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a b s t r a c t

This work concerns the propagation of flexural waves through one-dimensional periodic
structures embedded in thin elastic plates. We show that the out-of-plane displacement
of the plate only contains the Helmholtz wave component and the modified Helmholtz
wave component is not supported when the Navier boundary condition is imposed. An
adaptive finite element method with transparent boundary condition is developed for
solving the associated boundary value problem. Numerical results show that the method
is effective to solve the diffraction grating problem of the biharmonic wave equation.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diffraction gratings are optical elements with periodic structures. They have many important applications in micro-
optics. An introduction to diffraction grating problems can be found in [1]. Driven by practical applications and scientific
developments, this field has undergone a tremendous growth in the last several decades. We refer to [2] for a comprehen-
sive account of mathematical and numerical studies for Maxwell’s equations in periodic structures. Recently, scattering
problems for biharmonic waves have played an important role in thin plate elasticity, such as the control of destructive
surface waves [3,4] and the construction of ultrabroadband elastic cloaking devices [5].

Analogous to photonic and phononic crystals, periodic structures in thin elastic plates are called platonic crystals
(PlaCs). Different from periodic material variations of the plate, the PlaCs can be easily fabricated by using regularly
arranged arrays of cavities with any shape in the plate [6]. At the boundary of these cavities, various boundary conditions
can be imposed to model different physical behavior, such as the clamped, hinged, simply supported, or free boundary
condition [7]. Instead of the second-order Helmholtz equation or Maxwell’s equations, the wave propagation through
these structures is modeled by the fourth-order biharmonic wave equation. Although the scattering problems have been
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Fig. 1. Schematic of the problem geometry.

well investigated for acoustic and electromagnetic waves in periodic structures, they are much less studied for biharmonic
waves and most of the available results are limited to simple and smooth geometries [8].

This paper concerns the propagation of flexural waves through one-dimensional periodic and polygonal structures
embedded in thin elastic plates. In general, flexural waves contain both the Helmholtz and modified Helmholtz wave
components. However, we show that only the Helmholtz wave component is sustained and the modified Helmholtz wave
component is not supported when the Navier boundary condition is imposed. The Navier boundary condition arises from
the hinged or Steklov boundary condition for polygonal domains [9].

Computationally, there are two challenges to solve the diffraction grating problems: the physical domains are
unbounded and solutions may have local singularities. To handle these issues, effective methods were developed by
combining the adaptive finite element method (FEM) and the perfect matched layer (PML) technique to solve the two- and
three-dimensional problems [10–12]. Recently, an alternative approach, combining the adaptive FEM with the transparent
or Dirichlet-to-Neumann (DtN) boundary condition, has been proposed to solve the scattering problems in different
scenarios for acoustic, elastic, and electromagnetic waves [13–17]. This approach does not require an extra layer of
artificial domain, as needed in the PML method. Based on a posteriori error estimates, the adaptive FEM algorithm was
developed to refine the elements and to determine the truncation number N of the Fourier series for the DtN operator.
In [18], a hybrid adaptive FEM was developed to solve the two-dimensional diffraction grating problem by combining the
PML technique and the DtN operator truncation. In this work, we apply the adaptive finite element DtN method proposed
in [13] to solve the associated boundary value problem for the biharmonic wave equation in one-dimensional periodic
structures.

The paper is organized as follows. The model problem is introduced in Section 2. Section 3 addresses the transparent
boundary condition. Section 4 discusses the grating efficiencies and the conservation of energy. The well-posedness of the
associated boundary value problem is established in Section 5. Sections 6 and 7 present the adaptive FEM and numerical
examples to illustrate the effectiveness of the proposed method, respectively.

