational limiter introduced in case of

negative cell averages. Ling et al. (2018) improved the results in one dimensional space by rigorously

proving the positivity of cell averages of the unmodulated DG scheme, which allows the conservative

scaling limiter in Zhang et al. (J Comput Phys 229:8918-8934, 2010) to be used to maintain positivity

without affecting accuracy, but extension to two space dimensions requires an augmentation of the DG

space and works only in the second order case. Considering that the aforementioned works only address

stationary hyperbolic equations with constant coefficients and higher than second order conservative

methods are still unavailable in two and three space dimensions, we propose high order conservative

positivity-preserving DG methods for variable coefficient and nonlinear stationary hyperbolic equations

in one dimension and constant coefficient stationary hyperbolic equations in two and three dimensions,

via a suitable quadrature in the DG framework. We show the good performance of the algorithms by

ample numerical experiments, including their applications in time-dependent problems.

Key Words: high order accuracy, positivity-preserving, conservative schemes, discontinuous Galerkin

methods, stationary hyperbolic equations

1 Introduction

In this paper, we are interested in numerical methods for stationary hyperbolic equations. In the one

dimensional space, we consider the variable coefficient and nonlinear stationary hyperbolic equations

(a(x)u)x + λu = f(x), x ∈ Ω = [0, 1], (1.1)
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where a(x) does not change sign and, without loss of generality a(x) > 0, and

(a(u)u)x + λu = f(x), x ∈ Ω = [0, 1], (1.2)

where a(u) does not change sign and, without loss of generality a(u) > 0. Here λ ≥ 0 is a constant. In two

and three dimensional spaces, we consider the constant coefficient stationary hyperbolic equations

aux + buy + λu = f(x, y), (x, y) ∈ Ω = [0, 1]2, (1.3)

and

aux + buy + cuz + λu = f(x, y, z), (x, y, z) ∈ Ω = [0, 1]3, (1.4)

respectively, where λ ≥ 0 is a constant and, without loss of generality, we assume a, b, c > 0.

The stationary hyperbolic equations (1.1)-(1.4) have wide applications in steady-state transport problems.

Moreover, the equations form the building block of the linear radiative transfer equation (RTE), which is an

integro-differential equation that describes the distribution of radiative intensity in a medium, based on the

discrete-ordinate method (DOM) [9, 11] and iterative procedure on the source terms, see [19, 13] for more

details.

The discontinuous Galerkin (DG) method is one of the most popular numerical methods to solve hyper-

bolic equations, for its advantages in obtaining high order accuracy, flexibility for complex geometry and

easiness to be parallelized. In 1970, Reed et al. [14] proposed the first DG scheme to solve the linear steady-

state RTE for neutron transport problems. It was later developed into Runge-Kutta discontinuous Galerkin

(RKDG) methods by Cockburn et al. in a series of papers [7, 6, 5, 4, 8] to solve time-dependent hyperbolic

equations such as the Burgers equation, Euler equations, and shallow water equations, etc. In this paper,

we will adopt the classic DG method to solve the stationary hyperbolic equations.

For stationary hyperbolic equations, it is well-known that their physical solutions satisfy the positivity-

preserving property, i.e. the solutions are nonnegative, provided the corresponding boundary conditions

and source terms are nonnegative. When designing numerical methods, one naturally wants to maintain

the positivity-preserving property on the numerical solution, since negative values are not only physically

unacceptable, but also may cause severe robustness issues in the simulations, especially when coupled with

other physical systems.

There have been intensive studies on positivity-preserving DG methods. In 2010, the genuinely maximum-

principle-satisfying DG method was proposed by Zhang et al. in [21] for time-dependent scalar hyperbolic
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equations. The method is called positivity-preserving when the lower bound in the maximum-principle is

zero, which is the case in our problems. The general framework of the positivity-preserving method is

composed of two parts. The first part is to obtain the solution at the next time step with nonnegative cell

averages from the original, unlimited DG scheme, probably under certain step-size conditions. Once the cell

averages of solution are guaranteed nonnegative, the scaling limiter in [21], which maintains the high order

accuracy and mass conservation, is applied to modify the solution such that the entire solution becomes

nonnegative. Based on this simple but powerful framework, positivity-preserving and maximum-principle-

satisfying DG methods for time-dependent problems have been rapidly developed later, e.g. for the Euler

equations [22, 23], Navier-Stokes equations [24, 12], shallow water equations[17, 16], convection-diffusion

equations [25, 18], and compressible miscible displacements [10], among others.

In 2016, Yuan et al. [19] proposed a high order positivity-preserving DG method for constant coefficient

stationary hyperbolic equations. Taking the one dimensional case as an example, their algorithm is as follows:

Firstly, they proved a fundamental result that the numerical solution u(x) solved from the unmodulated DG

method satisfies max{ūK , uK(xc)} ≥ 0 on every cell K of the mesh, where ūK is the cell average on K, and

xc is the right end point (the downwind point) of K. They then modify the solution uK(x) on cell K based

on the principle that, if ūK ≥ 0, the conservative scaling limiter [21]

ũK(x) = θ (uK(x)− ūK) + ūK ,where θ = min{ ūK

ūK −minK uK(x)
, 1} (1.5)

is applied, otherwise a non-conservative rotational limiter [19] centered at xc is used. Their algorithm can

maintain positivity without affecting high order accuracy, however, since the cell average ūK can be changed

by the rotation, the algorithm is not conservative in general, which is also true when the algorithm is

extended to two-dimensional rectangular [19] or triangular [20] meshes. In 2018, Ling et al. [13] improved

the result by rigorously proving that the solution of the unmodulated DG method in one dimension actually

satisfies ūK ≥ 0 for all K. Therefore the scaling limiter (1.5) can always be used, which yields a high order

conservative positivity-preserving DG method. In their work, a special test function ξ that recovers cell

averages ūK from the left hand side of the DG scheme was proved to be nonnegative, which implies ūK ≥ 0

since the source term and boundary terms on the right hand side of the DG scheme are both nonnegative,

see more details in [13]. Unfortunately, direct extension to two dimensions fails due to the fact that such test

function ξ is no longer nonnegative over the cell in rectangular meshes, even for second order DG method with

P 1 or Q1 spaces. Instead, the authors obtained a second order positivity-preserving conservative scheme on
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rectangular meshes by augmenting the P 1 finite element space, but the extension of this approach to higher

space dimensions or to higher order schemes was not carried out in [13] and is highly nontrivial.

In this paper, we further investigate high order conservative positivity-preserving DG method for station-

ary hyperbolic equations. We put our effort on proving the positivity of cell averages of the scheme so that

the conservative scaling limiter (1.5) can be applied directly to maintain high order accuracy and positivity.

The main difficulty is that the unmodulated DG method fails in positivity-preserving for cell averages in

all the equations we consider in this paper, which will be illustrated by concrete examples in later sections.

To resolve this difficulty, we modify the original DG method by adopting appropriate quadrature rules to

replace the exact integrals in the schemes, which is a common practice in the implementation of DG schemes,

not only because the exact integral is often difficult to obtain, but also for the purpose of achieving specific

properties, e.g. maximum-principle-satisfying [21] or entropy stability [3]. The quadrature rules adopted in

the schemes are easy to implement and can be directly extended to high dimensions. More importantly, we

will show that the cell averages of the DG schemes with such quadrature rules are positive, by proving the

positivity of the test function that recovers the cell average from the left hand side of the schemes. The rest

of the paper is organized as follows. In Section 2, we propose the conservative positivity-preserving method

in the one dimensional space by introducing the desired quadrature rules in the DG formulation, which do

not evaluate the integrals in the DG scheme exactly. We give an example to explain why such quadratures

are necessary, and rigorously prove the positivity-preserving property of our method. In Section 3, we pro-

pose the positivity-preserving DG methods for two and three space dimensions, based on direct extensions

from the 1D algorithm. We detail the implementation of the positivity-preserving scaling limiter (1.5) and

summarize the complete positivity-preserving algorithm in Section 4. The good performance of the schemes

are demonstrated by ample numerical experiments in Section 5. Due to the inaccurate quadrature, the order

of convergence is suboptimal in two and three space dimensions, but we observe optimal convergence in all

one dimensional tests. Finally, we end in Section 6 with concluding remarks.

2 Numerical algorithm in one space dimension

In this section, we construct high order conservative positivity-preserving DG methods for stationary hy-

perbolic equations (1.1) and (1.2) in the one dimensional space. The schemes can be arbitrarily high order

for the case of (1.1) with λ = 0, but for the other cases we are only able to prove the positivity-preserving
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property for P 1 and P 2 (second and third order) DG schemes.

2.1 Notations

We take the partition 0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 1 on Ω = [0, 1], and denote the j-th cell by

Ij = [xj− 1
2
, xj+ 1

2
], with the cell size ∆xj = xj+ 1

2
− xj− 1

2
and the cell center xj = 1

2 (xj− 1
2
+ xj+ 1

2
) for

j = 1, 2, . . . , N .

The finite element space of P k-DG scheme is defined as

V k
h = {v ∈ L2([0, 1]) : v|Ij ∈ P k(Ij), j = 1, 2, . . . , N}, (2.1)

where P k(I) is the polynomial space of order no greater than k on I. For v ∈ V k
h , we define the cell average

v̄j =
1

∆xj

∫ x
j+1

2
x
j− 1

2

v(x)dx on Ij . Moreover, we denote by v−
j+ 1

2

and v+
j+ 1

2

the left and right limits of v at xj+ 1
2
,

respectively, i.e. v±
j+ 1

2

= v(xj+ 1
2
± 0).

For the purpose of positivity-preserving, we adopt the Gauss-Legendre quadrature rule of k points to eval-

uate volume integrals in the P k-DG scheme, and denote this quadrature by ∼
∫

Ij
v(x)dx = ∆xj

∑k
α=1 ω̂αv(x̂α),

where {x̂α, α = 1, . . . , k} are the quadrature points on Ij and {ω̂α, α = 1, . . . , k} are the quadrature weights

satisfying
∑k

α=1 ω̂α = 1.

2.2 Variable coefficient stationary hyperbolic equation in one space dimension

Consider the variable coefficient stationary hyperbolic equation (1.1) with f(x) ≥ 0 in Ω. As mentioned

before, without loss of generality we assume a(x) > 0 and the corresponding boundary condition u(0) =

u0 ≥ 0. The case a(x) < 0 with the boundary condition u(1) = u0 ≥ 0 can be obtained by the change of

variable x′ = 1− x.

Firstly, we give an example to show that the original DG scheme with exact integrals may produce

negative cell averages, even when the upwind boundary condition and the source term are both positive.

The original P k-DG scheme of the equation (1.1) is to seek u ∈ V k
h , s.t. ∀w ∈ V k

h ,

−
∫

Ij

(a(x)uwx − λuw) dx+ a(xj+ 1
2
)u−

j+ 1
2

w−
j+ 1

2

= a(xj− 1
2
)u−

j− 1
2

w+
j− 1

2

+

∫

Ij

fwdx, (2.2)

for j = 1, 2, . . . , N , where we let u−
1
2

= u0. We adopt the P 1-DG scheme and take a(x) = 1 + x, λ = 0 and

u0 > 0. It is easy to check that ξ(x) = 6+5∆x1

6+8∆x1+2∆x2
1
− 3x

∆x1(3+∆x1)
is the unique function in P 1(I1) such

that −
∫

I1
a(x)vξxdx + a(x 3

2
)v−3

2

ξ−3
2

= v̄1 for all v ∈ V 1
h , and ξ(x 3

2
) = − ∆x1

2(3+4∆x1+∆x2
1)

< 0. By taking the
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test function w = ξ (where we extend w = 0 outside I1) in the scheme, we can construct f(x) ≥ 0 that

takes large values around x 3
2

such that ū1 = a(0)u0ξ(x 1
2
) +

∫

I1
fξdx < 0. One can check that if we adopt

P 2, P 3, P 4, P 5-DG schemes and take a(x) = 1+ x2, a(x) = 1+ x3, a(x) = 1+ x4, a(x) = 1+ x5, respectively,

negative cell averages may also appear following the same lines, see the details in Appendix B.

