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a b s t r a c t

We develop a weak-form sparse identification method for interacting particle systems (IPS) with
the primary goals of reducing computational complexity for large particle number N and offering
robustness to either intrinsic or extrinsic noise. In particular, we use concepts from mean-field theory
of IPS in combination with the weak-form sparse identification of nonlinear dynamics algorithm
(WSINDy) to provide a fast and reliable system identification scheme for recovering the governing
stochastic differential equations for an IPS when the number of particles per experiment N is on
the order of several thousands and the number of experiments M is less than 100. This is in
contrast to existing work showing that system identification for N less than 100 and M on the
order of several thousand is feasible using strong-form methods. We prove that under some standard
regularity assumptions the scheme converges with rate O(N�1/2) in the ordinary least squares setting
and we demonstrate the convergence rate numerically on several systems in one and two spatial
dimensions. Our examples include a canonical problem from homogenization theory (as a first step
towards learning coarse-grained models), the dynamics of an attractive–repulsive swarm, and the IPS
description of the parabolic–elliptic Keller–Segel model for chemotaxis. Code is available at https:
//github.com/MathBioCU/WSINDy_IPS.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Problem statement

Recently there has been considerable interest in the methodol-
ogy of data-driven discovery for governing equations. Building on
the Sparse Identification of Nonlinear Dynamics (SINDy) [1], we
developed a weak form version (WSINDy) for ODEs [2] and for
PDEs [3]. In this work, we develop a formulation for discovering
governing stochastic differential equations (SDEs) for interacting
particle systems (IPS). To promote clarity and for reference later
in the article, we first state the problem of interest. Subsequently,
we will provide a discussion of background concepts and current
results in the literature.

Consider a particle system Xt = (X (1)
t , . . . , X (N)

t ) 2 RNd where
on some fixed time window t 2 [0, T ], each particle X (i)

t 2 Rd

evolves according to the overdamped dynamics

dX (i)
t =

⇣
�rK ⇤ µN

t

⇣
X (i)
t

⌘
� rV

⇣
X (i)
t

⌘⌘
dt + � (X (i)

t ) dB(i)
t (1.1)

with initial data X (i)
0 each drawn independently from some proba-

bility measure µ0 2 Pp(Rd), where Pp(Rd) is the space probability
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measures on Rd with finite pth moment.1 Here, K is the interac-
tion potential defining the pairwise forces between particles, V is
the local potential containing all exogenous forces, � is the diffu-
sivity, and

⇣
B(i)
t

⌘

i=1,...,N
are independent Brownian motions each

adapted to the same filtered probability space (⌦,B,P, (Ft )t�0).
The empirical measure is defined

µN
t :=

1
N

NX

i=1

�X (i)
t

,

and the convolution rK ⇤ µN
t is defined

rK ⇤ µN
t (x) = r

Z

Rd
K (x � y) dµN

t (y) =
1
N

NX

i=1

rK
⇣
x � X (i)

t

⌘

where we set rK (0) = 0 whenever rK (0) is undefined. The
recovery problem we wish to solve is the following.

(P) Let = (X(1)
t

, . . . ,X
(M)
t

) be discrete-time data at L time-
points t := (t1, . . . , tL) for M i.i.d. trials of the process (1.1)
with K = K ?, V = V ?, and � = � ? and let = + " be
a corrupted dataset. For some fixed compact domain D ⇢ Rd

containing supp ( ), and finite-dimensional hypothesis spaces2

1 We define the pth moment of a probability measure µ for p � 0 by
Mp(µ) :=

R
Rd |x|pdµ(x).

2 The set D � D is defined D � D = {x � y : (x, y) 2 D ⇥ D}.
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HK ⇢ L2(D � D), HV ⇢ L2(D), and H� ⇢ L2(D), solve
�bK ,bV ,b�

�
= argmin

K2HK ,V2HV ,�2H�

��rK � rK ?
��
L2(D�D)

+
��rV � rV ?

��
L2(D) +

��� � � ?
��
L2(D) .

The problem (P) is clearly intractable because we do not have
access to K ?, V ?, or � ?, and moreover the interactions between
these terms render simultaneous identification of them ill-posed.
We consider two cases: (i) " 6= 0 and � ? = 0, corresponding to
purely extrinsic noise, and (ii) " = 0 and � ? 6= 0, corresponding
to purely intrinsic noise. The extrinsic noise case is important for
many applications, such as cell tracking, where uncertainty is
present in the position measurements. In this case we examine "
representing i.i.d. Gaussian noise with mean zero and variance3
✏2Id added to each particle position in . In the case of purely
intrinsic noise, identification of the diffusivity � ? is required as
well as the deterministic forces on each particle as defined by
K ? and V ?. A natural next step is to consider the case with both
extrinsic and intrinsic noise. However, the combined noise case
is sufficiently nuanced as to render it beyond the scope of the
article, and we leave it for future work.

2. Background

Interacting particle systems (IPS) such as (1.1) are used to
describe physical and artificial phenomena in a range of fields
including astrophysics [4,5], molecular dynamics [6], cellular biol-
ogy [7–9], and opinion dynamics [10]. In many cases the number
of particles N is large, with cell migration experiments often
tracking 103 � 106 cells and simulations in physics (molecular
dynamics, particle-in-cell, etc.) requiring N in the range 106 �

1012. Inference of such systems from particle data thus requires
efficient means of computing pairwise forces from O(N2) in-
teractions at each timestep for multiple candidate interaction
potentials K . Frequently, so-called mean-field equations at the
continuum level are sufficient to describe the evolution of the sys-
tem, however in many cases (e.g. chemotaxis in biology [11]) only
phenomenological mean-field equations are available. Moreover,
it is often unclear how many particles N are needed for a mean-
field description to suffice. Many disciplines are now developing
machine learning techniques to extract coarse-grained dynamics
from high-fidelity simulations (see [12] for a recent review in
molecular dynamics). In this work we provide a means for infer-
ring governing mean-field equations from particle data assumed
to follow the dynamics (1.1) that is highly efficient for large N ,
and is effective in learning mean-field equations when N is in
range 103 � 105.

Inference of the drift and diffusion terms for stochastic differ-
ential equations (SDEs) is by now a mature field, with the primary
method being maximum-likelihood estimation, which uses Gir-
sanov’s theorem together with the Radon–Nikodym derivative
to arrive at a log-likelihood function for regression. See [13,
14] for some early works and [15] for a textbook on this ap-
proach. More recently, sparse regression approaches using the
Kramers–Moyal expansion have been developed [16–18] and the
authors of [19] use sparse regression to learn population level
ODEs from agent-based modeling simulations. The authors of [20]
also derived a bias-correcting regression framework for inferring
the drift and diffusion in underdamped Langevin dynamics, and
in [21] a neural network-based algorithm for inferring SDEs was
developed.

Only in the last few years have significant strides been made
towards parameter inference of interacting particle systems such

3 By Id we mean the identity in Rd .

as (1.1) from data. Apart from some exceptions, such as a Gaus-
sian process regression algorithm recently developed in [22],
applications of maximum likelihood theory are by far the most
frequently studied. An early but often overlooked work by Ka-
songa [23] extends the maximum-likelihood approach to infer-
ence of the interaction potential K , assuming full availability of
the continuous particle trajectories and the diffusivity � . Two
decades later, Bishwal [24] further extended this approach to
discrete particle observations in the specific context of linear par-
ticle interactions. In both cases, a sequence of finite-dimensional
subspaces is used to approximate the interaction function, and
convergence is shown as the dimension of the subspace J and
number of particles N both approach infinity. More recently, the
maximum likelihood approach has been carried out in [25,26] in
the case of radial interactions and in [27] in the case of linear
particle interactions and single-trajectory data (i.e. one instance
of the particle system). The authors of [28] recently developed
an online maximum likelihood method for inference of IPS, and
in [29] maximum likelihood is applied to parameter estimation in
an IPS for pedestrian flow. It should also be noted that parameter
estimation for IPS is common in biological sciences, with the most
frequently used technique being nonlinear least squares with a
cost function comprised of summary statistics [7,30].

Problem (P) is made challenging by the coupled effects of K ,
V , and � . In each of the previously mentioned algorithms, the
assumption is made that � is known and/or that K takes a specific
form (radial or linear). In addition, the maximum likelihood-
based approach approximates the differential dX (i)

t of particle i
using a 1st-order finite difference: dX (i)

t ⇡ X (i)
t+�t � X (i)

t , which is
especially ill-suited to problems involving extrinsic noise in the
particle positions. Our primary goal is to show that the weak-
form sparse regression framework allows for identification of the
full model (K , V , � ), with significantly reduced computational
complexity, when N is on the order of several thousands or
more. We use a two-step process: the density of particles is
approximated using a density kernel G and then the WSINDy
algorithm (weak-form sparse identification of nonlinear dynam-
ics) is applied in the PDE setting [2,3]. WSINDy is a modified
version of the original SINDy algorithm [1,31] where the weak
formulation of the dynamics is enforced using a family of test
functions that offers reduced computational complexity, high-
accuracy recovery in low-noise regimes, and increased robustness
to high-noise scenarios. The feasibility of this approach for IPS
is grounded in the convergence of IPS to associated mean-field
equations. The reduction in computational complexity follows
from the reduction in evaluation of candidate potentials (as dis-
cussed in Section 4.2), as well as the convolutional nature of the
weak-form algorithm.

