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Interacting particle system (IPS) models have proven to be highly successful
for describing the spatial movement of organisms. However, it is challenging
to infer the interaction rules directly from data. In the field of equation
discovery, the weak-form sparse identification of nonlinear dynamics
(WSINDy) methodology has been shown to be computationally efficient
for identifying the governing equations of complex systems from noisy
data. Motivated by the success of IPS models to describe the spatial move-
ment of organisms, we develop WSINDy for the second-order IPS to learn
equations for communities of cells. Our approach learns the directional inter-
action rules for each individual cell that in aggregate govern the dynamics of
a heterogeneous population of migrating cells. To sort a cell according to the
active classes present in its model, we also develop a novel ad hoc classifi-
cation scheme (which accounts for the fact that some cells do not have
enough evidence to accurately infer a model). Aggregated models are then
constructed hierarchically to simultaneously identify different species of
cells present in the population and determine best-fit models for each
species. We demonstrate the efficiency and proficiency of the method on
several test scenarios, motivated by common cell migration experiments.

1. Introduction
Systems of autonomous agents are ubiquitous in the natural world. Research
into their behaviour has led to a plethora of proposed mathematical models,
including the agent-based ‘boids’ model [1], ordinary differential equation
models for milling and flocking [2,3], and non-local partial differential
equations [4,5], to name a few. A general framework for rigorous analysis of
these models is by now very mature [6].

Identifying the rules of interaction between agents is necessary for predict-
ing and influencing the cooperative abilities of any such system, whether
composed of autonomous robots, large multi-cellular animals, single-celled
organisms or even molecules. Methods for inferring the rules of interaction
between agents using observed trajectory data have continued to advance
since the early 2000s. Several of the principled techniques include force-
matching [7,8], linear regression [9,10], mean-field formulations [11,12],
information-theoretic tools [13], underdamped Langevin regression [14,15],
Gaussian processes [16] and even a method based on topological rather than
metric distances [17].

These and related techniques have been successfully used to identify the
dominant drivers of collective behaviour in a variety of social and biological
systems [18–20], including schools of fish [21,22], flocks of birds [23,24] and
pedestrian traffic [25], all directly incorporating measured trajectory data.
While popular methods, such as force-matching, are useful in identifying
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fields of vision and spatial statistics of interactions, they
cannot easily disentangle the combined effects of multiple
forces (e.g. attraction, repulsion and alignment) [26,27],
let alone different interactions between multiple species of
neighbours. This limits the classes of models they can identify
and implies that new methods must be developed for hetero-
geneous populations.

The field of equation discovery is a highly active area of
research [28–36], as it offers tools to directly learn governing
differential equations. This approach is not only useful in pre-
diction and validation, but can be used to simultaneously
identify multiple active modes of inter-agent communication,
such as repulsion, velocity alignment and attraction. In this
work, we tackle the problem of identifying governing
equations for an interacting particle system (IPS) with mul-
tiple interacting species. Our proposed approach is
completely naive with regard to species membership in
order to specifically address problems of heterogeneity in col-
lective cell migration [37]. In accordance with our biological
motivations, we refer to agents throughout as ‘cells’, particle
systems as ‘populations’, and different cell types as ‘species’,
however cell types need not correspond to ‘species’ in the bio-
logical sense (e.g. ‘leader’ and ‘follower’ cells could be
classified as two different ‘species’).

Motivated by existing hypotheses regarding the anistropy
of cell–cell interactions [38–40], we introduce our framework
in the context of directional interaction models, as defined
below. Moreover, we note that the documented significance of
anisotropic interactions in general collective systems [41–43]
suggests that our approach may have wide applicability.

1.1. Heterogeneous populations
Many collective populations arising in nature are inherently
heterogeneous, with the rules of interaction varying across
different subsets of the population. This is readily observable
in complex mammalian populations, but is also seen in sim-
pler organisms, such as honeybee swarms, where bees divide
into scout and worker bee roles [44]. The advantages of het-
erogeneity in collective behaviour have even inspired search
optimization algorithms [45,46].

At the level of microorganisms, cells have been observed
to adopt leader-like and follower-like roles during collective
migration events such as wound healing [47,48], without
the aid of a central nervous system. Individual cell speed
and persistence of motion have also been determined to be
functions of the age and size of the cell [49–51], which may
lead to heterogeneous responses to stimuli from neighbouring
cells. The mechanisms which produce these heterogeneities,
and the extent to which heterogeneity is present in a given
cell population, are current subjects of debate [52–54]. Data-
driven techniques may be useful in formulating accurate
mathematical models in the presence of heterogeneity.

Zhong et al. [55] develop a highly versatile method for
inferring explicit rules of interaction in a heterogeneous popu-
lation, although it is assumed that species membership is
known a priori. Several recent works have offered methods
of assessing the degree of population heterogeneity [18,53],
yet these methods do not provide explicit mathematical
models for the different populations. By contrast, the method
presented here allows one to classify the given population
into different species according to the heterogeneous

interaction rules present and produces explicit mathematical
models for each species as a by-product.

In this work, we restrict our attention to the case where
individuals within the population may follow different inter-
action rules, but each individual applies only one set of
interaction rules to all others members of the population. In
other words, individual i applies the same set of rules to indi-
vidual j and k, while j and k may each apply different
interaction rules to particle i. We leave the case of individual
i interacting differently with individuals j and k, depending
on the species membership of j and k, to future work.

1.2. Directional interaction forces
It is now well known that simple radial interaction models are
incapable of explaining many observed collective behaviours
in biological settings, and that directionally dependent inter-
action rules, based on a limited field of view or sensing
angle, offer a significant advantage [23,41,56–58]. At the cellu-
lar level, directional dependence of cell–cell interaction has
been proposed in the context of intracellular polarization
[39]; however, the cellular sensing range is not immediately
obvious, since a migrating cell does not have an obvious
‘field of view’. Recent works have sought to quantify the
degree to which interactions are density-dependent [59], but
not which directional modes (radial, dipolar, quadrupolar,
etc.) are dominant during a collective migration event.

In addition to providing an explanation for certain observed
phenomena [43], directional interaction rules are capable of
generating spontaneous migration, due to the total directional
force between particles not being conserved in general. In the
modelling of active matter systems (such as migrating cells)
[11,60], such symmetry breaking is commonly generated by
a combination of Brownian forcing and a self-propulsion
device [61]. However, it is not clear that self-propulsion is an
appropriate mechanism for modelling cellular movement (in
comparison with fish, which are constantly swimming). Direc-
tional forces may then be an important mechanism for
symmetry breaking and spontaneous cellular migration.

1.3. Weak-form sparse identification of nonlinear
dynamics

At its core, our method involves learning ordinary differen-
tial equations for cells using available trajectory data. For
this we employ the weak-form sparse identification of non-
linear dynamics algorithm (WSINDy), which has been
shown to successfully identify governing equations from
data at the levels of ordinary different equations [62], partial
differential equations [63], first-order interacting particle sys-
tems [12] and even works in a small-memory online
streaming scenario [64].

A significant advantage of the WSINDy method is that it
identifies a single governing equation which can be inter-
preted, analysed and simulated using conventional
techniques of applied mathematics. It does not involve any
black-box algorithms or mappings as would be generated
in using a neural network-based approach. Another promis-
ing direction is a hybrid approach, such as [65], where the
authors first learn a neural network model of the potential
and then use sparse identification to learn the algebraic
form of the potential. Ultimately, an interpretable sparse
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model provides the best chance at both describing and
modelling the dynamics.

Several alternative methods have been developed to
accomplish the equation learning task for particle systems.
In particular, Lu et al. [10] develop a method for learning gen-
eral feature-dependent second-order interaction rules for
heterogeneous populations, where features may include
directional interaction forces, speed dependence and so on.
The differences between this and our work are the following.
(i) We are performing the unsupervised learning task of classi-
fying agents by their interaction rules, whereas Lu et al.’s
work assumes knowledge of the species membership. (ii)
We are interested in sparse model representations, in particular
selection of the correct modes of interaction (e.g. attractive,
repulsive, alignment and drag force), whereas Lu’s work
assumes knowledge of both the feature-dependence and
types of forces present (e.g. for planetary systems, a priori
knowledge is used to rule out the presence of an alignment
force). (iii) Lastly, models are initially extracted from single-
cell trajectories. As described in the next section, rather than
aggregating data which may come from multiple cell species,
we aggregate models which are likely to describe the same
species, and then use the aggregate model to perform
classification.

1.4. Single-cell learning and model clustering
With a possibly heterogeneous population of cell trajectories
available, one is tasked with the problem of deciding how to
aggregate the data. If knowledge of the underlying species
membership is available, a more accurate model can be
inferred by pooling data from all individuals of a given
species. On the other hand, pooling data from multiple
species into a single model can result in a highly inaccurate
model if very different interaction rules from multiple species
are averaged together. In general, there exists a spectrum of
possible pooling strategies, ranging from learning few models
from large subsets of the population, to learning many models
from small subsets of the populations. The former intrinsically
produces models with high bias and low variance, while the
latter produces models with low bias and high variance. Such
pooling strategies have been recently explored in [66], where
it is found that identifying a single model can be improved by
pooling models learned from subsets of the data. However,
this has not been extended to classifying the data itself into
species, and finding a model for each species. Moreover, the
IPS setting offers a particular advantage on the subject of
model validation, as data can easily be assimilated into for-
ward simulations.

