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Abstract

In this article we introduce a new WENO algorithm that aims to calculate an approximation to derivative values of
a function in a non-regular grid. We adapt the ideas presented in [S. Amat, J. Ruiz, C.-W. Shu and D.F. Yáñez, A
new WENO-2r algorithm with progressive order of accuracy close to discontinuities, SIAM J. Numer. Anal. (2020)]
to design the nonlinear weights in a manner that the order of accuracy is maximum in the intervals close to the
discontinuities. Some proofs, remarks on the choice of the stencils and explicit formulas for the weights and smoothness
indicators are given. We also present some numerical experiments in order to confirm the theoretical results.
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1. Introduction and review: central WENO and motivation

In this paper, we design a family of central weighted essentially non-oscillatory (CWENO) schemes that allows to
approximate derivative values. We are inspired by the algorithm employed by Levy et al. in [9], which is designed to
approximate solutions of hyperbolic systems of conservation laws,{

ut + f(u)x = 0, u ∈ R2,
u(x, 0) = u0(x).

In our case, the motivation would be the possible application of the new algorithm to obtain approximations of the
solution of Hamilton-Jacobi type equations, {

φt +H(φx) = 0,
φ(x, 0) = φ0(x),

(1)

where algorithms that use interpolation to get accurate approximations to the derivative φx have been proved to be
very useful. In what follows, we show the construction of the algorithm and provide theoretical and numerical proofs
of its accuracy, but we let the solution of the equation in (1) as future work. Even so, as we show in what follows,
the algorithm proposed can be used as a general technique to obtain the derivatives of a function with singularities,
providing progressive order of accuracy close to these singularities.

In [9] the authors use a uniform discretization in time but not in space, i.e. xi = hi are the spatial grid-points and
tn = n∆t are the time steps. In [9], two reconstructions are necessary to design the method: Firstly, a reconstruction
scheme to approximate the average of the function u over a cell at a time tn. Secondly, a reconstruction of f for the
derivative of the fluxes, Qi, which satisfies:

∂Qi

∂x
(xi, t

n) =: Q′
i(xi, t

n) = f ′(u(xi, t
n)) +O(hr−1), (2)
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grupos competitivos, incluida en el Programa Regional de Fomento de la Investigación Cient́ıfica y Técnica (Plan de Actuación 2018) de
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where r − 1 is the accuracy attained for the reconstruction of the derivative, and supposing that u at a time tn is
known. WENO nonlinear interpolation methods can be used for this purpose (see e.g. [9, 10, 11]). In [9], a symmetric
strategy is used, but in this work, we construct a general method that is not necessarily symmetric. Therefore, in this
paper, we will construct a new non-linear method to approximate the derivative point-values with progressive order
of accuracy close to the discontinuities adapting the ideas presented in [3]. We will present this method for any r. We
reformulate this problem as follows:

We suppose [a, b] ⊂ R and a grid X = {xj}Jj=0, x0 = a, xJ = b, xj+1 = xj + hj , xj+1/2 = xj + hj/2, xj−1/2 =
xj − hj−1/2, h = max{hj : j = 0, . . . , J − 1}, and we suppose that there exists L > 0 such that

h̃ =
max{hj : j = 0, . . . , J − 1}
min{hj : j = 0, . . . , J − 1}

=
h

min{hj : j = 0, . . . , J − 1}
≤ L.

For a piecewise smooth function f we consider a point value discretization f(xj) = fj , j = 0, . . . , J . In order
to calculate the derivative value at a specific point xi, we take the stencils of r points which contain it, i.e. let
Ir
i,k = {i− (r − 1) + k, . . . , i+ k} be the subindex and the stencils Sr

i,k = {xt : t ∈ Ii
k} with k = 0, . . . , r − 1 and

calculate the interpolation polynomial of degree r−1 such that pr−1
i,k (xj) = fj , j ∈ Ir

i,k. The classic WENO interpolator
is a convex combination of these polynomials:

Pi(x) =
r−1∑
k=0

ωr−1
i,k pr−1

i,k (x),

where ωr−1
i,k are nonlinear weights whose value depends on the existence of a discontinuity affecting the stencil. In our

case, we will define

(Pi)
′(xi) =

dPi

dx
(xi) =

r−1∑
k=0

ωr−1
i,k

dpr−1
i,k

dx
(xi). (3)

It is clear that if the function is smooth at the largest stencil {xi−(r−1), . . . , xi+(r−1)}, then, if the choice of the nonlinear
weights is adequate, we can obtain an approximation of the derivative values of order of accuracy O(h2r−2). However,
when a discontinuity crosses the above mentioned stencil, typically (see, e.g. [10]) , the order decreases to r − 1.
Note that there are two principal differences between classical WENO interpolation for point-value approximation of
a function and the WENO algorithm used to obtain an approximation of the derivative values:

1. When we use classical WENO algorithm for point-value interpolation, we take the stencils which contain xi−1

and xi because, typically, we interpolate at xi− 1
2
.

2. The evaluation of the derivative of the polynomial, P ′
i , Eq. (3), is at xi not at xi− 1

2
.

The key of this method is the definition of the nonlinear weights, that make use of linear optimal weights and that
are defined as follows. Let p2r−2

i,0 be the polynomial which interpolates f at {xi−(r−1), . . . , xi+(r−1)}, then there exist

Cr−1
i,k > 0, k = 0, . . . , r − 1 which satisfy:

dp2r−2
i,0

dx
(xi) =

r−1∑
k=0

Cr−1
i,k

dpr−1
i,k

dx
(xi),

r−1∑
k=0

Cr−1
i,k = 1. (4)

The following proposition for non-uniform grid is proved in [12] using the ideas proposed in [6]. We reproduce it here
for completeness.

Proposition 1.1. The optimal weights are determined by:

Cr−1
i,0 =

i+(r−1)∏
s=i+1

xi − xs

xi−(r−1) − xs
,

Cr−1
i,k =

∏
s∈I2r−1

i,0 \Ir
i,k

xi − xs

xi−(r−1)+k − xs
−

k−1∑
t=0

Cr−1
i,t

∏
s∈Ir

i,t\Ir
i,k

xi − xs

xi−(r−1)+k − xs

∏
s∈Ir

i,k\I
r
i,t

xi−(r−1)+k − xs

xi − xs
,

(5)

with 0 ≤ k < r − 1.
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Proof. Using Lagrange’s base, we know that:

Lr−1
j,k (x) =

i+k∏
t=i−(r−1)+k

t ̸=j

x− xt

xj − xt
,

then:

pr−1
i,k (x) =

i+k∑
j=i−(r−1)+k

fjL
r−1
j,k (x) → d

dx
pr−1
i,k (x) =

i+k∑
j=i−(r−1)+k

fj
d

dx
Lr−1
j,k (x),

with

d

dx
Lr−1
j,k (x) =

i+k∑
s=i−(r−1)+k

1

xj − xs

i+k∏
t=i−(r−1)+k

t ̸=j,s

x− xt

xj − xt
.

Therefore:

d

dx
pr−1
i,k (xi) =

i+k∑
j=i−(r−1)+k

j ̸=i

(
fi

xi − xj
+

fj
xj − xi

i+k∏
s=i−(r−1)+k

s̸=i,j

xi − xs

xj − xs

)
=

∑
j∈Ir

i,k\{i}

(
fi

xi − xj
+

fj
xj − xi

∏
s∈Ir

i,k\{i,j}

xi − xs

xj − xs

)
.

Analogously:
d

dx
p2r−2
i,0 (xi) =

∑
j∈I2r−1

i,0 \{i}

(
fi

xi − xj
+

fj
xj − xi

∏
s∈I2r−1

i,0 \{i,j}

xi − xs

xj − xs

)
.

We can obtain the optimal weights from the equality:

d

dx
p2r−2
i,0 (xi) =

r−1∑
k=0

Cr−1
i,k

d

dx
pr−1
i,k (xi), (6)

thus, if k = 0 then the unique stencil of r points which contains the point xi−(r−1) is Sr
i,0. Then, taking the term of

fi−(r−1), we obtain:

Cr−1
i,0

xi−(r−1) − xi

i−1∏
s=i−(r−1)+1

xi − xs

xi−(r−1) − xs
=

1

xi−(r−1) − xi

i+(r−1)∏
s=i−(r−1)+1

s̸=i

xi − xs

xi−(r−1) − xs
→ Cr−1

i,0 =

i+(r−1)∏
s=i+1

xi − xs

xi−(r−1) − xs
.