To the best of our knowledge, we present here the first weak-
form sparse regression approach for inference of interacting parti-
cle systems, however we now review several related approaches
that have recently been developed. In [32], the authors learn lo-
cal hydrodynamic equations from active matter particle systems
using the SINDy algorithm in the strong-form PDE setting. In
contrast to [32], our approach learns nonlocal equations using
the weak-form, however similarly to [32] we perform model
selection and inference of parameters using sparse regression
at the continuum level. The weak form provides an advantage
because no smoothness is required on the particle density (for
requisite smoothness the authors of [32] use a Gaussian kernel,
which is more expensive to compute than simple particle binning
as done here). The authors of [33] developed an integral formula-
tion for inference of plasma physics models from PIC data using
SINDy, however their method involves first computing strong-
form derivatives and then averaging, rather than integration by
parts against test functions as done here, and as in [32], the
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Table 1

Notations used throughout.
Variable Definition Domain

K Pairwise interaction potential L1loc (R
d,R)

V Local potential C(Rd,R)
� Diffusivity C(Rd,Rd⇥d)
N Number of particles per experiment {2, 3, . . . }
d Dimension of latent space N
T Final time (0, 1)
(⌦,B,P, (Ft )t�0) Filtered probability space
(B(i)

t )Ni=1 Independent Rd Brownian motions on (⌦,B,P, (Ft )t�0)
X (i)
t ith particle in the particle system (1.1) at time t Rd

Xt N-particle system (1.1) at time t RNd

µN
t Empirical measure of Xt P(Rd)

FN
t Distribution of Xt P(RNd)
Xt Mean-field process (3.2) at time t Rd

µt Distribution of Xt P(Rd)
t L discrete timepoints [0, T ]

t Collection of M independent samples of Xt at t RMLNd

t Sample of Xt corrupted with i.i.d. additive noise RMLNd

Ut Approximate density from particle positions P(Rd)
G Density kernel mapping µN

t to Ut L1(Rd ⇥ Rd,R)
D Spatial support of Ut , t 2 [0, T ] Compact subset of Rd

C Discretization of D
Ut Discrete approximate density Ut (C)
h·, ·ih semi-discrete inner product, trapezoidal rule over C

h·, ·ih,�t Fully-discrete inner product, trapezoidal rule over C ⇥ t

LK Library of candidate interaction forces
LV Library of candidate local forces
L� Library of candidate diffusivities
L (LK ,LV ,L� )
 Set of n test functions ( k)nk=1 C2(Rd ⇥ (0, T ))
�m,p(v; �) Test functions used in this work (Eq. (4.4))
� Set of sparsity thresholds
L Loss function for sparsity thresholds (Eq. (4.6))

learned models are local. In [34], the authors apply the maximum
likelihood approach in the continuum setting on the underlying
nonlocal Fokker–Planck equation and learn directly the nonlocal
PDE using strong-form discretizations of the dynamics. While we
similarly use the continuum setting for inference (albeit in weak
form), our approach differs from [34] in that it is designed for the
more realistic setting of discrete-time particle data, rather than
pointwise data on the particle density (assumed to be smooth
in [34]).

2.1. Contributions

The purpose of the present article is to show that the weak
form provides an advantage in speed and accuracy compared
with existing inference methods for particle systems when the
number of particles is sufficiently large (on the order of several
thousand or more). The key points of this article include:

(I) Formulation of a weak-form sparse recovery algorithm for
simultaneous identification of the particle interaction force
K , local potential V , and diffusivity � from discrete-time
particle data.

(II) Convergence with rate O(N�1/2) of the resulting full-rank
least-squares solution as the number of particles N ! 1

and timestep �t ! 0.
(III) Numerical illustration of (II) along with robustness to ei-

ther intrinsic randomness (e.g. Brownian motion) or extrin-
sic randomness (e.g. additive measurement noise).

2.2. Paper organization

In Section 3 we review results from mean-field theory used
to show convergence of the weak-form method. In Section 4 we
introduce the WSINDy algorithm applied to interacting particles,
including hyperparameter selection, computational complexity,

and convergence of the method under suitable assumptions in the
limit of large N . Section 5 contains numerical examples exhibiting
the convergence rates of the previous section and examining the
robustness of the algorithm to various sources of corruption, and
Section 6 contains a discussion of extensions and future direc-
tions. In the Appendix we provide information on the hyperpa-
rameters used A.1, derivation of the homogenized equation (5.3)
A.2, results and discussion for the case of small N and large M (in
comparison with [26]) A.3, and proofs to technical lemmas A.4.
Table 1 includes a list of notations used throughout.

3. Review of mean-field theory

Our weak-form approach utilizes that under fairly general
assumptions the empirical measure µN

t of the process Xt defined
in (1.1) converges weakly to µt , the distribution of the associated
mean-field process Xt defined in (3.2). Specifically, under suitable
assumptions on V , K , � , and µ0, there exists T > 0 such that for
all t 2 [0, T ], the mean-field limit4

lim
N!1

µN
t = µt

holds in the weak topology of measures,5 where µt is a weak-
measure solution to the mean-field dynamics

@tµt = r · (µtrK ⇤ µt) + r · (µtrV )

+
1
2

dX

i,j=1

@2

@xi@xj

�
�� Tµt

�
, µ0 2 P2(Rd).

(3.1)

4 We use the notation t ! µt to denote the evolution of probability
measures. Subscripts will not be used to denote differentiation.
5 Meaning that for all continuous bounded functions � : Rd ! R,R

Rd �(x)dµN
t (x) !

R
Rd �(x)dµt (x).

3
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Eq. (3.1) describes the evolution of the distribution of the McKean–
Vlasov process

dXt = �rK ⇤ µt (Xt) dt � rV (Xt) dt + � (Xt ) dBt . (3.2)

This implies that as N ! 1, an initially correlated particle
system driven by pairwise interaction becomes uncorrelated and
only interacts with its mean-field distribution µt . In particular,
the following theorem summarizes several mean-field results
taken from the review article [35] with proofs in [36,37].6

Theorem ([35–37]). Assume that rK is globally Lipschitz, V = 0,
and � (x) = � = const. In addition assume that µ0 2 P2(Rd). Then
for any T > 0, for all t  T it holds that

(i) There exists a unique solution (Xt , µt ) where Xt is a strong
solution to (3.2) and µt is a weak-measure solution to (3.1).

(ii) For any � 2 C1
b (R

d),

E

2

4
 

1
N

NX

i=1

�(X (i)
t ) �

Z

Rd
�(x)dµt (x)

!23

5  C
k�k

2
C1

N
(3.3)

with C depending on Lip(rK ) and T .
(iii) For any k 2 N, a.e. � t < T , the k-particle marginal

⇢
(k),N
t (x1, . . . , xk) :=

Z

Rd(N�k)
FN
t (x1, . . . , xk, xk+1, . . . , xN )

⇥ dxk+1 · · · dxN

converges weakly to µ⌦k
t as N ! 1, where FN

t 2 P(RNd) is
the distribution of Xt .

The previous result immediately extends to the case of rV
and � both globally Lipschitz and has been extended to rK
only locally-Lipschitz in [38], rK with Coulomb-type singularity
at the origin in [39], and domains with boundaries in [40,41].
Analysis of the model (3.1) continues to evolve in various con-
texts, including analysis of equilibria [42–44] and connections to
deep learning [45]. For our convergence result below we simply
assume that K ?, V ?, � ? and µ0 are such that (i) and (ii) from the
above theorem hold.

3.1. Weak form

Despite the O(N�1/2) convergence of the empirical measure
in previous theorem, it is unclear at what particle number N the
mean-field equations become a suitable framework for inference
using particle data, due to the complex variance structure at any
finite N . A key piece of the present work is to show that the weak
form of the mean-field equations does indeed provide a suitable
setting when N is at least several thousands. Moreover, since in
many cases (3.1) can only be understood in a weak sense, the
weak form is the natural framework for identification. We say
that µt is a weak solution to (3.1) if for any  2 C2(Rd ⇥ (0, T ))
compactly supported it holds that
Z T

0

Z

Rd
@t (x, t) dµt (x)dt

=

Z T

0

Z

Rd

⇣
r (x, t) · rK ⇤ µt (x) + r (x, t) · rV (x)

�
1
2
Tr

�
r

2 (x, t)� (x)� T (x)
� ⌘

dµt (x)dt,

(3.4)

6 For a function f : Rd ! Y , where Y is a metric space with metric ⇢, we
define Lip(f ) by

Lip(f ) := sup
x,y2Rd

⇢(f (x), f (y))
|x � y|

where | · | denotes the Euclidean norm. We say f is Lipschitz when Lip(f ) < 1.
Also, kf kC1 := kf k1 +

Pd
i=1

��� @ f
@xi

���
1

.

where r2 denotes the Hessian of  and Tr(A) is the trace
of the matrix A. Our method requires discretizing (3.4) for all
 2  where  = ( 1, . . . , n) is a suitable test function
basis, and approximating the mean-field distribution µt with a
density Ut constructed from discrete particle data at time t . We
then find K , V , and � within specified finite-dimensional function
spaces.

4. Algorithm

We propose the general Algorithm 4.1 for discovery of mean-
field equations from particle data. The inputs are a discrete-
time sample containing M experiments each with N particle
positions over L timepoints t = (t1, . . . , tL). The following hyper-
parameters are defined by the user: (i) a kernel G used to map
the empirical measure µN

t to an approximate density Ut , (ii) a
spatial grid C over which to evaluate the approximate density
Ut = Ut (C), (iii) a library of trial functions L = {LK ,LV ,L� } =

{(Kj)
JK
j=1, (Vj)

JV
j=1, (�j)

J�
j=1}, (iv) a basis of test functions  = ( k)nk=1,

(v) a quadrature rule over the spatiotemporal grid (C, t) denoted
by an inner product h·, ·i, and (vi) sparsity factors � for the modi-
fied sequential thresholding least-squares Algorithm 4.2 (MSTLS)
reviewed below. We discuss choices of these hyperparameters
in Section 4.1, computational complexity of the algorithm in
Section 4.2, convergence of the algorithm in Section 4.3. In Sec-
tion 4.4 we briefly discuss gaps between theory and practice.
Table 1 includes a list of notations used throughout.

