On the approximation of derivative values using a WENO algorithm with
progressive order of accuracy close to discontinuities

Sergio Amat?, Juan Ruiz—Alvareza, Chi-Wang ShuP, Dionisio F. Yéafez®

% Departamento de Matemdtica Aplicada y Estadistica, Universidad Politécnica de Cartagena, Cartagena, Spain
b Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
¢ Departamento de Matemdticas, Facultad de Matemdticas, Universidad de Valencia, Valencia, Spain

Abstract

In this article we introduce a new WENO algorithm that aims to calculate an approximation to derivative values of
a function in a non-regular grid. We adapt the ideas presented in [S. Amat, J. Ruiz, C.-W. Shu and D.F. Yénez, A
new WENO-2r algorithm with progressive order of accuracy close to discontinuities, SIAM J. Numer. Anal. (2020)]
to design the nonlinear weights in a manner that the order of accuracy is maximum in the intervals close to the
discontinuities. Some proofs, remarks on the choice of the stencils and explicit formulas for the weights and smoothness
indicators are given. We also present some numerical experiments in order to confirm the theoretical results.
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1. Introduction and review: central WENO and motivation

In this paper, we design a family of central weighted essentially non-oscillatory (CWENO) schemes that allows to
approximate derivative values. We are inspired by the algorithm employed by Levy et al. in [9], which is designed to
approximate solutions of hyperbolic systems of conservation laws,

{ ur + f(u)y =0, ueR?
u(z,0) = up(x).

In our case, the motivation would be the possible application of the new algorithm to obtain approximations of the
solution of Hamilton-Jacobi type equations,

{ ¢+ H(pz) =0, (1)
o(x,0) = @o(x),
where algorithms that use interpolation to get accurate approximations to the derivative ¢, have been proved to be
very useful. In what follows, we show the construction of the algorithm and provide theoretical and numerical proofs
of its accuracy, but we let the solution of the equation in (1) as future work. Even so, as we show in what follows,
the algorithm proposed can be used as a general technique to obtain the derivatives of a function with singularities,
providing progressive order of accuracy close to these singularities.

In [9] the authors use a uniform discretization in time but not in space, i.e. x; = h; are the spatial grid-points and
t" = nAt are the time steps. In [9], two reconstructions are necessary to design the method: Firstly, a reconstruction
scheme to approximate the average of the function w over a cell at a time ¢". Secondly, a reconstruction of f for the
derivative of the fluxes, @;, which satisfies:

0 1) = Qi) = F (s, ) + O, ()
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where r — 1 is the accuracy attained for the reconstruction of the derivative, and supposing that w at a time t" is
known. WENO nonlinear interpolation methods can be used for this purpose (see e.g. [9, 10, 11]). In [9], a symmetric
strategy is used, but in this work, we construct a general method that is not necessarily symmetric. Therefore, in this
paper, we will construct a new non-linear method to approximate the derivative point-values with progressive order
of accuracy close to the discontinuities adapting the ideas presented in [3]. We will present this method for any r. We
reformulate this problem as follows:

We suppose [a,b] C R and a grid X = {xj}fzo, To=a, v;=0b, Tjp1 =2+ hj, Tip10 =25 +hi/2, 25 10 =
xj —hj_1/2, h=max{h;:j=0,...,J — 1}, and we suppose that there exists L > 0 such that

max{h;:j=0,...,J -1} h

h= - <L.
min{h; : j=0,...,J =1} min{h;:j=0,...,J -1} ~

For a piecewise smooth function f we consider a point value discretization f(z;) = f;, 5 = 0,...,J. In order
to calculate the derivative value at a specific point x;, we take the stencils of r points which contain it, i.e. let
Il = {i—(r=1)+k,...,i+k} be the subindex and the stencils S = {z; : t € Z}} with k = 0,...,r — 1 and
calculate the interpolation polynomial of degree r—1 such that pﬁl(aﬁj) = fj, j € I .- The classic WENO interpolator
is a convex combination of these polynomials: ’

r—1
-1, 71
Pi(z) = Zw;,k: Pix (@),
k=0
where wfgl are nonlinear weights whose value depends on the existence of a discontinuity affecting the stencil. In our
case, we will define

r—1 r—1
dP; dp; k
/ _ ? N\ r—1 2 .
(P (1) = (o) = D el =g, () (3)
It is clear that if the function is smooth at the largest stencil {z;_(,—1), ..., Z;t(r—1)}, then, if the choice of the nonlinear

weights is adequate, we can obtain an approximation of the derivative values of order of accuracy O(h?"~2). However,
when a discontinuity crosses the above mentioned stencil, typically (see, e.g. [10]) , the order decreases to r — 1.
Note that there are two principal differences between classical WENO interpolation for point-value approximation of
a function and the WENO algorithm used to obtain an approximation of the derivative values:

1. When we use classical WENO algorithm for point-value interpolation, we take the stencils which contain x; 1
and z; because, typically, we interpolate at x;_ 1

2. The evaluation of the derivative of the polynomial, P/, Eq. (3), is at x; not at Ti_1-

The key of this method is the definition of the nonlinear weights, that make use of linear optimal weights and that
are defined as follows. Let p%‘g be the polynomial which interpolates f at {x;_(_1),...,Zi}(r—1)}, then there exist
Cr'>0,k=0,...,r — 1 which satisfy:

dp?”(‘)72 r—1 . dp:;l r—1 .
) = O T, Y=t @

The following proposition for non-uniform grid is proved in [12] using the ideas proposed in [6]. We reproduce it here
for completeness.

Proposition 1.1. The optimal weights are determined by:

i+(r—1)

_ T — Ts
cr-t = ||
3,0

)
s—itl Ti—(r—1) — Ts

k—1
C'r_l _ H T; — s _ Z C’T_l H Ti — Tg H Ti—(r—1)+k — Ts
i,k poard it T — Ts ’

: Ti—(r—1)+k — T Ti(r—1)4k — T
ser? gy, (r=1+ y sezp NI, T DF S seTr \T7,

()

with 0 < k <r—1.



Proof. Using Lagrange’s base, we know that:

i+k T
_ — 4t
Ligt@ = ]I )

r; — X
t=ie(r—1) kTt

t#j
then:
i+k d i+k d
r— r— r—1 r 1
pi,kl(x) = Z ijj,k1<x) - %pi,k (z) = Z fio= dx g (),

j=i—(r—1)+k j=i—(r—1)+k
with

d ik 1 i T — T

— -t — .

dx IF () ‘ Z Tj—Ts H Tj — Ty

s=i—(r—1)+k t=i—(r—1)+k
t#£j,s

Therefore:

d ok fi f; L f f Ti—
= ! J (L — i J i s
dpok(Z)__ Z (xi—xj+l'j—1'i . H xj—xs> Z ( i_l'j+.’bj—$i H .’Ej—xs).
= s=i—(r—1)+k JEZLT i} s€Zy \{i,5}
J#i s7#1,]

d 9o _ i i Ti — T
dxp“) (i) = Z (mi—xj+xj—x- H P — '

o 2r—1y g, g 2r—1\ g - Ly Ls
JEIi,Q \{Z} sEIi,O \{Za]}

Analogously:

We can obtain the optimal weights from the equality:

r—1

d 2r—2 . d r—1
dzPi0 (Il)*I;)C g Pk (i), (6)

thus, if & = 0 then the unique stencil of 7 points which contains the point z;_(,_1) is ] . Then, taking the term of
fz—(r—l) we obtain:

0:0_1 i—1 1 i+(r—1) it+(r—1)

T; — T H Ti; — Tg Xy — Xg
I - et I
Ts T;— — I

s:i—(r—l)-{-lmi*(rfl) - (r=1) — i s=i—(r—1)+1 Ti—(r—1) — Ts s=i+1 Ti—(r—1) — Ts
s#1

Now, if we take k = 1 we have only two stencils: S, and S§;; which contain the point z;_(,_1)y1. Then using Eq.