Now, if we take k = 1 we have only two stencils : Sr
i,0 and Sr

i,1 which contain the point xi−(r−1)+1. Then using Eq.
(6) at term fi−(r−1)+1, we get:

Cr−1
i,0

xi−(r−1)+1 − xi

i−1∏
s=i−(r−1)

s̸=i−(r−1)+1

xi − xs

xi−(r−1)+1 − xs
+

Cr−1
i,1

xi−(r−1)+1 − xi

i+1∏
s=i−(r−1)+2

s̸=i

xi − xs

xi−(r−1)+1 − xs
=

=
1

xi−(r−1)+1 − xi

i+(r−1)∏
s=i−(r−1)

s̸=i,i−(r−1)+1

xi − xs

xi−(r−1)+1 − xs
,

Cr−1
i,1 =

∏
I2r−1
i,0 \Ir

i,1

xj − xk

xj−r+1 − xk
− Cr−1

i,0

∏
s∈Ir

i,0\Ir
i,1

xi − xs

xi−(r−1)+1 − xs

∏
s∈Ir

i,1\Ir
i,0

xi−(r−1)+1 − xs

xi − xs
.

We suppose that we have obtained the optimal weights Cr−1
i,0 , Cr−1

i,1 , . . . , Cr−1
i,k−1 with 0 < k < r − 1, we will get Cr−1

i,k .
The point xi−(r−1)+k is in the stencils Sr

i,0,Sr
i,1, . . . ,Sr

i,k, then for the term fi−(r−1)+k in Eq. (6) we get:

k∑
t=0

Cr−1
i,t

xi−(r−1)+k − xi

∏
s∈Ir

i,t\{i,i−(r−1)+k}

xi − xs

xi−(r−1)+k − xs
=

1

xi−(r−1)+k − xi

∏
s∈I2r−1

i,0 \{i,i−(r−1)+k}

xi − xs

xi−(r−1)+k − xi
.
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Then,

Cr−1
i,k =

∏
s∈I2r−1

i,0 \Ir
i,k

xi − xs

xi−(r−1)+k − xs
−

k−1∑
t=0

Cr−1
i,t

∏
s∈Ir

i,t\Ir
i,k

xi − xs

xi−(r−1)+k − xs

∏
s∈Ir

i,k\I
r
i,t

xi−(r−1)+k − xs

xi − xs
.

■

In Tables 1 and 2 we show the values Cr−1
i,k , 0 ≤ k ≤ r − 1 for r = 2, 3 and 4.
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If we take a uniform grid, the following corollary is a direct consequence by Prop. 1.1. We denote as Cr−1
i,k = Cr−1

k

because this value does not depend on the position i.

Corollary 1.2. Using a uniform grid, the optimal weights for the approximation of derivative values are given by:

Cr−1
k =

(
r − 1

k

)2(
2r − 2

r − 1

)−1

, k = 0, · · · , r − 1. (7)

Proof. From xi = ih, using the Lagrange basis we have that

Lr−1
j,k (x) =

i+k∏
s=i−(r−1)+k

s̸=i

x− sh

(j − s)h
→ pr−1

k (x) =
i+k∑

j=i−(r−1)+k

fjL
r−1
j,k (x) →

d

dx
pr−1
k (xi) =

i+k∑
j=i−(r−1)+k

j ̸=i

(
fi

(i− j)h
+

fj
(j − i)h

i+k∏
s=i−(r−1)+k

s̸=i,j

i− s

j − s

)
.

Analogously

d

dx
p2r−2
0 (xi) =

i+(r−1)∑
j=i−(r−1)

j ̸=i

(
fi

(i− j)h
+

fj
(j − i)h

i+(r−1)∏
s=i−(r−1)

s̸=i,j

i− s

j − s

)
.

By induction on k, if k = 0 and ξ = s− i then

Cr−1
0

fi−(r−1)

−(r − 1)h

i∏
s=i−(r−1)+1

i− s

i− (r − 1)− s
=

fi−(r−1)

−(r − 1)h

i+(r−1)∏
s=i−(r−1)+1

i− s

i− (r − 1)− s
→

Cr−1
0 =

i+(r−1)∏
s=i+1

i− s

i− (r − 1)− s
=

i+(r−1)∏
s=i+1

s− i

s− i+ (r − 1)
=

r−1∏
ξ=1

ξ

ξ + (r − 1)
=

(
2r − 2

r − 1

)−1

.

We suppose the result for k − 1 and calculate Cr−1
k , with 0 ≤ t < k ≤ r − 1. Thus, since

I2r−1
i,0 \ Ir

i,k ={i− (r − 1), i− (r − 1) + 1, . . . , i− (r − 1) + k − 1, i+ k + 1, . . . , i+ (r − 1)},
Ir
i,k \ Ir

i,t ={i+ t+ 1, . . . , i+ k},
Ir
i,t \ Ir

i,k ={i− (r − 1) + t, . . . , i− (r − 1) + k − 1},
(8)

we obtain:

∏
s∈I2r−1

i,0 \Ir
i,k

xi − xs

xi−(r−1)+k − xs
=

i−(r−1)+k−1∏
s=i−(r−1)

xi − xs

xi−(r−1)+k − xs

i+(r−1)∏
s=i+k+1

xi − xs

xi−(r−1)+k − xs

=
k−1∏
l=0

(r − 1)− l

k − l

r−1∏
l=k+1

l

l + (r − 1)− k
=

(
r − 1

k

)(
2(r − 1)

r − 1

)−1(
2(r − 1)

k

)
,

∏
s∈Ir

i,k\I
r
i,t

xi − xs

xi−(r−1)+k − xs
=

i+k∏
s=i+t+1

xi − xs

xi−(r−1)+k − xs
=

k∏
l=t+1

l

l + (r − 1)− k
=

k!((r − 1)− (k − t))!

(r − 1)!t!
,

=
k!((r − 1)− (k − t))!(k − t)!

(r − 1)!t!(k − t)!
=

(
k

t

)(
r − 1

k − t

)−1

,

∏
s∈Ir

i,t\Ir
i,k

xi − xs

xi−(r−1)+k − xs
=

i−(r−1)+k−1∏
s=i−(r−1)+t

xi − xs

xi−(r−1)+k − xs
=

k−1∏
l=t

(r − 1)− l

k − l
=

(
r − 1

k

)(
r − 1

t

)−1(
k

t

)
,

(9)
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Then, since (
2(r − 1)

k

)
−

k−1∑
t=0

(
r − 1

t

)(
r − 1

k − t

)
=

(
r − 1

k

)
,

by induction hypothesis, by (9) and by Prop. 1.1, we have:

Cr−1
k =

∏
s∈I2r−1

i,0 \Ir
k

xi − xs

xi−(r−1)+k − xs
−

k−1∑
t=0

Cr−1
t

∏
s∈Ir

i,t\Ir
i,k

xi − xs

xi−(r−1)+k − xs

∏
s∈Ir

i,k\I
r
i,t

xi−(r−1)+k − xs

xi − xs

=

(
r − 1

k

)(
2(r − 1)

r − 1

)−1(
2(r − 1)

k

)
−

k−1∑
t=0

(
r − 1

t

)2(
2r − 2

r − 1

)−1(
r − 1

k

)(
r − 1

t

)−1(
k

t

)(
k

t

)−1(
r − 1

k − t

)

=

(
r − 1

k

)(
2(r − 1)

r − 1

)−1
((

2(r − 1)

k

)
−

k−1∑
t=0

(
r − 1

t

)(
r − 1

k − t

))
=

(
r − 1

k

)2(
2(r − 1)

r − 1

)−1

.

■
In Table 3 some optimal weights are shown. For r = 3, they are the optimal weights showed in [9].

Cr−1
0 Cr−1

1 Cr−1
2 Cr−1

3 Cr−1
4

r = 2 1/2 1/2 - - -
r = 3 1/6 2/3 1/6 - -
r = 4 1/20 9/20 9/20 1/20 -
r = 5 1/70 8/35 18/35 8/35 1/70

Table 3: Optimal weights r = 2, 3, 4, 5 for a uniform grid.

With these linear weights, we can use the following expressions for the nonlinear weights,

ωr−1
i,k =

αr−1
i,k∑r−1

j=0 α
r−1
i,j

, where αr−1
i,k =

Cr−1
i,k

(ϵ+ Ir−1
i,k )θ

, k = 0, · · · , r − 1, (10)

with
∑r−1

k=0 ω
r−1
i,k = 1. In Eq. (10), the parameter θ is an integer that assures maximum order of accuracy close to the

discontinuities, in our case we will take θ ≥ r and the parameter ϵ > 0 is introduced to avoid divisions by zero, we
will set it to ϵ = 10−16. The values Ir−1

i,k are called smoothness indicators for f(x) on each sub-stencil of r − 1 points.