In this work, we investigate the extreme case of learning
an individual model Mi for the ith individual trajectory,
and then clustering the set of learned models M :¼
fM1, . . . , MNg according to their identified modes of inter-
action. This approach is counterintuitive because there is no
guarantee that a single-cell trajectory will provide enough
information on the interaction rules of its species. To be
able to classify cells using the (potentially) insufficiently
informative trajectories, we developed an ad hoc recursive
classifier which we show (in §4) accurately clusters and
sorts the models into species. This approach prevents any
contamination that may result from combining trajectories
of multiple species.

Once the models are clustered, an aggregate model M is
computed by averaging the models in M belonging to the
most populous cluster. The model M is then used to classify
cells via forward simulations which are made highly efficient
by directly incorporating the data. In particular, for each trajec-
tory in the dataset, we use M to simulate a new trajectory, but
with all neighbour interactions computed using the data. That
is, only the new trajectory is propagated forward in time by
model M, while the rest of the population is simply the data
itself. This can then be trivially parallelized, reducing an
OðN2Þ computational cost per time step to N cores performing
OðNÞ updates per time step with no communication overhead.

We show through examples below that this hierarchical
model-pooling and validation procedure produces both cor-
rect species classification and accurate governing equations,
despite individual cell trajectory data carrying low levels of
information. For further information on the classification
algorithm, see §3.

1.5. Paper outline
In §2, we discuss the general form of directional interacting
particle models that will be assumed in the learning process.
In §3, we introduce our model selection and classification
algorithm, which is composed of the six steps: (a) learn
single-cell models, (b) replace inaccurate models, (c) cluster
learned models according to active force modes, (d) form
an aggregate model by averaging models in the largest clus-
ter, (e) validate the aggregate model using data-driven
forward simulations, and (f ) classify cells according to per-
formance under the aggregate model. In §4, we examine
the performance of the algorithm in learning and classifying
homogeneous and heterogeneous populations of one, two
and three species. We discuss possible next directions in §5.
Some additional information and a summary of notation
are included in appendix A.

2. Directional interacting particle models
We use a general second-order directional interaction model
framework, where the position and velocity ðxi, viÞ [ R2d of
cell i in d spatial dimensions are governed by the differential
equations

€xi ¼
1

Ntot

XNtot

j¼1

fa$rðjxi $ xjj, uijÞðxi $ xjÞ

þ 1
Ntot

XNtot

j¼1

falignðjxi $ xjj, uijÞðvi $ vjÞ

þ 1
Ntot

XNtot

j¼1

fdragðjvij, uijÞvi: ð2:1Þ

Here, θij is the angle between vi and xj− xi (see the diagram in
figure 1). The attractive–repulsive force fa−r, alignment force
falign and the drag force fdrag define the rules by which cell i
communicates with the rest of the population. Our primary
objective is to identify a set of interaction rules {( fa−r, falign,
fdrag)ℓ}1≤ℓ≤S, one for each of the S species present in the popu-
lation. We note that additionally the model (2.1) can contain a
stochastic noise term to capture random environmental
forces; however, we leave this an extension to future work.
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2.1. Directionality θij
As mentioned above, directional variation in the interaction
forces between cells can arise from various factors, including
intracellular polarization, or heterogeneous distribution of
membrane-bound receptors, asymmetry in the protrusion/
contraction of lamellopodia as the cell crawls on the sub-
strate, and so on. In the current study, we assume that each
of these effects is unobservable, hence we model the
aggregate directional effect using the angles θij, depicted in
figure 1. Dependence on angle θij allows for interactions
between cell i and cell j to vary depending on the direction
of motion. Put another way, in the reference frame of cell i,
the polar coordinates rij = |xi− xj| and θij allow one to
represent any interaction force that varies over the
two-dimensional plane.

It should be noted that asymmetric interactions θij≠ θji lead
to symmetry breaking and spontaneous cell migration from an
initially motionless state. In this study we restrict the angular
dependence to {1, cos (θij), cos (2θij)}, which allows for a com-
bination of radial, dipolar and quadrupolar interactions (see
figure 2 for examples of dipolar (b) and quadrupolar (a)
forces used in this study). Higher-order directionality can
usually be assumed to be negligible; however, extension to
higher modes is straightforward.

2.2. Attractive–repulsive force fa–r
The interaction force fa−r acts along the vector from cell i to cell j
and captures short-range repulsion and long-range signalling.
Many IPS models include only an attractive–repulsive force,
due to its extensive pattern-forming capabilities [67,68]. Typi-
cally fa−r is taken to be the gradient of some potentialK, such as
the Morse potential KðrÞ ¼ CR e$r=LR $ CA e$r=LA or power law
potential KðrÞ ¼ r pR=pR $ r pA=pA, with r denoting the inter-
particle distance. The parameters (CR, LR, CA, LA) or ( pA, pR)
determine the possible long-time behaviours, such as milling,
spreading or concentrating.

We impose the following natural constraints on fa−r:

fa$rðr, uÞ & 0, 0 ' r , rnf
fa$rðr, uÞ ' 0, r & rff
fa$rðr, uÞ [ spanf1, cosðuÞ, cosð2uÞg, every r fixed:

8
<

:

ð2:2Þ

Here rnf is the near-field threshold, which can for instance cor-
respond to a cell diameter, and rff is the far-field threshold, i.e. a
large distance. The first inequality enforces that fa−r is near-
field repulsive, which must be true by volume exclusion.

In practice, we define rnf by

P(jxi $ xjj , rnf) ¼ pnf,

where in this work we set pnf = 0.001, and the dataset is used
to compute the probability, taking all interparticle distances
over all time points into account. This states that the force
must be repulsive over short pairwise distances which are
0.1% likely to be observed, given dataset.

The second equality enforces long-range decay, as well as
model stability. Decay is natural since interactions can be
expected to be small outside of some large distance rff. We
enforce that interactions are attractive at large distances
(allowing for decay as well), so that in simulation the par-
ticles do not spread to infinity. We set rff = 1 throughout,
although rff can easily be chosen from the data (e.g. rff =
50rnf corresponds to an effective interaction range of 50 cell
radii). (See appendix A.1 for resulting values of rnf and rff
and other hyperparameters for examples below.)

The third set inclusion simply reiterates the assumptions
on directionality described above.

2.3. Alignment force falign
The alignment force falign captures cells’ tendency to match
the velocity of neighbouring cells. There are many theories
as to how this arises physically [38,69]. Perhaps protrusions
from cells inform the cell about the bulk direction of
motion, which would be a very local effect. However, align-
ment models which have been proven to lead to flocking
depend on sufficiently long-range alignment. In particular,
the Cucker–Smale model involves only an alignment force,
which takes the form falignðr, uÞ ¼ A=ðs2 þ r2Þb. Uncondi-
tional flocking occurs for β < 1/2, and for larger β (leading
to a shorter-range alignment force) flocking depends on the
initial conditions [3].

We impose the following constraints on falign:

falignðr, uÞ ' 0, 0 ' r
falignðr, uÞ [ spanf1, cosðuÞ, cosð2uÞg, every r fixed:

!

ð2:3Þ

The first inequality enforces that falign is non-positive, which
is necessary for the constant velocity state vi = vj = v to be a
stable configuration. If not, small perturbations away from
vi = vj result in cells accelerating away from each other,
which is a redundant force given that cells can be pushed
away from each other through fa−r (it is also not hard to see
that falign > 0 is unphysical). The second constraint restricts
the alignment force to be a combination of radial, dipolar
or quadrupolar modes, similar to fa−r.

2.4. Drag force fdrag
The drag force fdrag captures energy expenditure due to
general resistance to motion (resulting e.g. from substrate
roughness); however, we allow an angular dependence on
θij to capture possible decreases or increases in drag depend-
ing on local neighbour distribution. For this we impose the
following constraints:

fdragðs, uÞ ' 0, 0 ' s , 1
fdragðs, uÞ [ spanf1, cosðuÞg, every s fixed,

!
ð2:4Þ

where s indicates the speed of the cell. The force fdrag is

θij

xi

xj

υi

υj

x j –
 x i

Figure 1. Diagram of social interactions depending on angle θij between cell
i’s velocity and cell j’s position relative to i.
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chosen to be negative so that cells do not have a ‘self-propul-
sion’ device. As mentioned previously, many models of active
matter include self-propulsion as a partial mechanism for
symmetry breaking and general non-equilibrium effects. To
reiterate, we do not expect cells to have a self-propulsion
device, in fact, we wish to learn how migration occurs spon-
taneously, incited by pairwise interactions. In addition, a
positive drag force leads to populations spreading outside
of the range of meaningful interactions. In this way, negative
drag is computationally beneficial, as it leads to improved
model stability.