(6) at term f;_(r_1)41, We get:

Ti—(r—1) — T3

r—1 i—1 r—1 1+1
Cz’,o H T — Ts C¢,1 H Ty — Ts o
Ti—(r—1)+1 — T4 smi(r—1) Ti—(r—1)+1 —Ls  Ti—(r—1)+1 — T4 S:i_(r_1)+2xi7(r71)+1 — Ts
s#i—(r—1)+1 sF#1L

i+(r—1)

1 H Ty — Tg
x. . . ’

i—(r—1)4+1 — Ty s=i—(r—1) xl—(?"—l)—‘rl —Ts
s#i,i—(r—1)+1

art= I 2ot [ —EE=— ] Lic(r=1)41 = Ts
il ] i,0 ’

Tj—r+1 — Tk Ti—(r—1)41 — T T — Ts
I?,Bil\zir,l ! SEL] \IT, i=(r=D+ SEIT1\IZO

We suppose that we have obtained the optimal weights C7 ; ,C’ .. Crk L with 0 <k <r —1, we will get C’;gl.

(N

The point z;_(,—1)4x Is in the stencils 8,871, .., S] then for the term Ji—(r—1)4+% in Eq. (6) we get:

zk: H T; — T _ 1 H T; — T
< }

N Ti—(r—1 - T (r—1 —x Ty (1 — .
T Ty \iim(r—t)4ky TR T s Bk Ty G0 gy gy DR T

r—1
Ci t

xz (r—=1)+k —




Then,

k—1
Cr—l — H Ti — Ts - Z CT_l H Ty — Tg H Ti—(r—1)+k — Ts
i,k — it Ty — Tg

Ti—(r—1)+k — T - . Li—(r—1)4+k — T - -
sezzngy, TR T L sezp TR TS e

In Tables 1 and 2 we show the values C;gl, 0<k<r—1forr=2,3and4.
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If we take a uniform grid, the following corollary is a direct consequence by Prop. 1.1. We denote as CZT P ! =C. !
because this value does not depend on the position 3.

Corollary 1.2. Using a uniform grid, the optimal weights for the approximation of derivative values are given by:

2 -1
—1 r—1 2r —2
= =0 .r—1.
C, ( k ) (r—l) , k=0,---,r (7)

Proof. From x; = ih, using the Lagrange basis we have that

itk v — sh i+k
piw= I =5 - nw= Y s
s=i—(r—1)+k j=i—(r—1)+k
s#£1
1+k 1+k
d . o Ji fi i—s
Py (z:) = Z — = H —
dx j=i—(r—1)+k (Z j)h (J Z) i—(r 1)+k‘] 5
J#i s7#4,5
Analogously
i+(r—1) i+(r—1) .
d o o Ji fi i—s
e = Y ((larotn I =2)
dr j=i—(r—1) <Z ‘7>h (‘] l)hs:i—(r—l)j 5
J#i s#£1,5
By induction on k, if K =0 and £ = s — ¢ then
7 . it+(r—1) R
- fi—(f‘—l) 1—S fi—(r—l) i— S
ch t s H . = H - - -
—(r— l)h‘g:i_(r_l)ﬂz —(r—-1)-s —(r— l)hS:i—(r—1)+1Z —(r—1)—s
z’—s-(l:[—l) i s i+ﬁ1) . H o o\ 1
06‘71 = —_— = — < ) .
oy =D =s 0 2L s—it+(r—1) L&+ ( r—1 r—1
We suppose the result for £ — 1 and calculate C,:fl, with 0 <t < k <r — 1. Thus, since
o\ ={i—(r=1),i—(r—=1)+1,...i—(r—1)+k—Lit+k+1,... i+ (r—1)}
ik NI =i+t + 1,0+ kY, (8)

I{:t\I{:k ={i—(r—1)+4¢t....i—(r—1)+k—1},
we obtain:
i—(r—1)+k—1 it+(r—1)

11 S 11 e I

Ti—(r—1)+k — Ls Li—(r—1)+k — Ls Li—(r—1)+k — Ls

5613»%71\I;k s=i—(r—1) s=i+k+1

_’ﬁ r—1—l ﬁ _(r—l)(Z(r—1)>_l(2(r—1))

n oy L ( 7’71 —k k r—1 k
i+k k
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sEI \IT Tj— (r—1)4+k — Ts s=itt41 Tj— (r—1)+k — Ts Zir + r— 1 —k (T‘ — 1)t
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Then, since

()26 00)

by induction hypothesis, by (9) and by Prop. 1.1, we have:

k—1
or-1— H T; — Ts _ Z or-1 H T; — Ts H Ti—(r—1)+k — Ts
* t=0 t Ti = Ts

Ti(r—1)+k — T T (r=1)+k — T
sezy g (r=1)+ s sexp NI, i DF S sezr \I7,

COC) - ) N 00 6

(]

=0
Cr= N2 =)\ T 20— 1)\ G r =1 (r=1) ) (r—1\P /20— 1))
S\ k r—1 k t E—t)) \ k r—1 '
t=0
[ |
In Table 3 some optimal weights are shown. For r = 3, they are the optimal weights showed in [9].
06'—1 C'lr‘—l C;‘—l Cg—l Czl"—l
r=2 1/2 1/2 - - -
r=3 1/6 2/3 1/6 - -
r=4 1/20 9/20 9/20 1/20 -
r=5 1/70 8/35 18/35 8/35 1/70
Table 3: Optimal weights r = 2, 3,4, 5 for a uniform grid.
With these linear weights, we can use the following expressions for the nonlinear weights,
r—1 r—1
o C!
W:;l = %r—l’ where O(Z;l = %19, k’:O, 7’I"—l, (10)
' ijo Q; j ’ (€ + Iix’c )

with Zz;é wf;l = 1. In Eq. (10), the parameter # is an integer that assures maximum order of accuracy close to the
discontinuities, in our case we will take 8 > r and the parameter ¢ > 0 is introduced to avoid divisions by zero, we
will set it to e = 10716, The values I ;;1 are called smoothness indicators for f(z) on each sub-stencil of r — 1 points.