However, we are going to show that the positivity-preserving property can be achieved simply by replacing

the exact integrals in the scheme by the Gauss-Legendre quadratures of k points. The positivity-preserving

P k-DG scheme of (1.1) is to seek u ∈ V k
h , s.t. ∀w ∈ V k

h ,

−∼
∫

Ij

(a(x)uwx − λuw) dx+ a(xj+ 1
2
)u−

j+ 1
2

w−
j+ 1

2

= a(xj− 1
2
)u−

j− 1
2

w+
j− 1

2

+∼
∫

Ij

fwdx, (2.3)

for j = 1, 2, . . . , N .

Cockburn et al. have proved in [4] that a sufficient condition for the quadrature in P k-DG scheme to

attain optimal convergence is to have algebraic degree of accuracy 2k. Though this condition is not satisfied

by the quadrature in (2.3), we observe optimal order of convergence in all one dimensional tests.

Based on the framework of [21], we only need to put our effort on proving the positivity of cell averages

of the scheme (2.3), then the scaling limiter (1.5) can be used to achieve positivity of the entire solution

without losing mass conservation and accuracy. Same as in [13], it suffices to prove the positivity of the test

function ξ ∈ V k
h that recovers the cell average of the solution from the left hand side of the scheme (2.3).

We assume that a(x) ∈ Ck(Ij), j = 1, 2, . . . , N, in the P k-DG scheme to make sense of some norms to be

used. We first consider the case λ = 0 and give the main result as follows.

Lemma 2.1. Define ξ(x) = 1
∆xj

∫ x
j+1

2
x L[ 1

a(t) ]dt for x ∈ Ij, where L[·] is the Lagrange interpolation operator

at the Gauss-Legendre points {x̂α}kα=1, then ξ is the unique function in P k(Ij) that satisfies

−∼
∫

Ij

a(x)vξxdx + a(xj+ 1
2
)v−

j+ 1
2

ξ−
j+ 1

2

= v̄j , ∀v ∈ P k(Ij). (2.4)

Moreover, for k = 1, ξ ≥ 0 on Ij ; for k ≥ 2, ξ ≥ 0 on Ij if the mesh size satisfies

∆xj ≤





(2k)!

k!||a(x)||L∞(Ij)|| dk

dxk

(

1
a(x)

)

||L∞(Ij)





1
k

. (2.5)

Proof. By definition, ξ ∈ P k(Ij), ξx(x) = − 1
∆xj

L[ 1
a(t) ](x), and ξ−

j+ 1
2

= 0. Therefore, it follows from direct
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computation that, ∀v ∈ P k(Ij),

−∼
∫

Ij

a(x)vξxdx+ a(xj+ 1
2
)v−

j+ 1
2

ξ−
j+ 1

2

=

k
∑

α=1

ω̂αa(x̂α)v(x̂α)L[
1

a(t)
](x̂α) + 0

=

k
∑

α=1

ω̂αv(x̂α) = v̄j ,

where the last equality holds because the k-point Gauss-Legendre quadrature is exact for integrals of poly-

nomials of order at most k.

As to the uniqueness, we consider the corresponding homogeneous linear problem: Find η ∈ P k(Ij), s.t.

−∼
∫

Ij

a(x)vηxdx+ a(xj+ 1
2
)v−

j+ 1
2

η−
j+ 1

2

= 0, ∀v ∈ P k(Ij).

If we take v as the k+1 Lagrange basis at x̂1, x̂2, . . . , x̂k, xj+ 1
2
, the above linear problem is converted to the

system of linear equations














ηx(x̂α) = 0, α = 1, 2, . . . , k

η(xj+ 1
2
) = 0.

Since ηx ∈ P k−1(Ij), we have ηx ≡ 0 from the uniqueness of Lagrange interpolation, which implies η ≡ 0

since η(xj+ 1
2
) = 0. Therefore, the function satisfying (2.4) is unique in P k(Ij).

To show the positivity of ξ, it suffices to prove its integrand L[ 1
a(x) ] ≥ 0 on Ij . When k = 1, this is clear

because the Lagrange interpolant L[ 1
a(x) ] =

1
a(x̂1)

is a constant. When k ≥ 2, we need the error formula[2]

of the Lagrange polynomial for g(x) ∈ Ck(Ij) interpolating at x̂1, . . . , x̂k,

g(x)− L[g](x) = g(k)(ζ(x))

k!
(x− x̂1)(x− x̂2) · · · (x− x̂k),

where ζ(x) ∈ Ij is generally unknown. Moreover, let us recall that the standard k-th order Legendre

polynomial satisfies |Pk(r)| ≤ 1 for r ∈ [−1, 1], and has the explicit formula

Pk(r) =
(2k)!

2k(k!)2
(r − r̂1)(r − r̂2) · · · (r − r̂k),

where r̂1, r̂2, . . . , r̂k are the roots of the k-th order Legendre polynomial. The properties of the Legendre

polynomials imply | 1k! (x− x̂1)(x− x̂2) · · · (x− x̂k)| = (∆xj)
kk!

(2k)!

∣

∣

∣

∣

Pk

(

x− 1
2 (xj− 1

2
+x

j+1
2
)

∆xj/2

)∣

∣

∣

∣

≤ (∆xj)
kk!

(2k)! . Therefore,
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we have the lower bound estimates for L[ 1
a(x) ] on Ij as follows,

L[ 1

a(t)
](x) =

1

a(x)
− dk

dxk

(

1

a(x)

)∣

∣

∣

∣

x=ζ

· 1

k!
(x− x̂1)(x− x̂2) · · · (x− x̂k)

≥ 1

||a(x)||L∞(Ij)
− (∆xj)

kk!

(2k)!
|| d

k

dxk

(

1

a(x)

)

||L∞(Ij)

≥ 0, ∀x ∈ Ij ,

under the condition ∆xj ≤
(

(2k)!

k!||a(x)||L∞(Ij )|| dk

dxk ( 1
a(x) )||L∞(Ij)

)
1
k

on the mesh size.

Remark 2.1. The condition (2.5) is drawn from the requirement that the Lagrange interpolation L[ 1
a(x) ]

being nonnegative on Ij. Since we have assumed the smoothness of a(x), which implies 1
a(x) is smooth and

lower bounded away from zero, the mesh size condition should not be severe. Indeed, since we merely need

the integration
∫ x

j+1
2

x
L[ 1

a(t) ]dt ≥ 0, x ∈ Ij , to guarantee the positivity of ξ, the actual condition needed on

the mesh size may be even more relaxed.

Based on the lemma above, if we assume the inflow condition u−
j− 1

2

≥ 0, we can immediately obtain the

positivity of ūj by taking the test function w = ξ (extend ξ = 0 outside Ij) in the scheme (2.3) and using

the fact that the source term f and coefficient a(x) are positive. We can therefore obtain the result for the

positivity-preserving property of the scheme (2.3) with λ = 0 as follows.

Theorem 2.2. For the variable coefficient stationary hyperbolic equation (1.1) with λ = 0, if the source

term and inflow conditions from upstream cells (including the inflow condition on the first cell) are positive,

then the cell averages of the scheme (2.3) are positive, under the mesh size condition in Lemma 2.1.

We then consider the case λ > 0 and give the main result as follows.

Lemma 2.3. Define the functions

ξ1(x) =
2(xj+ 1

2
− x)

∆xj(2a(x̂1) + λ∆xj)
, x ∈ Ij ,

and

ξ2(x) =
6(xj+ 1

2
− x)

(

λ̃(x − xj− 1
2
) + a(x̂1) + a(x̂2)

)

∆xj

(

12a(x̂1)a(x̂2) + 3∆xjλ(a(x̂1) + a(x̂2)) + ∆x2
jλ

2
) , x ∈ Ij ,

where λ̃ = λ +
√
3(a(x̂1)−a(x̂2))

∆xj
, for P 1-DG and P 2-DG schemes, respectively, then ξ1 and ξ2 are the unique

functions in P k(Ij) that satisfies

−∼
∫

Ij

(a(x)vξx − λvξ) dx+ a(xj+ 1
2
)v−

j+ 1
2

ξ−
j+ 1

2

= v̄j , ∀v ∈ P k(Ij), (2.6)
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for k = 1 and k = 2, respectively.

Moreover, ξ1 ≥ 0 on Ij; ξ2 ≥ 0 on Ij if λ ≥ pj(a), or otherwise ∆xj ≤ 2minx∈Ij
a(x)

pj(a)−λ , where pj(·) is the

one-sided Lipschitz seminorm [1] defined as

pj(v) = sup
x,y∈Ij,x 6=y

(

v(x) − v(y)

x− y

)

+

,where z+ = max(0, z).

Proof. It is easy to check by solving the linear equation/system that ξ1(x) and ξ2(x) are the unique solutions

of the linear problem (2.6) for k = 1 and k = 2, respectively.

It is also clear that ξ1(x) ≥ 0 on Ij , since a(x), λ > 0 by assumption.

As for k = 2, the positivity of ξ2(x) is always the same to its factor λ̃(x − xj− 1
2
) + a(x̂1) + a(x̂2). Note

that λ̃ = λ− a(x̂1)−a(x̂2)
x̂1−x̂2

≥ λ− pj(a), thereby λ̃(x− xj− 1
2
) + a(x̂1) + a(x̂2) ≥ a(x̂1) + a(x̂2) ≥ 0 if λ ≥ pj(a),

or λ̃(x− xj− 1
2
) + a(x̂1) + a(x̂2) ≥ a(x̂1) + a(x̂2)− (pj(a)− λ)∆xj ≥ 0 if λ < pj(a). Both cases indicate that

ξ2(x) ≥ 0 on Ij .

Following the same arguments as before, we can immediately get the positivity of ūj if we assume the

positivity of the inflow condition and the source term. We can therefore obtain the result for the positivity-

preserving property of the scheme (2.3) with λ > 0 (in fact it also applies to the case of λ = 0) as follows.

Theorem 2.4. For the variable coefficient stationary hyperbolic equation (1.1) with λ > 0, if the source term

and the inflow conditions from upstream cells (including the inflow condition on the first cell) are positive,

then the cell averages of the scheme (2.3) are positive, under the conditions in Lemma 2.3.

Remark 2.2. We are only able to prove the positivity-preserving property for P k-DG methods with k = 1

and k = 2 here. For the cases k ≥ 3, the positivity of test function ξ satisfying (2.6) is too complicated to

be analyzed generally. However, we have investigated these cases for some special a(x) and the results are

promising, which are shown in Appendix B.

2.3 Nonlinear stationary hyperbolic equation in one space dimension

Consider the nonlinear stationary hyperbolic equation (1.2) with f ≥ 0 in Ω. We assume a(u) ≥ c >

0, d(a(u)u)du > 0 for all u, and the boundary condition u(0) ≥ 0.

Formally, we still have the same positivity-preserving results as in the variable coefficient case if we adopt

the scheme: seek u ∈ V k
h , s.t. ∀w ∈ V k

h ,

−∼
∫

Ij

(a(u)uwx − λuw) dx+ a(u−
j+ 1

2

)u−
j+ 1

2

w−
j+ 1

2

= a(u−
j− 1

2

)u−
j− 1

2

w+
j− 1

2

+∼
∫

Ij

fwdx, (2.7)
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for j = 1, 2, . . . , N , since a(u) in the scheme can be regarded as a(u(x)) in the variable coefficient case.