3. Algorithm
Our algorithm involves first learning an ensemble of
directional force models M ¼ fM1, . . . , MNg, that is, one
model for each of theN focal cells selected for learning. Individ-
ualmodelsMi are then validated on a small neighbourhood of
cells, and Mi is replaced by Mj if a model Mj is found that
outperforms Mi on cell i. We next group models into clusters
C : ¼ fC1, . . . , Crg and compute an aggregate model "M from
the largest cluster, denoted by C. A new species S is then ident-
ified, with membership in S determined by the accuracy of
data-driven forward simulations of model "M. Cells in the

species S are then removed from the population and the
remaining cells are returned to the clustering phase. More
explicitly, the algorithm is composed of the following steps,
which are visualized in figure 3.

(a) Identify individual cell models M ¼ fM1, . . . , MNg
using the WSINDy algorithm.

(b) Replace models in M with superior models of ‘neigh-
bouring’ cells (as described in §3.2).

(c) Cluster M into fC1, . . . , Crg according to active force
modes.

(d) Aggregate models in the largest cluster C to arrive at a
single model "M:

(e) Validate model "M on each remaining unlabelled cell,
using the data to calculate neighbour interactions.

(f ) Classify cells based on simulation error under M and
label the lowest-error class as the new species S (remove
cells in S from the population and return to step (c)).

The result is a set of S models and species fðM‘, S‘ÞgS‘¼1,
where each model M‘ is constructed from an average of indi-
vidual models within a cluster. We use the notation1 of Mi to
be the model for the ith cell, Cj to be the jth cluster of models
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Figure 2. Forces used to generate artificial data, motivated by experiment. (a) Quadrupolar attractive-repulsive force fwa$r. (b) Dipolar alignment force f
w
align. (c) Linear

isotropic drag force fwdrag.

1

1

i–1

i+1

i

N

N

k

Cr

C1

(a) learn single-cell models (b) replace models (c) cluster models (d) aggregate

iterate until all cells classified

(e) validate (f) classify cells

Figure 3. Classification pipeline for cells from heterogeneous populations. (a) An ensemble of models M ¼ fM1, . . . , MNg is learned, each from an indi-
vidual trajectory; (b) models in M are replaced by neighbouring models with superior performance if any exist; (c) M is partitioned into clusters
C ¼ fC1, . . . , Crg according to active forces in each model; (d ) models in the largest cluster "C are averaged together, giving "M; (e) "M is validated
along each individual trajectory; ( f ) validation errors are classified, producing an identified species "S (cyan checkmarks) and the remaining cells (red X’s) are
returned to step (c) to be clustered again. Steps (c–f ) repeat until all cells are classified. Note that the number and members of model clusters C and resulting
aggregate model "M will change each iteration depending on the identity of remaining unlabelled cells.
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and S‘ to be the set of cells identified as the ℓth species and
which obey model "M‘.

We now give more detail on steps (a)–(f ), including
stopping criteria, leaving the more technical aspects to the
appendix. In appendix A.1, we include a table of notations
used throughout (table 5), along with algorithmic hyper-
parameters and their corresponding values used in the
examples below, followed by a brief discussion about the
problem-dependent nature of several hyperparameters.

3.1. Learning single-cell models
The first step in the algorithm is to learn an ensemble of
single-cell models, one for each of the N focal cells selected
from the Ntot total cells tracked during the experiment.2 By
‘single-cell’ model, we mean that the scope of each model is
limited to learning only the dynamics of its focal cell; how-
ever, data from the remaining tracked cells are incorporated
to learn the interaction forces.

3.1.1. Weak-form sparse identification of nonlinear dynamics
The main ingredient in learning single-cell models in M is
the WSINDy algorithm, together with careful choices for
the bases used to represent the three main forces fa−r, falign,
and fdrag. Each cell i is identified by a position and velocity
(xi(t),vi(t)) which we assume is well-approximated by a
second-order model of the form (2.1). The dynamics take
the general form

€xiðtÞ ¼ FiðXðtÞ, VðtÞÞ, ð3:1Þ

where ðXðtÞ, VðtÞÞ [ R2dNtot denotes the entire population of
positions and velocities in the colony at time t. We then
assume that we have available a dataset of positions
X ¼ ðx1ðtkÞ, . . . , xNtotðtkÞÞ

L
k¼1 sampled from the system X at L

time points. Our goal is to identify Fi using X.
The SINDy approach involves representing Fi as a

sparse linear combination of basis elements QðX, VÞ :¼
ðfjðX, VÞÞ1'j'J , such that

Fi,d0ðX, VÞ ¼
XJ

j¼1

ww
i,jf j,d0ðX, VÞ,

where subscript d
0
indicates the spatial coordinate (d

0
∈ {1, 2}

in this study). The basis Q is chosen by the user and deter-
mines the accuracy of the learned model as well as the
conditioning of the WSINDy algorithm.

The available cell position data X is used to approximate
velocities V : ¼ _X ( _X and accelerations €X ( €X, using
e.g. finite differences, leading from (3.1) to the data-driven
linear system

€xi ( QðX, VÞww
i: ð3:2Þ

With some abuse of notation, we denote by QðX, VÞ the
matrix that results from evaluating the basis QðX, VÞ at the
time-series data (X, V). The entries are QðX, VÞkþðd0$1Þ,j ¼
f j,d0ðXðtkÞ, VðtkÞÞ.

The data X are often corrupted by measurement noise,
which leads to inaccurate computations of derivatives V.
For the current setting, the standard SINDy approach just
outlined requires second-order derivatives €X, which are even
less accurate to compute from noisy data. To prevent some
of the corruption from noise,3 we can use the weak form,
which leads to WSINDy. Returning to equation (3.1), we

convert to the weak form by multiplying by a test function
ϕ(t) and integrating in time,

f, €xih i :¼ f, FiðX, VÞh i: ð3:3Þ

where the inner product 〈 · , · 〉 denotes the time integral

f , gh i ¼
ð1

$1
f ðtÞgðtÞdt:

Choosing ϕ to be twice differentiable and zero outside of
some interval (a, b), we then integrate by parts twice on the
left-hand side to arrive at

h€f, xii ¼ f, FiðX, VÞh i,

so that the second derivative has been removed from xi
and placed on ϕ. Choosing a basis of test functions F :¼
ðfqÞ1'q'Q, we build the weak-form linear system

bðiÞ ( GðiÞ bwðiÞ, ð3:4Þ

where bðiÞ
qþðd0$1Þ ¼ h€fq, xi,d0 i and GðiÞ

qþðd0$1Þ,j ¼ fq, f j,d0ðX, VÞ
D E

.

As well as choosing Q, in order to compute (G (i), b (i)),
we need to compute4 V from the position data X, choose a
test function basis F and discretize integrals appearing
in the linear system. For simplicity, we compute V using
second-order centred finite difference, although a number
of methods exist for numerical differentiation from data
[70,71]. For integration, we use the trapezoidal rule, and we
use test functions of the form

fqðtÞ ¼ max 1$
t$ tq
mDt

# $2

, 0

 !p

, ð3:5Þ

for shape parameters m and p, and timestamps tq in the
range of the available time series. We use the class of test
functions (3.5) for its desirable accuracy and robustness prop-
erties combined with the trapezoidal rule [62], and refer to
[62,63] for methods of choosing (m, p, tq). In this work, we
use the changepoint algorithm in [63] with τ = 10−10 and
bt ¼ 3, leading to m∈ {31,…, 38} and p∈ {8, 9} (table 6 lists
these values used in the examples below). Since the time
series below are relatively short (L = 200 or L = 400), we use
all available tq, i.e. ðtqÞQq¼1 ¼ ðmDt, . . . , ðL$m$ 1ÞDtÞ so that
Q = L− 2m.

3.1.2. Trial basis functions
In the case of the directional force model (2.1), we require
three bases F a$r, F align and Fdrag for the three proposed
forces fa−r, falign and fdrag. We seek a sparse model, and
so choose global basis functions, rather than a model com-
posed of a large sum over basis functions that are spatially
localized.

For the attractive–repulsive basis F a$r we choose pro-
ducts of cosines and scaled and weighted Laguerre
polynomials,

F a$r ¼ fcosðnuÞp‘ðarÞ e$ða=2Þrg2,17n¼0,‘¼0 ð3:6Þ

for ℓth degree Laguerre polynomial pℓ. The scale α is chosen
from rmax, the maximum observed distance between cells,
such that e$ða=2Þrmax ¼ emach ( e$36. We set α = 36 in all cases
below since rmax≈ 2.

The pattern of attractive and repulsive regions of the
force fa−r is not known a priori, hence the Laguerre basis
offers flexibility. The choice of weighted Laguerre
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polynomials (with weight ω(r) = e−r/2) is guided by the
orthogonality relation

ð1

0
pmðrÞpnðrÞv2ðrÞdr ¼ dmn, ð3:7Þ

where δmn is the Kronecker delta. We find F a$r leads to a
well-conditioned matrix G despite orthogonality not holding
with respect to the data distribution. We use the first 18 such
weighted Laguerre polynomials to provide a sufficiently
large basis; however, this number is fairly arbitrary and
may need to be increased or decreased depending on the
complexity of the dynamics.