Algorithm 4.1 WSINDy for identifying mean-field Eq. (3.1) from
particle data
(bw, �̂) = WSINDy ( , t ; G, C, L,  , h·, ·i , �)
1: for ` = 1 : L do

2: for m = 1 : M do

3: U
(m)
` =

R
Rd G(C, y)dµN

t` (y) where µN
t` is the empirical

measure for Y(m)
t`

4: end for

5: U` =
1
M

PM
m=1 U

(m)
`

6: end for

7:
8: for j = 1 : JK do

9: for k = 1 : n do

10: G
K
kj =

⌦
r k,UrKj ⇤ U

↵

11: end for

12: end for

13:
14: for j = 1 : JV do

15: for k = 1 : n do

16: G
V
kj =

⌦
r k,UrVj

↵

17: end for

18: end for

19:
20: for j = 1 : J� do

21: for k = 1 : n do

22: G
�
kj =

1
2

Pd
p,q=1

⌦
@xpxq k, (�j� T

j )pqU
↵

23: end for

24: end for

25: G = [GK
G
V
G
� ]

26:
27: for k = 1 : n do

28: bk = h@t k,Ui

29: end for

30:
31: (bw,b�) = MSTLS(G, b; �) (see Algorithm 4.2)

4
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4.1. Hyperparameter selection

4.1.1. Quadrature
We assume that the set of gridpoints C in Algorithm 4.1 is

chosen from some compact domain D ⇢ Rd containing supp ( ).
The choice of C (and D) must be chosen in conjunction with the
quadrature scheme, which includes integration in time using the
given timepoints t as well as space. For completeness, the inner
products in lines 10, 16, 22, and 27 of Algorithm 4.1 are defined
in the continuous setting by

hf , gi =

Z T

0

Z

D
f (x, t)g(x, t)dxdt,

and the convolution in line 10 is defined by

rKj ⇤ Ut (x) =

Z

D
rKj(x � y)Ut (y)dy.

In the present work we adopt the scheme used in the application
of WSINDy for local PDEs [3], which includes the trapezoidal rule
in space and time with test functions  compactly supported
in D ⇥ (0, T ). We take D to be a rectangular domain enclosing
supp ( ) and C ⇢ D to be equally-spaced in order to effi-
ciently evaluate convolution terms. In what follows we denote
by h·, ·i the continuous inner product, h·, ·ih the inner product
over D ⇥ [0, T ] evaluated using the composite trapezoidal rule
in space with meshwidth h and Lebesgue integration in time,
and by h·, ·ih,�t the trapezoidal rule in both space and time,
with meshwidth h in space and �t in time. With some abuse of
notation, f ⇤g will denote the convolution of f and g , understood
to be discrete or continuous by the context. Note also that we
denote by µN , µ, and U the measures over Rd ⇥ [0, T ] defined by
µN

t ⇤[0,T ], µt⇤[0,T ] and Ut⇤[0,T ], respectively, where ⇤[0,T ] is the
Lebesgue measure on [0, T ].

4.1.2. Density kernel
Having chosen the domain D ⇢ Rd containing the particle data
, let Ph = {Bk}k be a partition of D ([kBk = D) with h indicating

the size of the atoms Bk. For the remainder of the paper we take
Bk to be hypercubes of equal side length h in order to minimize
computation time for integration, although this is by no means
necessary. For particle positions Xt , we define the histogram7

Ut =

X

k

1
|Bk|

1Bk (x)

 
1
N

X

i

1Bk (X
(i)
t )

!
=

Z

D
G(x, y)dµN

t (y). (4.1)

Here the density kernel is defined

G(x, y) =

X

k

1
|Bk|

1Bk (x)1Bk (y),

and in this setting the corresponding spatial grid C = (ck)k is
the set of center-points of the bins Bk, from which we define the
discrete histogram data Ut = Ut (C). The discrete histogram Ut
then serves as an approximation to the mean-field distribution
µt .

Pointwise estimation of densities from samples of particles
usually requires large numbers of particles to achieve reasonably
low variance, and in general the variance grows inversely pro-
portional to the bin width h. One benefit of the weak form is that
integrating against a histogram U does not suffer from the same
increase in variance with small h. In particular,

7 The indicator function is defined 1A(x) :=

(
1, x 2 A
0, x /2 A

.

Lemma 1. Let (Y (1), Y (2), . . . ) be a sequence of Rd-valued random
variables such that the empirical measure µN of Y := (Y (1), . . . , Y (N))
converges weakly to µ 2 P(Rd) according to

E
⇥
(h , µN

i � h , µi)2
⇤

 C k k
2
C1N�1 (4.2)

for all  2 C1(Rd) and C a universal constant. Let U be the
histogram computed with kernel G using (4.1) with n bins and equal
sidelength h. Then for any  in C1(Rd) compactly supported in D,
we have the mean-squared error (foreC depending on C and d)

E
h�

h ,Uih � h , µi
�2i

eC k k
2
C1

�
h2

+ N�1� .

Remark 1. We note that (4.2) follows immediately for Y (i) ⇠ µ
i.i.d.,8 and also for Y = Xt a solution to (1.1) at time t with mean-
field distribution µ = µt according to (3.3) (for suitable K , V , and
� ), which is the setting of the current article.

Proof of Lemma 1. First we note that by compact support of  ,
the trapezoidal rule can be written

h ,Uih =

⌧
 ,

Z

Rd
G(·, y)dµN (y)

�

h
=

⌦
 C, µN ↵

=
1
N

NX

i=1

 C(Y (i))

where the midpoint approximation  C of  is given by

 C(x) =

KX

k=1

 (ck)1Bk (x). (4.3)

Hence we simply split the error and use (4.2):

E
h�

h ,Uih � h , µi
�2i

 2E
⇥
h C

�  , µN
i
2⇤

+ 2E
⇥
(h , µN

i � h , µi)2
⇤

 k k
2
C1

✓
d
2
h2

+ 2CN�1
◆

.

The previous lemma in particular shows that small bin width
h does not negatively impact h ,Uih as an estimator of h , µi,
which is in contrast to U(x) as a pointwise estimator of µ(x). For
example, if we assume that Y is sampled from a C1 density µ,
it is well known that the mean-square optimal bin width is h =

O(N�1/3) [46]. Summarizing this result, elementary computation
reveals the pointwise bias for x 2 Bk,

bias(U(x)) = E [U(x)] � µ(x) =
µ(Bk)
|Bk|

� µ(x) := µ(⇠ ) � µ(x)

for some ⇠ 2 Bk. Letting Lk = maxx2Bk |rµ(x)|, we have

bias(U(x))2  L2k2
d�1h2.

For the variance we get

Var (U(x)) =
1
N

µ(Bk)(1 � µ(Bk))
|Bk|

2 =
µ(⇠ )
N

(1 � µ(Bk))
1

p
2
d�1

h
,

and hence a bound for the mean-squared error

E
⇥
(U(x) � µ(x))2

⇤
 L2k2

d�1h2
+

µ(⇠ )

N
p
2
d�1 h

�1.

Minimizing the bound over h we find an approximately optimal
bin width

h⇤
=

 
⇢(⇠ )

2
3d�1

2 L2k

!1/3

N�1/3
= O(N�1/3),

8 In this case (4.2) is the variance of a Monte-Carlo estimator for
R
 (x)dµ(x).
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which provides an overall pointwise root-mean-squared error of
O(N�1/3). Hence, not only does the weak form remove the inverse
h dependence in the variance, but fewer particles are needed to
accurately approximate integrals of the density µ.

4.1.3. Test function basis
For the test functions ( k)1kn we use the same approach as

the PDE setting [3], namely we fix a reference test function  and
set

 k(x, t) =  (xk � x, tk � t)

where Q := {(xk, tk)}1kn is a fixed set of query points. This,
together with a separable representation

 (x, t) = �1(x1) · · ·�d(xd)�d+1(t),

enables construction of the linear system (G, b) using the FFT. We
choose �j, 1  j  d + 1, of the form

�m,p(v; �) := max
✓
1 �

⇣ v

m�

⌘2
, 0

◆p

(4.4)

where m is the integer support parameter such that �m,p is sup-
ported on 2m + 1 points of spacing � 2 {h,�t} and p � 1 is the
degree of �m,p. For simplicity we set �j = �mx,px for 1  j  d and
�d+1 = �mt ,pt , so that only the numbers mx, px,mt , pt need to be
specified.

Since �m,p has exactly p weak derivatives, px and pt must be
at least as large as the maximum spatial and temporal derivatives
appearing in the library L, or px � 2, pt � 1. Larger p results in
higher-accuracy enforcement of the weak form (3.4) in low-noise
situations (see Lemma 2 of [2] for details), however the conver-
gence analysis below indicates that smaller Lip(@↵ ), |↵|  2,
may reduce variance. The support parameter m determines the
length and time scales of interest and must be chosen small
enough to extract relevant scales yet large enough to sufficiently
reduce variance.

In [3, Appendix A] the authors developed a changepoint al-
gorithm to choose mx,mt , px, pt automatically from the Fourier
spectrum of the data U. Here, for each of the three examples
in Section 5, we fix  across all particle numbers N , extrinsic
noises ", and intrinsic noises � , in order to instead focus on
convergence in N . To strike a balance between accuracy and small
Lip( ) we choose pt = 3 and px = 5 throughout. We used a
combination of the changepoint algorithm and manual tuning to
arrive at mx and mt which work well across all noise levels and
numbers of particles examined. Query points Q are taken to be an
equally-spaced subgrid of C with spacing sx and st for spatial and
temporal coordinates. The resulting values px, pt , mx, mt , sx, and
st determine the weak discretization scheme and can be found in
Appendix A.1 for each example below.

The results in Section 5 appear robust to 3  px, pt  9. In
addition, choosing mx and mt specific to each dataset using the
changepoint method often improves results. Although automated
in the changepoint algorithm, we recommend visualizing the
overlap between the Fourier spectra of  and U when choosing
px, pt ,mx,mt in order to directly observe which the modes in
the data will experience filtering under convolution with  . In
general, there is much flexibility in the choice of  . Optimizing
 continues to be an active area of research.

4.1.4. Trial function library
The general Algorithm 4.1 does not impose a radial struc-

ture for the interaction potential K , nor does it assume any
prior knowledge that the particle system is in fact interacting. In
the examples below,9 the libraries LK ,LV ,L� are composed of

9 Details of the libraries used in examples can be found in Tables 2–4 in
Appendix A.1.

monomial and/or trigonometric terms to demonstrate that sparse
regression is effective in selecting the correct combination of
nonlocal drift, local drift, and diffusion terms. Rank deficiency can
result, however, from naive choices of nonlocal and local bases.
Consider the kernel K (x) =

1
2 |x|

2, which satisfies

rK ⇤ µt = x � M1(µt ) = rV (x)

where V (x) =
1
2 |x � M1(µt )|2 and M1(µt ) is the first moment of

µt . Since M1(µt ) is conserved in the model (3.2) posed in free-
space,10 including the same power-law terms in both libraries
LK and LV will lead to rank deficiency. This is easily avoided
by incorporating known symmetries of the model (3.2), however
in general we recommend that the user builds the library L
incrementally and monitors the condition number of G while
selecting terms.