There exist several expressions for Ir−1
i,k . For example, the indicators designed in [8] and [9], which are

Ĩr−1
i,k =

r−1∑
l=1

(xi+1/2 − xi−1/2)
2l−1

∫ xi+1/2

xi−1/2

(
dl

dxl
pr−1
i,k (x)

)2

dx. (11)

These indicators are suitable for the approximation of the conservation laws (1) with discontinuities in their solutions.
The results obtained using them for approximating the derivative values are not satisfactory because they do not
correctly detect kink discontinuities. For approximating the derivative values, suitable for the approximation of the
Hamilton-Jacobi equations (1), the measurement of the smoothness indicators should start from the second derivative
[7, 2]. In this work, we use the formula given in [2] adapted to non-uniform grids:

Ir−1
i,k =

r−1∑
l=2

(xi+1/2 − xi−1/2)
2l−1

∫ xi+1/2

xi−1/2

(
dl

dxl
pr−1
i,k (x)

)2

dx. (12)

Recently, a new WENO-2r algorithm has been introduced in [3, 4]. It consists on exploiting a recursive process to
calculate the nonlinear weights with the aim of obtaining progressive order of accuracy of the approximation close to
discontinuities. In this paper, we adapt these ideas to obtain a new progressive WENO interpolator to approximate the
derivative values. The paper is divided in the following sections: in Section 2 we show the algorithm and construct the
new method for r = 3 and for r = 4. In Section 3, we generalise the results for any r and we give a general expression
for non-linear optimal weights. In Section 4, we present a strategy to compute efficiently the smoothness indicators
and we study the order of accuracy. Finally, some numerical experiments and some conclusions are presented.
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2. New WENO with progressive adaptation to discontinuities: cases r = 3 and r = 4

The new algorithm designed by Amat et al. in [3] consists on using the Aitken’s interpolation process [1] to calculate
progressive linear weights. For simplicity, we present two examples and in next section we show the generalization for
any r.

2.1. New WENO for r = 3 with progressive adaptation to discontinuities in non-uniform grids

Let p4i,0 be the polynomial which interpolates {xi−2, xi−1, xi, xi+1, xi+2}, then it can be divided in two polynomials

p3i,0 interpolating in {xi−2, xi−1, xi, xi+1} and p3i,1 in {xi−1, xi, xi+1, xi+2}. Therefore, by Aitken’s process, we have
that

p4i,0(x) = C3
i,0,0(x)p

3
i,0(x) + C3

i,0,1(x)p
3
i,1(x) =

x− xi+2

xi−2 − xi+2
p3i,0(x) +

x− xi−2

xi+2 − xi−2
p3i,1(x),

then as p3i,0 and p3i,1 interpolate f at xi, i.e., p
3
i,0(xi) = p3i,1(xi) = fi, we have that:

dp4i,0
dx

(x) =
dC3

i,0,0

dx
(x)p3i,0(x) + C3

i,0,1(x)
dp3i,0
dx

(x) +
dC3

i,0,1(x)

dx
p3i,1(x) + C3

i,0,1(x)
dp3i,1
dx

(x)

=
1

(xi+2 − xi−2)
(p3i,1(x)− p3i,0(x))−

(
x− xi+2

xi+2 − xi−2

)
dp3i,0
dx

(x) +

(
x− xi−2

xi+2 − xi−2

)
dp3i,1
dx

(x) →

dp4i,0
dx

(xi) =

(
xi+2 − xi

xi+2 − xi−2

)
dp3i,0
dx

(xi) +

(
xi − xi−2

xi+2 − xi−2

)
dp3i,1
dx

(xi).

Analogously,

dp3i,0
dx

(xi) =

(
xi+1 − xi

xi+1 − xi−2

)
dp2i,0
dx

(xi) +

(
xi − xi−2

xi+1 − xi−2

)
dp2i,1
dx

(xi),

dp3i,1
dx

(xi) =

(
xi+2 − xi

xi+2 − xi−1

)
dp2i,1
dx

(xi) +

(
xi − xi−1

xi+2 − xi−1

)
dp2i,2
dx

(xi).

Then, it is clear that:

C2
i = (C2

i,0, C
2
i,1, C

2
i,2) = C3

i,0,0(C
2
i,0,0, C

2
i,0,1, 0) + C3

i,0,1(0, C
2
i,1,1, C

2
i,1,2)

=

(
xi+2 − xi

xi+2 − xi−2

)((
xi+1 − xi

xi+1 − xi−2

)
,

(
xi − xi−2

xi+1 − xi−2

)
, 0

)
+

(
xi − xi−2

xi+2 − xi−2

)(
0,

(
xi+2 − xi

xi+2 − xi−1

)
,

(
xi − xi−1

xi+2 − xi−1

))
,

then, we define:
C̃2

i = (C̃2
i,0, C̃

2
i,1, C̃

2
i,2) = ω̃3

i,0,0(C
2
i,0,0, C

2
i,0,1, 0) + ω̃3

i,0,1(0, C
2
i,1,1, C

2
i,1,2),

where

ω̃3
i,0,0 =

α̃3
i,0,0

α̃3
i,0,0 + α̃3

i,0,1

, ω̃3
i,0,1 =

α̃3
i,0,1

α̃3
i,0,0 + α̃3

i,0,1

, (13)

with

α̃3
i,0,0 =

C3
i,0,0

(ϵ+ I3i,0,0)
θ
, α̃3

i,0,1 =
C3

i,0,1

(ϵ+ I3i,0,1)
θ
, (14)

where the smoothness indicators I3i,0,k1
, k1 = 0, 1 in (14) will be defined in Section 4 based on those introduced in [9].

Finally, we apply WENO with the new nonlinear weights, i.e., we calculate:

P̃ ′
i (xi) =

2∑
k=0

ω̃2
i,k

dp2i,k
dx

(xi), with ω̃2
i,k =

α̃2
i,k∑2

j=0 α̃i,j

, and α̃2
i,k =

C̃2
i,k

(ϵ+ I2i,k)
θ
, k = 0, 1, 2,

being I2i,k, k = 0, 1, 2, the smoothness indicators introduced in Eq. (11).
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Using the same reasoning, as a corollary, we obtain the formulas for new nonlinear weights in the uniform grid
case. Thus, we have that

dp40
dx

(x) =
dC3

0,0

dx
(x)p30(x) + C3

0,1(x)
dp30
dx

(x) +
dC3

0,1(x)

dx
p31(x) + C3

0,1(x)
dp31
dx

(x)

=
1

4h
(p31(x)− p30(x))−

(
x− (i+ 2)h− a

4h

)
dp30
dx

(x) +

(
x− (i− 2)h− a

4h

)
dp31
dx

(x) →

dp40
dx

(xi) =
1

2

dp30
dx

(xi) +
1

2

dp31
dx

(xi),

dp30
dx

(xi) =
1

3

dp20
dx

(xi) +
2

3

dp21
dx

(xi),
dp31
dx

(xi) =
2

3

dp21
dx

(xi) +
1

3

dp22
dx

(xi).

In this case, we will write Ck1

k2,k3
(xi) = Ck1

k2,k3
for any k1, k2, k3. Thus, we get:

C2 = (C2
0 , C

2
1 , C

2
2 ) = C3

0,0(C
2
0,0, C

2
0,1, 0) + C3

0,1(0, C
2
1,1, C

2
1,2) =

1

2

(
1

3
,
2

3
, 0

)
+

1

2

(
0,

2

3
,
1

3

)
=

(
1

6
,
2

3
,
1

6

)
.

We can see that the linear optimal weights, in this case, are similar to the weights shown in [9].
Finally, we repeat the same steps in order to obtain nonlinear weights.

2.2. New WENO with progressive adaptation to discontinuities for r = 4 in non-uniform grids

We start with the polynomial p6i,0, which interpolates {xi−3, xi−2, xi−1, xi, xi+1, xi+2, xi+3} and we apply the same
process, i.e. we want to express the derivative value of this polynomial at xi as a combination of the derivative
values of the polynomials p5i,0 and p5i,1 at xi which interpolate at the nodes {xi−3, xi−2, xi−1, xi, xi+1, xi+2} and
{xi−2, xi−2, xi−1, xi, xi+1, xi+3} respectively, then, again, using Aitken’s algorithm, we obtain:

p6i,0(x) =

(
xi+3 − x

xi+3 − xi−3

)
p5i,0(x) +

(
x− xi−3

xi+3 − xi−3

)
p5i,1(x) →

dp6i,0
dx

(x) =

(
1

xi+3 − xi−3

)
(p5i,1(x)− p5i,0(x)) +

(
xi+3 − x

xi+3 − xi−3

)
dp5i,0
dx

(x) +

(
x− xi−3

xi+3 − xi−3

)
dp5i,1
dx

(x) →

dp60
dx

(xi) =

(
1

xi+3 − xi−3

)
(p5i,1(xi)− p5i,0(xi)) +

(
xi+3 − xi

xi+3 − xi−3

)
dp5i,0
dx

(xi) +

(
xi − xi−3

xi+3 − xi−3

)
dp5i,1
dx

(xi).

From p5i,1(xi) = p5i,0(xi) = fi, we have:

dp6i,0
dx

(xi) =

(
xi+3 − xi

xi+3 − xi−3

)
dp5i,0
dx

(xi) +

(
xi − xi−3

xi+3 − xi−3

)
dp5i,1
dx

(xi).