For the alignment force, we choose a basis of shifted
cosines and exponential functions

F align ¼ fð1þ cosðnuÞÞ e$2‘rg2,5n¼0,‘¼$2 ð3:8Þ

which is informed by the fact that falign must be negative. This
is easily controlled with F align by simply enforcing that the
coefficients bwalign be negative. For the same reason, we
choose the drag force from a basis of monomials and cosines,

Fdrag ¼ fð1þ cosðnuÞÞjvj‘g1,4n¼0,‘¼0 ð3:9Þ

as this can also be easily controlled to yield an overall nega-
tive fdrag force by constraining only the basis elements bwdrag.
Moreover, monomials capture the physical assumption that
resistance to motion should increase with speed.

3.1.3. Regression
We solve the linear system (3.4) for coefficients bwðiÞ by
approximately solving the following constrained sparse
regression problem:

bwðiÞ ¼ argmin
w s:t: Cw'd

{kGðiÞw$ bðiÞk22 þ l2kwk0}: ð3:10Þ

The linear inequality constraint Cw≤ d encodes the con-
straints listed in (2.2), (2.3) and (2.4) on the forces on fa−r,
falign and fdrag, and λ is the sparsity threshold. We employ
the modified sequential thresholding algorithm from
[12,63], with least-squares iterations replaced by solving the
associated linearly constrained quadratic program.5

Since the coefficients bwðiÞ have no a priori absolute magni-
tude, we threshold only on the magnitudes of the given term
relative to the response vector b (i), namely, we define the
thresholding operator HlðwÞ by

ðHlðwÞÞj ¼
0,

kGðiÞ
j ðwÞjk

kbðiÞk
! ½l; l$1*

ðwÞj, otherwise:

8
><

>:
ð3:11Þ

The sequential thresholding algorithm for solving (3.10) thus
produces iterates fwðiÞ

0 , . . . , wðiÞ
‘ , . . . , bwðiÞg where each wðiÞ

‘þ1 is
obtained from wðiÞ

‘ by first solving (3.10) with λ = 0 for ~w sub-
ject to supp( ~w) , supp(wðiÞ

‘ ), and then setting wðiÞ
‘þ1 ¼ Hlð ~wÞ.

A sweep over 40 equally log-spaced λ values l ¼
ð10$4, . . ., 1Þ is performed according to [12,62] to choose an
appropriate threshold λ.

3.2. Model replacement
Model replacement is akin to ‘cross-pollination’ and is crucial
to increasing the accuracy of the learned models, as it trans-
fers successful learning of few cells with highly informative
trajectories to cells with less informative trajectories. As

with all validation steps of our algorithm, this approach
would be infeasible if not for fast data-driven forward
simulations, as discussed further in §3.5.

Once the initial batch of NmodelsM is learned, we simu-
late each model Mj as outlined in §3.5 on K different
validation cells selected from the data and specific to cell j,
where we set K = 32 throughout. If Mj performs better than
Mi on cell i, we replace Mi with Mj (specifically, Mi is
replaced with the best performing such model, if one exists).

For a given model Mi, we select the K validation cells by
finding cells in the population that match well certain stat-
istics of cell i. In particular, we define the following
distributions:

rðiÞrr ðrÞ ¼
1
T

ðT

0
Px!X0 (kxiðtÞ $ xðtÞk , r) dt, ð3:12Þ

rðiÞvvðsÞ ¼
1
T

ðT

0
Pv!V0 (kviðtÞ $ vðtÞk , s) dt ð3:13Þ

and rðiÞv ðsÞ ¼ P(kvik , s), ð3:14Þ

where (X
0
, V

0
) denotes the remainder of the cell population

excluding cell i. Respectively, these denote the distribution
of distances from cell i to all other cells, the distribution of vel-
ocity differences between cell i and all other cells, and the
distribution of speeds that cell i experiences. These statistics
are likely to correspond to the information content that cell
i carries about its own forces fa−r, falign and fdrag, given the
force dependencies. We approximate these distributions
from the data using histograms with 50 bins. Figures 15
and 16 in the appendix depict species averages of rðiÞrr , r

ðiÞ
vv , r

ðiÞ
v .

For each cell i, we compute the Kullback–Leibler (KL)
divergence between its distributions rðiÞrr , r

ðiÞ
vv , r

ðiÞ
v and those

of the rest of the population,6 where the KL divergence
between densities ρ and ν is given by

DKLðrjnÞ ¼ $
ð
rðxÞ log nðxÞ

rðxÞ

# $
dx:

The K validation cells used to validate model i are the K cells
with smallest cost L, defined by

L :¼ DKLðrðiÞrr jr
ðjÞ
rr Þ

2 þDKLðrðiÞvvjr
ðjÞ
vvÞ

2 þDKLðrðiÞv jrðjÞv Þ2:

Let the validation error ΔVi→j be defined as in (3.19), but indi-
cating Mi used to validate cell j (i.e. using the initial
conditions of cell j). We replace Mi with Mj if the following
three conditions are met:

(1) ΔVi→i > ΔVj→i

(2) ΔVi→j > ΔVj→j

(3) max{ΔVj→i, ΔVj→j} < tol,

where we set tol = 0.25 in this work. In words, Mj replaces
Mi if (1) Mj performs better than Mi on cell i, (2) Mj per-
forms better than Mi on cell j, and (3) Mj achieves a
reasonably low error (defined by tol) on both cell i and cell
j. (Note that cell i and cell j are required to be mutual vali-
dation cells for a model replacement to occur). Furthermore,
if Mj replaces Mi, and another model Mk replaces Mj, we
replace Mi with Mk as well, even if cells i and k are not
mutual validation cells.

3.3. Cluster
Models are then clustered according to the force modes pres-
ent. Specifically, using the bases above, we can expand each
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force according to distinct directional modes

fa$rðr, uÞ ¼ f ð0Þa$rðrÞ þ cosðuÞf ð1Þa$rðrÞ þ cosð2uÞf ð2Þa$rðrÞ,

falignðr, uÞ ¼ f ð0ÞalignðrÞ þ cosðuÞf ð1ÞalignðrÞ þ cosð2uÞf ð2ÞalignðrÞ

and fdragðjvj, uÞ ¼ f ð0ÞdragðjvjÞ þ cosðuÞf ð1ÞdragðjvjÞ:

This leads to eight possible force modes, which we order as
follows:

{f ð0Þa$r, f
ð1Þ
a$r, f

ð2Þ
a$r, f

ð0Þ
align, f

ð1Þ
align, f

ð2Þ
align, f

ð0Þ
drag, f

ð1Þ
drag}: ð3:15Þ

We associate the sparsity pattern of the force modes with
the set of all 8-bit codes, giving a total of 28 = 256 possible
model clusters. Models are partitioned into clusters
C ¼ fC1, . . . , Crg based on their associated codes. For
example, species A listed in table 1 is associated with the
code 10111010 indicating that f ð0Þa$r, f

ð2Þ
a$r, f

ð0Þ
align, f

ð1Þ
align and f ð0Þdrag

are present in the model.
There are several other options for model replacement

and clustering, include clustering based on the sparsity pat-
tern of bw, or simply on the presence or the absence of each
of the three forces fa−r, falign and fdrag. The former significantly
increases the number of possible clusters, while the latter
leads to just 8 possible clusters. Our choice reflects the
desire to disentangle directionalities of the governing forces
without introducing a strong dependence on the bases used
to approximate each force.

3.4. Aggregate
Having formed the model clusters C, let C be the cluster with
the most members. We then compute M by averaging7 over
the coefficients from models in C and then performing a final
round of thresholding. That is, we compute

w ¼ 1
jCj

X

i[C

bwðiÞ,

I ¼ fi : jwij , 10$llog max jwjg
and wðIÞ ¼ 0,

9
>>=

>>;
ð3:16Þ

where jCj denotes the number of elements in C and λlog = 4 in
this work, so that coefficients falling below four orders of
magnitude from the maximum absolute coefficient are dis-
carded. Thresholding here is simply to speed up
computation, as small coefficients result in unnecessary

evaluation of negligible basis functions during forward
solves.

3.5. Validate
To validate the aggregate model "M, we perform forward
simulations over the remaining unclassified cells in a highly
parallelizable way that uses the experimental data to
efficiently march forward in time.