However, because u(x) is unknown, the mesh size conditions established before for positivity-preserving is

unavailable for k ≥ 2. To resolve this difficulty, we give a P 2-DG scheme which is positivity-preserving on

arbitrary meshes: seek u ∈ V 2
h , s.t. ∀w ∈ V 2

h ,

−∼
∫

Ij

(a(u)uwx − λuw) dx+ a(u−
j+ 1

2

)u−
j+ 1

2

w−
j+ 1

2

= a(u−
j− 1

2

)u−
j− 1

2

w+
j− 1

2

+−
∫

Ij

fwdx, (2.8)

for j = 1, 2, . . . , N , where −
∫

Ij
denotes the Simpson’s quadrature rule.

We give the main result for the P 2-DG scheme (2.8) as follows.

Lemma 2.5. Let u(x) be the solution of the scheme (2.8) and define the function

ξ(x) =
6(xj+ 1

2
− x)

(

λ̃(x− xj− 1
2
) + a(u(x̂1)) + a(u(x̂2))

)

∆xj

(

12a(u(x̂1))a(u(x̂2)) + 3∆xjλ(a(u(x̂1)) + a(u(x̂2))) + ∆x2
jλ

2
) , x ∈ Ij , (2.9)

where λ̃ = λ+
√
3(a(u(x̂1))−a(u(x̂2)))

∆xj
, then ξ ∈ P 2(Ij) satisfies

−∼
∫

Ij

(a(u)vξx − λvξ) dx+ a(u−
j+ 1

2

)v−
j+ 1

2

ξ−
j+ 1

2

= v̄j , ∀v ∈ P 2(Ij). (2.10)

Moreover, ξ ≥ 0 at the points {xj− 1
2
, xj , xj+ 1

2
}.

Proof. It can be verified by direct computations similar to the proofs before.

Following the same arguments as in the variable coefficient case, we immediately get the positivity of ūj ,

if we assume the positivity of inflow condition and source term. Though the expression of ξ in (2.9) contains

the unknown solution u, it is not a problem since we actually do not use ξ in the implementation of the

positivity-preserving algorithm. We can therefore obtain the result for the positivity-preserving property of

the schemes (2.7) for k = 1 and (2.8) for k = 2 as follows.

Theorem 2.6. For the nonlinear stationary hyperbolic equation (1.2), if the source term and inflow condi-

tions from upstream cells (including the inflow condition on the first cell) are positive, then the cell averages

of the schemes (2.7) for k = 1 and (2.8) for k = 2 are positive on arbitrary meshes.

3 Numerical algorithm in two and three space dimensions

In this section, we construct high order conservative positivity-preserving DG schemes for constant coefficient

stationary hyperbolic equations (1.3) and (1.4) in two and three dimensions, respectively. The schemes are
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direct extensions from the algorithm in one space dimension. We are only able to give rigorous proofs of

positivity-preserving for limited cases but numerical computation shows strong evidence that the schemes

are positivity-preserving for Qk-DG for arbitrary k in two dimensions, and for odd k = 1, 3, 5, 7, . . . in three

dimensions.

3.1 Notations

We take the partition 0 = x 1
2

< x 3
2

< · · · < xNx+
1
2

= 1, 0 = y 1
2

< y 3
2

< · · · < yNy+
1
2

= 1, and

0 = z 1
2
< z 3

2
< · · · < zNz+

1
2
= 1 in the x, y and z directions, respectively, and define the mesh sizes

∆xi = xi+ 1
2
− xi− 1

2
, i = 1, . . . , Nx, ∆yj = yj+ 1

2
− yj− 1

2
, j = 1, . . . , Ny, and ∆zl = zl+ 1

2
− zl− 1

2
, l = 1, . . . , Nz,

with cell centers xi =
1
2 (xi− 1

2
+ xi+ 1

2
), i = 1, . . . , Nx, yj =

1
2 (yj− 1

2
+ yj+ 1

2
), j = 1, . . . , Ny, and zl =

1
2 (zl− 1

2
+

zl+ 1
2
), l = 1, . . . , Nz. Moreover, we denote by Ki,j = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
], i = 1, . . . , Nx, j = 1, . . . , Ny

the cells in the two dimensional domain Ω = [0, 1]2, and Ki,j,l = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]× [zl− 1

2
, zl+ 1

2
], i =

1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz the cells in the three dimensional domain Ω = [0, 1]3.

The finite element spaces of the Qk-DG scheme are defined as

V k
h = {v ∈ L2([0, 1]2) : v|Ki,j

∈ Qk(Ki,j), i = 1, . . . , Nx, j = 1, . . . , Ny}, (3.1)

and

V k
h = {v ∈ L2([0, 1]3) : v|Ki,j,l

∈ Qk(Ki,j,l), i = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz}, (3.2)

in two and three dimensional domains, respectively, where Qk(K) is the tensor product polynomial space

of order no greater than k on the cell K. For v ∈ V k
h , we denote the cell average by v̄i,j on Ki,j, and v̄i,j,l

on Ki,j,l. In two space dimensions, we define the left/right and lower/upper limits of v on the vertical and

horizontal cell interfaces by v(x±
i+ 1

2

, y) = v(xi+ 1
2
± 0, y) and v(x, y±

j+ 1
2

) = v(x, yj+ 1
2
± 0), respectively. In

three space dimensions, the limits on cell interfaces are defined similarly.

We let {r̂α, ω̂α}kα=1 and {r̃α, ω̃α}k+1
α=1 be the Gauss-Legendre quadrature rules with k and k+1 quadrature

points on [−1, 1], respectively. As in the previous section, we use the notation ∼
∫

to denote the approximate

integration via the k-point Gauss-Legendre quadrature. If not otherwise stated, the usual integral notation

∫

stands for the exact integral, which can be evaluated by the k + 1 point Gauss-Legendre quadrature in

the Qk-DG scheme for the constant coefficient problems. Finally, we denote by {ℓi(x), i = 1, . . . , k} the

Lagrange interpolation basis at {r̂α}kα=1 with ℓi(r̂α) = δi,α, and by ℓ′i(x) the derivative of ℓi(x).
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3.2 Constant coefficient stationary hyperbolic equation in two space dimensions

Consider the constant coefficients stationary hyperbolic equation (1.3) with f(x, y) ≥ 0 in Ω. As mentioned

before, without loss of generality, we may assume a, b > 0, because the other cases can be obtained by the

change of variables x′ = 1 − x and/or y′ = 1 − y. The corresponding boundary conditions are given by

u(0, y) = g1(y), u(x, 0) = g2(x), where g1, g2 ≥ 0.

Firstly, we would like to remark that the original DG methods are not positivity-preserving for the

cell averages in general, even for the P 1-DG or Q1-DG schemes. One can refer to the counterexamples

constructed in [13].

The positivity-preserving Qk-DG scheme of (1.3) is to seek u ∈ V k
h s.t. ∀w ∈ V k

h ,

−∼
∫ x

i+1
2

x
i− 1

2

∼
∫ y

j+1
2

y
j− 1

2

(auwx + buwy − λuw) dxdy +

∫ y
j+1

2

y
j− 1

2

au(x−
i+ 1

2

, y)w(x−
i+ 1

2

, y)dy +

∫ x
i+1

2

x
i− 1

2

bu(x, y−
j+ 1

2

)w(x, y−
j+ 1

2

)dx

=

∫ y
j+1

2

y
j− 1

2

au(x−
i− 1

2

, y)w(x+
i− 1

2

, y)dy +

∫ x
i+1

2

x
i− 1

2

bu(x, y−
j− 1

2

)w(x, y+
j− 1

2

)dx+∼
∫ x

i+1
2

x
i− 1

2

∼
∫ y

j+1
2

y
j− 1

2

fwdxdy,

(3.3)

for i = 1, . . . , Nx, j = 1, . . . , Ny. If xi− 1
2
= 0, we let u(x−

i− 1
2

, y) = g1(y), similarly if yj− 1
2
= 0, we let

u(x, y−
j− 1

2

) = g2(x). The quadrature adopted in (3.3) does not satisfy the condition for optimal convergence

established in [4], which results in sub-optimal convergence as we will show in the numerical tests.

Without loss of generality, we only consider scheme (3.3) on the reference cell K = [−1, 1]× [−1, 1], as

any cell Ki,j = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] can be transferred to K by changing of coordinates which only

rescales a, b, λ, f without altering their signs. We give the main result as follows.

Lemma 3.1. Define ξ(x, y; a, b, λ) = (1− x)(1− y)η(x, y; a, b, λ) for (x, y) ∈ [−1, 1]2, where η(x, y; a, b, λ) =

∑k
i,j=1 ηij(a, b, λ)ℓi(x)ℓj(y), and {ηij(a, b, λ)}ki,j=1 is the solution of the linear system

k
∑

i,j=1

(a ((1 − r̂α)(1 − r̂β)ℓ
′
i(r̂α)δβ,j − (1− r̂β)δα,iδβ,j) + b

(

(1 − r̂α)(1 − r̂β)ℓ
′
j(r̂β)δα,i − (1− r̂α)δα,iδβ,j

)

−λ(1− r̂α)(1 − r̂β)δα,iδβ,j) ηij = −1

4
, α, β = 1, 2, . . . , k,

(3.4)

then ξ(x, y; a, b, λ) ∈ Qk([−1, 1]2) satisfies

−∼
∫ 1

−1

∼
∫ 1

−1

(avξx + bvξy − λvξ) dxdy+

∫ 1

−1

av(1, y)ξ(1, y)dy+

∫ 1

−1

bv(x, 1)ξ(x, 1)dx =
1

4

∫ 1

−1

∫ 1

−1

vdxdy, (3.5)

for any v ∈ Qk([−1, 1]2).
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Moreover, for k = 1, 2, we have ξ(x, y; a, b, λ) ≥ 0 on [−1, 1]2; for k = 3, we can show ξ(r̂α, r̂β ; a, b, 0) ≥ 0,

α, β = 1, 2, 3 and ξ(−1, r̃α; a, b, 0), ξ(r̃α,−1; a, b, 0) ≥ 0, α = 1, 2, 3, 4.

Proof. By definition of ξ(x, y), we can compute that ξx(x, y) = (1 − x)(1 − y)
∑k

i,j=1 ηijℓ
′
i(x)ℓj(y) − (1 −

y)
∑k

i,j=1 ηijℓi(x)ℓj(y) and ξy(x, y) = (1−x)(1−y)
∑k

i,j=1 ηijℓi(x)ℓ
′
j(y)−(1−x)

∑k
i,j=1 ηijℓi(x)ℓj(y), thereby

it can be checked that {ηij}ki,j=1 is the solution of the linear system (3.4) if and only if ξ satisfies

aξx(r̂α, r̂β) + bξy(r̂α, r̂β)− λξ(r̂α, r̂β) = −1

4
, α, β = 1, 2, . . . , k.

Moreover, we have ξ(1, y) = ξ(x, 1) = 0 from the definition. Therefore, it follows from direct computation

that

−∼
∫ 1

−1

∼
∫ 1

−1

(avξx + bvξy − λvξ) dxdy +

∫ 1

−1

av(1, y)ξ(1, y)dy +

∫ 1

−1

bv(x, 1)ξ(x, 1)dx

=− 4
k

∑

α,β=1

ω̂αω̂βv(r̂α, r̂β) (aξx(r̂α, r̂β) + bξy(r̂α, r̂β)− λξ(r̂α, r̂β)) + 0 + 0

=
k

∑

α,β=1

ω̂αω̂βv(r̂α, r̂β) =
1

4

∫ 1

−1

∫ 1

−1

vdxdy, ∀v ∈ Qk([−1, 1]2),

where the last equality follows from the fact that the tensor product of k-point Gauss-Legendre quadrature

is accurate for v ∈ Qk([−1, 1]2).