There exist several expressions for I7, . For example, the indicators designed in [8] and [9], which are

7r—1 = 201—1 Firr/z dl r—1 ?
Iy = Z($i+1/2_$i—1/2) / (dxlpi’k (x)) de. (11)

=1 Ti—1/2

These indicators are suitable for the approximation of the conservation laws (1) with discontinuities in their solutions.
The results obtained using them for approximating the derivative values are not satisfactory because they do not
correctly detect kink discontinuities. For approximating the derivative values, suitable for the approximation of the
Hamilton-Jacobi equations (1), the measurement of the smoothness indicators should start from the second derivative
[7, 2]. In this work, we use the formula given in [2] adapted to non-uniform grids:

-1 <« gy [T fd ?
IZk = E (Tig1/2 — Tiz1/2) / <d:vlp;k (ac)) dx. (12)
=2 Ti—1/2

Recently, a new WENO-2r algorithm has been introduced in [3, 4]. Tt consists on exploiting a recursive process to
calculate the nonlinear weights with the aim of obtaining progressive order of accuracy of the approximation close to
discontinuities. In this paper, we adapt these ideas to obtain a new progressive WENO interpolator to approximate the
derivative values. The paper is divided in the following sections: in Section 2 we show the algorithm and construct the
new method for » = 3 and for r = 4. In Section 3, we generalise the results for any r and we give a general expression
for non-linear optimal weights. In Section 4, we present a strategy to compute efficiently the smoothness indicators
and we study the order of accuracy. Finally, some numerical experiments and some conclusions are presented.



2. New WENO with progressive adaptation to discontinuities: cases r = 3 and r = 4

The new algorithm designed by Amat et al. in [3] consists on using the Aitken’s interpolation process [1] to calculate
progressive linear weights. For simplicity, we present two examples and in next section we show the generalization for
any r.

2.1. New WENO for r = 3 with progressive adaptation to discontinuities in non-uniform grids
Let P;l,o be the polynomial which interpolates {x;_2,x;_1, T;, i1+1, Tit2 }, then it can be divided in two polynomials
P?.,o interpolating in {x;_2,z;_1,2;, z;1+1} and pg’ﬁl in {x;—1,%;,Ti11,%ir2}. Therefore, by Aitken’s process, we have
that
T—Tiy2 3 T —Ti—2 3

p?,o (z) = C?,o,o(x)P?,o(m) + 030,1(55)17?,1(95) = %pi,()(x) + fpi,l(x)a
Ti—2 — Ti42 Tit2 — Tj—2

then as pio and pil interpolate f at x;, i.e., pio(xi) = pfl(acl) = f;, we have that:

dp? acs dp? dC3, 1 (x) dp?
PL0 (4) = 00 (i) + G (1) 2 ) + 00 (0) 4+ G () L )

€T
1 3 3 T — Tiq2 dp?’o T —Ti—2 dp?,l
T (pj1(z) = pio(2)) (mz — xi_2> g @)+ trra— ) du (z)

dp?,o Tit2 — T4 dp?,o Ti — Ti—2 dpi1
T () +
dz Tiyo — Ti—2 dxr

().

&
8
I

Ti42 — Tj—2

Analogously,

dp?o Tit1l — T4 dpfo Ti — Ti—2 dp121
ce= () e ) &t

Ti41 — Tj—2 dx Ti41 — Tj—2

dp?,l Tit2 — T; dpzz,l Ti — Ti—1 dp?,z
) = ( ) B+ ) 2w

Tit2 — Ti—1 Ti+2 — Li—1

Then, it is clear that:

C? = (CiQ,Ov 01‘2,17 012,2) = 030,0(030,07 01'2,0,170) + 030,1(07 C¢2,1717 Ci2,1,2)

<5€¢+2=’Ei >(< Ti+1 — Ty > <$iﬂ%—2 > 0)+<$ixi—2 )<O<$i+2$z‘ > (%‘%’—1 ))
- ) ) ) ) 7
Tit2 — Tj—2 Tit1 — Tij—2 Tit1l — Ti—2 Tit2 — Ti—2 Tit2 — Ti—1 Tit2 — Ti—1

then, we define:

~2 A2 A2 A2 N ~3 2 2 ~3 2 2
Ci = (Ci,o»ci,lvci,z) = wi,O,O(Ci,O,Ovci,O,laO) +wi,0,1(070i,1,17Ci,l,Q)a

where 5 5
o . ;0,0 o3 Q0,1 (13)
4,0,0 7 =3 ~3 ’ 4,0,1 = =3 ~3 )
Qjo00 T Q5o Qjo0 T Qo1
with 5 5
Cio0 -3 Cioa (14)

0T e I T e I )

where the smoothness indicators Ii3,0,k1’ k1 = 0,1 in (14) will be defined in Section 4 based on those introduced in [9].
Finally, we apply WENO with the new nonlinear weights, i.e., we calculate:

. 2 dp?,. a2, 2,
Pl(x;) =Y &2, —"(2;), with @} = ———, and ai,=-—=—, k=0,1,2,
' 1; " dx R DY TS Y (e 12"

being Iﬁk, k =0,1,2, the smoothness indicators introduced in Eq. (11).



Using the same reasoning, as a corollary, we obtain the formulas for new nonlinear weights in the uniform grid
case. Thus, we have that

dpy, ng,O 3 3 dp} ng,l(x) 3 3 dp?
E(Cc) = i (z)po(z) + 00,1(1”)%(33) + Tpl(m) +Cy1(x) dr ()
R TR (z—(i+2)h—a Lp% x—(i—2h—a L}ﬁ’
dpg, . 1ldpj 1 dp}
dx (i) = 2 dx (i) 2 dx (i),

dpg . 1dp} 2 dp} dp}, \ _ 2dp? 1 dp3
dx (i) = 3 dx (i) 3 dx (i), dx (i) = 3 dx (i) 3 dx ().

In this case, we will write C;j; s (Ti) = C’,’;; ks, for any ki, k2, k3. Thus, we get:

1 /1 2 1 21 121
C? = (CS,C%,CQQ) = 03,0(03,0703,1a0) + 03,1(07012,17012,2) = 5 (3, 370) + 5 <07 g; 3> = (67 57 6) .

We can see that the linear optimal weights, in this case, are similar to the weights shown in [9].
Finally, we repeat the same steps in order to obtain nonlinear weights.

2.2. New WENO with progressive adaptation to discontinuities for r = 4 in non-uniform grids

We start with the polynomial p?707 which interpolates {x;_s3,x;—2, x;—1, Ti, Ti+1, Tit2, Ti+3} and we apply the same
process, i.e. we want to express the derivative value of this polynomial at z; as a combination of the derivative
values of the polynomials piO and pil at x; which interpolate at the nodes {x;_3,%;—2,2;—1,%;, 11, %ir2} and
{Ti—2,Ti—2,@i—1,Ti, Tiy1, Tit3} respectively, then, again, using Aitken’s algorithm, we obtain:

po(e) = (S22 ) oot + (52 ) whate) -

Ti43 — Ti—3 Ti43 — Tj—3

Bho 0= (3t ) Ohato) =l + (2882 ) oy (Tmves Bl

Tiy3 — Ti—3 Tiyz —Ti—3) dT Tiyz —Ti—3 ) dx

) - (st ) Wl st + (2225 W0 (0 4 (Fte) Wis (.