Let N0 ≤N be the number of remaining unclassified cells.
For each i = 1,…,N0, we simulate a new trajectory
fðxiðtkÞ, viðtkÞÞgLk¼1 using the averaged model "M with the
experimental initial conditions ðxið0Þ, við0ÞÞ ¼ ðxið0Þ, við0ÞÞ.
We march forward in time according to the forward Euler
update

viðtkþ1Þ ¼ viðtkÞ þ DtMðxiðtkÞ, viðtkÞ, X0iðtkÞ, V0iðtkÞÞ ð3:17Þ

and

xiðtkþ1Þ ¼ xiðtkÞ þ DtviðtkÞ, ð3:18Þ

where (X
0i(tk), V

0i(tk)) indicates (X(tk), V(tk)) with the ith cell
removed.8 Since the time resolution of the data Δt is assumed
to be coarse, we perform the simulation on a finer grid with
time step Δt0 = 2−5Δt, and use piecewise cubic hermite interp-
olation to generate positions and velocities of neighbours (X

0i,
V

0i) at intermediate times. We stress that we do not update
the neighbour cells using the model "M, which would be
much more costly; we merely use neighbour positions and
velocities from the data to compute interactions that govern
the motion of cell i. The resulting trajectories fðxi, viÞgN

0

i¼1
can then be computed in a trivially parallel manner.9

We then define the validation error for cells i = 1,…, N0 as
the relative velocity difference

DVi :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL0
k¼1 kviðtkÞ$ viðtkÞk22PL0

k¼1 kviðtkÞk
2
2

s

, ð3:19Þ

where L0 ≤ L is a subset of the time series over which the
simulation is expected to remain accurate. In particular, for
chaotic systems the trajectories cannot be expected to
remain close for large times; however, the correct model
will be initially accurate. In this work, we choose L0 = 0.25L.
In other words, with L = 200 time steps (as in most examples
below), we compare with the data over the first 50 time steps
at the original scale Δt, or equivalently 1600 time steps on the
finer scale Δt0.

3.6. Classify
Let VE be the set of validation errors, VE = {ΔV1,…, ΔVN0}. An
empirical observation used in this work is that when "M
approximates well an underlying model for a true species,
the log-transformed validation errors log10(VE) are fit well
by a Gaussian mixture model (GMM) with two mixtures
(see figures 4–6). We thus use a two-mixture GMM to classify
the remaining cells. Cells are granted membership into the
mixture that yields the highest posterior probability of
generating its log-validation error, and the class with lowest
mean error is labelled as a species. This can be thought of
as a sequential binary classification scheme.

For example, in each plot of figure 4, a representative
GMM resulting from a two-species population, the left-most
mixture corresponds to low validation errors under the
model "M and is classified as a species S (in this case, species

Table 1. Species delineation by active force modes.

f a–r f align fdrag

species A

species B

species C
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C in table 1 is identified). The cells in S are subsequently
removed from the population, and cells in the right-most
mixture are returned to the cluster phase (c).

3.7. Stopping conditions
Steps (c)–(f ) are repeated until one the following conditions
is met.

(1) Less than N0
min cells remain.

(2) More than ð1$ dgmmÞ + 100% of remaining cells have
less than egmm + 100% validation error: PðVE , egmmÞ &
ð1$ dgmmÞ.

(3) The maximum allowable number of species has been
reached: S = Smax.

The first case is an obvious criterion to prevent infinite loop-
ing over outlier cells for which there is not enough

V E histogram
GM fit

cluster division
V E histogram
GM fit

cluster division
2.0

1.5

1.0

0.5

–4 –3 –2 –1 0 –3 –2 –1 0
0

2.0

1.5

1.0

0.5

0

log10 (V E) log10 (V E)

Figure 4. Distribution of log-validation errors for heterogeneous cell experiments X A,C and X B,C. In each case, species C is identified in the first iteration, and a clear
separation between the two species allows for accurate clustering using Gaussian mixture models.
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V E histogram
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0.5
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2.0

1.5

1.0

0.5

0

log10 (V E) log10 (V E)

Figure 5. Log-validation errors for two-species population X A,B (long). Strong similarities between the two species present an initial challenge to identification,
which is overcome by taking a longer time series. The initial Gaussian mixture model (left) identifies a majority species B cluster. In the second iteration (right), a
cluster with all species A cells is identified, and a small group of cells remains which is then partitioned correctly (see row 5, columns CS(A) and CS(B) of table 3).
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Figure 6. Gaussian mixture models for classifying the three-species experiment X A,B,C(long) (see table 4 row 3 for details). We see an initial complete separation of
species C (left), followed by a mixed cluster containing 96.1% of the species B cells and 0.9% of the species A cells (middle). The next iteration classifies an entirely
species A cluster (right). Clusters 4 and 5 are effectively outliers and contain the remaining 31/1000 cells.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220412

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 O

ct
ob

er
 2

02
2 



information to learn an adequate model. We set N0
min = 2. The

second condition skips the GMM fitting process when all cells
have sufficiently low error. If the condition is met, all cells
with error less than ϵgmm are assigned to a new species, while
the remaining cells are left as outliers without a model. We
choose (ϵgmm, δgmm) = (0.05, 0.01), such that if 99% of the cells
achieve less than 5% error, the algorithm terminates. This is
necessary to account for the case of high-accuracy recovery,
where it is observed thatVE is no longer approximately lognor-
mal, leading to an inaccurate GMM partition (see e.g. the
rightmost plot of figure 7). Finally, for N very large, it may be
necessary to restrict the total number of species, which is encap-
sulated in the third condition. We set Smax = 10 throughout,
althoughwe did not observe the number of iterations exceeding
5 in any trials with N≤ 1000 and S≤ 3 true species.

4. Results: artificial cells
We examine artificial cell cultures with combinations of 1–3
distinct cell types, denoted by species A, species B and species
C. Each species has a unique combination of the following
forces:

fwa$rðr, uÞ :¼ ð15þ 10 cosð2uÞÞ(e$20r $ 0:25 e$10r), ð4:1Þ
fwalignðr, uÞ :¼ $ð8þ 8 cosðuÞÞ e$8r ð4:2Þ

and fwdragðs, uÞ :¼ $5s: ð4:3Þ

The forces fwa$r and fwalign are depicted in figure 2, and force
combinations for species A, B and C are specified in table 1.
The forces include a quadrupolar attractive–repulsive force
fwa$r, a dipolar alignment force fwalign, and a monopolar drag
force fwdrag which is linear in its speed argument. As we will
see below, species A and species B share the force fa−r and
hence result in similar dynamics, which presents a challenge

to identification. It turns out that using a longer time series
results in correct classification.

We let XP denote a simulation with individuals from
species P, for example, XA is a simulation with only individ-
uals from species A and XA,B is a simulation with a mixed
population of species A and species B. Each simulation has
1000 individuals and the same number of members in each
species (up to rounding). More details on the simulations,
including plots of initial and final states and several statistics,
can be found in appendix A.2.

We refer to species identified by the algorithm as ‘clus-
ters’ to disambiguate between the true species (A, B, C)
present in the data. We are particularly interested in three
traits of our learning algorithm: (1) was the classification
successful? (2) are the learned forces close to the true
forces? (3) are simulated trajectories using the learned
model close to the original trajectories? To assess (1) we
report the classification success CS(i) for i∈ {A, B, C} as the
fraction of individuals from species i that ended up in the
cluster in question, where clusters are listed as subrows
(rows not separated by horizontal lines) within each row
in tables 2–4, in the order they were identified. For example,
in row 2 of table 3, two clusters are identified from the two-
species data XA,C, with the first cluster containing 100% of
the species C cells, indicated by CS(C ) = 1.000, and the
second cluster containing 100% of the species A cells,
indicated by CS(A) = 1.000, with no outliers.

To assess the accuracy of learned forces with respect to the
ground truth forces, for each of the three forces we compute
the relative L2 error over a square grid discretized with 1000
points in each direction. We denote these quantities by Δfa−r,
Δfalign and Δfdrag in tables 2–4. For fa−r and falign we use (x,
y) = (rcosθ, rsinθ)∈ [− 2, 2] × [− 2, 2], since rmax≈ 2 for all
examples, and for fdrag we use (s, θ)∈ [0, smax] × [0, π],
where smax is the maximum speed attained during the exper-
iment. It is worth mentioning that for fa−r, we use a force that
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V E histogram V E histogram V E histogram
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log10 (V E) log10 (V E) log10 (V E)

Figure 7. Distribution of log-validation errors for homogeneous cell experiments XA, XB, XC. Distributions for XA and XB are fit well by a single Gaussian, indicating a
single species is present. The distribution for XC has a non-Gaussian tail, although all errors are below 1%, indicating that the candidate model fits the population up
to the specified error tolerance.

Table 2. Performance of model learning and classification algorithm of homogeneous populations.

experiment Δfa−r Δfalign Δfdrag CS(A) CS(B) CS(C ) ΔV

XA 0.0211 0.0384 0.0382 1.000 — — 0.0100

XB 0.0112 — 0.0125 — 0.997 — 0.0076

XC — 0.0007 0.0016 — — 1.000 0.0016
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does not have a sparse representation in the basis F a$r. In this
case, we see that the algorithm correctly classifies individuals
despite having the truncation error that results from repre-
senting the force over the basis F a$r.

Lastly, we assess the difference in learned and true trajec-
tories using the average validation error DV ¼ ð1=jSjÞP

i[S DVi, where ΔVi is computed from model M associated
with identified species S using (3.19).

4.1. Homogeneous populations
As an initial benchmark, we detect single-species populations
from homogeneous data. While simpler than the hetero-
geneous case, this is a non-trivial task due to the variability
of single-cell trajectories and local environments within the
population. Our method successfully identifies the models
for species A, B, and C from homogeneous simulations,
achieving less than 1% mean validation errors in each case,
and less than 4% relative force errors Δf (table 2). In simu-
lation XB, three cells are identified as outliers (appearing in
the right tail of figure 7 (middle)), and all other cells in XA,

XB, and XC are correctly classified. A comparison between
original and learned trajectories is depicted in figure 8,
with learned trajectories overlapping original trajectories in
each case.