4.1.5. Sparse regression
As in [3], we enforce sparsity using a modified sequential

thresholding least-squares algorithm (MSTLS), included as Al-
gorithm 4.2, where the ‘‘modifications’’ are two-fold. First, we
incorporate into the thresholding step the magnitude of the over-
all term

��wjGj
��
2 as well as the coefficient magnitude |wj|, by

defining non-uniform lower and upper thresholds
8
>>>><

>>>>:

L�j = �max

(
1,

kbk��Gj
��

)

U�j =
1
�
min

(
1,

kbk��Gj
��

) , 1  j  J, (4.5)

where J = JK + JV + J� is the number of columns in G. Second,
we perform a grid search11 over candidate sparsity parameters �
and choose the parameterb� that is the smallest minimizer over
� of the cost function

L(�) =

��G(w� � w
0)
��
2��Gw0

��
2

+

��w�
��
0

J
(4.6)

where w
� is the output of the sequential thresholding algorithm

with non-uniform thresholds (4.5) and w
0 = G

†
b is the least-

squares solution.12 The final coefficient vector is then set to bw =

w
b�.
We now review some aspects of Algorithm 4.2. Results from

[47] on the convergence of STLS carry over for the inner loop of
Algorithm 4.2, namely if G is full-rank, the inner loop terminates
in at most J iterations with a resulting coefficient vector w� that
is a local minimizer of the cost function F (w) = kGw � bk

2
2 +

�2 kwk0. This implies that the full algorithm terminates in at-
most mJ least-squares solves (each on a subset of columns of
G).

When considering recovery of the true weight vector w
?,

Theorem 1 implies convergence in particle number N of bw to w
?

when G is full-rank. The rate of convergence depends implicitly
on the condition number of G, hence it is recommended that one
builds the library L incrementally, stopping before the conditional
number (G) grows too large. If G is rank deficient, classical
recovery guarantees from compressive sensing do not necessar-
ily apply, due to high correlations between the columns of G

10 This is not true in domains with boundaries, where nonlocalities can be
seen to impart mean translation [42].
11 Note that this is feasible because the STLS algorithm terminates in finitely
many iterations.
12 The Moore–Penrose inverse A

† is defined for a rank-r matrix A using the
reduced SVD A = Ur⌃r V ⇤

r as A
† := Vr⌃

�1
r U⇤

r . The subscript r denotes restriction
to the first r columns.
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Table 2

Trial function library for local 2D example (Section 5.1).
Mean-field term Trial function library
r · (UrK ⇤ U) r · (Ur|x|m ⇤ U), m 2 {1, 2, 3, 4, 5, 6, 7}
r · (UrV ) @xi (U cos(mx1) cos(nx2)), (m, n) 2 {0, 1, 2, 3, 4, 5}, i 2 {1, 2}

1
2

Pd
i,j=1

@2(U�� T )ij
@xi@xj

�(U cos(mx1) cos(nx2)), (m, n) 2 {0, 1, 2, 3, 4, 5}

Table 3

Trial function library for nonlocal 1D example (Section 5.2).
Mean-field term Trial function library
r · (UrK ⇤ U) @x · (U@x|x|m ⇤ U), m 2 {1, 2, 3, 4, 5, 6, 7}
r · (UrV ) @x (Uxm), m 2 {0, 2, 3, 4, 5, 6, 7, 8}

1
2

Pd
i,j=1

@2(U�� T )ij
@xi@xj

@xx(Uxm), m 2 {0, 1, 2, 3, 4, 5, 6, 7, 8}

Table 4

Trial function library for nonlocal 2D example (Section 5.3). Interaction potentials
[ K ]� indicate cutoff potentials of the form (5.6) with � = 0.01 such that the
resulting potential is Lipschitz.
Mean-field term Trial function library

r · (UrK ⇤ U)

8
>>><

>>>:

r · (Ur|x|m ⇤ U) m 2 {2, 3, 4, 5, 6}

r · (Ur
⇥
|x|1/2

⇤
�
⇤ U)

r · (Ur [|x|(log |x| � 1)]� ⇤ U)
r · (Ur [log |x|]� ⇤ U)

r · (UrV ) @xi
�
Uxm1 x

n
2
�

0  m + n  5, i 2 {1, 2}

1
2

Pd
i,j=1

@2(U�� T )ij
@xi@xj

�(U cos(mx1) cos(nx2)), (m, n) 2 {0, 1, 2}

Algorithm 4.2 Modified sequential thresholding with automatic
threshold selection
(bw, �̂) = MSTLS(G 2 Rn⇥J, b 2 Rn, � 2 Rm,maxits)
1: W = 0 2 RJ⇥m

2: w
0 = G

†
b

3: for i = 1 : m do

4: � = �i
5: ` = 0
6: while ` < maxits do

7: I` = {1  j  J : L�j  |w
`
j |  U�j } (Thresholding

step: see Eq. (4.5))
8: w

`+1 = argminsupp(w)⇢I` kGw � bk
2
2

9: ` = `+ 1
10: end while

11: w
� = w

`

12: W:,i = w
�

13: end for

14: b� = min
�
argmin�2� L(�)

�
(Identificaiton of best �: see

Eq. (4.6))
15: bw = w

b�

(recall each column is constructed from the same dataset U).13
One may employ additional regularization (e.g. Tikhonov reg-
ularization as in [31]); however, in general, improvements to
existing sparse regression algorithms for rank-deficient, noisy,
and highly-correlated matrices is an active area of research.

The bounds (4.5) enforce a quasi-dominant balance rule, such
that

��wjGj
��
2 is within � log10(�) orders of magnitude from kbk2

and |wj| is within � log10(�) orders of magnitude from 1 (the
coefficient of time derivative @tµt ). This is specifically designed

13 In particular, correlations result in large mutual incoherence, which ren-
ders algorithms such as Basis Pursuit, Orthogonal Matching Pursuit, and Hard
Thresholding Pursuit useless (see [48, Chapter 5] for details).

to handle poorly-scaled data (see the Burgers and Korteweg–de
Vries examples in [3]), however we leave a more thorough ex-
amination of the thresholding requirements necessary for models
with multiple scales to future work.

As the sum of two relative errors, minimizers of the cost
function L equally weight the accuracy and sparsity of w

b�. By
choosingb� to be the smallest minimizer of L over �, we identify
the thresholds � 2 � such that � < b� as those resulting in an
overfit model. We commonly choose � to be log-equally spaced
(e.g. 50 points from 10�4 to 1), and starting from a coarse grid,
refine � until the minimum of L is stationary.

4.2. Computational complexity

To compute convolutions against rK for each K 2 LK , we first
evaluate (@xiK )1id at the grid C � C defined by

C � C := {x 2 Rd
: x = (i1h, . . . , idh), �n`  i`  n`},

where h is the spacing of C and n`, 1  `  d, is the number
of points in C along the `th coordinate. Computing14 @xiK :=

@xiK (C � C) requires 2d|C| evaluations of K , where |C| =
Qd
`=1 n`

is the number of points in C. We then use the d-dimensional FFT
to compute the convolutions

@xiK ⇤ Ut ⇡ @xiK ⇤ Ut (C), t 2 t

where only entries corresponding to particle interactions within
C are retained. For d = 1 this amounts to O(|C| log |C|) flops per
timestep. For d = 2 and higher dimensions, the d-dimensional
FFT is considerably slower unless one of the arrays is separable.
To enforce separability, trial interaction potentials in LK can be
chosen to be a sum of separable functions,

K (x) =

QX

q=1

k1,q(x1) · · · kd,q(xd), (4.7)

in which case only a series of one-dimensional FFTs are needed
to compute @xiK ⇤ Ut , and again the cost is O(|C| log |C|) per
timestep. When K is not separable, a low-rank approximation can
be computed from @xiK,

@xiK ⇡

QX

q=1

�qk1,q ⌦ · · · ⌦ kd,q (4.8)

which again reduces convolutions to a series of one-dimensional
FFTs. For d = 2, this is accomplished using the truncated SVD,
while for higher dimensions there does not exist a unique best
rank-Q tensor approximation, although several efficient algo-
rithms are available to compute a sufficiently accurate decom-
position [49–51] (and the field of fast tensor decompositions is
advancing rapidly).

We propose to compute convolutions by first computing a
low-rank decomposition of @xiK using the randomized truncated
SVD [52] or a suitable randomized tensor decomposition and then

14 Note that C � C is simply C shifted to lie in the positive orthant {x 2 Rd :

x` � 0, 1  `  d} and reflected through each coordinate plane x` = 0. In this
way C�C discretizes the set D�D := {x�y 2 Rd : (x, y) 2 D⇥D} containing
all observed interparticle distances.
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Fig. 1. Factor by which the mean-field evaluation of interaction forces using histograms reduces total function evaluations as a function of particle number N and
average gridpoints per dimension |C|

1/d for data with M = 10 experiments each with L = 100 timepoints. For example, with d = 2 spatial dimensions (left) and
N > 2000 particles, the number of function evaluations is reduced by at least a factor of 104.

applying the d-dimensional FFT as a series of one-dimensional
FFTs. In the examples below we consider only d = 1 and d = 2,
and leave extension to higher dimensions to future work.

Using low-rank approximations, the mean-field approach pro-
vides a significant reduction in computational complexity com-
pared to direct evaluations of particle trajectories when N is
sufficiently large. A particle-level computation of the nonlocal
force in weak-form requires evaluating terms of the form

LX

`=1

0

@ 1
N2

NX

i=1

NX

j=1

@x (X (i)
t` , t`)@xK (X

(i)
t` � X (j)

t` )

1

A�t

=
⌦
@x , µN (@xK ⇤ µN )

↵
h,�t .