2. Problem formulation

Consider a one-dimensional periodic array of rectangular holes in an infinite thin plate, as shown on the left of Fig. 1.
The holes are assumed to be aligned with the x1-axis with period Λ. Let the incident wave be a time-harmonic plane
wave

uinc(x) = ei(αx1−βx2), x ∈ R
2, (2.1)

where α = κ sin θ, β = κ cos θ with θ ∈ (− π
2
, π

2
) and κ > 0 being the incident angle and the wavenumber, respectively.

The problem may be restricted into a single periodic cell, as seen on the right of Fig. 1. Denote by Ωc the hole with
boundary Γc . Let R be a larger rectangular domain containing Ωc . Without loss of generality, let R = {x ∈ R

2 : 0 <

x1 < Λ, h2 < x2 < h1}, where h1, h2 are constants. Define Γj = {x ∈ R
2 : 0 < x1 < Λ, x2 = hj}, j = 1, 2,

Γl = {x ∈ R
2 : x1 = 0, h2 < x2 < h1}, and Γr = {x ∈ R

2 : x1 = Λ, h2 < x2 < h1}. Let Ω = R \ Ωc . Denote by
Ω1 = {x ∈ R

2 : 0 < x1 < Λ, x2 > h1} and Ω2 = {x ∈ R
2 : 0 < x1 < Λ, x2 < h2} the unbounded domains above Γ1

and below Γ2, respectively. Let Γ ′
j = {x ∈ R

2 : 0 < x1 < Λ, x2 = h′
j}, j = 1, 2, where h′

1, h
′
2 are constants satisfying

h′
1 < h1, h

′
2 > h2 such that the line segments Γ ′

1 and Γ ′
2 are above and below Ωc , respectively.

The out-of-plane displacement of the plate u, also called the total field, satisfies the biharmonic wave equation

∆2u − κ4u = 0 in Ω. (2.2)

The Navier boundary condition takes the form

u = ∆u = 0 on Γc . (2.3)
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Due to the periodic structure, a solution u of (2.2)–(2.3) is quasi-periodic, i.e., u(x1, x2)e
−iαx1 is a periodic function of x1

with period Λ, which gives the quasi-periodic boundary condition on Γl and Γr : u(0, x2) = u(Λ, x2)e
−iαΛ. In addition, a

radiation condition is required to ensure the well-posedness of the problem: the total wave field u consists of bounded
outgoing waves in Ω1 and Ω2 plus the incident wave uinc in Ω1.

3. Transparent boundary condition

In this section, we introduce the transparent boundary condition on Γj, j = 1, 2, which helps to reformulate the
boundary value problem (2.2)–(2.3) from the unbounded domain into the bounded domain Ω .

Noting (2.1) and (2.2), we may verify that the diffracted field v = u − uinc satisfies

(∆2 − κ4)v = (∆ − κ2)(∆ + κ2)v = 0 in Ω1.

Let

vM = 1

2κ2

(

∆v + κ2v
)

, vH = − 1

2κ2

(

∆v − κ2v
)

.

It can be verified that the diffracted field v can be decomposed to v = vH +vM. Moreover, vH and vM satisfy the following
Helmholtz and modified Helmholtz equations, respectively:

∆vH + κ2vH = 0, ∆vM − κ2vM = 0. (3.1)

Hence, vH and vM are called the Helmholtz and modified Helmholtz wave components of v, respectively.
Using the quasi-periodicity of vH, vM and the radiation condition, we may solve (3.1) analytically and obtain the

Rayleigh expansion for the diffracted field v in Ω1:

v(x) = vH(x) + vM(x) =
∑

n∈Z
vH
n (h1)e

iαnx1+iβn(x2−h1) + vM
n (h1)e

iαnx1−γn(x2−h1), (3.2)

where vH
n (h1) and vM

n (h1) are the Fourier coefficients of vH and vM on Γ1, respectively, αn = α + n(2π/Λ), and

γn =
√

κ2 + α2
n, βn =

{
√

κ2 − α2
n for |αn| < κ,

i
√

α2
n − κ2 for |αn| > κ.