4.2. Two-species populations
Next we examine the ability of the learning algorithm to
detect two-species populations along with accurate aggregate
models. Figure 4 displays two representative Gaussian mix-
ture fits to the log-validation errors for XA,C (left) and XB,C
(right). In both cases, the log-errors are well approximated
by Gaussian mixtures with wide separations between mix-
tures. This allows for complete classification in both cases,
as indicated by CS(A), CS(B), and CS(C ) in rows 2 and 3 of
table 3. Force differences Δf are less than 5% in all but one
case (estimation of falign in cluster 2 of experiment XA,C),
with trajectory validation errors less than 3.5%. In particular,
species C achieves less that 0.3% validation error, which is
due to the true force fwalign existing in the span of the library
F align, whereas fwa$r is approximated using a truncated

Table 3. Performance of model learning and classification algorithm for two-species populations. XA,B(long) is simply the continuation of XA,B to twice the time
horizon, and significantly improves classification over XA,B. Note that identified species are listed within each delinearted row as subrows (rows not separated by
horizontal lines) in the order they were identified.

experiment Δfa−r Δfalign Δfdrag CS(A) CS(B) CS(C ) ΔV

XA,C — 0.0011 0.0002 0 — 1.000 0.0005

0.0226 0.0941 0.0472 1.000 — 0 0.0200

XB,C — 0.0077 0.0051 — 0 1.000 0.0023

0.0328 — 0.0461 — 1.000 0 0.0339

XA,B 0.0341 — 0.0133 0.102 0.628 — 0.1201

0.0075 — 0.0538 0.084 0.340 — 0.0362

0.4780 0.3660 — –0.814 0.012 — 0.3945

XA,B(long) 0.0018 — 0.0042 0.002 0.978 — 0.0045

0.0034 0.0023 0.0067 0.994 0 — 0.0070

0.0071 — 0.0044 0 0.023 — 0.0568

0.0034 0.0051 0.0144 0.004 0 — 0.0199

Table 4. Performance of model learning and classification algorithm of three-species populations. XA,B,C(long) is simply the continuation of XA,B,C to twice the
time horizon.

experiment Δfa−r Δfalign Δfdrag CS(A) CS(B) CS(C ) ΔV

XA,B,C — 0.0005 0.0020 0 0 1.000 0.0016

0.0287 — 0.0191 0.091 0.988 0 0.0620

0.0243 0.2321 — 0.542 0.006 0 0.5010

0.0022 0.0001 0.0050 0.332 0 0 0.0406

0.0478 — 0.118 0.009 0.006 0 0.3462

XA,B,C(long) — 0.0014 0.0013 0 0 1.000 0.0009

0.0082 — 0.0008 0.009 0.961 0 0.0064

0.0041 0.0014 0.0010 0.937 0 0 0.0067

0.0065 0.0077 0.0074 0.045 0 0 0.0482

0.0151 — 0.0054 0.009 0.039 0 0.347
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series expansion, resulting in larger errors. See figures 9 and
10 for comparison between original and learned trajectories.

For experiment XA,B, initially the method is incapable of
correctly classifying cells into species A and species B.
Three clusters are identified with suboptimal models (table
3 row 4). Accurate classification is achieved by running the
algorithm with a longer experiment XA,B(long) (table 3 row
5) which is the continuation of XA,B for twice the total time
points, at the same temporal resolution. An initial cluster is

identified containing 97.8% of species B along with 0.2% (a
single cell) of the existing species A cells, followed by a
second cluster with 99.4% of the species A cells and no cells
from species B. The last two clusters correctly partition the
remaining cells (12 in total), again finding accurate models,
allowing for recombination with the first two cluster during
post-processing.

Figure 11 shows a comparison between original and
learned trajectories for XA,B(long) and figure 5 depicts
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Figure 8. Examples of learned and original trajectories from homogeneous populations. (a) XA, (b) XB, (c) XC.

4.2
species A
species C4.0

3.8

3.6

3.4

3.2

3.0
3.0 3.5

x

y

4.0

4.2

4.0

3.8

3.6

3.4

3.2

3.0
3.0 3.5

original
learned
start
end
neighbours

x

y y
4.0

4.2

4.0

3.8

3.6

3.4

3.2

3.0
3.0 3.5

original
learned
start
end
neighbours

x
4.0

Figure 9. Example trajectories from experiment XA,C. Cells with true colour labels are depicted on the left, but are passed into the algorithm unlabelled. The
algorithm then classifies the population into different species and returns accurate models for each species. Classified cells from species C (middle) and species
A (right) are highlighted showing excellent agreement between data and simulation.
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representative Gaussian mixture models. In particular,
figure 5 (left) shows increased overlap between the two Gaus-
sian mixtures in the first iteration, compared with figure 4;
however, model performance is still sufficiently different as
to classify approximately 98% of cells correctly.

4.3. Three-species population
As a final test we identify species from the three-species exper-
iment XA,B,C. Similar to the case XA,B, we see improvements
with a longer time-series XA,B,C(long). For the initial exper-
iment XA,B,C, species C is completely identified in the first
cluster (table 4 row 2), and in the second cluster 98.8% of
species B cells are identified along with 9.1% of species A
cells, leading to a fairly inaccurate model (ΔV≈ 0.06). The sub-
sequent clusters divide the remaining species A and B cells.

Doubling the time series with XA,B,C(long), we find the
majority of each species residing in its own cluster (table 4
row 3). Cluster 1 contains all of the species C cells, cluster 2
consists of 96.1% of species B cells and 0.9% of species A,
and cluster 3 consists of 93.7% of species A. Moreover, the
aggregate models for each of these first three clusters result
in validation errors under 1%.

Clusters 4 and 5 of XA,B,C(long) contain the remaining 31
A and B cells (3.1% of the total population); however, the
learned forces in each cluster are still accurate: we find that
Df , 2% for all forces and all clusters (row 3 of table 4).
The validation error is high for cluster 5, reaching
DV ¼ 35%, which indicates that the cells in cluster 5 have tra-
jectories that are particularly sensitive to perturbations. Given
the complexity of the dynamics (one can observe sharp turns
taken by cells in the bottom two plots of figure 12), trajec-
tories cannot be expected to remain close for all time, and
in this case the validation error (3.19) may be too strong a
metric.10 It is thus remarkable that the aggregate models for
clusters 1, 2 and 3 produce accurate learned trajectories.

For a more in-depth statistical view of the algorithm for
XA,B,C(long), in figure 17 we depict the average pointwise
error and variance of the learned forces fa−r and falign across
all individual learned models for cells in cluster 3. Moreover,
we compare the effects of computing the aggregate model
(given by the coefficients w) as a raw cluster average versus
first performing the model replacement step and then thres-
holding the final coefficients. For each force, we see that
both methods produce satisfactory models to the eye, yet
examining the pointwise error and variance reveals that the

model replacement + thresholding step reduces errors by
orders of magnitude.

5. Discussion
We have introduced a method for performing a combined
classification and model selection task relevant to hetero-
geneous systems of autonomous agents. Specifically, we
have shown that learning an ensemble of interacting particle
models (one for each agent) allows iterative classification of
agents into species according to their forward simulation
accuracy. This is surprising due to the limited information
carried in a single trajectory. Fortunately, the validation
errors empirically approximate a log-normal distribution,
hence Gaussian mixture model classification arises as the
appropriate tool for identifying species membership.

Computational feasibility of this approach is grounded in
the parallel nature of both the learning algorithm and the
simulation component. Learning each single-trajectory
model is cheap, with linear systems of size m × n with m
and n not exceeding several hundreds (see table 7 for
wall times). In the simulation step, each trajectory is validated
separately and in parallel, and neighbour interactions are
computed using the measurement data itself, resulting in
OðNÞ pairwise interaction computations per time step instead
of an OðN2Þ full simulation.11

As previously mentioned, this approach is widely appli-
cable to heterogeneous interacting particle systems, but
there are many opportunities for extension. New techniques
will need to be developed to effectively model particles
which switch behaviours over time, or for non-conserved
particle number (due to e.g. cell division or death). Multiple
species which share force modes but vary in their magnitudes
will also be challenging to identify using the proposed
method. It is also possible that for highly diffusive particles
the validation metric (3.19) is too restrictive, and a purely
position-based metric should be used to classify species.

Lastly, several aspects of this approach deserve a more
technical analysis, which may lead to improvements. We
aim in future work to undertake more rigorous study of
each component of the algorithm as outlined below.

5.1. Learning single-cell models
(I) Information content: It would be beneficial to quan-

tify the information content in each cell trajectory,
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Figure 11. Example trajectories from experiment XA,B(long). Cells with true labels are depicted on the left and classified cells from species B (middle) are species A
(right) are depicted with model output overlapping the input data in each case.
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possibly eliminating trajectories that do not provide
sufficient information. Model replacement, as outlined
in §3.2, is an initial step in this direction. We saw in the
experiments XA,B and XA,B,C that increasing the length
of the trajectory leads to better classification when two
species exhibit similar dynamics. It may be possible
to use existing techniques, such as force matching,
to identify highly informative cells from forces
magnitudes, neighbour distributions, etc.