It remains to show the positivity of ξ, or equivalently η.

When k = 1, by solving the linear equation (3.4), we have η(x, y; a, b, λ) = 1
4(a+b+λ) > 0.

When k = 2, by solving the linear system (3.4), we have η(x, y; a, b, λ) = C−1(6a3+15a2b+15ab2+6b3+

9a2λ+17abλ+9b2λ+5aλ2 +5bλ2 +λ3 +3a2bx+9ab2x+6b3x+3a2λx+9abλx+9b2λx+3aλ2x+5bλ2x+

λ3x+ 6a3y+ 9a2by+ 3ab2y+ 9a2λy+ 9abλy+ 3b2λy + 5aλ2y+ 3bλ2y+ λ3y+ 9a2bxy+ 9ab2xy + 3a2λxy +

9abλxy+3b2λxy+3aλ2xy+3bλ2xy+λ3xy), where C = 16
9 (3a

2+3ab+3b2+3aλ+3bλ+λ2)(3a2+6ab+3b2+

3aλ + 3bλ + λ2) > 0. Since η ∈ Q1([−1, 1]2) and η(−1,−1) = C−1(12a2b + 12ab2 + 8abλ) > 0, η(−1, 1) =

C−1(12a3 + 12a2b + 12a2λ + 8abλ + 4aλ2) > 0, η(1,−1) = C−1(12ab2 + 12b3 + 8abλ + 12b2λ + 4bλ2) > 0,

η(1, 1) = C−1(12a3 + 36a2b + 36ab2 + 12b3 + 24a2λ + 44abλ+ 24b2λ + 16aλ2 + 16bλ2 + 4λ3) > 0, we have

η(x, y; a, b, λ) > 0 for (x, y) ∈ [−1, 1]2.

Now we consider the case k = 3 with λ = 0. Firstly, we note that from the definition, ξ(x, y; a, b, λ) =

Cξ(x, y;Ca,Cb, Cλ) and η(x, y; a, b, λ) = Cη(x, y;Ca,Cb, Cλ), ∀C > 0. Therefore it suffices to investigate

the case a = 1, b > 0 since ξ(x, y; a, b, 0) = 1
aξ(x, y; 1,

b
a , 0). By solving the linear system (3.4), we get

13



ηij(1, b, 0) =
Pij(b)
Q(b) , i, j = 1, 2, 3, where Pij(b) and Q(b) are polynomials defined as:

P11(b) = 2(5(5−
√
15) + 5(17− 4

√
15)b+ (195− 31

√
15)b2 + (240− 38

√
15)b3 + (195− 31

√
15)b4 + 5(17− 4

√
15)b5 + 5(−5 +

√
15)b6)

P12(b) = 20 + (95 + 3
√
15)b + 180b2 + 14(15−

√
15)b3 + (195− 29

√
15)b4 + 25(5−

√
15)b5 + 10(5−

√
15)b6

P13(b) = 2(5(5 +
√
15) + 5(8 +

√
15)b+ (45 +

√
15)b2 + 30b3 + (45−

√
15)b4 + 5(8−

√
15)b5 + 5(5−

√
15)b6)

P21(b) = 10(5−
√
15) + 25(5−

√
15)b+ (195− 29

√
15)b2 + 14(15−

√
15)b3 + 180b4 + (95 + 3

√
15)b5 + 20b6

P22(b) = 20 + 95b+ 198b2 + 249b3 + 198b4 + 95b5 + 20b6

P23(b) = 10(5 +
√
15) + 25(5 +

√
15)b+ (195 + 29

√
15)b2 + 14(15 +

√
15)b3 + 180b4 + (95− 3

√
15)b5 + 20b6

P31(b) = 2(5(5−
√
15) + 5(8−

√
15)b+ (45−

√
15)b2 + 30b3 + (45 +

√
15)b4 + 5(8 +

√
15)b5 + 5(5 +

√
15)b6)

P32(b) = 20 + (95− 3
√
15)b + 180b2 + 14(15 +

√
15)b3 + (195 + 29

√
15)b4 + 25(5 +

√
15)b5 + 10(5 +

√
15)b6

P33(b) = 2(5(5 +
√
15) + 5(17 + 4

√
15)b+ (195 + 31

√
15)b2 + (240 + 38

√
15)b3 + (195 + 31

√
15)b4 + 5(17 + 4

√
15)b5 + 5(5 +

√
15)b6)

Q(b) = 16(1 + b)(5 + 15b+ 27b2 + 31b3 + 27b4 + 15b5 + 5b6)

One can observe that all coefficients in the above polynomials are positive. Therefore, we have η(r̂α, r̂β ; a, b, 0) =

1
aη(r̂α, r̂β ; 1,

b
a , 0) =

1
a
Pα,β(b/a)
Q(b/a) > 0, for α, β = 1, 2, 3. Further more, since η(x, y; 1, b, 0) =

∑3
i,j=1 ηij(1, b, 0)ℓi(x)ℓj(y) =

∑3
i,j=1 Pij(b)ℓi(x)ℓj(y)

Q(b) , the values of η at the quadrature points {(−1, r̃α), α = 1, 2, 3, 4} and {(r̃α,−1), α =

1, 2, 3, 4} are also rational functions of b. By direct computation, one can check that the coefficients of these

rational functions are all positive, which implies the positivity of η(x, y; a, b, 0) at these points. We omit the

details of computation since it is straightforward but lengthy.

Remark 3.1. By the Cramer’s rule, we always have ηij(1, b, 0) =
Pij(b)
Q(b) , where Pij(b) and Q(b) are poly-

nomials, i, j = 1, 2, . . . , k, for general k. However, Mathematica is unable to afford the symbolic calculation

for k > 3. We sample some values of b and solve the corresponding values of Pi,j(b) and Q(b) numerically.

By interpolation, we recover the expressions of Pi,j(b) and Q(b), and find that all coefficients of them are

nonnegative for k = 4. Unfortunately, even numerical computation are difficult for the case k ≥ 5.

Based on the lemma above, if we assume the positivity of the inflow conditions u(x−
i− 1

2

, y) and u(x, y−
j− 1

2

),

we can prove the positivity of ūi,j by taking the test function w = ξ (extend ξ = 0 outside Ki,j) in the

scheme (3.3) and using the fact that the source term f and coefficients a, b are positive. We can therefore

obtain the result for the positivity-preserving property of the scheme (3.3) as follows.

Theorem 3.2. For the constant coefficient stationary hyperbolic equation (1.3), if the source term and inflow
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conditions from upstream cells (including the inflow conditions on inflow boundary cells) are positive, then

the cell averages of the scheme (3.3) are positive for the Q1, Q2-DG schemes with λ ≥ 0, and Q3-DG scheme

with λ = 0.

Though we are not able to give rigorous proofs for the positivity-preserving property of the scheme (3.3)

with k = 3, λ > 0 or k > 3, λ ≥ 0 due to the difficulty of symbolically solving the large linear system (3.4),

we can still investigate these cases numerically.

For any given values of a, b, λ, we can always solve for {ηij}ki,j=1 numerically from the linear system (3.4)

to obtain the values of η at the quadrature points {(r̂α, r̂β)}kα,β=1, {(−1, r̃α)}k+1
α=1 and {(r̃α,−1)}k+1

α=1 used

on the right hand side of (3.3). The scheme is positivity-preserving if η is positive at all these quadrature

points. Moreover, we can take advantage of the relationship η(x, y; a, b, λ) = Cη(x, y;Ca,Cb, Cλ), ∀C > 0,

to reduce the computation. If λ ≥ max{a, b}, we use η(x, y; a, b, λ) = 1
λη(x, y;

a
λ ,

b
λ , 1); otherwise we assume

a ≥ max{b, λ} without loss of generality and use η(x, y; a, b, λ) = 1
aη(x, y; 1,

b
a ,

λ
a ). Therefore, we only need

to numerically investigate the positivity of η in the two cases 0 ≤ a, b ≤ 1, λ = 1 and a = 1, 0 ≤ b, λ ≤ 1.

We define

η1(k) = min
0≤a,b≤1

min
1≤α≤k+1

{η(−1, r̃α; a, b, 1), η(r̃α,−1; a, b, 1)},

η2(k) = min
0≤b,λ≤1

min
1≤α≤k+1

{η(−1, r̃α; 1, b, λ), η(r̃α,−1; 1, b, λ)},

η3(k) = min
0≤a,b≤1

min
1≤α,β≤k

η(r̂α, r̂β ; a, b, 1),

η4(k) = min
0≤b,λ≤1

min
1≤α,β≤k

η(r̂α, r̂β ; 1, b, λ),

and equally space 1000 × 1000 points of (a, b) or (b, λ) on [0, 1] × [0, 1] to approximate min0≤a,b≤1 and

min0≤b,λ≤1, and give the approximate values η̃i(k), i = 1, 2, 3, 4 in Table 1 and Table 2 for odd and even

k, respectively. From the tables, we can observe that the minimum value of η at the quadrature points is

zero (machine epsilon) on boundaries when k is even, and strictly positive in all other cases. Moreover, we

visualize a particular case λ = 0, and plot hk
1(b) = min1≤α≤k+1{η(−1, r̃α; 1, b, 0), η(r̃α,−1; 1, b, 0)}, hk

2(b) =

min1≤α,β≤k η(r̂α, r̂β ; 1, b, 0) for b ∈ [0, 1] in the Figure 1, from which we can observe the same pattern as

shown in the tables.
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Figure 1: hk
1(b) and hk

2(b) for different k, 1000 points equally spaced on [0, 1]
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k 3 5 7 9 11 13 15 17 19

η̃1 4.75E-02 4.59E-02 4.65E-02 4.73E-02 4.80E-02 4.86E-02 4.91E-02 4.93E-02 4.92E-02

η̃2 4.75E-02 4.59E-02 4.65E-02 4.73E-02 4.80E-02 4.86E-02 4.91E-02 4.93E-02 4.92E-02

η̃3 5.67E-02 5.17E-02 5.01E-02 4.93E-02 4.90E-02 4.88E-02 4.86E-02 4.85E-02 4.85E-02

η̃4 5.67E-02 5.17E-02 5.01E-02 4.93E-02 4.90E-02 4.88E-02 4.86E-02 4.85E-02 4.85E-02

Table 1: η̃i(k), i = 1, 2, 3, 4 with odd k

k 4 6 8 10 12 14 16 18 20

η̃1 -1.11E-15 -1.78E-15 -2.66E-15 -4.44E-15 -5.33E-15 -3.02E-14 -2.84E-14 -5.68E-14 -3.20E-14

η̃2 -2.22E-16 -2.78E-16 -3.89E-16 -2.36E-16 -4.72E-16 -1.05E-15 -7.77E-16 -1.16E-15 -7.22E-16

η̃3 5.98E-02 5.64E-02 5.51E-02 5.44E-02 5.40E-02 5.37E-02 5.33E-02 5.29E-02 5.27E-02

η̃4 5.98E-02 5.64E-02 5.51E-02 5.44E-02 5.40E-02 5.37E-02 5.33E-02 5.29E-02 5.27E-02

Table 2: η̃i(k), i = 1, 2, 3, 4 with even k

3.3 Constant coefficient stationary hyperbolic equation in three space dimen-

sions

Consider the constant coefficient stationary hyperbolic equation (1.4) with f(x, y, z) ≥ 0 in Ω. Without

loss of generality, we assume a, b, c > 0. The corresponding boundary conditions are given by u(0, y, z) =

g1(y, z), u(x, 0, z) = g2(x, z) and u(x, y, 0) = g3(x, y), where g1, g2, g3 ≥ 0.