Tit3 — i3 Tit3 —Xi—3) dx Tit3 — Ti—3) dx

From pj | (x;) = p} o(xi) = fi, we have:

dnb e dn? . dn?
ZZ’O (xz‘):( Tirs ) Pio (xi)+( Tz T ) pz’l(xi).
T Tiy3 — Ti—3 dx Tiy3 — Ti—3 dx

Analogously, we represent p?, as combination of p}, and p?, as
5 Tiyo — X 4 T — X3 4
o —
Pio(T) = < ) Pio(T) + ( )pi,l(z)v
Tit2 — Ti-3 Tit2 — Ti-3

and repeating the same steps we get:

dp?,o . Tiyo — X4 dp;{o Ti — Ti—3 dp?,l
(i) = (i) + (i)

dx Ti42 — Ti—3 dx Ti4+2 Ti—3 dx

We repeat this procedure again to obtain:

i, () = [ —8 0 i (z;) + ( ——Ti=2 i (z;)
de " Tit3—xi_o) dr " Tip3 —xi_o) dx

4 3 3
dpi,O (25) = Tit1 — T dpi,O () + Ti — Tj—3 dpi,l (2s)
dx ! Ti+1 — Ti—3 dx ! Ti+1 — Ti—3 dx v
dpf@ (2;) = Tit2 — T dp?@ (z:) + Ti— Tj—2 dpg’,Q ()
de V" Tito —Tio) dx " Tipo —Ti_o) dx
dp?,z (25) = Tit3 — T; dp§,2 () + Ti — Tj—1 dp?,?,( )
dx ! Ti43 Ti—1 dx ! Ti4+3 — Tj—1 dx v



then, the optimal progressive weights are:

(o :Cf,o,o (Cf,o,o (01007030170 0)“‘014 (0 031 170312, ))+Cio,1 (Cf (O 031 1,0212, )+Cz12(0 0 022270123))
:(iwm_$i><($ﬁf‘i)((zwrﬂ%),<i_mF3>ﬁﬂ>+
Ti43 — Tj—3 Ti42 — XTj—3 Ti41 — Tj—3 Ti41 — Ti—3
—Ti— Ti42 — T4 ¢
) eGamn) Gams) )
Ti42 — Xj—3 Ti42 — Tj—2 Ti42 — Tj—2
Xy — Xj— €T — X €T; — X; Ty — Xj—
) (Gmn) G 2>0>+
LTi43 — Li—3 LTi43 — Tj—2 Ti42 — Tj—2 Ti42 — Tj—2
XTi; — Ti43 — T4
() e () )
Ti+3 — Tj—2 Ti4+3 — Tj—1 Ti+3 — Ti—1

C; :JJ?,O,O((’D?,O,O(C?,O,W013,0,1’07O)""Dio,l(o (o 1 17011270))+‘1’?,0,1( @;1,1(0, c} 1 17011270)4‘%12(0 0, 0122,0123))

Thus, we can define

where
~5 <5 <4
P = Q50,0 - Q50,1 T Q0,0
4,0,0 — <5 ~5 v *4,0,1 T ~5 ~5 y Wi0,0 = =1 ~4 )
o0 T X0 o0 T X0 Q00T Qo
~ ~4 ~4
-4 Q0,1 ot = Q11 ot = Q1,2
501 = =4 | A4 Will = =1 1 Wil = =7 1
Q0,01 Xon Q11T Qg0 Qi1+t Qg
being
1
dl _ CZ k kl
i,k,k1 T ’
(e+Ify,,)°

with [ =4,5, k=0,1, ky = k,k 4+ 1 and with this vector, we apply classical WENO algorithm.
As a corollary, if the grid is uniform we get:

dpg,  1dp 1 dp? dpj 2 dpj 3 dp} dp? 3 dp} 2 dpj
dr ") T 3 T g ) Gy ) = 5y ) T gy (i) Gy (@) = 5y (B E gy (@)
dp} 1 dp} 3dp} dpt 1 dp} 1dp3 dp3 3 dp 1dp}
dr ) = e @) T gy @) @) = g5 @)+ o @),

dp )= g @) gy (@)
Thus, it is easy to check that,

= OS,O (Cg,o (Cg,Ov Cg,l? O’ 0) + Cg,l (07 Cilv C?,Qv 0)) + C’O 1 (Cl 1 (0 Cl 1 Cl 2’

(e )+
1/72/1 3 3 11 1/3 11
—2<5<4 400> 5(072720))%(5(0»2»270)%(0,0, )) (

Finally, we perform the same algorithm to obtain the nonlinear weights.

2 27033))

ct, (0,0,
199 1y
207207207 20

3. General new WENO algorithm for derivative values and general optimal weights

In this section we will generalize the method for any r. In order to compute the linear weights for each “level” we
can prove the following lemma following the same ideas as in [3], i.e., using Aitken’s process as in Sections 2.1 and 2.2.

Lemma 3.1. Let0 <r—1<1<2r—3 and 0 <k < (2r—3) —I. If we denote as C ok andC k41 the values which
satisfy:

dpﬁcl 4 dpi k(i)

dpﬁ k41
d (z:) = Czl,k,k dr + Czlk k+1 dx (1), (15)
then
Li—(r—1)+k+14+1 — Li Li — Ti—(r—1)+k
kak = ) s Cf,k,k+1 = =D . (16)
Li—(r—1)+k+l+1 = Li—(r—1)+k Li—(r—1)+k+1+1 = Li—(r—1)+k

10



Proof. Let r—1 <[ <2r—3and 0 < k < (2r—3)—I. In order to obtain the interpolators pé?’,’cl, pik and plZ-JCJrl the sten-

cils used are {T;_(r_1)4k» > Tie (r—1)bhlb 115 ATim (1) k> - -+ > Tie (r— 1)kt ) AN X5 (1) Ll 1 -+ o5 Tim (rm 1) ki1 )
respectively. Then, using Aitken’s interpolation process [1], we obtain:
1+1 Ti—(r—1)+k+i+1 — T 7 Ti(r—1)+k — T !
i) = ( JERCE e
Ti—(r—1)+k+i+1 — Ti—(r—1)+k Ti—(r—1)+k+l4+1 — Ti—(r—1)+k

If we differentiate the previous expression:
dpl-‘rl 1

() = @) — ()
du : xi_(r_1)+k+l+l_xi—(r—1)+k( 41 (@) & (

< i (r—1)+h+l+1 — T ) dp), (z) — ( Ti—(r—1)+k — > Ap} g1 ()
T (r—1)h+l+1 — Tie(r—1)4+%/ dT T (r—1) k141 — Tie(r—1)+k dx '

since pli’kﬂ(xi) = pik(%), we get:

djr)lJrl Ti (r—1)4k — dpﬁ T — Ti_ (e dpﬁ
(2:) = <m ( i—(r—1)+k+l+1 > K xi)+( i—(r—1)+k ) AL

dx —(r=1)+k+14+1 = Ti—(r—1)+k dx Ti—(r—=1)+k+1+1 — Ti—(r—1)+k dx

It is trivial to check that for all 7 we have:

Clhx+C! b1 =L 0<r—1<1<2r—3and 0 <k < (2r—3) 1.

7‘7 9
As a corollary, we can calculate the optimal weights if the grid is uniform.