Analogously, we represent p5i,0 as combination of p4i,0 and p4i,1 as

p5i,0(x) =

(
xi+2 − x

xi+2 − xi−3

)
p4i,0(x) +

(
x− xi−3

xi+2 − xi−3

)
p4i,1(x),

and repeating the same steps we get:

dp5i,0
dx

(xi) =

(
xi+2 − xi

xi+2 − xi−3

)
dp4i,0
dx

(xi) +

(
xi − xi−3

xi+2 − xi−3

)
dp4i,1
dx

(xi).

We repeat this procedure again to obtain:

dp5i,1
dx

(xi) =

(
xi+3 − xi

xi+3 − xi−2

)
dp4i,1
dx

(xi) +

(
xi − xi−2

xi+3 − xi−2

)
dp4i,2
dx

(xi),

dp4i,0
dx

(xi) =

(
xi+1 − xi

xi+1 − xi−3

)
dp3i,0
dx

(xi) +

(
xi − xi−3

xi+1 − xi−3

)
dp3i,1
dx

(xi),

dp4i,1
dx

(xi) =

(
xi+2 − xi

xi+2 − xi−2

)
dp3i,1
dx

(xi) +

(
xi − xi−2

xi+2 − xi−2

)
dp3i,2
dx

(xi),

dp4i,2
dx

(xi) =

(
xi+3 − xi

xi+3 − xi−1

)
dp3i,2
dx

(xi) +

(
xi − xi−1

xi+3 − xi−1

)
dp3i,3
dx

(xi),
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then, the optimal progressive weights are:

C3
i =C5

i,0,0

(
C4

i,0,0

(
C3

i,0,0, C
3
i,0,1, 0, 0

)
+ C4

i,0,1

(
0, C3

i,1,1, C
3
i,1,2, 0

))
+ C5

i,0,1

(
C4

i,1,1

(
0, C3

i,1,1, C
3
i,1,2, 0

)
+ C4

i,1,2

(
0, 0, C3

i,2,2, C
3
i,2,3

))
=

(
xi+3 − xi

xi+3 − xi−3

)((
xi+2 − xi

xi+2 − xi−3

)((
xi+1 − xi

xi+1 − xi−3

)
,

(
xi − xi−3

xi+1 − xi−3

)
, 0, 0

)
+

+

(
xi − xi−3

xi+2 − xi−3

)(
0,

(
xi+2 − xi

xi+2 − xi−2

)
,

(
xi − xi−2

xi+2 − xi−2

)
, 0

))
+

+

(
xi − xi−3

xi+3 − xi−3

)((
xi+3 − xi

xi+3 − xi−2

)(
0,

(
xi+2 − xi

xi+2 − xi−2

)
,

(
xi − xi−2

xi+2 − xi−2

)
, 0

)
+

+

(
xi − xi−2

xi+3 − xi−2

)(
0, 0,

(
xi+3 − xi

xi+3 − xi−1

)
,

(
xi − xi−1

xi+3 − xi−1

)))
.

Thus, we can define

C̃3
i = ω̃5

i,0,0(ω̃
4
i,0,0(C

3
i,0,0, C

3
i,0,1, 0, 0)+ω̃4

i,0,1(0, C
3
i,1,1, C

3
i,1,2, 0))+ω̃5

i,0,1(ω̃
4
i,1,1(0, C

3
i,1,1, C

3
i,1,2, 0)+ω̃4

i,1,2(0, 0, C
3
i,2,2, C

3
i,2,3))

where

ω̃5
i,0,0 =

α̃5
i,0,0

α̃5
i,0,0 + α̃5

i,0,1

, ω̃5
i,0,1 =

α̃5
i,0,1

α̃5
i,0,0 + α̃5

i,0,1

, ω̃4
i,0,0 =

α̃4
i,0,0

α̃4
i,0,0 + α̃4

i,0,1

,

ω̃4
i,0,1 =

α̃4
i,0,1

α̃4
i,0,0 + α̃4

i,0,1

, ω̃4
i,1,1 =

α̃4
i,1,1

α̃4
i,1,1 + α̃4

i,1,2

, ω̃4
i,1,1 =

α̃4
i,1,2

α̃4
i,1,1 + α̃4

i,1,2

,

being

α̃l
i,k,k1

=
Cl

i,k,k1

(ϵ+ I li,k,k1
)θ
,

with l = 4, 5, k = 0, 1, k1 = k, k + 1 and with this vector, we apply classical WENO algorithm.
As a corollary, if the grid is uniform we get:

dp60
dx

(xi) =
1

2

dp50
dx

(xi) +
1

2

dp51
dx

(xi),
dp50
dx

(xi) =
2

5

dp40
dx

(xi) +
3

5

dp41
dx

(xi),
dp51
dx

(xi) =
3

5

dp41
dx

(xi) +
2

5

dp42
dx

(xi),

dp40
dx

(xi) =
1

4

dp30
dx

(xi) +
3

4

dp31
dx

(xi),
dp41
dx

(xi) =
1

2

dp31
dx

(xi) +
1

2

dp32
dx

(xi),
dp42
dx

(xi) =
3

4

dp32
dx

(xi) +
1

4

dp33
dx

(xi).

Thus, it is easy to check that,

C3 = C5
0,0

(
C4

0,0

(
C3

0,0, C
3
0,1, 0, 0

)
+ C4

0,1

(
0, C3

1,1, C
3
1,2, 0

))
+ C5

0,1

(
C4

1,1

(
0, C3

1,1, C
3
1,2, 0

)
+ C4

1,2

(
0, 0, C3

2,2, C
3
2,3

))
=

1

2

(
2

5

(
1

4
,
3

4
, 0, 0

)
+

3

5

(
0,

1

2
,
1

2
, 0

))
+

1

2

(
3

5

(
0,

1

2
,
1

2
, 0

)
+

2

5

(
0, 0,

3

4
,
1

4

))
=

(
1

20
,
9

20
,
9

20
,
1

20

)
.

Finally, we perform the same algorithm to obtain the nonlinear weights.

3. General new WENO algorithm for derivative values and general optimal weights

In this section we will generalize the method for any r. In order to compute the linear weights for each “level” we
can prove the following lemma following the same ideas as in [3], i.e., using Aitken’s process as in Sections 2.1 and 2.2.

Lemma 3.1. Let 0 < r− 1 ≤ l ≤ 2r− 3 and 0 ≤ k ≤ (2r− 3)− l. If we denote as Cl
i,k,k and Cl

i,k,k+1 the values which
satisfy:

dpl+1
i,k

dx
(xi) = Cl

i,k,k

dpli,k(xi)

dx
+ Cl

i,k,k+1

dpli,k+1

dx
(xi), (15)

then

Cl
i,k,k =

xi−(r−1)+k+l+1 − xi

xi−(r−1)+k+l+1 − xi−(r−1)+k
, Cl

i,k,k+1 =
xi − xi−(r−1)+k

xi−(r−1)+k+l+1 − xi−(r−1)+k
. (16)
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Proof. Let r−1 ≤ l ≤ 2r−3 and 0 ≤ k ≤ (2r−3)−l. In order to obtain the interpolators pl+1
i,k , pli,k and pli,k+1 the sten-

cils used are {xi−(r−1)+k, . . . , xi−(r−1)+k+l+1}, {xi−(r−1)+k, . . . , xi−(r−1)+k+l} and {xi−(r−1)+k+1, . . . , xi−(r−1)+k+l+1}
respectively. Then, using Aitken’s interpolation process [1], we obtain:

pl+1
i,k (x) =

(
xi−(r−1)+k+l+1 − x

xi−(r−1)+k+l+1 − xi−(r−1)+k

)
pli,k(x)−

(
xi−(r−1)+k − x

xi−(r−1)+k+l+1 − xi−(r−1)+k

)
pli,k+1(x).

If we differentiate the previous expression:

dpl+1
i,k

dx
(x) =

1

xi−(r−1)+k+l+1 − xi−(r−1)+k
(pli,k+1(x)− pli,k(x))+(

xi−(r−1)+k+l+1 − x

xi−(r−1)+k+l+1 − xi−(r−1)+k

)
dpli,k
dx

(x)−
(

xi−(r−1)+k − x

xi−(r−1)+k+l+1 − xi−(r−1)+k

)
dpli,k+1

dx
(x),

since pli,k+1(xi) = pli,k(xi), we get:

dpl+1
i,k

dx
(xi) =

(
xi−(r−1)+k+l+1 − xi

xi−(r−1)+k+l+1 − xi−(r−1)+k

)
dpli,k
dx

(xi) +

(
xi − xi−(r−1)+k

xi−(r−1)+k+l+1 − xi−(r−1)+k

)
dpli,k+1

dx
(xi).

■

It is trivial to check that for all i we have:

Cl
i,k,k + Cl

i,k,k+1 = 1, 0 < r − 1 ≤ l ≤ 2r − 3 and 0 ≤ k ≤ (2r − 3)− l.

As a corollary, we can calculate the optimal weights if the grid is uniform.