For a single candidate interaction potential K , a collection of J test
functions  , and M experiments, this amounts to MLN2 + MLNJ
function evaluations in Rd and O(MLN2J) flops. If we use the
proposed method, employing the convolutional weak form with
a separable reference test function  (as in WSINDy for PDEs [3])
and exploiting a rank Q approximation of @xK when computing
convolutions against interaction potential, we instead evaluate

@x ⇤ (U(@xK ⇤ U))

using O(LQ |C| log(|C|)) flops and only 2d|C| evaluations of @xK ,
reused at each of the L timepoints.15 Fig. 1 provides a visual-
ization of the reduction in function evaluations for L = 100
timepoints and M = 10 experiments over a range of N and |C|

1/d

(points along each spatial dimension when |C| is a hypercube) in
d = 2 and d = 3 spatial dimensions. Table 5 in Appendix A.1
lists walltimes for the examples below, showing that with N =

64,000 particles the full algorithm implemented in MATLAB runs
in under 10 s with all computations in serial on a laptop with an
AMD Ryzen 7 pro 4750u processor, and requiring less than 8 Gb of
RAM. The dependence on N is only through theO(N) computation
of the histogram, hence this approach may find applications in
physical coarse-graining (e.g. of molecular dynamics or plasma
simulations).

4.3. Convergence

We now show that the estimators bK , bV , and b� of the weak-
form method converge with a rate O(h + N�1/2 + �t⌘) when
ordinary least squares are used (i.e. � = 0) and only M = 1
experiment is available. Here ⌘ > 0 is the Hölder exponent of the
sample paths of the process Xt . We assume that D, C, G, Ph and

15 We neglect the cost of computing the histogram U and evaluating  (C),
together amounting to an additional O(NML + |C|) flops, as these terms are
lower order and reused in each column of G and b.

the resulting histogram U = (Ut )tT are as in Section 4.1.2. We
make the following assumptions on the true model and resulting
linear system throughout this section.

Assumption H. Let p � 1 be fixed.

(H.1) For each N � 2, Xt = (X (1)
t , . . . , X (N)

t ) is a strong solution to
(1.1) for t 2 [0, T ], and for some ⌘ > 0 the sample paths
t ! X (i)

t (!) are almost-surely ⌘-Hölder continuous, i.e. for
some C⌘ > 0,

|X (i)
t (!) � X (i)

s (!)|  C⌘|t � s|⌘, 8 0  s  t  T ,

8 1  i  N, for a.e. ! 2 ⌦.

(H.2) The initial particle distribution µ0 satisfies the moment
boundZ

Rd
|x|pdµ0(x) := Mp < 1.

(H.3) rK ? and rV ? satisfy for some Cp > 0 the growth bound:

|rV ?(x) � rV ?(y)| + |rK ?(x) � rK ?(y)|
 Cp|x � y|(1 + max{|x|, |y|}p�1), x, y 2 Rd.

(H.4) For the same constant Cp > 0, it holds that16
��� ?(x) � � ?(y)

��
F  Cp|x � y|1/2

⇥ (1 + max{|x|, |y|}p/2�1/2), x, y 2 Rd

(H.5) The test functions ( k)1kn ⇢ C2(Rd ⇥ (0, T )) are com-
pactly supported and together with the library L are such
that G has full column rank with17

��G†
��
1  CG almost

surely for some constant CG > 0.
(H.6) The true functions K ?, V ?, and � ? are in the span of L.

We will now define some notation and state some technical
lemmas with proofs found in Appendix A.4. Define the weak-form
operator

L (⇢, , h·, ·i)

:=

⌧
@t � r · rK ? ⇤ ⇢ � r · rV ? +

1
2
Tr

�
r

2 �?(� ?)T
�
, ⇢

�
,

(4.9)

where ⇢ = (⇢t )tT is a curve in Pp(Rd),  is a C2 function
compactly supported over Rd⇥(0, T ), and h·, ·i is an inner product

16 For A 2 Rd⇥d the Frobenius norm is defined kAkF =
p
Tr(ATA)

17 ��G†
��
q is the induced matrix q-norm of G† .
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over Rd⇥(0, T ). If ⇢ = (µt )tT is a weak solution to (3.1) and h·, ·i
is the L2(Rd) inner product then L (⇢, , h·, ·i) = 0. If instead
⇢ = (µN

t )tT , then by Itô’s formula L (⇢, , h·, ·i) takes the form
of an Itô integral, and we have the following:

Lemma 2. Under Assumptions (H.1)–(H.5), there exists a constant
C > 0 independent of N such that

E
⇥��L (µN , , h·, ·i)

��⇤ 
C

p
N

.

Proof. See Appendix A.4.

With the following lemma, we can relate the histogram U
to the empirical measure µN through L using the inner prod-
uct h·, ·ih defined by trapezoidal-rule integration in space and
continuous integration in time.

Lemma 3. Under Assumptions (H.1)–(H.5), for C independent of N
and h, it holds that

E
⇥
|L (U, , h·, ·ih) � L (µN , , h·, ·i)|

⇤
 Ch.

Proof. See Appendix A.4.

To incorporate discrete-time effects, we consider the differ-
ence between L (U, , h·, ·ih) and L (U, , h·, ·ih,�t ), where recall
that h·, ·ih,�t denotes trapezoidal rule integration in space with
meshwidth h and in time with sampling rate �t .

Lemma 4. Under Assumptions (H.1)–(H.5), for C independent of
N, h, and �t, it holds that

E
⇥
|L (U, , h·, ·ih) � L (U, , h·, ·ih,�t )|

⇤
 C(h +�t⌘).

Proof. See Appendix A.4.

The previous estimates directly lead to the following bound on
the model coefficients bw:

Theorem 1. Assume that Assumption H holds. Let bw be the
learned model coefficients and w

? the true model coefficients. For
C independent of N, h, and �t it holds that

E
⇥��bw � w

?
��
1

⇤
 C

�
h + N�1/2

+�t⌘
�
.

Proof. Using that K ?, V ?, and � ? are in the span of L (H.6), we
have that

bk = h@t k,Uih,�t = L (U, k, h·, ·ih,�t ) + G
T
kw

?
:= Lk + G

T
kw

?,

where G
T
k is the kth row of G. From Lemmas 2–4 we have

E [|Lk|]  E
⇥
|L (U, k, h·, ·ih,�t ) � L (U, k, h·, ·ih)|

⇤

+ E
⇥
|L (U, k, h·, ·ih) � L (µN , k, h·, ·i)|

⇤

+ E
⇥
|L (µN , k, h·, ·i)|

⇤

 C 0
�
h + N�1/2

+�t⌘
�
.

Using that G is full rank, it holds that bw = G
†
b = G

†
L+w

?, hence
the result follows from the uniform bound on

��G†
��
1 (H.5):

E
⇥��bw � w

?
��
1

⇤
 E

⇥
kG

†
k1 kLk1

⇤
 C 0CG

�
h + N�1/2

+�t⌘
�
. ⇤

Under the assumption (H.6), an immediate corollary is

E
 ��K ? �bK

��
L2(D�D) +

��V ? �bV
��
L2(D)

+
����� ?(� ?)T �b� (b� )T

��
F

��
L2(D)

�

 C
�
h + N�1/2

+�t⌘
�
,

(4.10)

This follows from

��K ? �bK
��
L2(D�D) 

JX

j=1

|w
?
j � bwj|

��Kj
��
L2(D�D)



✓
sup

j

��Kj
��
L2(D�D)

◆��w?
� bw

��
1 ,

and similarly for bV and b� . Finally, setting h = N�↵ for ↵ > 0 will
ensure convergence as N ! 1 and �t ! 0.

4.4. Theory vs. Practice

We now make several remarks about the practical perfor-
mance of Algorithm 4.1 with respect to the theoretical conver-
gence of Theorem 1.

Remark 2. An important case of Theorem 1 is � ? = 0, in
which case µN

t itself is a weak-measure solution to the mean-field
Eq. (3.1) and the algorithm returns, for ⌘ � 2, kbw � w

?k1  C(h+

�t⌘). This partially explains the accuracy observed for purely-
extrinsic noise examples in Figs. 5 and 9. We note further that
in the absence of noise (" = 0 and � ? = 0, not included in this
work) Algorithm 4.1 recovers systems to high accuracy similarly
to WSINDy applied to local dynamical systems [2,3].

Remark 3. Algorithm 4.1 in general implements sparse regres-
sion, yet Theorem 1 deals with ordinary least squares. Since least
squares is a common subroutine of many sparse regression al-
gorithms (including the MSTLS algorithm used here), the result is
still relevant to sparse regression. Lastly, the full-rank assumption
on G implies that as N ! 1 sequential thresholding reduces to
least squares.

Remark 4. Theorem 1 assumes data from a single experiment
(M = 1), while the examples below show that M > 1 experi-
ments improve results. For any fixed M > 1, the N ! 1 limit
results in convergence, however, the N-fixed and M ! 1 limit
does not result in convergence, as this does not lead to the mean-
field equations.18 The examples below show that using M > 1
has a practical advantage, and in Appendix A.3 we demonstrate
that even for small particle systems (N = 10) the large M regime
yields satisfactory results.

Remark 5. Many interesting examples have non-Lipschitz rK , in
particular a lack of smoothness at x = 0. If µN

t does not converge
to a singular measure as N ! 1, then the bound (A.4) holds for
rK with a jump discontinuity at x = 0, where an additional O(h)
term arises from pairwise interactions within an O(h) distance.
The examples below are chosen in part to show that O(N�1/2)
convergence holds for rK with jumps at the origin.

5. Examples

We now demonstrate the successful identification of several
particle systems in one and two spatial dimensions as well as
the O(N�1/2) convergence predicted in Theorem 1. In each case
we use Algorithm 4.1 to discover a mean-field equation of the
form (3.1) from discrete-time particle data. For each dataset we
simulate the associated interacting particle system Xt given by
(1.1) using the Euler–Maruyama scheme (initial conditions and
timestep are given in each example). We assess the ability of

18 Note that the opposite convergence holds for the algorithm introduced
in [26]: N-fixed, M ! 1 results in recovery of K .
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Fig. 2. Snapshots at time t = 2�t = 0.06 (left) and t = 100�t = 2 (right) of histograms computed with 128 bins in x and y from 16,384 particles evolving under
(5.2) with ! = 1 (top) and ! = 20 (bottom).