Corollary 3.2. Let 0 <r—1<1<2r—3 and 0 <k < (2r —3) — I, if the grid is uniform, i.e. there exists h =1/J
such that x; =a+7-h, 0 < j < J and we denote as C,ék and C,lmk_|r1 the values which satisfy:

dpit! dpj, dple
dr (z:) = Clx dk( ;) + Cj, k+1T;(wi)7 (17)
then k—(r—1)+(1+1) (r—1)—k
l =D+ 0+ r—1)—
Ck,k = I+ 1 ) Ck,k+1 = T (18)
Proof. It is direct by Lemma 3.1 and z;j =a+j-h, 0 <5 < J. [ |
We apply Eq. (15) for each level and we get:
dp?r(;Q ! 2 3dp?; s : 2r—3 s 2r—4 dp?; !
7(“) - Z i o,JoT;(Ii) - Z Ci0.jo Z Ci ot dml (i) | =
Jo=0 Jo=0 Jj1=Jjo
1 jo+1 Jr—a+1 Jr—3+1 dprfl
o 2r—3 2r—4 r—2 r—1 1,)r—2
- Z Cl ,0,70 Z C 3,90.J1 | """ Z Ci,jr—4,jr—3 Z Oi7.j'r737j'r72 dx (xl)
Jo=0 J1=Jjo Jr—3=Jr—a Jr—2=jr—3
(19)
Thus, if we define the weights and the vector C’{’fcl with0<k<r—2as
Cio' = (Cioh,Clo1,0,...,0), CiTt = (0,C771,CI75,0,...,0) ..., Ci 1, = (0,...,0,C0 5, Oty 1)( |
20
where Cirgﬁlk, C’”k p1 are defined in Eq. (16), then we get that:
1 Jo+1 Jr—a+1
2r—3 2r—4 r— r—1 _ r—1 r—1 r—1 r—1
Z Cﬁ ,0,90 Z Ci ,J0,J1 e Z C J7 —4,Jr— 3Ci,j,.,3 ce - (Ci,O ’Ci,l ). Cz r— 1) Ci ’ (21)
Jjo=0 J1=Jo Jr—3=Jr—a

11



being C’;;l, 0 < k <r —1 the optimal weights obtained in Prop. 1.1, Tables 1 and 2 for r = 2,3 and 4. Analogously
in uniform grid case.

We have a tree scheme, where each branch produces a polynomial of a determined degree. Now, the idea is to use
all the points which are not contaminated by a discontinuity. In order to follow this idea, we reduce this branch to
O(h?) using nonlinear weights as follows:

We substitute in Eq. (21) the linear weights by nonlinear weights

1 l
o C:
l i,k k1 l i,k,k1
Wikks T oT L Gk T 3 ky =k, k+1, (22)
ek T Ykt €T 4 bk
where 0, € are the parameters above mentioned and I}, %, are smoothness indicators defined at level [ =r,...,2r —3.

Therefore, the last ingredient of this scheme is to define the indicators in order to “remove” (to obtain O(h?)) the
non-suitable branch. We will use the strategy used in [3] explained in detail in Sec. 4.
Finally, we define the new weights as:

1 Jo+1 Jroatl
Fr—1 Sr—1 Ar—1 Sr—1 Ar—1 2r—3 2r—4 -2 -1
C;‘ = (CZ:O 70{,1 LA Ci?:r72’ C;Tfl) = Z wojnjo Z wixgole T Z wz,j,,,,4,jr,3cijr,3
Jo=0 J1=Jjo Jr—3=Jjr—a
(23)
o e . = —1 ~p—1dpiy} .
Using C ', we apply classical WENO and calculate P/ (xz;) = Z:é wz’kl pd‘; (x;) with
df;l é«r;l
ol —"— and & '=—"—— k=0,...,r—1 (24)
i,k Z;:(l) i i,k (6 + Iir;kl>9
4. Smoothness indicators and analysis of the accuracy
Let us start with the analysis of the smoothness indicators presented by Amat and Ruiz in [2], Eq. (12):
r—1 Tit1/2 dt 2 r—1 h;, + h, 20=1 pxipqy0 dt 2
-1 2l—1 -1 -1 -1
Iy = Z($i+1/2 — Ti_1/2) / <dxlp£k (33)) dr = Z <121> / (dxlp;’k (:E)) dx,
=2 Ti-1/2 =2 Ti-1/2
k=0,...,7 — 1, in non-uniform grids. We use the same ideas introduced in [6]. First of all, at the smooth zones we

obtain I Z;El = O(h*) using the following adapted result proved in [2].

Lemma 4.1. Let 0 < k <r—1 and p;;l the interpolating polynomial of degree r — 1 > 2 of f that uses the nodes of
the stencil S; . Then, the smoothness indicator obtained through (11) satisfy

O(h*), if f is smooth in S/ 1
I;Z*l =< O(h?), if f has a corner discontinuity in Sl 1
O(1), if f is discontinuous in Sj,

being h = max{h; : j =0,...,J —1}.
We will prove the following auxiliary lemmas using the ideas presented in [6].

Lemma 4.2. Let 0 < k,k; < r—1 and let I'', n = k,ky be smoothness indicators of f on the stencil Sin =

,m

{Tie(r—1)n> - Tign}- If [ € C"([Tign—(r—1), Titn]), then

I:El o ‘[7:;11 _ O(hr+3).

12



Proof. Let pl % ,pz kl be the two interpolating polynomials of f of degree r—1 > 2 at nodes in the stencil S7,, n =k, k1.
Ask # Ik and 0 < kyky <r—1then f € C"([wi—1,%441]), if 1 <I<r—1, 2 € [w,_12,%it1/2] C [Ti—1,Ti41], we have
that |(p]," () — f(fv))(”\ <O(h"), and

(@) = (" ) 0@) (1) + @ @)
(25)
O(hr Z)O( ) =O0(h" 7).

Therefore, we get

1:;1 _ Tz_:l (hz +2hi—1>2l_1 /$i+1/2 (f(l)(fﬁ))z dr

=2 i—1/2 1=2 i=1/2
r—1 21—1 .
hi +hi_1 Tit1/2 - 2
(=) [ et enor - (10w@) | as
=2 Ti-1/2
r—1 21
hi + h;_ _
< (+1> O(h™ Y
2
=2
< 19 h7'+3)_
(26)
Thus, we obtain:
r—1 20—1 .
B B B hi + hi 1 Tiy1/2 2
r—1 r—1 r—1 7 i 1
Ii,k _Ii,kl < Ii,k Z( 9 ) / (f()(:v)) dx
=2 Ti—1/2
r—1 20—1 v
hi + hiq Tit1/2 2 (27)
=Y (2 > / (1) de
=2 Ti—1/2
=O(h"3).
|

Lemma 4.3. Let 0 < k,ky <r—1,1 < 0 and let I'""', n = k,ky be smoothness indicators of f on the stencil
Sl = {Zir—1)4n> s Tign} and plel be the interpolating polynomial of f at nodes in the stencil S . If f €
C™([@in—(r—1), Titn]) and e = O(h*) or Ii’;;ll = O(h*) then:

I =1 _
S =0T, (28)
€—1I; o
and
1 1 +O(hr_1)

= . 29
(=1~ =1 )

Proof. The proof of Eq. (28) is direct by Lemmas 4.1 and 4.2. In order to proof Eq. (29), we use the following
algebraic manipulation (see [6]):

1 B 1 n 1 Izrkll Iz‘r,kloi:l "'Izrkll
e+ 110 (e+ 1500 (e+ I\ et I g \et Iy

Notice that if I;;ll = O(h™) with m > 4 and 0 < € < h™ is a fixed value, then Lemma 4.3 is not satisfied and the
optimal order is not obtained. This is explained in detail in [6]. In all our experiments, as we have mentioned in
Section 1, we have set ¢ = 10716, This way, the order of accuracy of the smoothness indicators will be O(h*) at the
smooth parts of the data. In the rest of the paper, we always consider these conditions.