(II) Noisy trajectories: To focus on the classification task
and equation learning methodology, we have neg-
lected to add noise to trajectories in this work.
However, it is reasonable to anticipate that measure-
ment noise will be filtered out by the weak form as
previously demonstrated on ODEs [62], PDEs [63]
and first-order IPS [12]. We leave full examination
of the robustness to both intrinsic (e.g. Brownian)
and extrinsic (e.g. measurement) noise to future
work.

(III) Model library: We chose the force bases and constraints
to reflect physical properties, namely short-distance
repulsion, long-distance decay, negative alignment,

and negative drag. Directional modes enforce bilateral
symmetry, and are low order (monopole, dipole,
quadrupole). These can easily be adapted to incorporate
other known information; moreover, the bases them-
selves may be adapted to the data (note this is
partially done, using the neighbour distance distri-
bution ρrr to restrict the range of interactions). One
major assumption here is that there is no propulsion
force, that energy is increased only through anisotropic
interactions with neighbours. It would be interesting to
examine whether this assumption holds true.

(IV) Regression approach: We employ modified sequential
thresholding, which looks for an overall sparse sol-
ution, although we threshold only on the term
magnitude ||Gjwj|| and not that raw coefficient wj.
This in particular allows fa−r, falign and fdrag to have
equal opportunity to enter the model despite different
scales and bases used. The effect is that the resulting
model is sparse in the force modes (as described in
§3.3), while each force mode may have many com-
ponents (in fact fa−r is usually not sparse on a given
directional mode). It may be more appropriate to use
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a group sparsity-enforcing method, such as constrained
group LASSO. In general, this lies at the intersection of
approximation and selection, where sparse selection is
required to select the correct modes; however, the
force content in each mode requires approximation.
Explorations of the appropriate balance between selec-
tion and approximation would be valuable.

5.2. Cluster and aggregate
(I) Here we cluster models based on the directional

modes present. This can easily be extended to the
full pattern of non-zero elements in the model vector
bw, although this depends on the number of resulting
clusters.

(II) We have used a simple uniformly weighted average
(3.16) to aggregate models; however, the use of model
replacement (see §3.2) implies that the average is
implicitly weighted according to model generalizability.
Results may be improved if other criteria (e.g. infor-
mation criteria) are incorporated into the weighted
average, or if the median is taken instead of the mean.

(III) In the examples above, the aggregate model is used as the
final model for the give class. Instead, one could further
refine the model by performing an additional regression
combining all data from the identified species.

(IV) Each cell experiences a different total number and dur-
ation of interactions with other cells. Accordingly, the
models identified for each cell have varying levels of
reliability, depending on the amount of information
acquired to inform the model. This necessitated the
development of our ad hoc classification scheme as
we were unable to identify a suitable approach for sort-
ing models with varying degrees of trustworthiness.

5.3. Validate and classify
In practice, the validation errors can easily be checked to
satisfy lognormalcy a posteriori. If this is not satisfied, it
may not be straightforward to cluster based on the validation
error. In particular, chaotic trajectories cannot be expected to
achieve a low validation error, in which case another metric is
needed. In this case, it is reasonable to require that trajectories
to be long enough to compute statistics. We aim to investigate
the requirements for performing classification with chaotic
interacting particles in future work.
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Endnotes
1See table 5 for a complete list of notations used.
2For the artificial data used here, the set of focal cells is the entire
population (N =Ntot); however, in practice imperfectly tracked cells
should be removed from the set of focal cells.
3In order to isolate the classification task, in this work we do not
examine noisy data other than numerical errors arising from coarse
time-sampling.
4In some cases, we can use weak-form integration to eliminate this
step but we do not pursue this in the current work.
5Details on this implementation, in particular C and d, are given in
appendix A.3.
6To limit the computational overhead, we only compute these KL
divergences to cell i’s nearest 200 neighbours in the Euclidean sense.
7As explored in [66], in some cases it may be more appropriate to use
the coefficient median, or take a weighted average; however, the
model replacement step already induces a weighted average. We
leave these concerns for future work.
8By some abuse of notation, "Mðx, v, X, VÞ is used to denote the
instantaneous force on a particle (x, v) from neighbouring cells
(X, V ) under model "M
9See table 7 for simulation wall times.
10We discuss this further in the conclusion but leave a complete
investigation to future work.
11We are not aware of other simulation approaches in the context of
interacting particles that use the measurement data for direct calcu-
lation of the forces.
12In fact each of these parameters was chosen merely to reach a heur-
istic level of sufficiency. For example, we let Δt0/Δt = 2−5 because Δt0/
Δt = 2−6 did not improve simulation accuracy, and we chose K = 32 to
provide a sufficiently large neighbourhood of cells for model replace-
ment. We did not test whether Δt0/Δt = 2−5 and/or K = 16 would also
be sufficient, although these would provide computational savings
and thus are worth examining in a future work.
13In the case of Brownian cells, onemodification could be to estimate the
strength of the Brownianmotion and validate models by averaging over
multiple forwardsimulations of the corresponding stochasticdifferential
equation. We leave this approach to a future work.

Appendix A

A.1. Notation, algorithm hyperparameters
and wall times

In table 5, we include notation used throughout the article
along with locations in the text where each given symbol
first appears and values of hyperparameters used in examples
where applicable (last column). While the list of hyperpara-
meters is quite long (rows of table 5 with entries in last
column, 18 in total), many can be taken sufficiently large (N,
K, Smax, ngmm), sufficiently small (Δt0, λlog, N0

min), or suffi-
ciently dense (l), depending purely on available
computational resources.12 The family of test functions F

given by (3.5) has been demonstrated to work in a wide
range of scenarios [12,62,63], and so may be taken as a fixed
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Table 5. Summary of notation used throughout.

symbol definition location value used here

C set of model clusters based on force modes §3.3 —

C cluster with the most members §3.4 —

(C, d) linear inequality constraint system §A.3 equation (2.2)–(2.4)

(ϵgmm, δgmm) halt classification if PðVE , egmmÞ & 1$ dgmm §3.7 (0.05, 0.01)

( fa−r, falign, fdrag)ℓ forces obeyed by cells in species ℓ §§2.2–2.4 —

f ðiÞforce directional force modes (force ∈ {a−r, align, drag}) §3.3 equation (3.15)

(G (i), b (i)) WSINDy linear system for learning model for cell i equation (3.4) —

K number of neighbour cells chosen for model

replacement

§3.2 32

L number of time steps in data §3.1 —

L0 number of time steps chosen for validation §3.5 0.25L

l set of sparsity thresholds to sweep over §3.1.3 (10−4,…, 1)

λlog small threshold applied to abs. val of w §3.4 10−4

M set of single-cell models §3 —
"M model associated with coefficients w §3.4 —
"Mðx, v, X , VÞ total force on (x, v) from neighbours (X, V ) using

model "M
§3.5 —

N number of focal cells selected for learning §3 Ntot
Ntot total number of cells in the population §2 —

N 0min minimum allowable number of cells in a species §3.7 2

ngmm number of 2-GMM fits to average over §A.4 20

pnf probability used to determine near-field radius rnf
for fa−r

§2.2 0.001

F ¼ ffqg1'q'Q test functions to compute weak time derivatives equation (3.5) equations (3.5)

rff far-field radius, above which fa−r is attractive §2.2 1

s independent variable for cell speed §2 —

S species identified as obeying the model "M §3.6 —

Smax maximum allowable number of species §3.7 10

ðt, btÞ test function hyperparameters §3.1.1 (10−10, 3)

θij angle between vi and xi− xj §2.1 —

Q ¼ ðF a$r, F align, F dragÞ library of force functions for learning §§3.1.1, 3.1.2 equations (3.6)–(3.9)

Δt time step of data §3.1.1 —

Δt0 time step for validation simulations §3.5 2−5Δt

ΔVi validation error of cell i equation (3.19) equation (3.19)

VE set of validation errors §3.5 —

ww true model coefficients §3.1.1 —

bwðiÞ learned model coefficients for cell i equation (3.10) —

w coefficients obtained from averaging the models in

cluster

equation (3.16) —

(X, V ) cell population position and velocity §2 —

(xi, vi) position and velocity of cell i §2 —

(X, V) position and velocity time-series data §3.1 —

(xi, vi) position and velocity of cell i in time-series data §3.1 —

ðxi , viÞ cell i validation data simulated with model "M equations (3.17), (3.18) —

(X
0 i, V

0 i) cell data with ith cell removed §3.5 —
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hyperparameter with minor tuning of the test function hyper-
parameters ðt, btÞ, although it is possible that new application
areas will require a different choice of test function class.

The remaining hyperparameters are problem-dependent.
The force library Q, along with constraints (C, d, which
depend on pnf, rff ) may be altered to include additional
knowledge of the possible force modes present along with
their constraints. The modes f ðiÞforce over which models are par-
titioned (taken to be based on directional dependence in this
work, see equation (3.15)) could be subdivided in other ways,
as discussed in §3.3. The length L0 of time points over which
to validate model simulations, along with the error function
used to define the validation error ΔVi (equation (3.19)) and
hyperparameters related to the GMM fitting process (ϵgmm,
δgmm), may need tuning in the case of severely noisy data
or Brownian cells, or chaotic trajectories, where forward
simulations may not remain accurate for long.13 We conjec-
ture that each of these hyperparameters may be learned
from the given dataset (plus available domain knowledge),
although we leave derivation of a direct map from data to
hyperparameters to future work.