The Rayleigh expansion (3.2) shows that vH consists of both the propagating and evanescent plane waves, while vM is
made of only the evanescent plane waves. Taking the Laplacian on both sides of (3.2) and using (3.1), we get

∆v = ∆vH + ∆vM = κ2(−vH + vM)

=
∑

n∈Z
−κ2vH

n (h1)e
iαnx1+iβn(x2−h1) + κ2vM

n (h1)e
iαnx1−γn(x2−h1). (3.3)

Assume that v and ∆v are given on Γ1. Due to the quasi-periodicity, they have the Fourier expansions

v(x1, h1) =
∑

n∈Z
vn(h1)e

iαnx1 , ∆v(x1, h1) =
∑

n∈Z
(∆v)n(h1)e

iαnx1 . (3.4)

Evaluating (3.2)–(3.3) on Γ1 and using (3.4), we have from a straightforward calculation that

vH
n (h1) = 1

2

(

vn(h1) − 1

κ2
(∆v)n(h1)

)

, vM
n (h1) = 1

2

(

vn(h1) + 1

κ2
(∆v)n(h1)

)

.

Substituting vH
n (h1), v

M
n (h1) into the normal derivatives of (3.2) and (3.3) on Γ1 leads to

∂ν1v(x1, h1) =
∑

n∈Z

(

1

2
(iβn − γn)vn(h1) − 1

2κ2
(iβn + γn)(∆v)n(h1)

)

eiαnx1 ,

∂ν1∆v(x1, h1) =
∑

n∈Z

(

−κ2

2
(iβn + γn)vn(h1) + 1

2
(iβn − γn)(∆v)n(h1)

)

eiαnx1 ,

(3.5)

where ν1 = (0, 1) is the unit outward normal vector to Γ1.
Define two Dirichlet-to-Neumann (DtN) operators

(T1f )(x1) =
∑

n∈Z
iβnfne

iαnx1 , (T2f )(x1) =
∑

n∈Z
γnfne

iαnx1 , (3.6)

where fn are the Fourier coefficients of f . By (3.5), the following transparent boundary condition (TBC) can be imposed
for the total field u on Γ1:

∂ν1u = 1

2
(T1 − T2)u − 1

2κ2
(T1 + T2)∆u + g1, ∂ν1∆u = −κ2

2
(T1 + T2)u + 1

2
(T1 − T2)∆u + g2, (3.7)

where g1(x1) = −2iβei(αx1−βh1) and g2(x1) = 2iβκ2ei(αx1−βh1).

3
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Similarly, we may deduce the Rayleigh expansion for the total field u in Ω2:

u(x) = uH(x) + uM(x) =
∑

n∈Z
uH
n (h2)e

iαnx1−iβn(x2−h2) + uM
n (h2)e

iαnx1+γn(x2−h2). (3.8)

The TBC for the total field u on Γ2 is given by

∂ν2u = 1

2
(T1 − T2)u − 1

2κ2
(T1 + T2)∆u, ∂ν2∆u = −κ2

2
(T1 + T2)u + 1

2
(T1 − T2)∆u, (3.9)

where ν2 = (0, −1) is the unit outward normal vector to Γ2.

4. Grating efficiencies

In this section, we discuss the grating efficiencies and show a simple but important result on the conservation of

energy. It states that the incident energy is equal to the total energy of the diffracted and transmitted wave components.

Lemma 4.1. Assume that u is a quasi-periodic function satisfying
{

∆2u − κ4u = 0 in Ω,

u = ∆u = 0 on Γc .
(4.1)

Then

ℑ
∫

Γ1∪Γ2

(ū∂ν∆u − ∆u∂νu)ds = 0. (4.2)

Proof. Since κ is a real number, the complex conjugate of u also satisfies (4.1). Using the integral identity
∫

Ω

(v∆2u − u∆2v)dx =
∮

∂Ω

(v∂ν∆u − ∆u∂νv)ds −
∮

∂Ω

(u∂ν∆v − ∆v∂νu)ds,

we take v = ū and obtain
∮

∂Ω

(ū∂ν∆u − ∆u∂νu)ds −
∮

∂Ω

(u∂ν∆u − ∆ū∂νu)ds = 0,

where ∂Ω = Γc ∪ Γl ∪ Γr ∪ Γ1 ∪ Γ2.