13



Proposition 4.4. Let 0 <k <r—1,1<6 and wzgl the nonlinear weights defined in Eq. (10), then

Y=0(1), if f is smooth in S/ ks

Wik
Wit = O(R*™Y), if f is not smooth in Si k-

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative.
Also, if f is smooth in {x;_(_1),...,Titr(r—1)} then:

zk Crkl —|—O(hr 1)
being C;;l the optimal weights defined in Eq. (1.1).

Proof. Let be 0 < k,n <r — 1. If f is smooth in S, then using (10) and Lemma 4.1:

crt
of—l _ i,n h 49 Za h 46)
; -1
(e 0
then it is clear that, if f is smooth in §7
ar—l
Wiy = o = 0,
Zl 0 0‘11
and if f is not smooth in &7,
' ar—l
w;{‘;l ik O(hQ’rn@)7

Zl 00%1

being m = 2 is the discontinuity is in the function and m = 1 is the discontinuity is in the first derivative. Finally,

if f is smooth in {2;_(,—1),...,Tiy(r—1)}, we fix a value 0 < k; <7 — 1 and using (29) in Lemma 4.3, we get for all
0<k<r-—1:
- oy crili+omt)) A 14 O(h™1)
G = e i ] - Z *ﬁ'
(e+1ik) (e+ 17y, )’ + 1)’
Therefore,
. crptarons ) 1
ol Yk e G (T OTT) Crl 1+ 0(h™h)
ik T 1 r—1 1+O0(hm—1 - r—1 — Yk :
=0 ﬁ 1+ O(hr=1)

i,kq
|

In order to construct the smoothness indicators for each “level”, we consider where the discontinuities are placed.
In order to clarify the explanation we start with an example, for r = 4. In Sec. 2.2 we have seen that we should define
I! ek, Withl=4,5,k=0,1, ks = k,k + 1, then we have the following scheme:

Z7 k]
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{"Eifg, e

{LL’i_g, e 7xi+1} C?,O,Op?,()’
i,0,0péil,O<
{Ii_%, .. 5, IH_Q} C??’,O,lp'il?
Ci,O,Opi,O
021,1]9?,1»
014,0,110?,1<
{Zi—a,. .., Tiyo 0217229?727
Pgo
’xi+3} {.’L‘i_g, e ,xi+2} C?,l,lp?,l’
Ci,l,lpi,1<
021,217?,27
020,11’?,1
{Ti—o,...,xiy3} 013’2’21)?’27
014,1,217?,2<
{l‘i_l, vy Tig3 032)3])?’3’

Sto=A{wis,wi2,wi 1,2}
Sty =A{zic2, wio1,wi, v}
814,1 = {951'—2,%71,%,%“}
814,2 ={Zi—1, i, Tit1, Tita}
514,1 = {%—2,%—1,%,%4—1}
814,2 ={i-1,%i, Tit1, Tiya}
51'4,2 = {$z‘—1,$i7$i+1,$i+2}

4 _
Siz =A{Ti, Tiy1, Tite, Tiva}

Figure 1: Diagram showing the structure of the optimal weights needed to obtain optimal order of accuracy for r = 4.

We suppose that the discontinuities are far enough from each other, i.e., there only exists one discontinuity at an

interval. Thus, we have the following cases:

e There does not exist any discontinuity: We use all the weights.

e There exists a discontinuity at (z;4o,z;+3): In this case, the points that are used to construct the interpolator
are {x;_3,...,zi12}. Therefore, we have to obtain wg , = O(1)

rest of the weights are not important because wal

choosing 11‘6,0,0 = 12070 and we get the desired result.

{1‘1‘,37 ce

Figure 2: First case: discontinuity at (z;42,%;+3). Red: polynomials that are not used. Blue: polynomials that are used.

e There exists a discontinuity at (x;y1,2;42): The largest stencil not contaminated by the discontinuity is

5
7&}0,1—0

{Zi—s,. ., xiy1} Cig,o,op?,m
Oi,(),()pi,()
{l’i,g, . 5, ZC7;+2} Czo,lp?,lv
CYo0P50
021,117?,17
030,12721,1
{I‘i_g, ... ,Q?i+2} 03172])22’
P?,o
’Ii+3} {11_2 ,.’I,'H_Q} C’l?-,l,lp?,l?
ﬁl,lpul
031,217?,27
Cis,O,lpg,l
{l’i,Q, . 7xi+3} 03272[)?,27
Cﬁ1,2pi2
{Il?i,h - ,11?7;+3} 0152’3[)153’

15

(h?), Wé,o =0(1) and Wé,1 = 0O(1) (the
O(h?)). Notice that using the scheme in Fig. 2, we are

4 _
Si,O - {Iz‘—:a, Lj—2,Li—1, a:,}
St — [, ) o
i,1 — {Timo,Tim1, @i, i }
4 _
31‘,1 = {xi—2zxi—1,$i,$i+1}
4 _
51',2 ={@i_1, 7, i1, Tigo}
St — [ )
i1 — {Iz,727m171a-1/za-1/z+1}
4 _ o e
Sv‘,,2 ={Zi1,Ti, Tig1, Tiva}

Sflz ={Zi 1, T4, Tiy1, Tiva}

4 PO, e o
52»,3 = {tLi:tLi+l:tLi+2:tLi+3}



{zi—s,..

., %41} Therefore, we have to obtain wj; = O(h*) and

wg”o = 0(1), wg’o = O(1) and wé’l =0(1). In

Fig. 3 we write in red the branch that is not used because a discontinuity is contained in the stencil. In green,
the stencil that is used although it contains a discontinuity and in blue, the stencils which do not contain any
discontinuity. Therefore, we define I, ;= I}, and I, | = I}, ;.

{Zi_s,...,Tis1} Cloopios Sio = {@i-s, Ti2, wi1, 2}
Cz’,O,Opi,O
{iL‘i,(}, e LL'Z'+2} C?,O,lpih 8141 = {xi*% Li—1,Ti, xi+1}
C7o.0Pi0
021,117?,17 3;4,1 ={zi2, i 1,5, g1}
Cio,1p§,l71<
{$i727 s ,l’i+2} 03172]9?727 SL42 = {Iifl, Ly Lit1, .’L’¢+2}
Pg,o
{xi737. “7xi+3} {Ii_g,... ,IH_Q} Cg,l,lp?,lﬂ Sz41 = {‘Ti*?vwi*lvxivxiw%}
C;l,l,lp?,l<
C?,l,zp?,za Sffz ={@i 1,7, Tip1, Tita}
C?,O,lp?,l
{zi—o,...,xiy13} 022’2]3;‘.5’2’ 31472 = {@i_1, T, Tig1, Tiga}
014,1,217?,2<
{‘,L.’L'717 sy Tit3 1;72,3])?73, 8245 = {T,, Tit1yTit2, ’L’,+3}

Figure 3: Second case: discontinuity at (x;41,i4+2). Red: polynomials that are not used.

affected by a discontinuity but not eliminated branch.