Corollary 3.2. Let 0 < r − 1 ≤ l ≤ 2r − 3 and 0 ≤ k ≤ (2r − 3)− l, if the grid is uniform, i.e. there exists h = 1/J
such that xj = a+ j · h, 0 ≤ j ≤ J and we denote as Cl

k,k and Cl
k,k+1 the values which satisfy:

dpl+1
k

dx
(xi) = Cl

k,k

dplk
dx

(xi) + Cl
k,k+1

dplk+1

dx
(xi), (17)

then

Cl
k,k =

k − (r − 1) + (l + 1)

l + 1
, Cl

k,k+1 =
(r − 1)− k

l + 1
. (18)

Proof. It is direct by Lemma 3.1 and xj = a+ j · h, 0 ≤ j ≤ J . ■

We apply Eq. (15) for each level and we get:

dp2r−2
i,0

dx
(xi) =

1∑
j0=0

C2r−3
i,0,j0

dp2r−3
i,j0

dx
(xi) =

1∑
j0=0

C2r−3
i,0,j0

 j0+1∑
j1=j0

C2r−4
i,j0,j1

dp2r−4
i,j1

dx
(xi)

 = . . .

=
1∑

j0=0

C2r−3
i,0,j0

 j0+1∑
j1=j0

C2r−4
i,j0,j1

. . .

 jr−4+1∑
jr−3=jr−4

Cr−2
i,jr−4,jr−3

 jr−3+1∑
jr−2=jr−3

Cr−1
i,jr−3,jr−2

dpr−1
i,jr−2

dx
(xi)

 . . .

 .

(19)

Thus, if we define the weights and the vector Cr−1
i,k with 0 ≤ k ≤ r − 2 as

Cr−1
i,0 =

(
Cr−1

i,0,0, C
r−1
i,0,1, 0, . . . , 0

)
, Cr−1

i,1 =
(
0, Cr−1

i,1,1, C
r−1
i,1,2, 0, . . . , 0

)
, . . . ,Cr−1

i,r−2 =
(
0, . . . , 0, Cr−1

i,r−2,r−2, C
r−1
i,r−2,r−1

)
,
(20)

where Cr−1
i,k,k, C

r−1
i,k,k+1 are defined in Eq. (16), then we get that:

1∑
j0=0

C2r−3
i,0,j0

 j0+1∑
j1=j0

C2r−4
i,j0,j1

. . .

 jr−4+1∑
jr−3=jr−4

Cr−2
i,jr−4,jr−3

Cr−1
i,jr−3

 . . .

 = (Cr−1
i,0 , Cr−1

i,1 , . . . , Cr−1
i,r−1) = Cr−1

i , (21)
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being Cr−1
i,k , 0 ≤ k ≤ r − 1 the optimal weights obtained in Prop. 1.1, Tables 1 and 2 for r = 2, 3 and 4. Analogously

in uniform grid case.
We have a tree scheme, where each branch produces a polynomial of a determined degree. Now, the idea is to use

all the points which are not contaminated by a discontinuity. In order to follow this idea, we reduce this branch to
O(h2) using nonlinear weights as follows:

We substitute in Eq. (21) the linear weights by nonlinear weights

ωl
i,k,k1

=
αl
i,k,k1

αl
i,k,k + αl

i,k,k+1

, αl
i,k,k1

=
Cl

i,k,k1

(ϵ+ I li,k,k1
)θ
, k1 = k, k + 1, (22)

where θ, ϵ are the parameters above mentioned and I li,k,k1
are smoothness indicators defined at level l = r, . . . , 2r− 3.

Therefore, the last ingredient of this scheme is to define the indicators in order to “remove” (to obtain O(h2)) the
non-suitable branch. We will use the strategy used in [3] explained in detail in Sec. 4.

Finally, we define the new weights as:

C̃r−1
i = (C̃r−1

i,0 , C̃r−1
i,1 , . . . , C̃r−1

i,r−2, C̃
r−1
i,r−1) =

1∑
j0=0

ω2r−3
0,j0

 j0+1∑
j1=j0

ω2r−4
i,j0,j1

. . .

 jr−4+1∑
jr−3=jr−4

ωr−2
i,jr−4,jr−3

Cr−1
i,jr−3

 . . .

 .

(23)

Using C̃r−1
i , we apply classical WENO and calculate P̃ ′

i (xi) =
∑r−1

k=0 ω̃
r−1
i,k

dpr−1
i,k

dx (xi) with

ω̃r−1
i,k =

α̃r−1
i,k∑r−1

j=0 α̃i,j

, and α̃r−1
i,k =

C̃r−1
i,k

(ϵ+ Ir−1
i,k )θ

, k = 0, . . . , r − 1. (24)

4. Smoothness indicators and analysis of the accuracy

Let us start with the analysis of the smoothness indicators presented by Amat and Ruiz in [2], Eq. (12):

Ir−1
i,k =

r−1∑
l=2

(xi+1/2 − xi−1/2)
2l−1

∫ xi+1/2

xi−1/2

(
dl

dxl
pr−1
i,k (x)

)2

dx =
r−1∑
l=2

(
hi + hi−1

2

)2l−1 ∫ xi+1/2

xi−1/2

(
dl

dxl
pr−1
i,k (x)

)2

dx,

k = 0, . . . , r − 1, in non-uniform grids. We use the same ideas introduced in [6]. First of all, at the smooth zones we
obtain Ir−1

i,k = O(h4) using the following adapted result proved in [2].

Lemma 4.1. Let 0 ≤ k ≤ r − 1 and pr−1
i,k the interpolating polynomial of degree r − 1 ≥ 2 of f that uses the nodes of

the stencil Sr
i,k. Then, the smoothness indicator obtained through (11) satisfy

Ir−1
k =


O(h4), if f is smooth in Sr

i,k,

O(h2), if f has a corner discontinuity in Sr
i,k,

O(1), if f is discontinuous in Sr
i,k,

being h = max{hj : j = 0, . . . , J − 1}.

We will prove the following auxiliary lemmas using the ideas presented in [6].

Lemma 4.2. Let 0 ≤ k, k1 ≤ r − 1 and let Ir−1
i,n , n = k, k1 be smoothness indicators of f on the stencil Sr

i,n =
{xi−(r−1)+n, · · · , xi+n}. If f ∈ Cr([xi+n−(r−1), xi+n]), then

Ir−1
i,k − Ir−1

i,k1
= O(hr+3).
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Proof. Let pr−1
i,k , pr−1

i,k1
be the two interpolating polynomials of f of degree r−1 ≥ 2 at nodes in the stencil Sr

i,n n = k, k1.
As k ̸= k1 and 0 ≤ k, k1 ≤ r− 1 then f ∈ Cr([xi−1, xi+1]), if 1 ≤ l ≤ r− 1, x ∈ [xi−1/2, xi+1/2] ⊂ [xi−1, xi+1], we have

that |(pr−1
i,n (x)− f(x))(l)| ≤ O(hr−l), and∣∣∣(f (l)(x))2 − ((pr−1

i,n (x))(l))2
∣∣∣ = ∣∣∣(f (l)(x)− (pr−1

i,n )(l)(x)
)(

f (l)(x) + (pr−1
i,n (x))(l)

)∣∣∣
≤ O(hr−l)O(1) = O(hr−l).

(25)

Therefore, we get∣∣∣∣∣Ir−1
i,n −

r−1∑
l=2

(
hi + hi−1

2

)2l−1 ∫ xi+1/2

xi−1/2

(
f (l)(x)

)2
dx

∣∣∣∣∣ =
∣∣∣∣∣
r−1∑
l=2

(
hi + hi−1

2

)2l−1 ∫ xi+1/2

xi−1/2

(
((pr−1

i,n (x))(l))2 −
(
f (l)(x)

)2)
dx

∣∣∣∣∣
≤

r−1∑
l=2

(
hi + hi−1

2

)2l−1 ∫ xi+1/2

xi−1/2

∣∣∣∣((pr−1
i,n (x))(l))2 −

(
f (l)(x)

)2∣∣∣∣ dx
≤

r−1∑
l=2

(
hi + hi−1

2

)2l

O(hr−l)

≤ O(hr+3).

(26)

Thus, we obtain: ∣∣∣Ir−1
i,k − Ir−1

i,k1

∣∣∣ ≤ ∣∣∣∣∣Ir−1
i,k −

r−1∑
l=2

(
hi + hi−1

2

)2l−1 ∫ xi+1/2

xi−1/2

(
f (l)(x)

)2
dx

∣∣∣∣∣
+

∣∣∣∣∣Ir−1
i,k1

−
r−1∑
l=2

(
hi + hi−1

2

)2l−1 ∫ xi+1/2

xi−1/2

(
f (l)(x)

)2
dx

∣∣∣∣∣
=O(hr+3).