It follows from the Navier boundary condition that
∫

Γc

(ū∂ν∆u − ∆u∂νu)ds −
∫

Γc

(u∂ν∆u − ∆ū∂νu)ds = 0.

Since u is a quasi-periodic function, ∆u and ∂x1u are also quasi-periodic functions, which imply
∫

Γl∪Γr

(ū∂ν∆u − ∆u∂νu)ds −
∫

Γl∪Γr

(u∂ν∆u − ∆ū∂νu)ds = 0.

The proof is completed by combining the above equations. □

It follows from the biharmonic wave Eq. (2.2) that u admits the decomposition

u = uH + uM in Ωj, (4.3)

where

uH = uinc + vH, uM = vM in Ω1.

Moreover, uH and uM satisfy the Helmholtz and modified Helmholtz equations, respectively. Substituting (4.3) into (4.2),

we obtain from a simple calculation that

ℑ
∫

Γ1∪Γ2

(

uH∂νuH − uM∂νuM
)

ds = 0. (4.4)

Define U = {n ∈ Z : |αn| < κ}. Let

rn =
(

βn

β

)

|vH
n (h1)|

2
, tn =

(

βn

β

)

|uH
n (h2)|

2
, n ∈ U,

where rn and tn are called the nth order diffracted and transmitted efficiencies, respectively.

4
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Theorem 4.2. Let rn and tn be the nth order diffracted and transmitted efficiencies. Then
∑

n∈U
(rn + tn) = 1.

Proof. By Rayleigh’s expansion (3.2), we have on Γ1 that

uH = uinc + vH = ei(αx1−βh1) +
∑

n∈Z
vH
n (h1)e

iαnx1 ,

∂ν1u
H = ∂x2u

inc + ∂x2v
H = −iβei(αx1−βh1) +

∑

n∈Z
iβnv

H
n (h1)e

iαnx1 ,

uM = vM =
∑

n∈Z
vM
n (h1)e

iαnx1 , ∂ν1u
M = ∂x2v

M = −
∑

n∈Z
γnv

M
n (h1)e

iαnx1 .

Similarly, we get from Rayleigh’s expansion (3.8) on Γ2 that

uH =
∑

n∈Z
uH
n (h2)e

iαnx1 , ∂ν2u
H = −∂x2u

H =
∑

n∈Z
iβnu

H
n (h2)e

iαnx1 ,

uM =
∑

n∈Z
uM
n (h2)e

iαnx1 , ∂ν2u
M = −∂x2u

M = −
∑

n∈Z
γnu

M
n (h2)e

iαnx1 .

Substituting the above expansions into (4.4) and the orthogonality of the exponential functions, we obtain

ℑ
∫

Γ1∪Γ2

(

uH∂νuH − uM∂νuM
)

ds = iβΛ −
∑

n∈U
iβnΛ|vH

n (h1)|
2 −

∑

n∈U
iβnΛ|uH

n (h2)|
2 = 0,

which completes the proof. □

It is clear to note from (4.3) and Theorem 4.2 that the energy comes from the propagating modes of the Helmholtz
wave component and the modified Helmholtz wave component does not carry energy and makes no contribution to the
energy conservation.