WSINDy to select the correct model using the true positivity
ratio19

TPR(bw) =
TP

TP + FN + FP
(5.1)

where TP is the number of correctly identified nonzero coef-
ficients, FN is the number of coefficients falsely identified as
zero, and FP is the number of coefficients falsely identified as
nonzero [53]. To demonstrate the O(N�1/2) convergence given by
(4.10), for correctly identified models (i.e. TPR(bw) = 1) we com-
pute the relative `2-error of the recovered interaction force rbK ,
local force rbV , and diffusivity b� over C � C and C, respectively,
denoting this by k·k in the plots below. Results are averaged over
100 trials.

For the computational grid C we first compute the sample
standard deviation s of and we choose D to be the rectangular
grid extending 3s from the mean of in each spatial dimension.
We then set C to have 128 points in x and y for d = 2 dimensions,
and 256 points in x for d = 1, noting that these numbers are
fairly arbitrary, and used to show that the grid need not be too
large. We set the sparsity factors so that log10(�) contains 100
equally spaced points from �4 to 0. More information on the
specifications of each example can be found in Appendix A.1.
(MATLAB code used to generate examples is available at https:
//github.com/MathBioCU/WSINDy_IPS.)

5.1. Two-dimensional local model and homogenization

The first system we examine is a local model (K ?(x, y) = 0)
defined by the local potential V ?(x, y) = �x � y and diffusivity

19 For example, identification of the true model (supp (bw) = supp (w?)) results
in a TPR(bw) = 1, while identification of only half of the correct nonzero terms
and no additional falsely identified terms results in TPR(bw) = 0.5.

� ?(x, y) =
p
2 (1 + 0.95 cos(!x) cos(!y))I2, where I2 is the iden-

tity in R
2. This results in a constant advection, variable diffusivity

mean-field model20

@tµt = �@xµt � @yµt +� [(1 + 0.95 cos(!x) cos(!y)) µt ] . (5.2)

The purpose of this example is three-fold. First, we are interested
in the ability of Algorithm 4.1 to correctly identify a local model
from a library containing both local and nonlocal terms. Next,
we evaluate whether the O(N�1/2) convergence is realized. Lastly,
we investigate whether for large ! the weak-form identifies the
associated homogenized equation (derived in Appendix A.2)

@tµt = �@xµt � @yµt + !�µt , (5.3)

where ! is given by the harmonic mean of diffusivity:

! =

✓Z

D

dxdy
1 + 0.95 cos(x) cos(y)

◆�1

.

For ! 2 {1, 20} we evolve the particles from an initial Gaus-
sian distribution with mean zero and covariance I2 and record
particle positions for 100 timesteps with �t = 0.02 (subsampled
from a simulation with timestep 10�4). We use a rectangular
domain D of approximate sidelength 10 and compute histograms
with 128 bins in x and y for a spatial resolution of �x ⇡ 0.078
(see Fig. 2 for solution snapshots), over which ! ⇡ 0.62. For
! = 1 we compare recovered equations with the full model
(5.2), while for ! = 20 we compare with (5.3), for comparison
computing ! over each domain D using MATLAB’s integral2.
Fig. 3 shows that as the particle number increases, we do in fact
recover the desired equations, with TPR(bw) approaching one as
N increases. For ! = 1 we observe O(N�1/2) convergence of the
local potential bV and the diffusivity b� . For ! = 20, we observe

20 Since the model is local, (5.2) is the Fokker–Planck equation for the
distribution of each particle, rather than only in the limit of infinite particles.
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Fig. 3. Convergence of b� (left) and rbV (middle), recall k·k denotes the `2 norm, for (5.2) with ! 2 {1, 20}, as well as TPR(bw) (right). For ! = 1, results are compared
to the exact model (5.2), while for ! = 20 results are compared to the homogenized equation (5.3).

Fig. 4. Histograms computed with 256 bins width h = 0.0234 from 8000 particles in 1D evolving under K ? = KQANR(x) (5.4). Top left to top right: � ?(x) = 0,
� ?(x) =

p
2(0.1), � ?(x) =

p
2(0.1)|x � 2|. Bottom: deterministic particles with i.i.d. Gaussian noise added to particle positions with resulting noise ratios (left to

right) ✏ = 0.0316, 0.1, 0.316.

approximate O(N�1/2) convergence of bV , and b� converging to
within 2% of

p
2!, the homogenized diffusivity (higher accuracy

can hardly be expected for ! = 20 since (5.3) is itself an
approximation in the limit of infinite !).

5.2. One-dimensional nonlocal model

We simulate the evolution of particle systems under the
quadratic attraction/Newtonian repulsion potential

KQANR(x) =
1
2
x2 � |x| (5.4)

with no external potential (V = 0). The �|x| portion of KQANR,
leading to a discontinuity in rK , is the one-dimensional free-
space Green’s function for ��. For d � 1, when replaced by the
corresponding Green’s function in d dimensions, the distribution
of particles evolves under KQANR into the characteristic of the
unit ball in Rd, which has implications for design and control
of autonomous systems [54]. We compare three diffusivity pro-
files, � (x) = 0 corresponding to zero intrinsic noise, � (x) =
p
2(0.1) leading to constant-diffusivity intrinsic noise, and � (x) =

p
2(0.1)|x � 2| leading to variable-diffusivity intrinsic noise. With

zero intrinsic noise (� (x) = 0), we examine the effect of extrinsic
noise on recovery, and assume uncertainty in the particle posi-
tions due to measurement noise at each timestep, = +", for
" ⇠ N (0, ✏2 kXtk

2
RMS) i.i.d. and ✏ 2 {0.01, 0.0316, 0.1, 0.316}. In

this way ✏ is the noise ratio, such that k"kF / k kF ⇡ ✏ (computed
with " and stretched into column vectors).

Measurement data consists of 100 timesteps at resolution
�t = 0.01, coarsened from simulations with timestep 0.001.
Initial particle positions are drawn from a mixture of three Gaus-
sians each with standard deviation 0.005. Histograms are con-
structed with 256 bins of width h = 0.0234. Typical histograms
for each noise level are shown in Fig. 4 computed one experiment
with N = 8000 particles.

For the case of extrinsic noise (Fig. 5), we use only one exper-
iment (M = 1) and examine the number of particles N and the
noise ratio ✏. We find that recovery is accurate and reliable for
✏  0.1, yielding correct identification of KQANR with less than
1% relative error in at least 98/100 trials. Increasing N from 500
to 8000 leads to minor improvements in accuracy for ✏  0.1,
but otherwise has little effect, implying that for low to moderate
noise levels the mean-field equations are readily identifiable even
from smaller particle systems. For ✏ = 10�1/2 ⇡ 0.3162 (see
Fig. 4 (bottom right) for an example histogram), we observe
a decrease in TPR(bw) (Fig. 5 middle panel) resulting from the
generic identification of a linear diffusion term ⌫@xxu with ⌫ ⇡

0.05. Using that
p
2⌫ ⇡

p
2(0.05) = ✏, we can identify this as the

best-fit intrinsic noise model. Furthermore, increases in N lead to
reliable identification of the drift term, as measured by TPR(bwdrift )
(rightmost panel Fig. 5) which is the restriction of TPR to drift
terms LK and LV .

11
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Fig. 5. Recovery of (3.1) in one spatial dimension for K ? = KQANR and � ? = 0 under different levels of observational noise ✏. Left: relative error in learned interaction
kernel bK . Middle: true positivity ratio for full model (3.1). Right: true positivity ratio for drift term.

Fig. 6. Recovery of (3.1) in one spatial dimension for K ? = KQANR and � ? =
p
2(0.1).

Fig. 7. Recovery of (3.1) in one spatial dimension for K ? = KQANR and � ? =
p
2(0.1)|x � 2|.

For constant diffusivity � (x) =
p
2(0.1) (Fig. 6), the full model

is recovered with less than 3% errors in K̂ and �̂ in at least 98/100
trials when the total particle count NM is at least 8000, and yields
errors less than 1% for NM � 16,000. The error trends for K̂ and
�̂ in this case both strongly agree with the predicted O(N�1/2)
rate. For non-constant diffusivity � (x) =

p
2(0.1)|x � 2| (Fig. 7),

we also observe robust recovery (TPR(bw) � 0.95) for NM � 8000
with error trends close to O(N�1/2), although the accuracy in K̂
and �̂ is diminished due to the strong order �t1/2 convergence
of Euler–Maruyama applied to diffusivities � that are unbounded
in x [55].

5.3. Two-dimensional nonlocal model

We now discuss an example of singular interaction in two
spatial dimensions using the logarithmic potential

K (x) =
1
2⇡

log |x| (5.5)

with constant diffusivity � (x) = � 2 {0, 1
p
4⇡

}. This exam-
ple corresponds to the parabolic–elliptic Keller–Segel model of
chemotaxis, where �c :=

1
p
4⇡

is the critical diffusivity such that
� > �c leads diffusion-dominated spreading of particles through-
out the domain (vanishing particle density at every point in R2)
and � < �c leads to aggregation-dominated concentration of the
particle density to the dirac-delta located at the center of mass

of the initial particle density [44,56]. For � = 0 we examine the
affect of additive i.i.d. measurement noise " ⇠ N (0, ✏2 kXtk

2
RMS)

for ✏ 2 {0.01, 0.0316, 0.1, 0.316, 1}.
We simulate the particle system with a cutoff potential

K�(x) =

8
>><

>>:

1
2⇡

✓
log(�) � 1 +

|x|
�

◆
, |x| < �

1
2⇡

log |x|, |x| � �

(5.6)

with � = 0.01, so that K� is Lipschitz and rK� has a jump
discontinuity at the origin. Initial particle positions are uniformly
distributed on a disk of radius 2 and the particle position data
consists of 81 timepoints recorded at a resolution �t = 0.1,
coarsened from 0.0025. Histograms are created with 128 ⇥ 128
bins in x and y of sidelength h = 0.0469 (see Fig. 8 for histogram
snapshots over time). We examine M = 20, . . . , 26 experiments
with N = 2000 or N = 4000 particles.