The positivity-preserving Qk-DG scheme of (1.4) is to seek u ∈ V k
h , where k is odd, s.t. ∀w ∈ V k

h

−∼
∫ x

i+1
2

x
i− 1

2

∼
∫ y

j+1
2

y
j− 1

2

∼
∫ z

l+1
2

z
l− 1

2

(auwx + buwy + cuwz − λuw) dxdydz +

∫ y
j+1

2

y
j− 1

2

∫ z
l+1

2

z
l− 1

2

au(x−
i+ 1

2

, y, z)w(x−
i+ 1

2

, y, z)dydz

+

∫ x
i+1

2

x
i− 1

2

∫ z
l+1

2

z
l− 1

2

bu(x, y−
j+ 1

2

, z)w(x, y−
j+ 1

2

, z)dxdz +

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

cu(x, y, z−
l+ 1

2

)w(x, y, z−
l+ 1

2

)dxdy

=

∫ y
j+1

2

y
j− 1

2

∫ z
l+1

2

z
l− 1

2

au(x−
i− 1

2

, y, z)w(x+
i− 1

2

, y, z)dydz +

∫ x
i+1

2

x
i− 1

2

∫ z
l+1

2

z
l− 1

2

bu(x, y−
j− 1

2

, z)w(x, y+
j− 1

2

, z)dxdz

+

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

cu(x, y, z−
l− 1

2

)w(x, y, z+
l− 1

2

)dxdy +∼
∫ x

i+1
2

x
i− 1

2

∼
∫ y

j+1
2

y
j− 1

2

∼
∫ z

l+1
2

z
l− 1

2

fwdxdydz,

(3.6)
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for i = 1, . . . , Nx, j = 1, . . . , Ny, l = 1, . . . , Nz. If xi− 1
2
= 0, we let u(x−

i− 1
2

, y, z) = g1(y, z), similarly, if

yj− 1
2
= 0 or zl− 1

2
= 0, we let u(x, y−

j− 1
2

, z) = g2(x, z) or u(x, y, z−
l− 1

2

) = g3(x, y), respectively. The sub-

optimal convergence is observed in numerical experiments due to the inaccurate quadrature rule adopted in

the scheme.

Without loss of generality, we only consider the scheme (3.6) on the reference cell K = [−1, 1]3, as any

cell Ki,j,l can be transferred to K by changing of coordinates with only rescales a, b, c, λ, f without altering

their signs. We give the main results as follows.

Lemma 3.3. Define ξ(x, y, z; a, b, c, λ) = (1− x)(1− y)(1− z)η(x, y, z; a, b, c, λ), where η(x, y, z; a, b, c, λ) =

∑k
i,j,l=1 ηijl(a, b, c, λ)ℓi(x)ℓj(y)ℓl(z), and {ηijl(a, b, c, λ)}ki,j,l=1 is the solution of the linear system

k
∑

i,j,l=1

(a ((1− r̂α)(1− r̂β)(1 − r̂γ)ℓ
′
i(xα)δβ,jδγ,l − (1− r̂β)(1− r̂γ)δα,iδβ,jδγ,l)

+ b
(

(1 − r̂α)(1 − r̂β)(1 − r̂γ)ℓ
′
j(xβ)δα,iδγ,l − (1− r̂α)(1 − r̂γ)δα,iδβ,jδγ,l

)

+ c ((1− r̂α)(1 − r̂β)(1− r̂γ)ℓ
′
l(xγ)δα,iδβ,j − (1 − r̂α)(1− r̂β)δα,iδβ,jδγ,l)

−λ(1− r̂α)(1 − r̂β)(1 − r̂γ)δα,iδβ,jδγ,l) ηijl

= −1

8
, α, β, γ = 1, 2, . . . , k,

(3.7)

then ξ(x, y, z; a, b, c, λ) ∈ Qk([−1, 1]3) satisfies

−∼
∫ 1

−1

∼
∫ 1

−1

∼
∫ 1

−1

(avξx + bvξy + cvξz − λvξ) dxdydz +

∫ 1

−1

∫ 1

−1

av(1, y, z)ξ(1, y, z)dydz +

∫ 1

−1

∫ 1

−1

bv(x, 1, z)ξ(x, 1, z)dxdz

+

∫ 1

−1

∫ 1

−1

cv(x, y, 1)ξ(x, y, 1)dxdy =
1

8

∫ 1

−1

∫ 1

−1

∫ 1

−1

vdxdy,

(3.8)

for any v ∈ Qk([−1, 1]3).

Moreover, for k = 1, we have ξ(x, y, z; a, b, c, λ) ≥ 0 for (x, y) ∈ [−1, 1]3.

Proof. By definition of ξ(x, y, z), we can compute that ξx(x, y, z) = (1−x)(1−y)(1−z)
∑k

i,j,l=1 ηijlℓ
′
i(x)ℓj(y)ℓl(z)−

(1− y)(1− z)
∑k

i,j,l=1 ηijlℓi(x)ℓj(y)ℓl(z), ξy(x, y, z) = (1− x)(1− y)(1− z)
∑k

i,j,l=1 ηijlℓi(x)ℓ
′
j(y)ℓl(z)− (1−

x)(1− z)
∑k

i,j,l=1 ηijlℓi(x)ℓj(y)ℓl(z), and ξz(x, y, z) = (1− x)(1− y)(1− z)
∑k

i,j,l=1 ηijlℓi(x)ℓj(y)ℓ
′
l(z)− (1−

x)(1 − y)
∑k

i,j,l=1 ηijlℓi(x)ℓj(y)ℓl(z), thereby it is easy to check that {ηijl}ki,j,l=1 is the solution of the linear

system (3.7) if and only if ξ satisfies

aξx(r̂α, r̂β , r̂γ) + bξy(r̂α, r̂β , r̂γ) + cξz(r̂α, r̂β , r̂γ)− λξ(r̂α, r̂β , r̂γ) = −1

8
, α, β, γ = 1, 2, . . . , k.
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Moreover, ξ(1, y, z) = ξ(x, 1, z) = ξ(x, y, 1) = 0 from the definition. Therefore, it follows from direct

computation that (3.8) holds. When k = 1, we can solve ξ from (3.7) to obtain ξ(x, y, z) = 1
8(a+b+c+λ) (1 −

x)(1 − y)(1− z) ≥ 0 in [−1, 1]3.

Based on the above lemma, we can obtain the result for the positivity-preserving property of the scheme

(3.6) as follows.

Theorem 3.4. For the constant coefficient stationary hyperbolic equation (1.4), if the source term and inflow

conditions from upstream cells (including the inflow conditions on inflow boundary cells) are positive, then

the cell averages of the scheme (3.6) are positive for the Q1-DG scheme.

We are of course not satisfied with only Q1-DG positivity-preserving scheme, which has first order con-

vergence rate by numerical experiments. Similar to the two dimensional case, we numerically investigate

the positivity of η(x, y, z) at the quadrature points used on the right hand side of (3.6) for larger k. It

suffices to consider two cases: 0 ≤ a, b, c ≤ 1, λ = 1 and a = 1, 0 ≤ b, c, λ ≤ 1 because of the property

ξ(x, y, z; a, b, c, λ) = Cξ(x, y, z;Ca,Cb, Cc, Cλ), ∀C > 0 and the symmetry in x, y, z directions.

We define

η1(k) = min
0≤a,b,c≤1

min
1≤α,β≤k+1

{η(−1, r̂α, r̂β ; a, b, c, 1), η(r̂α,−1, r̂β; a, b, c, 1), η(r̂α, r̂β ,−1; a, b, c, 1)},

η2(k) = min
0≤b,c,λ≤1

min
1≤α,β≤k+1

{η(−1, r̂α, r̂β ; 1, b, c, λ), η(r̂α,−1, r̂β ; 1, b, c, λ), η(r̂α, r̂β ,−1; 1, b, c, λ)},

η3(k) = min
0≤a,b,c≤1

min
1≤α,β,γ≤k

η(r̂α, r̂β , r̂γ ; a, b, c, 1),

η4(k) = min
0≤b,c,λ≤1

min
1≤α,β,γ≤k

η(r̂α, r̂β , r̂γ ; 1, b, c, λ)

and equally space 100× 100× 100 points for k = 2, 3, 4, 30× 30× 30 points for k = 5, 6, . . . , 10, of (a, b, c) or

(b, c, λ) on [0, 1]3 to approximate min0≤a,b,c≤1 and min0≤b,c,λ≤1. We give the approximate values η̃i(k), i =

1, 2, 3, 4 in Table 3. From the table, we can observe that the minimum value of η at quadrature points is

negative on boundaries when k is even, and strictly positive in all other cases, which suggest that we should

use odd k for the purpose of positivity-preserving.

4 Implementation of the algorithms

In this section, we summarize the results obtained in the previous sections and illustrate the implementation

of the positivity-preserving algorithms.
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k 2 3 4 5 6 7 8 9 10

η̃1 -4.44E-16 1.04E-02 -4.00E-15 9.75E-03 -1.60E-14 1.00E-02 -1.70E-03 1.04E-02 -6.05E-03

η̃2 -3.97E-06 1.04E-02 -1.63E-03 9.75E-03 -6.15E-03 1.00E-02 -1.25E-02 1.04E-02 -2.01E-02

η̃3 2.61E-02 1.39E-02 1.61E-02 1.20E-02 1.43E-02 1.14E-02 1.38E-02 1.18E-02 1.36E-02

η̃4 2.61E-02 1.39E-02 1.61E-02 1.20E-02 1.43E-02 1.14E-02 1.38E-02 1.18E-02 1.36E-02

Table 3: η̃i(k), i = 1, 2, 3, 4

Firstly, we introduce a robust version of the positivity-preserving limiter (1.5) used in practice. We set

a small threshold ǫ > 0, e.g. ǫ = 10−14, and denote by S the set of points where we want to preserve the

positivity of function values. The set S must include the quadrature points used on the inflow boundaries

in the schemes for the purpose of positivity-preserving. To be more precise, S must include the point xi+ 1
2

on Ii in one space dimension, the points {(xi+ 1
2
, ỹα)}k+1

α=1, {(x̃α, yj+ 1
2
)}k+1

α=1 on Ki,j in two space dimensions,

and the points {(xi+ 1
2
, ỹα, z̃β)}k+1

α,β=1, {(x̃α, yj+ 1
2
, z̃β)}k+1

α,β=1, {(x̃α, ỹβ, zl+ 1
2
)}k+1

α,β=1 on Ki,j,l in three space

dimensions, where x̃α = xi +
1
2∆xir̃α, ỹα = yj +

1
2∆yj r̃α, z̃α = zl +

1
2∆zlr̃α, α = 1, 2, . . . , k + 1 are the

(k + 1)-point Gauss-Legendre quadrature points in different directions. On a cell K with the cell average

ūK ≥ 0, if ūK ≤ ǫ, we take the modified solution ũK(x) ≡ ūK , otherwise, we take the modified solution as

ũK(x) = θ (uK(x) − ūK) + ūK ,where θ = min{ ūK − ǫ

ūK −minx∈S uK(x)
, 1}, (4.1)

where x denotes the coordinates in one, two or three space dimensions.

In one dimensional space, we compute the solution ui on cell Ii based on the solution ũi−1 with ũi−1(x) ≥

0, x ∈ S. Once ui is obtained from the scheme with ūi ≥ 0, we apply the above limiter to obtain a modified

solution ũi, which will be used in the computation on the next cell.