5. The well-posedness

This section is to address the well-posedness of the associated boundary value problem. Consider two auxiliary
functions

p = ∆u − κ2u, q = ∆u + κ2u. (5.1)

Clearly, p and q are also quasi-periodic functions. It is easy to note from (2.2) that p and q satisfy the Helmholtz and
modified Helmholtz equations, respectively. Moreover, it is easy to verify

u = 1

2κ2
(q − p), ∆u = 1

2
(q + p), (5.2)

and

p = −2κ2uH, q = 2κ2uM, (5.3)

where uH and uM are the Helmholtz and modified Helmholtz wave components of u, respectively.
It follows from (5.1)–(5.2), the Navier boundary condition (2.3), and the TBCs (3.7) and (3.9) that p and q satisfy the

following boundary value problems:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∆p + κ2p = 0 in Ω,

p = 0 on Γc,

∂ν1p = T1p + g3 on Γ1,

∂ν2p = T1p on Γ2,

(5.4)

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∆q − κ2q = 0 in Ω,

q = 0 on Γc,

∂ν1q = −T2q on Γ1,

∂ν2q = −T2q on Γ2,

(5.5)

where g3 = g2 − κ2g1 = 4iβκ2ei(αx1−βh1).
The well-posedness of (5.4) can be established by following a similar proof of [2, Theorem 3.5]. The details are omitted

for brevity.

5



J. Yue, P. Li, X. Yuan et al. Results in Applied Mathematics 17 (2023) 100350

Theorem 5.1. For all but possibly a discrete set of wavenumbers κ , the boundary value problem (5.4) admits a unique weak
solution p ∈ H1

c,qp(Ω) = {u ∈ H1(Ω) : u(0, x2) = u(Λ, x2)e
−iαΛ and u = 0 on Γc}.

Theorem 5.2. The boundary value problem (5.5) has only a trivial solution, i.e., q = 0.

Proof. Consider the variational formulation of (5.5): find q ∈ H1
c,qp(Ω) such that

∫

Ω

∇q · ∇φdx + κ2

∫

Ω

qφdx +
2
∑

j=1

∫

Γj

(T2q)φds = 0 ∀φ ∈ H1
c,qp(Ω).

The continuity of the DtN operator T2 can be similarly shown by following [2, Lemma 3.3]. Hence it suffices to show that
the sesquilinear form is coercive.

A simple calculation yields

∫

Ω

|∇q|2dx + κ2

∫

Ω

|q|2dx +
2
∑

j=1

∫

Γj

(T2q)qds

= ∥∇q∥2

L2(Ω)
+ κ2∥q∥2

L2(Ω)
+ Λ

2
∑

j=1

∑

n∈Z
(κ2 + α2

n)
1/2|qn|2 ≥ C∥q∥2

H1(Ω)
,

where C is a positive constant. The proof is completed by applying the Lax–Milgram lemma. □

Combining (5.3) and Theorem 5.2, we conclude that the wave field u only contains the Helmholtz wave component
uH and does not sustain the modified Helmholtz wave component uM, which is also consistent with the conservation of
energy discussed in Section 4.

6. The adaptive finite element method

In this section, we briefly present the adaptive finite element DtN method to solve the model problem (2.2)–(2.3). The
detail of the method can be found in [13]. By (5.1)–(5.5) and Theorem 5.2, it suffices to solve the boundary value problem
(5.4).

First the DtN operator defined in (3.6) needs to be truncated to a summation of finitely many terms

(T1,N f )(x1) =
∑

|n|≤N

iβnfne
iαnx1 , (6.1)

where the truncation number N is a positive integer. The variational problem with the truncated DtN operator is to find
pN ∈ H1

c,qp(Ω) such that

bN (pN , v) =
∫

Γ1

g3vds ∀v ∈ H1
c,qp(Ω), (6.2)

where the sesquilinear form bN : H1
c,qp(Ω) × H1

c,qp(Ω) → C is given by

bN (u, v) =
∫

Ω

∇u · ∇vdx − κ2

∫

Ω

uvdx −
2
∑

j=1

∫

Γj

(T1,Nu)vds =
∫

Γ1

g3vds.