In Fig. 9 we observe a similar trend in the � = 0 case as
in the 1D nonlocal example, namely that recovery for ✏  0.1
is robust with low errors in bK (on the order of 0.0032), only in
this case the full model is robustly recovered up to ✏ = 0.316.
At ✏ = 1, with N = 4000 the method frequently identifies a
diffusion term ⌫�u with ⌫ ⇡ 0.5 = ✏2/2, and for N = 2000 the
method occasionally identifies the backwards diffusion equation
@tµt = �↵�µt , ↵ > 0. This is easily prevented by enforcing
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Fig. 8. Histograms created from 4000 particles evolving under logarithmic attraction (Eq. (5.5)) with varying noise levels at times (left to right) t = 4, t = 8, and
t = 12. Top: ✏ = 0.316, � = 0 (extrinsic only). Bottom: ✏ = 0, � = (4⇡ )�1/2 ⇡ 0.28 (intrinsic only).

Fig. 9. Recovery of (3.1) in two spatial dimensions with K ? given by (5.5) from deterministic particles (� ? = 0) with extrinsic noise ✏.

Fig. 10. Recovery of (3.1) in two spatial dimensions with K ? given by (5.5) and � ? =
1

p
4⇡

.

positivity of � , however we leave this and other constraints as
an extension for future work.

With diffusivity � =
1

p
4⇡

, we obtain TPR(bw) approximately
greater than 0.95 for NM � 16, 000 (Fig. 10, right), with an error
trend inbK following an O(N�1/2) rate, and a trend inb� of roughly
O(N�2/3). Since convergence in M for any fixed N is not covered
by the theorem above, this shows that combining multiple ex-
periments may yield similar accuracy trends for moderately-sized
particle systems.

6. Discussion

We have developed a weak-form method for sparse identifica-
tion of governing equations for interacting particle systems using
the formalism of mean-field equations. In particular, we have
investigated two lines of inquiry, (1) is the mean-field setting ap-
plicable for inference from medium-size batches of particles? And
(2) can a low-cost, low-regularity density approximation such
as a histogram be used to enforce weak-form agreement with

13
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the mean-field PDE? We have demonstrated on several examples
that the answer is yes to both questions, despite the fact that
the mean-field equations are only valid in the limit of infinitely
many particles (N ! 1). This framework is suitable for systems
of several thousand particles in one and two spatial dimensions,
and we have proved convergence in N for the associated least-
squares problem using simple histograms as approximate particle
densities. In addition, the sparse regression approach allows one
to identify the full system, including interaction potential K , local
potential V , and diffusivity � .

It was initially unclear whether the mean-field setting could
be utilized in weak form for finite particle batches, hence this can
be seen as a proof of concept for particle systems with N in the
range 103 � 105. With convergence in N and low computational
complexity, our weak-form approach is well-suited as is for much
larger particle systems. In the opposite regime, for small fixed
N , the authors of [26] show that their maximum likelihood-
based method converges as M ! 1 (i.e. in the limit of infinite
experiments). While the same convergence does not hold for
our weak-form method, the results in Section 5 suggest that
in practice, combining M independent experiments each with
N particles improves results. Furthermore, we include evidence
in Appendix A.3 that even for small N , our method correctly
identifies the mean-field model when M is large enough, with
performance similar to that in [26]. We leave a full investigation
of the interplay between M and N to future work.

In the operable regime of N > 103, there is potential for
improvements and extensions in many directions. On the subject
of density estimation, histograms are highly efficient, yet they
lead to piecewise-constant approximations of µt and hence O(h)
errors. Choosing a density kernel G to achieve high-accuracy
quadrature without sacrificing the O(N) runtime of histogram
computation seems prudent, although one must be cautious
about making assumptions on the smoothness of mean-field
distribution µt . For instance, in the 1D nonlocal example 5.2,
discontinuities develop in µt for the case � = 0, hence a
histogram approximation is more appropriate than using e.g. a
Gaussian kernel.

The computational grid C, quadrature method h·, ·ih,�t , and
reference test function  may also be optimized further or
adapted to specific problems. The approach chosen here of C

equally-spaced and separable piecewise-polynomial  , along
with integration using the trapezoidal quadrature, has several
advantages, including high accuracy and fast computation using
convolutions. However, this may need adjustment for higher
dimensions. It might be advantageous to adapt C to the data

, however this may prevent one from evaluating (G, b) using
the FFT if a non-uniform grid results, hence increases the overall
computational complexity. One could also use multiple reference
test functions  . The possibilities of varying the test functions
(within the smoothness requirements of the library L) have been
largely unexplored in weak-form identification methods.

Several theoretical questions remain unanswered, namely
model recovery statistics for finite N . As a consequence of The-
orem 1, as well as convergence results on sequential threshold-
ing [47], we have that G being full-rank and L containing the true
model is sufficient to guarantee convergence bw ! w

? as N ! 1

at the rate O(N�1/2). Noise, whether extrinsic or intrinsic, for
finite N may result in identification of an incorrect model when
G is poorly-conditioned. The effect is more severe if the true
model has a small coefficient, which requires a small threshold �,
which correspondingly may lead to a non-sparse solution. These
are sensitivities of any sparse regression algorithm (see e.g. [57])
and accounting for the effect of noise and poor conditioning is an
active area of research in equation discovery.

We also note that several researchers have focused on the
uniqueness in kernel identifiability [34,58]. This issue does not

directly apply to our scenario21 of identifying the triple (K , V , � ).
Moreover, in the cases we considered, we do not see any identi-
fiability issues (e.g. rank deficiency) even in the high noise case
with low particle number. Quantifying the transition to identifi-
ability as N ! 1 as a function of the condition number (G) is
an important subject for future work.

For extensions, the example system (5.2) and resulting ho-
mogenization motivates further study of effective equations for
systems with complex microstructure. In other fields this is de-
scribed as coarse-graining. A related line of study is inference of
2nd-order particle systems, as explored in [32], which often lead
to an infinite hierarchy of mean-field equations. Our weak-form
approach may provide a principled method for truncated and
closing such hierarchies using particle data. Another extension
is to enforce convex constraints in the regression problem, such
as lower bounds on diffusivity, or K with long-range attraction
depending on the distribution ⇢rr 2 P([0, 1)) of pairwise dis-
tances (see [26] for further use of ⇢rr ). Finally, the framework
we have introduced can easily be used to find nonlocal mod-
els from continuous solution data (e.g. given U instead of ),
whereby questions of nonlocal representations of models can be
investigated.

Lastly, we note that MATLAB code is available at https://
github.com/MathBioCU/WSINDy_IPS.
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Appendix

A.1. Specifications for examples

In Tables 2–5 we include hyperparameter specifications and
resulting attributes of Algorithm 4.1 applied to the three exam-
ples in Section 5. In particular, we report the typical walltime
in Table 5, showing that on each example Algorithm 4.1 learns
the mean-field equation from a dataset with ⇠64,000 particles in
under 10 s.

21 E.g. due to multiple representations of the drift combining both nonlocal
and local terms — see Section 4.1.4
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Table 5

Discretization parameters and general information for examples. The number
of nonzeros in the true weight vector kw?k0 is given for each parameter set
examined. Namely, for the local 2D example, ! = 1 results in a 4-term
model, while the homogenized case ! = 20 results in a three-term model.
For the nonlocal 1D example, � 2 {0,

p
2(0.1),

p
2(0.1)|x � 2|} result in 2-

term, 3-term, and 5-term models, respectively, and for the nonlocal 2D example
� 2 {0, (4⇡ )�1} results in 1-term and 2-term models. The norm

��G†
��
1, condition

number 2(G) and walltime are listed for representative samples with 64,000
total particles.
Example (mx,mt ) (px, pt ) (sx, st ) size(U) (h,�t)
Local 2D (31,16) (5,3) (10,5) 128 ⇥ 128 ⇥ 101 (0.078, 0.02)
Nonlocal 1D (29,8) (5,3) (5,1) 256 ⇥ 101 (0.023, 0.01)
Nonlocal 2D (25,8) (5,3) (8,1) 128 ⇥ 128 ⇥ 81 (0.047, 0.1)

Example kw?k0 size(G) kG†k1 2(G) Walltime

Local 2D {4, 3} 686 ⇥ 85 2.0 ⇥ 103 3.0 ⇥ 107 9.2 s
Nonlocal 1D {2, 3, 5} 3400 ⇥ 24 1.3 ⇥ 105 8.7 ⇥ 108 0.7 s
Nonlocal 2D {1, 2} 6500 ⇥ 59 1.1 ⇥ 104 6.4 ⇥ 106 8.5 s

A.2. Derivation of homogenized equation (5.3)

We briefly provide a derivation of the homogenized equa-
tion (5.3) in the static case. Let ⌦ 2 Rd be an open bounded
domain with smooth boundary and Td be the d-dimensional
torus. Let a(x, y) : ⌦ ⇥ Td ! R be continuous and uniformly
bounded below,

a(x, y) � ↵ > 0, (x, y) 2 ⌦ ⇥ Td.

Then for any f 2 L2(⌦), the equation

�� (a(x, x/✏)u✏(x)) = f (x), u✏
��
@⌦ = 0

has a unique weak solution u✏ 2 L2(⌦) given by

u✏(x) =
(Gf )(x)
a(x, x/✏)

,

where G is the Green’s function for (��)�1 with homogeneous
Dirichlet boundary conditions on @⌦ . By the coercivity of a we
have that ku✏kL2(⌦) is uniformly bounded in ✏. By the lemma
in [59, Section 2.4], up to a subsequence {✏j}j2N, there exists a
function u(x, y) periodic in its second variable such that for any
continuous function �(x, x/✏), we have

lim
✏!0

Z
u✏(x)�(x, x/✏)dx =

ZZ
u(x, y)�(x, y)dydx.

Setting �(x, y) = �(x), we see that on the same subsequence,
u✏ *

R
u(x, y)dy. Applying the same lemma to the constant series

u✏ = 1 and letting �(x, x/✏) = �(x)a�1(x, x/✏), we see that (up to
possibly a second subsequence),

a�1(x, x/✏)*
Z

dy
a(x, y)

.

Letting a⇤(x) :=

⇣R dy
a(x,y)

⌘�1
and putting together the previous

limits, we see that

u✏(x)* u⇤(x) :=

Z
u(x, y)dy = (Gf )(x)

Z
dy

a(x, y)
=:

(Gf )(x)
a⇤(x)

,

and hence u⇤ solves the homogenized equation

�
�
a⇤u⇤

�
= f .