Blue: polynomials used. Green: polynomial

e There exists a discontinuity at (z;,z;4+1): The largest stencil that does not contain a discontinuity is 514,0 =

3 4 _
i,0,0P17,0> Si,o = {xi—s,zi—z,ﬂ%—l,iﬂz‘}

3 4 _
0,1Pi15 Si.l - {3371—27-77i—1a1371,£177:+1}

3 4
1,1P5,15 Si,l ={zi2, i1, T, Tiy1}

3 4 _
1,2P5 25 Si,2 = {mifhxm?«”iﬂwwz}

{zi—3,...,x;}. In this case, only the classical WENO interpolator can be recovered.
3
{wis, ..., 21} ¢
Ci,(),()pi,()
3
{117%,%‘LZ+2} Cz
Clo.0Pio
3
c;
4 4
Oi,O,lpi,l
{Timo, ..o, Tita} c3
6
Pio
{361'7 -,---’J?z‘+3}

)
5 .5

Ci,O,lpi,l

{215,

. 7xi+3} C3

Ci12Pia
{961'717 cee ,$i+3}

{wicg, ..., 2it2} ¢,
01,4,1,1173,1
c?

C3

17

Z,

3 3 4 _
1,1P5,15 Si,l = {$i72=$i71,9€z‘,$i+1}

3 4 g . _
1,2Pi.25 81:,2 = {$1717x17x1+1:xz+2}
3 4 _ .
2,2P5 2> Si,2 - {xl*1711711+1711+2}

3 T
2,3Di,35 37:73 = {&i, Tit1, Tivo, Tiys}

Figure 4: Third case: discontinuity at (x;,z;41). Red: polynomials that are not used. Blue: polynomials used. Green: polynomial affected

by a discontinuity but not-eliminated branch.

e The rest of the cases are symmetric.



Hence, if I;El, k=0,...,3 are the smoothness indicators defined in Eq. (11) for » = 4 then:
5 3 5 3 4 3 4 3 4 3 4 3
Ii,O,O = ]i,O? Ii,O,l = ]i,3? Ii,O,O = Ii,O? Ii,O,l = Ii,2? Ii,l,l = Iz‘,1» Ii,1,2 = Ii,3' (30)
Using this example, we introduce the following definition.

Definition 1. General smoothness indicators.
Let IZ;;l, with k = 0,...,r — 1 be the smoothness indicators shown in Eq. (11), then we define the smoothness
indicators for any r as:
I —IZT;, k=0,...,(2r-3) -1,

Z? 7

I (31)
Ii,k),k}+1 :Ii,l+k+2—r7 k:O,...,(2r_3)_l.

with r <1 <2r — 3.
The following lemma is similar to Prop. 4.4 for nonlinear weights at each level.

Lemma 4.5. Letr <1<2r—3,0<k<(2r—3)—1,1 <6 and let wg,k,kl’ with k1 = k, k+1 be the nonlinear weights
defined in Eq. (22) then

1. If neither I! gk and I! kks1 are affected by a discontinuity, then wzkk = Czkk( + O(h™1)), w§7k7k+1 =
Cf,k,k“(l + O(hr ).

2. If I ki1 08 affected by a singularity then w! ik =1+ O(h*™), wé,k,k+1 = O(h?m9).
3. If I! i kk 18 affected by a singularity then wz k= = O(h?m?), wihk“ =1+ O(h?>m?).
Here, m = 2 if the discontinuity is in the function and m =1 if the discontinuity is in the first derivative
Proof. Tt is similar to Prop. 4.4: From C! ket C! ki1 = 1, using the definition given in (22), we have that:

LI 1L, = O and I}, ., = O(h*), by Eq. (29) in Lemma 4.3, we get:

ol Cliw  Clip(1+0()
i,k,k — - )
(e+ If,k,k)e (e+1I! k1)’
l M 1 r—1
wl _ ai,k,k} _ (E+Ii,k,k+1)9 _ Ci,k,k:(]‘ + O(h ))
PRl el gy Clas(HOTY) |l Cly e+ 0 =) +Cly iy
(E+Ii,k,k'+1)9 (6+1L,k,k+1)9

= Cl 1+ 0 ).
Analogously for wé) Kkl

2. If If,k,k = O(h*) and Il{hk“ = O(1) if the discontinuity is in the function or I kxr1 = O(h?) if the discontinuity
is in the first derivative:

Wl‘kk: Cl (€+Ikk+1)9
o Cf,k,k(€ + I &, k+1) + Oi,k,k+1(€ + ﬂ #)°
B Chple+ 1y p41)° B Czkk(6+l ggrr) 1
e RGeS I! errn)? T O(A) B Cg,k,k(e + 1! rrr)’ 1+ % (32)
trl L
=1+ 0(r*™),
Clipar (e + 1)’ B O(h*?)

= O(h=™% =0, 2.

!
W = —_— =~
b Of,k,k(e + If,k,kﬂ)e + Cf,k,kﬂ(e + If,k,k)e O(h™?) + O(h*?)
3. Analogously if I}, , = O(1) and I}, ., = O(h®™).
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|
If we analyse the examples presented, we can determine a rule for the weights and try to prove it. In the first case,
Fig. 2, the discontinuity is in the interval (z;(,— 1), Tit(lo— 1)) = (xi12,%i13), (l.e. g = 3), and we can see that the

branch marked in red is the one corresponding to p},, thus wh 01= w(r Q)HO = W}, should be O(h?). In the second

case, Fig. 3, the discontinuity is in the interval (CCz+1, Tit2), (lo =2), and the red branches are in the corresponding

to p};, then wl(ro 12)+l° =wyy, and wP ; should be O(h?). We prove that the weights of the different branches which

contain a dlscontmuity go to 0 as h — 0, in the following lemma.

Lemma 4.6. Let 2 <ly <7 — 1. If f is smooth in [x;_(r—1); Tit(r—1)] \ (Tit19—1)s Titio), then for all (r —2) + 1o <
[ < 2r — 3 the nonlinear weights defined in Eq. (22) satisfy:

Wﬁ,o,o =1+ O(h*™), Wf,o,l = O(h*™9).
with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative.

Proof. Let 2 < lp <7 —1and (r —2)+ 1y <1 < 2r—3. If the discontinuity is in (z;4¢,— 1),x2+lo) then Iﬁal =
O(h*) since S = {#i_(r—1),...,2;} and lp > 1. Subsequently, the stencil used to calculate IZ o 188, =
{Zi—r—1)4i42—r - > Tigig2-r}, a8 (r —2) + 1o <1 < 2r — 3 then Iy < [+ 2 — r, therefore I:lJrlQ . = O(1) if the
discontinuity is in the function or I}, +12 . = O(h?) if the function contains a kink discontinuity. By Def. 1 we have

that If,o, IfH_l2 . =O(h™), m =0,2. Using Lemma 4.5 we finish the proof. [ |

Lemma 4.7. Let 2 < lg < v — 1. If f is smooth in [z;_(r—1); Tit(r—1)] \ (Tit@o—1) Titi,), then for all r < 1 <
lo+ (r —2) — 1 the nonlinear weights defined in Eq. (22) satisfy:

wé,k,k = Czlkk +O(h ), wé,k,kﬂ = Cf,k,kﬂ +OM™Y), 0<k<ly+(r—2)—1-1, (33)
being Cf,k,kl with k1 =k, k+ 1 defined in Eq. (16).