Denote by Mh a regular triangulation of the domain Ω , where h stands for the maximum diameter of the triangles
in Mh. To enforce the quasi-periodic boundary condition, it is required that if (0, x2) is a nodal point on Γl, then (Λ, x2)
should also be a nodal point on Γr , and vice versa.

Let Vh ⊂ H1
qp(Ω) = {u ∈ H1(Ω) : u(0, x2) = u(Λ, x2)e

−iαΛ} be the usual piecewise polynomial finite element space
satisfying the quasi-periodic boundary condition, i.e.,

Vh :=
{

v ∈ C(Ω) : v|K ∈ Pm(K ) ∀K ∈ Mh, v(0, x2) = e−iαΛv(Λ, x2)
}

,

where m > 0 is an integer and Pm(K ) is the set of all polynomials of degrees no more than m. The finite element
approximation to (6.2) is to find phN with phN = 0 on Γc such that

bN (p
h
N , vh) =

∫

Γ1

g3vhds ∀vh ∈ Vh,c, (6.3)

where Vh,c = {v ∈ Vh : v = 0 on Γc}.
It follows from [19] that the discrete inf-sup condition of the sesquilinear form bN holds for sufficiently large N and

sufficiently small h. The general theory in [20] may be employed to show that the truncated variational problem (6.3) has
a unique solution phN ∈ Vh,c .

6
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Table 1

The adaptive finite element algorithm.

(1) Given a threshold τ ∈ (0, 1) and a prescribed tolerance ϵ > 0;

(2) Choose h1 and h2 to fix the computational domain Ω;

(3) Choose N and h′
1, h

′
2 such that the truncation error ϵN ≤ 10−8;

(4) Generate a triangulation Mh over Ω and compute ηK and ϵh;

(5) If ϵh > ϵ, then

(6) Refine the element K̂ ∈ Mh if ηK̂ > τ max
K∈Mh

ηK ;

(7) Solve the discrete problem (6.3) on the new mesh Mh;

(8) Compute ηK and ϵh on the new mesh Mh;

(9) End if.

For any triangular element K ∈ Mh, let hK be its diameter. Denote by Bh the set of all the edges of K . For any edge

e ∈ Bh, let he be its length. If e is the interior edge of the common side of K1 and K2 ∈ Mh, then we define the jump

residual across e by

Je = ∇phN |K1 · ν1 + ∇phN |K2 · ν2,

where νj is the unit normal vector on the boundary of Kj, j = 1, 2.

If e ⊂ Γ1 and e′ ⊂ Γ2 are boundary edges, then we define the jump residual

Je = 2
(

∂ν1p
h
N |K − T1,Np

h
N |K − g3

)

, Je′ = 2
(

∂ν2p
h
N |K − T1,Np

h
N |K
)

.

For any boundary edge on the left boundary Γl, i.e., e ∈ {x1 = 0} ∩ ∂K1 for some K1 ∈ Mh, and its corresponding edge on

the right boundary e′ ∈ {x2 = Λ} ∩ ∂K2 for some K2 ∈ Mh, the jump residual is

Je = ∂x1p
h
N |K1 − e−iαΛ∂x1p

h
N |K2 , Je′ = eiαΛ∂x1p

h
N |K1 − ∂x1p

h
N |K2 .

For any triangular element K ∈ Mh, we define the local error estimator

ηK = hK∥RphN∥L2(K ) +
(

1

2

∑

e∈∂K

he∥Je∥2

L2(e)

)1/2

,

where R is the residual operator given by

Ru = ∆u + κ2u.

The following a posteriori error estimate is proved in [13].

Theorem 6.1. Let p and phN be the solutions of (5.4) and (6.3), respectively. Then there exists a positive integer N0 independent

of h and satisfying (2πN0/Λ)2 > κ2 such that for N ≥ N0 the following a posteriori error estimate holds:

∥p − phN∥H1(Ω) ≤ C

⎛

⎜

⎝

⎛

⎝

∑

K∈Mh

η2
K

⎞

⎠

1/2

+
2
∑

j=1

e
−|hj−h′

j
|
√

(2πN/Λ)2−κ2

⎞

⎟

⎠
,

where the constant C > 0 is independent of h and N.