A.3. Recovery for small N and large M

The related maximum-likelihood approach [26] is shown to be
suitable for small N and large M , hence a natural line of inquiry is
the performance of Algorithm 4.1 in this regime. Theorem 1 does
not apply to this regime, and in fact convergence of the algorithm

is not expected: letting UM,N
t =

1
M

PM
m=1 U

(m),N
t where U (m),N

t is
the approximate density constructed from experiment m with
N particles, we have the weak-measure convergence UM,N

t !

⇢
(1),N
t as M ! 1, where ⇢(1),N

t is the 1-particle marginal of
the distribution of Xt in RNd. Unlike the mean-field distribution
µt , ⇢

(1),N
t is not a weak solution to the mean-field Fokker–Planck

equation (3.1), instead we have

@t⇢
(1),N
t =

N � 1
N

r ·

Z

Rd
rK (x � y)⇢(2),N

t (x, y)dy + r ·

⇣
rV⇢(1),N

t

⌘

+
1
2

dX

i,j=1

@xixj (��
T⇢

(1),N
t ),

holding weakly, which depends on the 2-particle marginal ⇢(2),N
t

[35]. Nevertheless, using the 1D nonlocal example in Section 5.2
with � =

p
2(0.1) ⇡ 0.45, we observe in Fig. 11 (right panel)

that our weak-form algorithm correctly identifies the model in
> 96% of trials with just N = 10 particles per experiment
when M 2 [210, 212], and that error in K (left panel) follows
a O(M�1/2) trend. At M = 4096 ⇡ 103.61 experiments the
error22 in K is less than 1% and the runtime is approximately
0.9 s. The lack of convergence in M is reflected in the diffusivity
(middle panel of Fig. 11), where the error appears to plateau
at around 1.7% for h ⇡ 0.0468 and at 3.5% for h ⇡ 0.0234.
The lower resolution (larger binwidth h) appears to yield slightly
better results, possibly indicating that larger h produces a coarse-
graining effect such that ⇢(2),N ⇡ ⇢(1),N ⌦ ⇢(1),N over larger
distances, although this effect deserves more thorough study in
future work.

A.4. Technical lemmas

We now prove Lemmas 2–4 under Assumption H. First, some
consequences of Assumption H. (I) The ⌘-Hölder continuity of
sample paths (H.1) implies that for each t 2 [0, T ],
Z

Rd
|x|pdµN

t =
1
N

NX

i=1

|X (i)
t |

p


2p

N

NX

i=1

|X (i)
0 |

p
+ C⌘2ptp⌘.

Together with the pth moment bound on µ0 (H.2), this implies

E

sup
tT

Z

Rd
|x|pdµN

t

�
 2p(Mp + C⌘Tp⌘), (A.1)

independent of N . (II) The growth bounds on rK ?, rV ?, and � ?
(H.3)–(H.4) imply that for some C > 0,

|rK ?(x)| + |rV ?(x)| +
��� ?(x)(� ?(x))T

��
F  C(1 + |x|p), (A.2)

where k·kF is the Frobenius norm.

Proof of Lemma 2. Applying Itô’s formula to the process 1
N

PN
i=1

 (X (i), t), we get that

L (µN , , h·, ·i) =
1
N

NX

i=1

Z T

0
r (X (i)

t , t)T� ?(X (i)
t )dB(i)

t .

Note that each integral on the right-hand side is a local martin-
gale, since (A.2) and (H.5) ensure boundedness of r (x, t)T� ?(x)
over any compact set in Rd, hence has mean zero. By indepen-
dence of the Brownian motions B(i)

t , exchangeability of X (i)
t , the

moment bound (A.1), and the growth bounds on � (H.4), the Itô

22 For comparison, in [26] Fig. 4 the error in recovering K using the maximum-
likelihood approach on an opinion dynamics example for M = 103.6, N = 10,
and � = 0.5 is approximately 100 ⇥ 10�1.2% = 6.3%.
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Fig. 11. Recovery of (3.1) in one spatial dimension for K ? = KQANR and � ? =
p
2(0.1) with only N = 10 particles per experiment.

isometry gives us

E
⇥
L (µN , , h·, ·i)2

⇤

=
1
N

Z T

0
EX⇠⇢

(1)
t

h��r (X, t)T� ?(X)
��2
i
dt

=
1
N

Z T

0
E
Z

Rd

��r (x, t)T� ?(x)
��2 dµN

t (x)
�
dt


C 0

N
kr k

2
2,1

Z T

0
E

1 +

Z

Rd
|x|pdµN

t (x)
�
dt

 CN�1

where C depends on Mp, Cp, T , and  . The result follows from
Jensen’s inequality.23

Proof of Lemma 3. Using the notation f C from Lemma 1 to
denote piecewise constant approximation of a function f over the
domain D using the grid C, we have

L (U, , h·, ·ih) � L (µN , , h·, ·i)

= �

⇣⌦
(r · ((rK ?)C ⇤ µN ))C, µN ↵

�
⌦
r · rK ? ⇤ µN , µN ↵

⌘

| {z }
Einteract

+
⌦
@t 

C
� @t , µN ↵

�
⌦
(r · rV ?)C � r · rV ?, µN ↵

+
1
2

D
Tr

�
r

2 �?(� ?)T
�C

� Tr
�
r

2 �?(� ?)T
�
, µN

E

= Einteract + Elinear.

The right-hand side includes an interaction error Einteract followed
by a sum Elinear of terms that are linear in the difference between
a locally Lipschitz function and its piecewise constant approxima-
tion. Hence, we can bound Elinear using smoothness of  (H.5), the
moment assumptions on µN

t (H.2), and the growth assumptions
on V and � (H.3)–(H.4). Specifically, for x 2 Bk with center ck, the
growth assumptions imply
|r (x) · rV ?(x) � r (ck) · rV ?(ck)|

 Ch
⇣
(kr k2,1 + Lip(r ))(1 + |x|p)

⌘

|Tr
�
r

2 (x)� ?(x)(� ?(x))T
�
� Tr

�
r

2 (ck)� ?(ck)(� ?(ck))T
�
|

 C 0h
⇣
(
��r

2 
��
F ,1

+ Lip(r2 ))(1 + |x|p)
⌘

for C and C 0 depending on p, d, and Cp, hence

|Elinear|  C 00 sup
|↵|2

Lip(@↵ )
✓
T +

Z T

0

Z

Rd
|x|pdµN

t dt
◆
h. (A.3)

Similarly, for the interaction error we use that for x 2 Bk and
y 2 Bj with centers ck and cj, we have
��r (ck) · rK ?(ck � cj) � r (x) · rK ?(x � y)

��

23 kf kp,q for vector-valued functions f : Rd ! Rd denotes the Lq norm over x
of the `p norm of f (x). Also recall that ⇢(1)

t is the X (1)
t -marginal of the process

Xt 2 RdN .

 |r (ck)|
��rK ?(ck � cj) � rK ?(x � y)

��

+ |r (ck) � r (x)|
��rK ?(x � y)

��

 C 000h
�
kr k2,1 + Lip(r )

�
(1 + |x � y|p)

with C 000 also depending on p, d, and Cp. From this we have

|Einteract|  C 0000

✓
T +

Z T

0

Z

Rd

Z

Rd
|x � y|pdµN

t (y)dµ
N
t (x)dt

◆
h.

(A.4)

The result follows from taking expectation and using the moment
bound (A.1), where the final constant C depends on p, d, Cp,Mp, T ,
⌘, and  .

Proof of Lemma 4. Again rewriting the spatial trapezoidal-rule
integration in the form

R
Rd '

C(x)dµN
t , we see that

L (U, , h·, ·ih) � L (U, , h·, ·ih,�t ) (A.5)

reduces to four terms of the form

A(') :=
1
N

NX

i=1

✓Z T

0
'C(X (i)

t )dt

�
�t
2

LX

`=1

⇣
'C(X (i)

t`+1 ) + 'C(X (i)
t` )

⌘!
,

for ' 2
�
@t , r · rV ?, Tr(r2 �?(� ?)T ), r · rK ? ⇤ µN

t
 
. Sim-

ilarly to the bounds derived for |'(x) � 'C(x)| in Lemma 3, the
growth bounds on V ?, K ? and � ? imply in general that

|'(x) � '(y)|  C |x � y|
�
1 + max{|x|, |y|}p

�
.

Rewriting the summands in A('),
Z T

0
'C(X (i)

t )dt �
�t
2

LX

`=1

⇣
'C(X (i)

t`+1 ) + 'C(X (i)
t` )

⌘

=

LX

`=1

Z t`+1

t`

✓
t � t`
�t

◆
('C(X (i)

t ) � 'C(X (i)
t`+1 ))dt

| {z }
I1

+

Z t`+1

t`

✓
t`+1 � t
�t

◆
('C(X (i)

t ) � 'C(X (i)
t` ))dt

| {z }
I2

,

and using

|'C(x) � 'C(y)|  |'(x) � '(ck)| + |'(x) � '(y)| + |'(y) � '(c`)|
 C(2h + |x � y|)(1 + max{|x|, |y|}p)

where x 2 Bk and y 2 B`, we see that for I1,
����

Z t`+1

t`

✓
t � t`
�t

◆
('C(X (i)

t ) � 'C(X (i)
t`+1 ))dt

����
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

Z t`+1

t`

✓
t � t`
�t

◆
C(2h+|X (i)

t � X (i)
t`+1 |)(1+max{|X (i)

t |, |X (i)
t`+1 |}

p)dt



Z t`+1

t`

✓
t � t`
�t

◆
C 0(2h+|t`+1 � t|⌘|)(1 + max{|X (i)

t |, |X (i)
t`+1 |}

p)dt.

Taking expectation on both sides and using the moment bound
(A.1), we get

E
����

Z t`+1

t`

✓
t � t`
�t

◆
('C(X (i)

t ) � 'C(X (i)
t`+1 ))dt

����

�

 C
�
�th +�t1+⌘

�
.

We get the same bound for I2. Summing over `, and taking the
average in i, we then get

E [|A(')|]  C(h +�t⌘),

which implies the desired bound on the difference (A.5).
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