(27)

■

Lemma 4.3. Let 0 ≤ k, k1 ≤ r − 1, 1 ≤ θ and let Ir−1
n , n = k, k1 be smoothness indicators of f on the stencil

Sr
i,n = {xi−(r−1)+n, · · · , xi+n} and pr−1

i,k1
be the interpolating polynomial of f at nodes in the stencil Sr

k1
. If f ∈

Cr([xi+n−(r−1), xi+n]) and ϵ = O(h4) or Ir−1
i,k1

= O(h4) then:

Ir−1
i,k − Ir−1

i,k1

ϵ− Ir−1
i,k1

= O(hr−1), (28)

and
1

(ϵ− Ir−1
i,k )θ

=
1 +O(hr−1)

(ϵ− Ir−1
i,k1

)θ
. (29)

Proof. The proof of Eq. (28) is direct by Lemmas 4.1 and 4.2. In order to proof Eq. (29), we use the following
algebraic manipulation (see [6]):

1

(ϵ+ Ir−1
i,k )θ

=
1

(ϵ+ Ir−1
i,k1

)θ
+

1

(ϵ+ Ir−1
i,k1

)θ

Ir−1
i,k1

− Ir−1
i,k

ϵ+ Ir−1
i,k

θ−1∑
j=0

(
ϵ+ Ir−1

i,k1

ϵ+ Ir−1
i,k

)j
 .

■
Notice that if Ir−1

i,k1
= O(hm) with m > 4 and 0 < ϵ < hm is a fixed value, then Lemma 4.3 is not satisfied and the

optimal order is not obtained. This is explained in detail in [6]. In all our experiments, as we have mentioned in
Section 1, we have set ϵ = 10−16. This way, the order of accuracy of the smoothness indicators will be O(h4) at the
smooth parts of the data. In the rest of the paper, we always consider these conditions.
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Proposition 4.4. Let 0 ≤ k ≤ r − 1, 1 ≤ θ and ωr−1
i,k the nonlinear weights defined in Eq. (10), then

ωr−1
i,k = O(1), if f is smooth in Sr

i,k,

ωr−1
i,k = O(h2mθ), if f is not smooth in Sr

i,k.

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative.
Also, if f is smooth in {xi−(r−1), . . . , xi+(r−1)} then:

ωr−1
i,k = Cr−1

i,k +O(hr−1),

being Cr−1
i,k the optimal weights defined in Eq. (1.1).

Proof. Let be 0 ≤ k, n < r − 1. If f is smooth in Sr
n then using (10) and Lemma 4.1:

αr−1
i,n =

Cr−1
i,n

(ϵ+ Ir−1
i,n )θ

= O(h−4θ) →
r−1∑
l=0

αr−1
i,l = O(h−4θ),

then it is clear that, if f is smooth in Sr
i,k:

ωr−1
i,k =

αr−1
i,k∑r−1

l=0 αr−1
i,l

= O(1),

and if f is not smooth in Sr
i,k:

ωr−1
i,k =

αr−1
i,k∑r−1

l=0 αr−1
i,l

= O(h2mθ),

being m = 2 is the discontinuity is in the function and m = 1 is the discontinuity is in the first derivative. Finally,
if f is smooth in {xi−(r−1), . . . , xi+(r−1)}, we fix a value 0 ≤ k1 ≤ r − 1 and using (29) in Lemma 4.3, we get for all
0 ≤ k ≤ r − 1:

αr−1
i,k =

Cr−1
i,k

(ϵ+ Ir−1
i,k )θ

=
Cr−1

i,k (1 +O(hr−1))

(ϵ+ Ir−1
i,k1

)θ
→

r−1∑
l=0

αr−1
i,l =

1 +O(hr−1)

(ϵ+ Ir−1
i,k1

)θ
.

Therefore,

ωr−1
i,k =

αr−1
i,k∑r−1

l=0 αr−1
i,l

=

Cr−1
i,k (1+O(hr−1))

(ϵ+Ir−1
i,k1

)θ

1+O(hr−1)

(ϵ+Ir−1
i,k1

)θ

=
Cr−1

i,k (1 +O(hr−1))

1 +O(hr−1)
= Cr−1

i,k (1 +O(hr−1)).

■

In order to construct the smoothness indicators for each “level”, we consider where the discontinuities are placed.
In order to clarify the explanation we start with an example, for r = 4. In Sec. 2.2 we have seen that we should define
I li,k,k1

with l = 4, 5, k = 0, 1, k1 = k, k + 1, then we have the following scheme:
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p6i,0
{xi−3, . . . , xi+3}

C5
i,0,0p

5
i,0

{xi−3, . . . , xi+2}

C5
i,0,1p

5
i,1

{xi−2, . . . , xi+3}

C4
i,0,0p

4
i,0

{xi−3, . . . , xi+1}

C4
i,0,1p

4
i,1

{xi−2, . . . , xi+2}

{xi−2, . . . , xi+2}
C4

i,1,1p
4
i,1

{xi−1, . . . , xi+3}
C4

i,1,2p
4
i,2

C3
i,0,0p

3
i,0, S4

i,0 = {xi−3, xi−2, xi−1, xi}

C3
i,0,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,3p

3
i,3, S4

i,3 = {xi, xi+1, xi+2, xi+3}

Figure 1: Diagram showing the structure of the optimal weights needed to obtain optimal order of accuracy for r = 4.

We suppose that the discontinuities are far enough from each other, i.e., there only exists one discontinuity at an
interval. Thus, we have the following cases:

• There does not exist any discontinuity: We use all the weights.

• There exists a discontinuity at (xi+2, xi+3): In this case, the points that are used to construct the interpolator
are {xi−3, . . . , xi+2}. Therefore, we have to obtain ω5

0,0 = O(1), ω5
0,1 = O(h2), ω4

0,0 = O(1) and ω4
0,1 = O(1) (the

rest of the weights are not important because ω5
0,1 = O(h2)). Notice that using the scheme in Fig. 2, we are

choosing I6i,0,0 = I3i,0,0 and we get the desired result.

p6i,0
{xi−3, . . . , xi+3}

C5
i,0,0p

5
i,0

{xi−3, . . . , xi+2}

C5
i,0,1p

5
i,1

{xi−2, . . . , xi+3}

C4
i,0,0p

4
i,0

{xi−3, . . . , xi+1}

C4
i,0,1p

4
i,1

{xi−2, . . . , xi+2}

{xi−2, . . . , xi+2}
C4

i,1,1p
4
i,1

{xi−1, . . . , xi+3}
C4

i,1,2p
4
i,2

C3
i,0,0p

3
i,0, S4

i,0 = {xi−3, xi−2, xi−1, xi}

C3
i,0,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,3p

3
i,3, S4

i,3 = {xi, xi+1, xi+2, xi+3}

Figure 2: First case: discontinuity at (xi+2, xi+3). Red: polynomials that are not used. Blue: polynomials that are used.

• There exists a discontinuity at (xi+1, xi+2): The largest stencil not contaminated by the discontinuity is
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{xi−3, . . . , xi+1}. Therefore, we have to obtain ω5
0,1 = O(h2) and ω5

0,0 = O(1), ω4
0,0 = O(1) and ω4

0,1 = O(1). In
Fig. 3 we write in red the branch that is not used because a discontinuity is contained in the stencil. In green,
the stencil that is used although it contains a discontinuity and in blue, the stencils which do not contain any
discontinuity. Therefore, we define I6i,0,0 = I3i,0,0 and I5i,1,1 = I3i,1,1.

p6i,0
{xi−3, . . . , xi+3}

C5
i,0,0p

5
i,0

{xi−3, . . . , xi+2}

C5
i,0,1p

5
i,1

{xi−2, . . . , xi+3}

C4
i,0,0p

4
i,0

{xi−3, . . . , xi+1}

C4
i,0,1p

4
i,1

{xi−2, . . . , xi+2}

{xi−2, . . . , xi+2}
C4

i,1,1p
4
i,1

{xi−1, . . . , xi+3}
C4

i,1,2p
4
i,2

C3
i,0,0p

3
i,0, S4

i,0 = {xi−3, xi−2, xi−1, xi}

C3
i,0,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,3p

3
i,3, S4

i,3 = {xi, xi+1, xi+2, xi+3}

Figure 3: Second case: discontinuity at (xi+1, xi+2). Red: polynomials that are not used. Blue: polynomials used. Green: polynomial
affected by a discontinuity but not eliminated branch.

• There exists a discontinuity at (xi, xi+1): The largest stencil that does not contain a discontinuity is S4
i,0 =

{xi−3, . . . , xi}. In this case, only the classical WENO interpolator can be recovered.

p6i,0
{xi−3, . . . , xi+3}

C5
i,0,0p

5
i,0

{xi−3, . . . , xi+2}

C5
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5
i,1

{xi−2, . . . , xi+3}

C4
i,0,0p

4
i,0

{xi−3, . . . , xi+1}

C4
i,0,1p

4
i,1

{xi−2, . . . , xi+2}

{xi−2, . . . , xi+2}
C4

i,1,1p
4
i,1

{xi−1, . . . , xi+3}
C4

i,1,2p
4
i,2

C3
i,0,0p

3
i,0, S4

i,0 = {xi−3, xi−2, xi−1, xi}

C3
i,0,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,1,1p

3
i,1, S4

i,1 = {xi−2, xi−1, xi, xi+1}

C3
i,1,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,2p

3
i,2, S4

i,2 = {xi−1, xi, xi+1, xi+2}

C3
i,2,3p

3
i,3, S4

i,3 = {xi, xi+1, xi+2, xi+3}

Figure 4: Third case: discontinuity at (xi, xi+1). Red: polynomials that are not used. Blue: polynomials used. Green: polynomial affected
by a discontinuity but not-eliminated branch.