Proof. Let 2 <lp<r—1landr <l <ly+ (r—2)— 1. We analyse the stencils used to calculate Il{k’k and Ié,k,k-q—l
with 0 < k <lp+ (r—2) — 1 — . First of all, we take into account two previous considerations:
From r <[, we get:

0<k<lp+(r—2)—1-1<lp+(r—2)—1-r=1y—3, (34)
and from k <lp+(r—2)—1-10:
I+k+2—r<l+lh+@r—-2)—1-14+2—-r=1—1 (35)
By Def. 1 we have that:
1. If,k,k = Ifkl, then the stencil used is 87} = {=i_(r—1)4#,-- -, Titk}. Using (34), the stencil does not cross the

discontinuity and Ii,k’k =1/ =0

2. If,k,kﬂ IZZ+1k:+2 ,» then the stencil used is Sf; ;.0 , = {Ti—(r—1)titht2—r> - s Titlskt2-r}. Using (34),
analogously, I z,k,k+1 Iz’"l_:kﬂ . = O(h%).
By Lemma 4.5 we get the result. |

With the ingredients presented in the previous sections we can prove the following lemma. We suppose that the
isolated discontinuity is to the right of the point x;. By symmetry, the analysis for the left side would be similar.

Lemma 4.8. Let 2 <lo <7 — 1. If f is smooth in [2;_(r_1), Tit-(r—1)] \ (Tit(19—1)> Tit1,), then the nonlinear weights
&)2;1, k=0,...,7 — 1 defined in Fq. (24) satisfy:

(@t @it et = (é;gl +O( Y, CiT + O, L crlo1 L O™, 0(R*™%), ... O(h*™?)), (36)

1,r—1

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative, being

dpf’—‘rlo 2 lo—1 ) dp’l“;l
Doy =Y Crpt Pk (),
dx (z:) kZ::O bk dy (z:)
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Proof. Applying Eq. (19) to the interpolatory polynomial pfgl”*z and Lemmas 4.6 and 4.7, we obtain that:
(Whohwith - wi ) = (Gl + O h), Gl + O™, G + O, 0(h*™), .. O(h*™?)), (37)

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative, being

dpi"? N
: —1%Pi
W ) S e
k=0
As Zif;ol CA'{:? =1 we get the result. -

Using Lemma 4.8, it is easy to prove the main result. We obtain a progressive order of approximation for the
derivative values close to the discontinuities.

Theorem 4.9. Let 1 < lg < r — 1 and let @:7;1 be defined in Eq. (24) with 6 > r — 1. If f is smooth in
[Ti(r—1)s Tig(r—1)] \ @ and [ has a discontinuity at Q@ then

r—1 dpffl df 9] 2r—2
~r—1 "tk N_ Wy (h )a if Q= ;
kX_:ka dx (3) dm(xz)—{ O(h(?“—?)-i-lo)’ if Q= ($z+(lo 1)7$z+lo>~ (38)
Also, if lg > r — 1 then:
) df
~r—1 i,k 2r—2
i) — 5 (% h .
> ) = ) = 00 (39)

l
Proof. 1f f is smooth in the stencil {@;_(—1)4&, - -, Ti—(r—1)+k41} then %(wi) - %(xi) =0(h). Let2 <1y <r—1,
then

r—1 dprfl df r—1 dprfl(ir) dplo+r 2 dpl40+r_2 df
~pr—1 i,k N Y N ~7ln_1 i,k 7 ) 2,0 N Y )
kz_%)wi’k dx (:) dx (1) i me dx dx (s) + dx () dx (i)
r—1 R pr 1
=D @ = O = () + O
’ dx
k=0
lp—1 pr 1 7‘ 1 f
~p— A — i,k T T
= (wklc%kl)<d (z)$z>+z 1( (Z),d( ))+O(h+lo 2)
k=0 k=lo

O

(hr 1+r— 1)+O(h2m0)+0(hr+l0 2) O(hrJrlon).

Therefore, we have proved that, when the isolated discontinuities affect the stencil, we get maximal order in a
neighbourhood of the interval where it is located. In the next section we show some experiments that confirm this
theoretical result.

5. Numerical experiments and conclusions

In this section we present some numerical experiments in order to verify the theoretical results shown in previous
sections. We will use the following function:

219 — 2% + 28 — 427 + 26 4+ 25 + 2t + 23 + 522 + 3z, x <0,
o) ={ (40)

n— (21 — 229 + 328 — 827 — 225 + 2% — 22 — 323 — 52% + 3z), >0,
discretized in the interval [—~&,1 — §] using J, = 2¢ + 1 uniform spaced points where n = 0, 10. In the first case, the
function fy is continuous but it presents a discontinuity in the first derivative and in the second case, f19 has a jump

discontinuity. We denote the interval where the discontinuity is contained as (z;_1, ;) and we compute the error as

d
6?0 = %f(xiﬂo) —ap(wiq,)|, (41)

being ap the approximation of the derivative values using the following methods:
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e [lin-(2r — 2)] Linear Lagrange method using a centered stencil of 2r — 1 points.
e [WENO-(2r — 2)] Non-linear using the classical WENO algorithm explained in Section 1, Eq. (3).
e [p-WENO-(2r — 2)] New progressive order WENO algorithm introduced in this work.

Finally, we compute the numerical order of accuracy using the formula:

q
elo

edtt
0

q9 _
Olo—

(42)

We start using a large stencil of 5 points, i.e. r = 3, and, using the linear method, we expect to obtain four consecutive
points where the order is lost. Using classical WENO method, we will typically obtain order 3 at the points where
the order is lost using the linear method. Using the new algorithm we expect to obtain progressive order of accuracy
(r—1,r2r —2) =(2,3,4). We show the results for » = 3 in Tables 4, 5 and 6 for fy and 10, 11 and 12 for fi¢. For
r = 4, we can see the results in Tables 7, 8 and 9 for the first experiment and 13, 14 and 15 for the second one. It
is clear that the new algorithm produces better approximation close to the discontinuity. We obtain the same results
to the left of the discontinuity. Finally, it is important to remark that if the function is continuous but it presents a
discontinuity in the first derivative, i.e. a kink, we can not use the smoothness indicators introduced in Eq. (11).

6. Conclusions

In this work a new WENO algorithm with progressive order of accuracy close to discontinuities has been introduced.
It allows to calculate approximations of derivative values of a function using regular or non-regular grids. It is based
on the same ideas used in [3] which consist in using Aitken process to calculate the nonlinear weights. The explicit
formulas for the optimal weights have been showed and the order of accuracy in each interval has been proved. Finally,
some experiments have been presented that confirm the theoretical results obtained.
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