7. Numerical experiments

It can be seen from Theorem 6.1 that the a posteriori error contains the finite element discretization error ϵh and the

truncation error of the DtN operator ϵN . More precisely, we have

ϵh =

⎛

⎝

∑

K∈Mh

η2
K

⎞

⎠

1/2

, ϵN = e
−|hj−h′

j
|
√

(2πN/Λ)2−κ2

.

Table 1 describes the adaptive finite element DtN algorithm which was originally developed in [13]. The algorithm is

implemented by using FreeFem [21] with more accurate quadratic elements, i.e., m = 2, instead of the first order linear

elements adopted in [13]. Next we present some numerical examples to demonstrate the competitive performance of the

method.
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Fig. 2. Example 1: (left) the adaptively refined mesh; (right) the magnitude of the corresponding solution.

Fig. 3. Example 1: (left) the convergent rate; (right) the grating efficiencies.

7.1. Example 1: one rectangular hole

In one period, the hole is a rectangle centered at origin with the width w = 0.2 and the height h = 0.6, as seen in

Fig. 2. Let the period Λ = 1 and the constants h1 = 0.5, h2 = −0.5. The incident angle is θ = π/3 and the wavenumber

is κ = 2π , which is equivalent to the wavelength λ = 1. The DtN operator truncation number is N = 13. The solution has

local singularities at the four vertexes of the rectangle. Fig. 2 shows the adaptively refined mesh after seven iterations with

the number of nodal points n = 3542 and the magnitude of the corresponding solution. Clearly, the method captures the

feature of the solution and adaptively refines the mesh around the four vertexes of the rectangle. The a posteriori error

estimate and grating efficiencies of the diffracted field and transmitted field are shown in Fig. 3. It can be seen that the rate

of convergence is quasi-optimal, i.e., the second order of convergence, and the conservation of energy is confirmed. Table 2

shows the negative first order (R−1) and the zeroth order (R0) diffracted efficiencies computed by using the uniform and

adaptive meshes. It is clear to note that the results computed under the uniform mesh with the number of unknowns or

the degree of freedom (DoF) 608882 is quite similar to the one computed under the adaptive mesh with the number of

unknowns 8225, which shows the superior performance of the adaptive method.

7.2. Example 2: two rectangular holes

In this example, we present the numerical results for the structure with two rectangular holes. Let the period Λ = 1

and the constants h1 = 0.5, h2 = −0.5. The width and height of each rectangular hole are w = 0.2, h = 0.6, and the two

holes are separated with a distance 0.1, as seen in Fig. 4. The incident angle is θ = π/3, the wavenumber is κ = 2π , and

the DtN operator truncation number is N = 13. Fig. 4 shows the refined mesh after 7 iterations with the number of nodal

points n = 9479 and the magnitude of the corresponding solution. It is clear to see that the method yields finer meshes

around the eight vertexes where the solution has singularities and generates coarse meshes at other places where the

solution is smooth. The a posteriori error estimate and grating efficiencies of the diffracted field and transmitted field are

plotted in Fig. 5, which show the quasi-optimal convergence and the conservation of energy.
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Table 2

Example 1: The diffracted efficiencies computed by using the adaptive and uniform meshes.