Several hyperparameter choices for the examples above
which were not covered in §§3–4 are listed in table 6.

We include wall times for the main components of the
algorithm in table 7, recorded in Matlab using an AMD
Ryzen 7 pro 4750u processor. Detailed description of the
implementation with respect to possible parallelism is
included in the figure caption.

A.2. Simulation details
All example data were generated from the exact models using
forward Euler with a time step of Δt*≈ 0.00042 up until a
final time of T≈ 26. The time series was then coarsened to
a resolution of Δt = 0.13, resulting in a total of L = 200 time
points for learning. Experiments XA,B(long) and XA,B,C(long)
are simply extensions of XA,B or XA,B,C by an additional 200
time points at the resolution Δt = 0.13. Initial positions were
generated using Latin hypercube sampling in a box of side
length 2. Initial velocities were drawn i.i.d. from a Gaussian
distribution, where for XA,B,C, XA,B,C(long) and XC we chose
a mean velocity of v ¼ ð0, 0Þ and covariance S ¼ 0:0025I2,
and for all other experiments we used v ¼ ð$0:02, 0:035Þ,

S ¼ 0:0014 0:0005
0:0005 0:0012

& '
. The two sets of initial conditions rep-

resent different migratory stages, correlated or uncorrelated
motion. See figures 13 and 14 for initial and final (time step
200) states of each experiment.

In figures 15 and 16, we include statistical information for
species A, B and C in homogeneous experiments as well as
the heterogeneous experiment XA,B,C(long). In each figure,
the top row contains averages of the distributions used to
select validation cells in the model replacement step
(equations (3.12)–(3.14)). The bottom rows contains average
polarization and angular momentum, respectively, defined as

PðtÞ ¼
P

i[IS viðtÞP
i[IS jviðtÞj

(((((

((((( and

MangðtÞ ¼
P

i[IS riðtÞ + viðtÞP
i[IS jriðtÞkviðtÞj

(((((

((((( (A 1Þ

where IS represents all cells in species S∈ {A, B, C} and ri(t) =
xi(t)− xc(t)wherexc is the centerofmass of theentire population.
The order parameters P(t) and Mang(t) are used to characterize
phenotypes such as milling and spreading behaviour (e.g.
[72]); however, they do not appear to indicate strong agreement
with either phenotype in our datasets. Species A and B have
nearly identical speed distributions (top right of each figure),
in contrast to species C, with cells travelling slower and exhibit-
ing stronger alignment (top middle of each figure). Notice that
thealgorithmisable todistinguish betweenA andB cells despite
overall statistical similarity between the two species.

A.3. Constrained sparse regression
The constrained sequential thresholding algorithm requires
solving at each thresholding iteration ℓ a linearly constrained
quadratic program of the form

wð‘þ1Þ ¼ argmin
ws:t:Cw'd
suppðwÞ,Ið‘Þ

kGw$ b2
2k (A 2Þ

where I ð‘Þ is the set of coefficients of w (ℓ) satisfying (3.11). The
constraint system Cw≤ d has the following four components.

Table 6. Hyperparameters used for each example.

experiment m p rnf rff

XA 38 8 0.0497 1

XB 38 8 0.0365 1

XC 32 9 0.0219 1

XA,C 35 9 0.0494 1

XB,C 35 9 0.0499 1

XA,B 38 8 0.0365 1

XA,B(long) 31 9 0.0219 1

XA,B,C 38 8 0.0569 1

XA,B,C(long) 31 9 0.0253 1

Table 7. Wall times for main components of one iteration of the
algorithm, recorded for the XA,B,C(long) experiment (Ntot = 1000 cells and
L = 400 time points). Each component contains an inner iteration which
may be trivially parallelized. The reported times are for one step of the
respective inner iteration. Specifically, it takes 5–10 s to learn each model
Mi , while computation time for the full set of models
M ¼ fM1, . . . , MNg depends on the number of available CPUs. To
form the model clusters C ¼ fC1, . . . Crg, find the largest cluster C,
and compute the averaged model "M, forward simulations of each model
Mi (see §3.2) are performed which take 10–30 s (depending on the
complexity of Mi ). Similarly, computation of each ΔVi requires one
forward simulation (10–30 s). Lastly, to identify S, it takes less than 1
second to perform GMM classification of log10(VE), and the results of 20
rounds of classification are averaged. If full parallelization is available, the
wall time is less than 2 min per outer iteration, or less than 2S minutes in
total, where S is the number of identified species. For comparison, the cost
of generating the data for XA,B,C(long) takes 5–6 h.

xi ! Mi M ! ðC, ðxi , VE ! S

5–10 s 10–30 s 10–30 s <1 s
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(i) fa−r≥ 0 when 0≤ r < rnf: for the near-field repulsion of
fa−r we discretize the region fðr, uÞ : 0 ' r ,
rnf, u [ ½0, 2pÞg choosing five equally spaced points
in r from 10−6 to rnf and five equally spaced points in θ
from 0 to π. Evaluating each of the basis function
for fa−r at this grid results in a constraint system
Ca−r,nfwa−r≤ 0 of dimension 25 × Ja−r where Ja−r
is the number of basis functions used to approxi-
mate fa−r and wa−r is the restriction of w to coefficients
of fa−r.

(ii) fa−r≤ 0when r≥ rff: similarly for the far-field region, we
choose 10 equally spaced points in r from rff to rmax,
where rmax is the maximum observed neighbour–
neighbour distance in the simulation, and θ over the

same points as previous. This results in a constraint
system Ca−r,ffwa−r≤ 0 of dimensions 50 × Ja−r.

(iii) falign ≤ 0: since the basis is positive, the constrain
system here is simply IJalignwalign ' 0, where In indicates
the identity on Rn.

(iv) fdrag ≤ 0: similarly the basis is positive, so the con-
straint system is IJdragwdrag ' 0.

Altogether we get d = 0 and

C ¼

Ca$r,nf 0 0
Ca$r,ff 0 0

0 IJalign 0
0 0 IJdrag
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Figure 13. Plots of artificial data for homogeneous experiments at initial (left) and final (right) times.
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We use Matlab’s quadprog with constraint tolerance 10−10

and maximum iterations set to 1000. Note that since d = 0,
we do not lose feasibility during the thresholding step,

which is possible in general. However, it is possible to arrive
at the zero solution. This further necessitates the parameter
sweep over λ values to select an appropriate threshold.
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Figure 14. Similar to figure 13 but for heterogeneous experiments. Species are colour-coded as in figure 13.
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Figure 16. Similar to figure 15, only for members of species A, B and C within the single experiment XA,B,C(long). In the case of pairwise distributions ρrr and ρvv,
the average is taken over pairs {(xi, vi), (xj, vj)} where i ranges over only the species in question and j ranges over the entire population.
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Figure 15. Statistical information for members of species A, B and C within the homogeneous experiments XA, XB, XC. Top row: pairwise distance density, pairwise
velocity density and speed density (averages of distributions in (3.12)–(3.14) used for model replacement). Bottom row: average polarization and angular momen-
tum over time (equation (A1)).
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A.4. Gaussian mixture model classification
Since the Gaussian mixture model (GMM) fitting is per-
formed using the expectation–maximization algorithm
with random conditions, we perform the GMM fitting for

ngmm = 20 trials and identify S as the cells that in more than

half of the trials appear in the mixture with lowest error.
At some stage in the algorithm, all the remaining cells will

be homogeneous. In this case, a two-species Gaussian is the
wrong model. To account for this, we do an initial fit to a
single Gaussian and compute its Bayesian information cri-
terion (BIC). We accept the two-mixture GMM if the

average BIC of all 20 trial GMM fits with two mixtures is
lower than that of the single Gaussian.

A.5. Visualization tools
In the repository https://github.com/MathBioCU/WSINDy_
CellCluster.git we include the following scripts for visualiza-
tion. (Note that the data can be downloaded at https://doi.
org/10.5281/zenodo.6968448.)

— plot_true_forces.m: plots true forces, as in figure 2.
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Figure 17. Statistical comparison of learned forces fa−r and falign from cluster 3 of the XA,B,C(long) data with and without the model replacement step followed by a
final round of thresholding as in equation (3.16). Left to right: learned force, difference between true and learned force, and pointwise standard deviation of the
individual models. To compute standard deviations for the model replacement + threshold case, individual models are modified to have the same coefficient support
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— visualize_trajectories.m: plots learned trajectories versus
true trajectories, as in figures 8–12.

— plot_modelForce_stats.m: plots statistics related to indi-
vidual models, as in figure 17.

— plot_gmm_script.m: plots Gaussian mixture models
approximating the log-validation errors, as in figures 4–6.

— plot_individual_models.m: view subset of individual
model forces (not included in the figures here).
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