• The rest of the cases are symmetric.
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Hence, if Ir−1
i,k , k = 0, . . . , 3 are the smoothness indicators defined in Eq. (11) for r = 4 then:

I5i,0,0 = I3i,0, I5i,0,1 = I3i,3, I4i,0,0 = I3i,0, I4i,0,1 = I3i,2, I4i,1,1 = I3i,1, I4i,1,2 = I3i,3. (30)

Using this example, we introduce the following definition.

Definition 1. General smoothness indicators.
Let Ir−1

i,k , with k = 0, . . . , r − 1 be the smoothness indicators shown in Eq. (11), then we define the smoothness
indicators for any r as:

I li,k,k = Ir−1
i,k , k = 0, . . . , (2r − 3)− l,

I li,k,k+1 = Ir−1
i,l+k+2−r, k = 0, . . . , (2r − 3)− l.

(31)

with r ≤ l ≤ 2r − 3.

The following lemma is similar to Prop. 4.4 for nonlinear weights at each level.

Lemma 4.5. Let r ≤ l ≤ 2r−3, 0 ≤ k ≤ (2r−3)− l, 1 ≤ θ and let ωl
i,k,k1

, with k1 = k, k+1 be the nonlinear weights
defined in Eq. (22) then

1. If neither I li,k,k and I li,k,k+1 are affected by a discontinuity, then ωl
i,k,k = Cl

i,k,k(1 + O(hr−1)), ωl
i,k,k+1 =

Cl
i,k,k+1(1 +O(hr−1)).

2. If I li,k,k+1 is affected by a singularity then ωl
i,k,k = 1 +O(h2mθ), ωl

i,k,k+1 = O(h2mθ).

3. If I li,k,k is affected by a singularity then ωl
i,k,k = O(h2mθ), ωl

i,k,k+1 = 1 +O(h2mθ).

Here, m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative

Proof. It is similar to Prop. 4.4: From Cl
i,k,k + Cl

i,k,k+1 = 1, using the definition given in (22), we have that:

1. If I li,k,k = O(h4) and I li,k,k+1 = O(h4), by Eq. (29) in Lemma 4.3, we get:

αl
i,k,k =

Cl
i,k,k

(ϵ+ I li,k,k)
θ
=

Cl
i,k,k(1 +O(hr−1))

(ϵ+ I li,k,k+1)
θ

,

ωl
i,k,k =

αl
i,k,k

αl
i,k,k + αl

i,k,k+1

=

Cl
i,k,k(1+O(hr−1))

(ϵ+Il
i,k,k+1)

θ

Cl
i,k,k(1+O(hr−1))

(ϵ+Il
i,k,k+1)

θ +
Cl

i,k,k+1

(ϵ+Il
i,k,k+1)

θ

=
Cl

i,k,k(1 +O(hr−1))

Cl
i,k,k(1 +O(hr−1)) + Cl

i,k,k+1

= Cl
i,k,k(1 +O(hr−1)).

Analogously for ωl
i,k,k+1.

2. If I li,k,k = O(h4) and I li,k,k+1 = O(1) if the discontinuity is in the function or I li,k,k+1 = O(h2) if the discontinuity
is in the first derivative:

ωl
i,k,k =

Cl
i,k,k(ϵ+ I li,k,k+1)

θ

Cl
i,k,k(ϵ+ I li,k,k+1)

θ + Cl
i,k,k+1(ϵ+ I li,k,k)

θ

=
Cl

k,k(ϵ+ I li,k,k+1)
θ

Cl
i,k,k(ϵ+ I li,k,k+1)

θ +O(h4θ)
=

Cl
i,k,k(ϵ+ I li,k,k+1)

θ

Cl
i,k,k(ϵ+ I li,k,k+1)

θ

1

1 + O(h4θ)

Cl
i,k,k(ϵ+Il

i,k,k+1)
θ

= 1 +O(h2mθ),

ωl
i,k,k+1 =

Cl
i,k,k+1(ϵ+ I li,k,k)

θ

Cl
i,k,k(ϵ+ I li,k,k+1)

θ + Cl
i,k,k+1(ϵ+ I li,k,k)

θ
=

O(h4θ)

O(hm̃θ) +O(h4θ)
= O(h(4−m̃)θ), m̃ = 0, 2.

(32)

3. Analogously if I li,k,k = O(1) and I li,k,k+1 = O(h2m).
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■
If we analyse the examples presented, we can determine a rule for the weights and try to prove it. In the first case,

Fig. 2, the discontinuity is in the interval (xi+(l0−1), xi+(l0−1)) = (xi+2, xi+3), (i.e. l0 = 3), and we can see that the

branch marked in red is the one corresponding to p5i,1, thus ω
l
i,0,1 = ω

(r−2)+l0
i,0,1 = ω5

i,0,1 should be O(h2). In the second
case, Fig. 3, the discontinuity is in the interval (xi+1, xi+2), (l0 = 2), and the red branches are in the corresponding

to p4i,1, then ω
(r−2)+l0
i,0,1 = ω4

i,0,1 and ω5
i,0,1 should be O(h2). We prove that the weights of the different branches which

contain a discontinuity go to 0 as h → 0, in the following lemma.

Lemma 4.6. Let 2 ≤ l0 ≤ r − 1. If f is smooth in [xi−(r−1), xi+(r−1)] \ (xi+(l0−1), xi+l0), then for all (r − 2) + l0 ≤
l ≤ 2r − 3 the nonlinear weights defined in Eq. (22) satisfy:

ωl
i,0,0 = 1 +O(h2mθ), ωl

i,0,1 = O(h2mθ).

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative.

Proof. Let 2 ≤ l0 ≤ r − 1 and (r − 2) + l0 ≤ l ≤ 2r − 3. If the discontinuity is in (xi+(l0−1), xi+l0) then Ir−1
i,0 =

O(h4) since Sr
0 = {xi−(r−1), . . . , xi} and l0 ≥ 1. Subsequently, the stencil used to calculate Ir−1

i,l+2−r is Sr
l+2−r =

{xi−(r−1)+l+2−r, . . . , xi+l+2−r}, as (r − 2) + l0 ≤ l ≤ 2r − 3 then l0 ≤ l + 2 − r, therefore Ir−1
i,l+2−r = O(1) if the

discontinuity is in the function or Ir−1
i,l+2−r = O(h2) if the function contains a kink discontinuity. By Def. 1 we have

that I li,0,1 = Ir−1
i,l+2−r = O(hm̃), m̃ = 0, 2. Using Lemma 4.5 we finish the proof. ■

Lemma 4.7. Let 2 ≤ l0 ≤ r − 1. If f is smooth in [xi−(r−1), xi+(r−1)] \ (xi+(l0−1), xi+l0), then for all r ≤ l ≤
l0 + (r − 2)− 1 the nonlinear weights defined in Eq. (22) satisfy:

ωl
i,k,k = Cl

i,k,k +O(hr−1), ωl
i,k,k+1 = Cl

i,k,k+1 +O(hr−1), 0 ≤ k ≤ l0 + (r − 2)− 1− l, (33)

being Cl
i,k,k1

with k1 = k, k + 1 defined in Eq. (16).

Proof. Let 2 ≤ l0 ≤ r − 1 and r ≤ l ≤ l0 + (r − 2) − 1. We analyse the stencils used to calculate I li,k,k and I li,k,k+1

with 0 ≤ k ≤ l0 + (r − 2)− 1− l. First of all, we take into account two previous considerations:
From r ≤ l, we get:

0 ≤ k ≤ l0 + (r − 2)− 1− l ≤ l0 + (r − 2)− 1− r = l0 − 3, (34)

and from k ≤ l0 + (r − 2)− 1− l:

l + k + 2− r ≤ l + l0 + (r − 2)− 1− l + 2− r = l0 − 1. (35)

By Def. 1 we have that:

1. I li,k,k = Ir−1
i,k , then the stencil used is Sr

i,k = {xi−(r−1)+k, . . . , xi+k}. Using (34), the stencil does not cross the

discontinuity and I li,k,k = Ir−1
i,k = O(h4)

2. I li,k,k+1 = Ir−1
i,l+k+2−r, then the stencil used is Sr

i,l+k+2−r = {xi−(r−1)+l+k+2−r, . . . , xi+l+k+2−r}. Using (34),

analogously, I li,k,k+1 = Ir−1
i,l+k+2−r = O(h4).