Adaptive mesh Uniform mesh

k DoFh R−1 R0 k DoFh R−1 R0

0 376 0.1382451 0.6705408707 0 376 0.1382451 0.6705408707

1 750 0.1406306699 0.66689113 1 1544 0.1387493508 0.6687997504

2 1356 0.1387930824 0.6690532288 2 9602 0.1386819178 0.6690925316

3 2259 0.1386933111 0.6691748615 3 40098 0.1386309501 0.669175853

4 3356 0.1386281602 0.6692123118 4 152646 0.1386092285 0.6692087059

5 5001 0.1386079011 0.6692244345 5 421868 0.1386086723 0.6692181011

6 8225 0.1386038417 0.6692274714 6 608882 0.138605332 0.6692198291

7 13798 0.1386030692 0.6692281415

8 22694 0.1386027564 0.6692283448

9 38994 0.138602683 0.6692283957

10 67565 0.1386026677 0.6692284049

11 119780 0.1386026595 0.6692284096

12 216195 0.1386026581 0.6692284103

13 391325 0.1386026577 0.6692284104

Fig. 4. Example 2: (left) the adaptively refined mesh; (right) the magnitude of the corresponding solution.

Fig. 5. Example 2: (left) the convergent rate; (right) the grating efficiencies.

7.3. Example 3: two triangular holes

In this example, we test the structure with two triangular holes with two vertexes closely pointing to each other.
The solution has higher singularities than the previous two examples. The period and constants of the domain Ω are the
same as Examples 1 and 2, i.e., Λ = 1 and h1 = 0.5, h2 = −0.5. The coordinates of three vertexes on each triangle is
(0.15, ±0.3), (0.49, 0) and (0.85, ±0.3), (0.51, 0). The incident angle is θ = π/3 and the wavenumber is κ = 2π . Fig. 6
shows the refined mesh with the number of nodal points 5141 and the magnitude of the corresponding solution after
seven iterations. To resolve the singularity of the solution, the mesh is much finer around the vertexes, especially around
the two close vertexes. The a posteriori error estimate and grating efficiencies of the diffracted field and transmitted field
are plotted in Fig. 7. The quasi-optimal convergence and the conservation of energy are observed. As a comparison, Table 3
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Fig. 6. Example 3: (left) the adaptively refined mesh; (right) the magnitude of the corresponding solution.

Fig. 7. Example 3: (left) the convergent rate; (right) the grating efficiencies.

Table 3

Example 3: The diffracted efficiencies computed by using the adaptive and uniform meshes.

Adaptive mesh Uniform mesh

k DoFh R−1 R0 k DoFh R−1 R0

0 961 0.1034999785 0.8964969217 0 961 0.1034999785 0.8964969217

1 1559 0.09792189298 0.9020748196 1 2815 0.09963449174 0.9003621062

2 2409 0.09617564786 0.9038209822 2 10495 0.09748482119 0.9025116032

3 3769 0.09565098829 0.9043456059 3 23547 0.09666973828 0.9033266315

4 5466 0.09546812455 0.9045284646 4 48055 0.09630595447 0.9036903851

5 7934 0.09541092934 0.904585617 5 264271 0.09570326818 0.9042930272

6 12766 0.09539261972 0.9046037955 6 598323 0.09561823779 0.9043780496

7 20087 0.09538715201 0.9046091727

8 32842 0.09538557897 0.9046107106

9 54905 0.09538509332 0.9046111833

10 93372 0.0953849428 0.9046113298

11 159058 0.0953848892 0.9046113819

12 277050 0.09538487338 0.9046113973

gives the negative first order (R−1) and the zeroth order (R0) diffracted efficiencies computed by the adaptive and uniform
meshes. Once again, it shows that the adaptive method yields better numerical results than the uniform mesh.

8. Conclusion

We have presented an adaptive finite element DtN method for solving the biharmonic plate wave equation in one-
dimensional periodic structures. Based on the TBC and two auxiliary functions, the underlying boundary value problem
is reformulated equivalently into two decoupled boundary value problems in a bounded domain, which are used to show
that the flexural wave only contains the Helmholtz wave component. The a posteriori error estimate based adaptive finite
element DtN method is adopted to solve the discrete problem with the truncated DtN operator. Numerical results show
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that the method is effective to resolve the problems with singular solutions. Future work includes extending the method
to solve the problems with other boundary conditions.
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