Similarly, in two dimensional space, we compute the solution ui,j on cell Ki,j based on the solution

ũi−1,j , ũi,j−1 with ũi−1,j(x, y), ũi,j−1(x, y) ≥ 0, (x, y) ∈ S. Once ui,j is obtained, we apply the above

limiter to obtain the modified solution ũi,j, which will be used in later computations. In three dimen-

sional space, we compute the solution ui,j,l on cell Ki,j,l based on the solution ũi−1,j,l, ũi,j−1,l, ũi,j,l−1 with

ũi−1,j,l(x, y, z), ũi,j−1,l(x, y, z), ũi,j,l−1(x, y, z) ≥ 0, (x, y, z) ∈ S. Once ui,j,l is obtained, we apply the above

limiter to obtain the modified solution ũi,j,l and use it in the later computations.

We would like to remark that, under certain mesh size conditions, the positivity of the solution at the
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interfaces x−
j+ 1

2

, j = 1, 2, . . . , N in one dimensional space is automatically maintained even without the

positivity-preserving limiter, i.e. u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N provided f, u0 ≥ 0. This fact allows us to apply

the positivity-preserving limiter simultaneously for all cells after the DG solution has been obtained for all

cells. The detailed theorem and its proof are given in Appendix A.

5 Numerical examples

In this section, we perform numerical experiments to show the good performance of the positivity-preserving

methods established in the previous sections. Many of the examples are taken from [19, 13, 20]. We take

the set S in the positivity-preserving limiter of the Section 4 as the union of the necessary points introduced

therein and 100 equally spaced points on 1D cells, or 50×50 equally spaced points on 2D cells, or 20×20×20

equally spaced points on 3D cells. If not otherwise stated, we use uniform meshes with mesh sizes satisfying

the conditions of positivity-preserving established in the previous sections.

Example 5.1. We solve the equation (1.1) with a(x) = 1
2+sin(4πx) , λ = 0 and f(x) = x2 on the domain Ω =

[0, 1]. The boundary condition is given by u(0) = 0 and the exact solution is u(x) = 2
3x

3 + 1
3 sin(4πx)x

3. We

compute the solution based on the positivity-preserving scheme (2.3) and give the errors, order of convergence,

and data about positivity in Tables 4 and 5 for the cases without and with the limiter, respectively. From the

tables, we can see that the orders of convergence are optimal, and the negative values of the solution of the

scheme without limiter are eliminated by the positivity-preserving limiter.

Example 5.2. We solve the equation (1.1) with a(x) = 1, λ = 6000 and f(x) = λ
(

1
9 cos

4(x) + ǫ
)

−
4
9 cos

3(x) sin(x) on the domain Ω = [0, π]. We take ǫ = 10−14 such that the source term is nonnegative.

The boundary condition is given by u(0) = 1
9 + ǫ and the exact solution is u(x) = 1

9 cos
4(x)+ ǫ. This example

has been tested in [13] with a rigorously proved high order conservative positivity-preserving method. How-

ever, since the inaccurate integral is adopted in our scheme, the results of our algorithm will be different.

We collect the numerical errors, orders of convergence, and data about positivity in Tables 6 and 7 for the

schemes (2.3) without and with the limiter, respectively, from which we can observe the optimal convergence,

and the negative values of the solution being eliminated by the positivity-preserving limiter.

Example 5.3. We solve the equation (1.1) with a(x) = 1+x, λ = 10000 and f(x) = (λ+1)
(

1
9 cos

4(x) + ǫ
)

−

(1 + x)
(

4
9 cos

3(x) sin(x)
)

on the domain Ω = [0, 2π]. We take ǫ = 2 × 10−14 such that the source term is
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k N L1 error order L∞ error order minuh

1 20 1.78E-03 - 2.89E-02 - -8.71E-06

40 4.41E-04 2.01 7.27E-03 1.99 -5.96E-07

80 1.10E-04 2.00 1.83E-03 1.99 -3.81E-08

160 2.75E-05 2.00 4.57E-04 2.00 -2.39E-09

320 6.88E-06 2.00 1.14E-04 2.00 -1.50E-10

2 20 8.34E-05 - 1.53E-03 - -3.46E-06

40 1.06E-05 2.98 2.10E-04 2.86 -4.17E-07

80 1.32E-06 3.01 2.91E-05 2.85 -5.24E-08

160 1.64E-07 3.00 3.81E-06 2.93 -6.63E-09

320 2.05E-08 3.00 4.86E-07 2.97 -8.38E-10

3 20 4.42E-06 - 1.15E-04 - -9.64E-07

40 2.76E-07 4.00 7.31E-06 3.98 -7.63E-08

80 1.72E-08 4.01 4.57E-07 4.00 -5.03E-09

160 1.07E-09 4.00 2.86E-08 4.00 -3.18E-10

320 6.70E-11 4.00 1.79E-09 4.00 -2.00E-11

4 20 1.36E-07 - 3.41E-06 - -6.96E-08

40 4.23E-09 5.01 1.09E-07 4.97 -1.14E-09

80 1.34E-10 4.98 3.39E-09 5.00 -1.80E-11

160 4.17E-12 5.00 1.06E-10 5.00 -2.81E-13

320 1.30E-13 5.00 3.32E-12 5.00 -4.40E-15

Table 4: Results of Example 5.1 without limiter
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k N L1 error order L∞ error order Limited cells (%)

1 20 1.78E-03 - 2.89E-02 - 5.00

40 4.41E-04 2.01 7.27E-03 1.99 2.50

80 1.10E-04 2.00 1.83E-03 1.99 1.25

160 2.75E-05 2.00 4.57E-04 2.00 0.63

320 6.88E-06 2.00 1.14E-04 2.00 0.31

2 20 8.41E-05 - 1.52E-03 - 5.00

40 1.07E-05 2.97 2.10E-04 2.85 2.50

80 1.34E-06 3.00 2.92E-05 2.85 1.25

160 1.67E-07 3.00 3.82E-06 2.93 0.63

320 2.09E-08 3.00 4.88E-07 2.97 0.31

3 20 5.45E-06 - 1.13E-04 - 5.00

40 3.84E-07 3.83 7.17E-06 3.98 2.50

80 2.52E-08 3.93 4.46E-07 4.01 1.25

160 1.61E-09 3.97 2.79E-08 4.00 0.63

320 1.02E-10 3.99 1.74E-09 4.00 0.31

4 20 2.35E-07 - 3.50E-06 - 5.00

40 5.81E-09 5.33 1.10E-07 4.99 2.50

80 1.54E-10 5.23 3.42E-09 5.01 1.25

160 4.44E-12 5.12 1.07E-10 5.00 0.63

320 1.47E-13 4.92 3.34E-12 5.00 0.31

Table 5: Results of Example 5.1 with limiter
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k N L1 error order L∞ error order minuh

1 20 2.14E-03 - 2.64E-03 - -1.33E-03

40 4.66E-04 2.20 6.76E-04 1.96 -2.90E-04

80 7.94E-05 2.55 1.70E-04 2.00 -4.34E-05

160 1.15E-05 2.78 4.21E-05 2.01 -1.41E-06

320 2.41E-06 2.26 1.04E-05 2.02 -1.20E-10

640 5.94E-07 2.02 2.51E-06 2.05 -1.66E-11

2 20 3.40E-04 - 4.59E-04 - -2.68E-04

40 6.79E-05 2.32 1.04E-04 2.15 -4.43E-05

80 1.00E-05 2.76 1.86E-05 2.48 -8.12E-08

160 1.25E-06 3.00 2.12E-06 3.13 -3.03E-07

320 9.42E-08 3.72 1.55E-07 3.78 -8.65E-09

640 6.07E-09 3.96 9.80E-09 3.98 -1.52E-10

Table 6: Results of Example 5.2 without limiter
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k N L1 error order L∞ error order Limited cells (%)

1 20 1.20E-03 - 2.64E-03 - 10.00

40 2.97E-04 2.02 6.76E-04 1.96 5.00

80 6.59E-05 2.17 1.70E-04 2.00 2.50

160 1.14E-05 2.53 4.21E-05 2.01 1.25

320 2.41E-06 2.24 1.04E-05 2.02 0.31

640 5.94E-07 2.02 2.51E-06 2.05 0.16

2 20 2.41E-04 - 4.59E-04 - 15.00

40 5.56E-05 2.11 1.04E-04 2.15 7.50

80 9.98E-06 2.48 1.86E-05 2.48 2.50

160 1.24E-06 3.01 2.12E-06 3.13 1.88

320 9.41E-08 3.72 1.55E-07 3.78 0.94

640 6.07E-09 3.95 9.80E-09 3.98 0.31

Table 7: Results of Example 5.2 with limiter
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nonnegative. The boundary condition is given by u(0) = 1
9 + ǫ and the exact solution is u(x) = 1

9 cos
4(x)+ ǫ.

We compute the solution using the scheme (2.3) and give the numerical errors, orders of convergence, and

data about positivity in Tables 8 and 9 for the case without and with the limiter, respectively. From the tables,

we can see that the orders of convergence are optimal, and that negative values appear without limiter and

the positivity is maintained under the modification of the limiter.

k N L1 error order L∞ error order minuh

1 20 8.35E-03 - 1.07E-02 - -3.03E-03

40 1.76E-03 2.25 2.83E-03 1.93 -5.01E-04

80 4.10E-04 2.10 7.02E-04 2.01 -1.10E-04

160 9.38E-05 2.13 1.73E-04 2.02 -1.60E-05

320 2.15E-05 2.13 4.28E-05 2.02 -4.49E-07

640 5.19E-06 2.05 1.05E-05 2.02 -3.21E-10

2 20 1.62E-03 - 1.26E-03 - -4.51E-04

40 3.73E-04 2.11 2.89E-04 2.12 -1.03E-04

80 7.96E-05 2.23 7.02E-05 2.04 -1.62E-05

160 1.29E-05 2.62 1.32E-05 2.41 -1.19E-06

320 1.35E-06 3.26 1.85E-06 2.83 -1.45E-07

640 1.03E-07 3.71 1.66E-07 3.48 -3.78E-09

Table 8: Results of Example 5.3 without limiter

Example 5.4. We solve the equation (1.2) with a(u) = u2+0.01, λ = 5 and f(x) = −8 sin(x) cos7(x)
(

3(cos8(x) + ǫ)2 + 0.01
)

+

λ
(

cos8(x) + ǫ
)

on the domain Ω = [0, π]. We take ǫ = 10−14 such that the source term is nonnegative. The

boundary condition is given by u(0) = 1+ ǫ and the exact solution is u(x) = cos8(x) + ǫ. We give the errors,

orders of convergence, and data about positivity in Tables 10 and 11 for the scheme (2.7) with k = 1 and

scheme (2.8) with k = 2 in the case without and with the limiter, respectively, with the same conclusion about

accuracy and positivity-preserving as before.

Example 5.5. We solve the equation (1.3) with a = 0.7, b = 0.3, λ = 1.0 and f = 0 on the domain

Ω = [0, 1]× [0, 1]. The boundary conditions are given by u(x, 0) = 0 for 0 ≤ x ≤ 1 and u(0, y) = sin6(πy) for
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k N L1 error order L∞ error order Limited cells (%)

1 20 6.44E-03 - 1.07E-02 - 10.00

40 1.53E-03 2.08 2.83E-03 1.93 5.00

80 3.75E-04 2.03 7.02E-04 2.01 3.75

160 9.12E-05 2.04 1.73E-04 2.02 1.88

320 2.15E-05 2.09 4.28E-05 2.02 0.94

640 5.19E-06 2.05 1.05E-05 2.02 0.31

2 20 1.44E-03 - 1.37E-03 - 20.00

40 3.36E-04 2.10 3.25E-04 2.07 10.00

80 7.62E-05 2.14 7.37E-05 2.14 6.25

160 1.29E-05 2.56 1.32E-05 2.49 3.13

320 1.35E-06 3.26 1.85E-06 2.83 1.56

640 1.03E-07 3.71 1.66E-07 3.48 0.78

Table 9: Results of Example 5.3 with limiter
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k N L1 error order L∞ error order minuh

1 20 1.20E-01 - 1.28E-01 - -1.17E-01

40 8.11E-03 3.89 1.86E-02 2.78 -2.97E-03

80 1.55E-03 2.39 4.39E-03 2.08 -2.03E-07

160 3.87E-04 2.01 1.09E-03 2.02 -1.04E-13

320 9.66E-05 2.00 2.71E-04 2.00 8.96E-15

640 2.41E-05 2.00 6.76E-05 2.00 9.86E-15

2 20 8.56E-02 - 1.76E-01 - -7.20E-02

40 1.16E-02 2.88 4.47E-02 1.98 -1.44E-02

80 9.28E-04 3.65 4.78E-03 3.22 -9.60E-05

160 8.20E-05 3.50 4.31E-04 3.47 -4.44E-09

320 8.27E-06 3.31 4.41E-05 3.29 -7.82E-14

640 9.25E-07 3.16 4.89E-06 3.17 9.98E-15

Table 10: Results of Example 5.4 without limiter
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k N L1 error order L∞ error order Limited cells (%)

1 20 3.85E-02 - 1.28E-01 - 15.00

40 7.02E-03 2.46 1.86E-02 2.78 12.50

80 1.55E-03 2.18 4.39E-03 2.08 3.75

160 3.87E-04 2.01 1.09E-03 2.02 1.25

320 9.66E-05 2.00 2.71E-04 2.00 0.00

640 2.41E-05 2.00 6.76E-05 2.00 0.00

2 20 1.89E-02 - 7.65E-02 - 50.00

40 6.35E-03 1.58 4.26E-02 0.85 37.50

80 9.15E-04 2.80 4.78E-03 3.15 18.75

160 8.20E-05 3.48 4.31E-04 3.47 6.25

320 8.27E-06 3.31 4.41E-05 3.29 1.25

640 9.25E-07 3.16 4.89E-06 3.17 0.00

Table 11: Results of Example 5.4 with limiter
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0 ≤ y ≤ 1. It is easy to check that the exact solution of the problem is

u(x, y) =















0, y < b
ax

sin6(π(y − b
ax))e

−λ
a
x y ≥ b

ax

We compute the solution based on the scheme (3.3) with k = 1, 2, 3, 4, 5. The errors, orders of convergence

and data about positivity are given in Tables 12 and 13 for the cases without and with positivity-preserving

limiter, respectively, from which the sub-optimal convergence can be observed. Moreover, we plot the results

of the scheme with the limiter for k = 1, 2, 3, 4 on the 40× 40 mesh in Figure 2, in which we put white dots

on those cells where negative values appear before the limiting process.

Example 5.6. We solve the equation (1.3) with a = 0.6, b = 0.4, λ = 0 and f = 0 on the domain Ω = [0, 1]2.

The boundary condition is given by u(x, 0) = 1 for 0 < x ≤ 1 and u(0, y) = 0 for 0 ≤ y ≤ 1. The exact

solution of the problem is

u(x, y) =















1, y < b
ax

0, y ≥ b
ax

This problem can be interpreted as a two-dimensional radiative transfer model in transparent medium, see

[13]. We plot the contours of the numerical solution solved from the scheme (3.3) with positivity-preserving

limiter for k = 1, 2, 3, 4 on 40 × 40 rectangular mesh in Figure 3, where white dots are drawn on the cells

with negative values appearing before the limiting process. Moreover, we cut the profile of the solutions along

the line x = 0.5, and compare them with the exact solution and the numerical solution solved without limiter

in Figure 4, from which we can clearly see that the scheme without limiter produces negative values while the

positivity of the solution is maintained with the limiter.

Example 5.7. We solve the equation (1.3) with a = 0.6, b = 0.4, λ = 1 and f = 0 on the domain Ω = [0, 1]2.

The boundary condition is given by u(x, 0) = 1 for 0 < x ≤ 1 and u(0, y) = 0 for 0 ≤ y ≤ 1. The exact

solution of the problem is

u(x, y) =















e−
λ
b
y, y < b

ax

0, y ≥ b
ax

The problem can be viewed as a two-dimensional radiative transfer model in purely absorbing medium, see

[13]. We plot the contour of the numerical solution solved from the scheme (3.3) with positivity-preserving
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k Nx ×Ny L1 error order L∞ error order minuh

1 10× 10 1.87E-02 - 2.96E-01 - -1.01E-01

20× 20 6.04E-03 1.63 1.08E-01 1.46 -6.43E-03

40× 40 2.45E-03 1.30 4.80E-02 1.16 -2.42E-04

80× 80 1.14E-03 1.11 2.36E-02 1.02 -4.50E-06

160× 160 5.56E-04 1.03 1.18E-02 1.00 -7.34E-08

320× 320 2.77E-04 1.01 5.89E-03 0.99 -1.16E-09

2 10× 10 1.70E-03 - 3.97E-02 - -8.78E-03

20× 20 3.77E-04 2.17 1.27E-02 1.65 -2.37E-03

40× 40 9.11E-05 2.05 3.48E-03 1.86 -1.70E-04

80× 80 2.27E-05 2.01 9.17E-04 1.93 -2.53E-06

160× 160 5.68E-06 2.00 2.35E-04 1.97 -1.14E-07

320× 320 1.42E-06 2.00 5.95E-05 1.98 -2.89E-09

3 10× 10 1.45E-04 - 4.56E-03 - -6.59E-04

20× 20 1.49E-05 3.29 4.76E-04 3.26 -4.35E-05

40× 40 1.70E-06 3.13 6.13E-05 2.96 -7.75E-07

80× 80 2.06E-07 3.04 7.78E-06 2.98 -1.22E-08

160× 160 2.56E-08 3.01 9.80E-07 2.99 -1.92E-10

320× 320 3.19E-09 3.00 1.23E-07 2.99 -3.01E-12

4 10× 10 1.23E-05 - 4.28E-04 - -7.15E-05

20× 20 6.95E-07 4.14 3.63E-05 3.56 -2.49E-06

40× 40 4.13E-08 4.07 2.55E-06 3.83 -4.55E-08

80× 80 2.53E-09 4.03 1.68E-07 3.93 -7.49E-10

160× 160 1.57E-10 4.01 1.07E-08 3.97 -1.19E-11

320× 320 9.77E-12 4.00 6.77E-10 3.99 -1.87E-13

Table 12: Results of Example 5.5 without limiter
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k Nx ×Ny L1 error order L∞ error order Limited cells (%)

1 10× 10 1.98E-02 - 3.17E-01 - 36.00

20× 20 6.13E-03 1.69 1.08E-01 1.56 21.25

40× 40 2.45E-03 1.32 4.80E-02 1.16 14.69

80× 80 1.14E-03 1.11 2.36E-02 1.02 5.27

160× 160 5.56E-04 1.03 1.18E-02 1.00 1.21

320× 320 2.77E-04 1.01 5.89E-03 0.99 0.23

2 10× 10 2.34E-03 - 3.92E-02 - 49.00

20× 20 3.91E-04 2.58 1.27E-02 1.63 37.25

40× 40 9.12E-05 2.10 3.48E-03 1.86 25.50

80× 80 2.27E-05 2.01 9.17E-04 1.93 13.34

160× 160 5.68E-06 2.00 2.35E-04 1.97 6.25

320× 320 1.42E-06 2.00 5.95E-05 1.98 3.43

3 10× 10 2.69E-04 - 5.18E-03 - 27.00

20× 20 1.80E-05 3.90 5.01E-04 3.37 13.25

40× 40 1.72E-06 3.39 6.13E-05 3.03 5.81

80× 80 2.06E-07 3.06 7.78E-06 2.98 3.97

160× 160 2.56E-08 3.01 9.80E-07 2.99 2.95

320× 320 3.19E-09 3.00 1.23E-07 2.99 2.45

4 10× 10 3.29E-05 - 8.94E-04 - 29.00

20× 20 1.01E-06 5.03 3.81E-05 4.55 14.00

40× 40 4.37E-08 4.53 2.55E-06 3.90 9.31

80× 80 2.55E-09 4.10 1.68E-07 3.93 4.20

160× 160 1.57E-10 4.02 1.07E-08 3.97 2.28

320× 320 9.77E-12 4.01 6.77E-10 3.99 1.67

Table 13: Results of Example 5.5 with limiter
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 2: Solutions of Example 5.5 with limiter
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 3: Solutions of Example 5.6 with limiter
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(d) k = 4

Figure 4: Solutions of Example 5.6 cut along x = 0.5
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limiter for k = 1, 2, 3, 4 on 40×40 rectangular mesh in Figure 5, where white dots are drawn on the cells with

negative values appearing before the limiting process. Moreover, we cut the profile of the solution along the

line x = 0.5, and compare them with the exact solutions and the numerical solutions solved without limiter in

Figure 6, from which we can see the positivity of solution is attained under the positivity-preserving limiter.

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 5: Solutions of Example 5.7 with limiter

Example 5.8. We consider the time-dependent linear problem ut + ux = 0 on the domain Ω = [0, 2] with
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Figure 6: Solutions of Example 5.7 cut along x = 0.5

37



boundary condition u(0) = 0 and discontinuous initial condition

u0(x) =















1, x ∈ [ 14 ,
3
4 ]

0, otherwise.

The solution of the problem is u(x, t) = u0(x− t). We use the space-time DG approach that treats the time as

an extra dimension, and solve the problem based on the scheme (1.3). The mesh is 80× 40 on the space-time

domain Ω× [0, T ]. We plot the numerical solutions at t = 1 and compare it with the exact solution and the

solution solved without limiter in Figure 7. From the figures, we can see the solutions have negative values

without the positivity-preserving limiter, while the positivity is maintained after the limiting process.

Example 5.9. We consider the time-dependent linear problem ut + aux + buy + λu = f with a = 0.7, b =

0.3, λ = 0.5 on the domain Ω = [0, 1]2. The initial condition is

u0(x, y) =















0, y < b
ax,

sin6(π(y − b
ax))e

−2λx, y ≥ b
ax.

The exact solution of the problem is u(x, y, t) = u0(x − at, y − bt)e−λt. The boundary conditions are given

according to the exact solution on the inflow boundaries. We use the space-time DG approach that treats the

time as an extra dimension, and solve the problem based on the scheme (1.4) on the space-time domain Ω×T

with T = 0.5. The errors, orders of convergence and data about positivity on the whole space-time domain

Ω×[0, T ] are given in Tables 14 and 15 for the cases without and with limiter, respectively, from which we can

observe sub-optimal convergence and the positivity of solution being maintained by the positivity-preserving

limiter.

6 Concluding remarks

In this paper, we have constructed the high order conservative positivity-preserving DG method for stationary

hyperbolic equations, via suitable quadrature rules in the DG framework.

In one space dimension, we propose the conservative positivity-preserving scheme with arbitrary high

order for the variable coefficient equation (1.1) with λ = 0, and second and third orders for the variable

coefficient equation (1.1) with λ > 0 and nonlinear equation (1.2) with λ ≥ 0, which is a vast extension of

the previous works in [13, 19] since only constant coefficient equations were addressed therein.
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Figure 7: Solutions of Example 5.8 at T = 1
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k Nx ×Ny ×Nt L1 error order L∞ error order minuh

1 10× 10× 5 1.17E-02 - 8.74E-01 - -4.52E-01

20× 20× 10 4.80E-03 1.29 3.61E-01 1.27 -8.95E-02

40× 40× 20 2.27E-03 1.08 1.87E-01 0.95 -7.47E-03

80× 80× 40 1.12E-03 1.02 9.51E-02 0.98 -2.51E-04

160× 160× 80 5.55E-04 1.01 4.80E-02 0.99 -2.10E-05

320× 320× 160 2.77E-04 1.00 2.41E-02 0.99 -3.49E-06

3 10× 10× 5 1.19E-04 - 1.55E-02 - -2.63E-03

20× 20× 10 1.29E-05 3.20 1.82E-03 3.09 -1.40E-04

40× 40× 20 1.52E-06 3.09 2.27E-04 3.00 -2.63E-06

80× 80× 40 1.86E-07 3.03 2.89E-05 2.98 -4.65E-08

160× 160× 80 2.31E-08 3.01 3.66E-06 2.98 -7.58E-10

320× 320× 160 2.89E-09 3.00 4.61E-07 2.99 -3.68E-11

5 10× 10× 5 8.73E-07 - 1.43E-04 - -5.46E-05

20× 20× 10 2.47E-08 5.14 3.71E-06 5.27 -5.46E-07

40× 40× 20 7.35E-10 5.07 1.14E-07 5.02 -1.11E-08

80× 80× 40 2.25E-11 5.03 3.63E-09 4.98 -2.02E-10

160× 160× 80 7.01E-13 5.01 1.15E-10 4.98 -3.37E-12

320× 320× 160 2.20E-14 4.99 3.62E-12 4.99 -5.44E-14

Table 14: Results of Example 5.9 without limiter
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k Nx ×Ny L1 error order L∞ error order Limited cells (%)

1 10× 10× 5 1.28E-02 - 7.43E-01 - 78.20

20× 20× 10 5.11E-03 1.33 4.81E-01 0.63 58.20

40× 40× 20 2.29E-03 1.16 1.87E-01 1.36 40.61

80× 80× 40 1.12E-03 1.03 9.51E-02 0.98 29.66

160× 160× 80 5.55E-04 1.01 4.80E-02 0.99 21.89

320× 320× 160 2.77E-04 1.00 2.41E-02 0.99 17.11

3 10× 10× 5 8.84E-04 - 1.02E-01 - 48.40

20× 20× 10 5.36E-05 4.04 1.85E-02 2.46 34.55

40× 40× 20 2.18E-06 4.62 8.90E-04 4.38 25.93

80× 80× 40 1.92E-07 3.51 2.89E-05 4.94 22.40

160× 160× 80 2.32E-08 3.05 3.66E-06 2.98 19.09

320× 320× 160 2.89E-09 3.01 4.61E-07 2.99 16.19

5 10× 10× 5 3.35E-04 - 9.43E-02 - 42.40

20× 20× 10 3.02E-05 3.47 3.03E-02 1.64 33.68

40× 40× 20 1.01E-06 4.90 1.55E-03 4.29 27.34

80× 80× 40 1.28E-08 6.30 3.83E-05 5.34 22.33

160× 160× 80 1.24E-10 6.69 6.96E-07 5.78 18.93

320× 320× 160 1.40E-12 6.47 1.15E-08 5.92 16.36

Table 15: Results of Example 5.9 with limiter
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We also propose the conservative positivity-preserving scheme for constant coefficient equations with

arbitrary high order in two space dimensions, and arbitrary odd order in three space dimensions, which

improves the existing results in [13, 19] that are either non-conservative with high order accuracy or conser-

vative with second order accuracy. We only give rigorous proofs for limited cases but the results of numerical

experiments in Section 3 for general cases are very promising.

Finally, we would like to mention that, even though we have not discussed it in this paper, one important

application of the positivity-preserving schemes for stationary hyperbolic equations is to radiative transfer

equations. One can refer to [13, 19, 20] for details.
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Appendices

A The positivity of solution at downwind points in one space di-

mension

In this appendix, we prove that the solutions of schemes proposed in Section 2 are nonnegative at downwind

points under certain mesh size conditions, provided the positivity of the boundary condition and source term.

Theorem A.1. For the problem (1.1) with a(x) > 0 and f, u(0) ≥ 0, the solution of the scheme (2.3)

satisfies u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N , for k = 1, 2, 3, . . . if λ = 0, and for k = 1, 2 if λ∆xj ≤ 2minx∈Ij a(x), j =

1, 2, . . . , N.

Proof. If λ = 0, we take the test function w = 1 in the scheme (2.3) to yield the equations

a(xj+ 1
2
)u−

j+ 1
2

= a(xj− 1
2
)u−

j− 1
2

+∼
∫

Ij

fdx, j = 1, 2, . . . , N,
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satisfied by the solution. Since a(x) > 0, f(x) ≥ 0 on Ω, and u−
1
2

= u(0) ≥ 0, by induction, we have

u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N.

If λ > 0 and k = 1, it is easy to check that the test function ξ(x) = 1
a(x

j+1
2
)−

2λ(x
j+ 1

2
−x)

a(x
j+1

2
)(2a(xj)+λ∆xj)

∈ P 1(Ij)

satisfies

−∼
∫

Ij

(a(x)vξx − λvξ) dx+ a(xj+ 1
2
)v−

j+ 1
2

ξ−
j+ 1

2

= v−
j+ 1

2

, (A.1)

for all v ∈ P 1(Ij). Moreover, ξ(xj+ 1
2
) = 1

a(x
j+1

2
) > 0 and ξ(xj− 1

2
) =

2a(xj)−λ∆xj

a(x
j+1

2
)(2a(xj)+λ∆xj)

≥ 0 if λ∆xj ≤

2minx∈Ij a(x), which implies that ξ(x) ≥ 0 on Ij . Therefore, by taking the test function w = ξ (extends to

zero outside Ij) in the scheme (2.3), we have

u−
j+ 1

2

= a(xj− 1
2
)u−

j− 1
2

ξ+
j− 1

2

+∼
∫

Ij

fξdx, (A.2)

which implies u−
j+ 1

2

≥ 0 if u−
j− 1

2

≥ 0. Since u−
1
2

= u(0) ≥ 0, by induction, we have u−
j+ 1

2

≥ 0 for j = 1, 2, . . . , N.

If λ > 0 and k = 2, one can check that ξ(x) = ξ1L1(x)+ξ2L2(x)+ξ3L3(x) satisfies the equation (A.1) for

all v ∈ P 2(Ij), where L1(x), L2(x), L3(x) are the Lagrange basis at {x̂1, x̂2, xj+ 1
2
} with L1(x̂1) = 1, L2(x̂2) =

1, L3(xj+ 1
2
) = 1, and

ξ1 =
2
√
3a(x̂1)(2

√
3a(x̂2)− λ∆xj)

a(xj+ 1
2
)
(

12a(x̂1)a(x̂2) + 3a(x̂1)λ∆xj + 3a(x̂2)λ∆xj + λ2∆x2
j

) ,

ξ2 =
2
√
3a(x̂2)(2

√
3a(x̂1) + λ∆xj)

a(xj+ 1
2
)
(

12a(x̂1)a(x̂2) + 3a(x̂1)λ∆xj + 3a(x̂2)λ∆xj + λ2∆x2
j

) ,

ξ3 =
1

a(xj+ 1
2
)
.

Moreover, if λ∆xj ≤ 2minx∈Ij a(x), we have ξ(x̂1) = ξ1 ≥ 0, ξ(x̂2) = ξ2 ≥ 0 and

ξ(xj− 1
2
) =

12a(x̂1)a(x̂2)− 3a(x̂1)λ∆xj − 3a(x̂2)λ∆xj + λ2∆x2
j

a(xj+ 1
2
)
(

12a(x̂1)a(x̂2) + 3a(x̂1)λ∆xj + 3a(x̂2)λ∆xj + λ2∆x2
j

) ≥ 0.

Therefore, follow the same lines as in the case k = 1, we obtain u−
j+ 1

2

≥ 0 for j = 1, 2, . . . , N.

Almost the same arguments can be used to prove a similar theorem for the scheme (2.7) with k = 1

and scheme (2.8) with k = 2, except that the positivity of ξ at the midpoint need to be checked due to the

quadrature rules adopted on the right hand side the schemes. The theorem is stated as follows and the proof

is omitted.

Theorem A.2. For the problem (1.2) with a(u) ≥ c > 0, and f, u(0), λ ≥ 0, the solutions of the scheme

(2.7) with k = 1 and scheme (2.8) with k = 2 satisfy u−
j+ 1

2

≥ 0, j = 1, 2, . . . , N if λ∆xj ≤ 2c, j = 1, 2, . . . , N.
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Remark A.1. For the time-dependent linear problem ut+(a(x)u)x = 0, the backward Euler time discretiza-

tion approach yields the stationary equations (a(x)un)x +∆t−1un = ∆t−1un−1, n = 1, 2, . . . , T
∆t . Therefore,

the backward Euler discontinuous Galerkin scheme (2.3) is positivity-preserving under the CFL condition

minx∈Ij a(x)
∆t
∆xj

≥ 1
2 , ∀j, if the positivity-preserving limiter is not applied until the computation of un is

completed at the time level n. This result can be viewed as an extension of the theoretical result of positivity-

preserving backward Euler discontinuous Galerkin method for ut + ux = 0 analyzed in [15].

B Investigation of the schemes (2.2) and (2.3) for some special a(x)

The unmodulated P k-DG schemes (2.2) for the equation (1.1) could result in negative cell averages in the

solution for some special a(x). For instance, one can take a(x) = 1 + x, a(x) = 1 + x2, a(x) = 1 + x3, a(x) =

1 + x4, a(x) = 1 + x5 in the unmodulated P 1, P 2, P 3, P 4, P 5-DG schemes, respectively, for some particular

λ.

More precisely, for the test function ξ ∈ P k([0, h]), s.t.

−
∫ h

0

(a(x)vξx − λvξ) dx+ a(h)v(h)ξ(h) =
1

h

∫ h

0

vdx, ∀v ∈ P k([0, h]),

where a(x) = 1+ xk, k = 1, 2, 3, 4, 5, ξ(h) is strictly negative for sufficiently small h, though limh→0 ξ(hx) =

1− x ≥ 0 for x ∈ [0, 1].

One can check that, if λ = 0:

• For k = 1, limh→0
ξ(h)
h = − 1

6 .

• For k = 2, limh→0
ξ(h)
h2 = − 1

30 .

• For k = 3, limh→0
ξ(h)
h3 = − 1

140 .

• For k = 4, limh→0
ξ(h)
h4 = − 1

630 .

• For k = 5, limh→0
ξ(h)
h5 = − 1

2772 .

One can also check that, if λ = 1
2 :

• For k = 1, limh→0
ξ(h)
h = − 1

12 .

• For k = 2, limh→0
ξ(h)
h2 = − 7

240 .
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• For k = 3, limh→0
ξ(h)
h3 = − 47

6720 .

• For k = 4, limh→0
ξ(h)
h4 = − 383

241920 .

• For k = 5, limh→0
ξ(h)
h5 = − 349

967680 .

Therefore, we can construct proper source term f(x) ≥ 0 with large values around x = h, such that the

average of the solution on the cell [0, h] is negative.

However, using the positivity-preserving scheme defined in (2.3), the above problems are resolved. One

can check that, for the test function ξ ∈ P k([0, h]), s.t.

−∼
∫ h

0

(a(x)vξx − λvξ) dx+ a(h)v(h)ξ(h) =
1

h

∫ h

0

vdx, ∀v ∈ P k([0, h]),

where a(x) = 1 + xk, k = 1, 2, 3, 4, 5, we still have limh→0 ξ(hx) = 1− x but now ξ(h) = 0 in all those cases.
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