By Lemma 4.5 we get the result. ■
With the ingredients presented in the previous sections we can prove the following lemma. We suppose that the

isolated discontinuity is to the right of the point xi. By symmetry, the analysis for the left side would be similar.

Lemma 4.8. Let 2 ≤ l0 ≤ r − 1. If f is smooth in [xi−(r−1), xi+(r−1)] \ (xi+(l0−1), xi+l0), then the nonlinear weights

ω̃r−1
i,k , k = 0, . . . , r − 1 defined in Eq. (24) satisfy:

(ω̃r−1
i,0 , ω̃r−1

i,1 , . . . , ω̃r−1
i,r−1) = (Ĉr−1

i,0 +O(hr−1), Ĉr−1
i,1 +O(hr−1), . . . , Ĉr−1

i,l0−1 +O(hr−1), O(h2mθ), . . . , O(h2mθ)), (36)

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative, being

dpr+l0−2
i,0

dx
(xi) =

l0−1∑
k=0

Ĉr−1
i,k

dpr−1
i,k

dx
(xi).
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Proof. Applying Eq. (19) to the interpolatory polynomial pr+l0−2
i,0 and Lemmas 4.6 and 4.7, we obtain that:

(ωr−1
i,0 , ωr−1

i,1 , . . . , ωr−1
i,r−1) = (Ĉr−1

i,0 +O(hr−1), Ĉr−1
i,1 +O(hr−1), . . . , Ĉr−1

i,l0−1 +O(hr−1), O(h2mθ), . . . , O(h2mθ)), (37)

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in the first derivative, being

dpr+l0−2
i,0

dx
(xi) =

l0−1∑
k=0

Ĉr−1
i,k

dpr−1
i,k

dx
(xi).

As
∑l0−1

k=0 Ĉr−1
i,k = 1 we get the result. ■

Using Lemma 4.8, it is easy to prove the main result. We obtain a progressive order of approximation for the
derivative values close to the discontinuities.

Theorem 4.9. Let 1 ≤ l0 ≤ r − 1 and let ω̃r−1
i,k be defined in Eq. (24) with θ ≥ r − 1. If f is smooth in

[xi−(r−1), xi+(r−1)] \ Ω and f has a discontinuity at Ω then

r−1∑
k=0

ω̃r−1
k

dpr−1
i,k

dx
(xi)−

df

dx
(xi) =

{
O(h2r−2), if Ω = ∅;
O(h(r−2)+l0), if Ω = (xi+(l0−1), xi+l0).

(38)

Also, if l0 > r − 1 then:
r−1∑
k=0

ω̃r−1
k

dpr−1
i,k

dx
(xi)−

df

dx
(xi) = O(h2r−2). (39)

Proof. If f is smooth in the stencil {xi−(r−1)+k, . . . , xi−(r−1)+k+l} then df
dx (xi)−

dpl
i,k

dx (xi) = O(hl). Let 2 ≤ l0 ≤ r− 1,
then

r−1∑
k=0

ω̃r−1
i,k

dpr−1
i,k

dx
(xi)−

df

dx
(xi) =

r−1∑
k=0

ω̃r−1
i,k

dpr−1
i,k (xi)

dx
−

dpl0+r−2
i,0

dx
(xi) +

dpl0+r−2
i,0

dx
(xi)−

df

dx
(xi)

=
r−1∑
k=0

(ω̃r−1
i,k − Ĉr−1

i,k )
dpr−1

i,k

dx
(xi) +O(hr+l0−2)

=

l0−1∑
k=0

(ω̃r−1
k − Ĉr−1

i,k )

(
dpr−1

i,k

dx
(xi)−

df

dx
(xi)

)
+

r−1∑
k=l0

ω̃r−1
i,k

(
dpr−1

i,k

dx
(xi)−

df

dx
(xi)

)
+O(hr+l0−2)

= O(hr−1+r−1) +O(h2mθ) +O(hr+l0−2) = O(hr+l0−2).

■
Therefore, we have proved that, when the isolated discontinuities affect the stencil, we get maximal order in a

neighbourhood of the interval where it is located. In the next section we show some experiments that confirm this
theoretical result.

5. Numerical experiments and conclusions

In this section we present some numerical experiments in order to verify the theoretical results shown in previous
sections. We will use the following function:

fη(x) =

{
x10 − x9 + x8 − 4x7 + x6 + x5 + x4 + x3 + 5x2 + 3x, x < 0,
η − (x10 − 2x9 + 3x8 − 8x7 − 2x6 + x5 − 2x4 − 3x3 − 5x2 + 3x), x ≥ 0,

(40)

discretized in the interval [−π
6 , 1−

π
6 ] using Jq = 2q + 1 uniform spaced points where η = 0, 10. In the first case, the

function f0 is continuous but it presents a discontinuity in the first derivative and in the second case, f10 has a jump
discontinuity. We denote the interval where the discontinuity is contained as (xi−1, xi) and we compute the error as

eql0 =

∣∣∣∣ ddxf(xi+l0)− ap(xi+l0)

∣∣∣∣ , (41)

being ap the approximation of the derivative values using the following methods:
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• [lin-(2r − 2)] Linear Lagrange method using a centered stencil of 2r − 1 points.

• [WENO-(2r − 2)] Non-linear using the classical WENO algorithm explained in Section 1, Eq. (3).

• [p-WENO-(2r − 2)] New progressive order WENO algorithm introduced in this work.

Finally, we compute the numerical order of accuracy using the formula:

oql0 =
eql0
eq+1
l0

. (42)

We start using a large stencil of 5 points, i.e. r = 3, and, using the linear method, we expect to obtain four consecutive
points where the order is lost. Using classical WENO method, we will typically obtain order 3 at the points where
the order is lost using the linear method. Using the new algorithm we expect to obtain progressive order of accuracy
(r − 1, r, 2r − 2) = (2, 3, 4). We show the results for r = 3 in Tables 4, 5 and 6 for f0 and 10, 11 and 12 for f10. For
r = 4, we can see the results in Tables 7, 8 and 9 for the first experiment and 13, 14 and 15 for the second one. It
is clear that the new algorithm produces better approximation close to the discontinuity. We obtain the same results
to the left of the discontinuity. Finally, it is important to remark that if the function is continuous but it presents a
discontinuity in the first derivative, i.e. a kink, we can not use the smoothness indicators introduced in Eq. (11).

6. Conclusions

In this work a newWENO algorithm with progressive order of accuracy close to discontinuities has been introduced.
It allows to calculate approximations of derivative values of a function using regular or non-regular grids. It is based
on the same ideas used in [3] which consist in using Aitken process to calculate the nonlinear weights. The explicit
formulas for the optimal weights have been showed and the order of accuracy in each interval has been proved. Finally,
some experiments have been presented that confirm the theoretical results obtained.
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dizaje y aplicaciones.”, PhD. Thesis, Valencia, 2010.

21



q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
14

34
e
+
0
0

-
3.
77

51
e
−
01

-
3.
84

05
e
−

06
-

2.
95

91
e
−

06
-

1.
54

04
e
−

06
-

3.
92

72
e
−
0
7

-
6

1.
28

62
e
+
0
0

0
.7
4

2.
55

16
e
−
01

0.
57

2.
63

40
e
−

07
3.
87

2.
57

74
e
−

07
3.
52

2.
43

16
e
−

07
2.
66

2.
19

83
e
−
0
7

0
.8
4

7
4.
27

74
e
−
01

1
.5
9

1.
03

22
e
−
02

4.
63

1.
62

97
e
−

08
4.
01

1.
64

77
e
−

08
3.
97

1.
65

13
e
−

08
3.
88

1.
64

06
e
−
0
8

3
.7
4

8
3.
55

49
e
−
01

0
.2
7

2.
06

43
e
−
02

−
1.
00

9.
85

26
e
−

10
4.
05

9.
98

93
e
−

10
4.
04

1.
01

03
e
−

09
4.
03

1.
01

94
e
−
0
9

4
.0
1

9
2.
10

99
e
−
01

0
.7
5

4.
12

87
e
−
02

−
1.
00

6.
00

34
e
−

11
4.
04

6.
05

90
e
−

11
4.
04

6.
11

11
e
−

11
4.
05

6.
15

89
e
−
1
1

4
.0
5

T
a
b
le

4
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
li
n
ea

r
L
a
g
ra
n
g
e
m
et
h
o
d
fo
r
r
=

3
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
0
,
i.
e.

η
=

0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
22

31
e
−
03

-
5.
11

91
e
−

04
-

4.
94

91
e
−
06

-
4.
74

19
e
−
06

-
2.
65

10
e
−
06

-
2.
15

99
e
−

0
6

-
6

5.
28

18
e
−
04

2
.0
7

1.
12

85
e
−

04
2.
18

2.
64

89
e
−
07

4.
22

2.
93

52
e
−
07

4.
01

3.
14

52
e
−
07

3.
08

3.
20

63
e
−

0
7

2
.7
5

7
2.
60

23
e
−
04

1
.0
2

3.
32

48
e
−

05
1.
76

1.
46

89
e
−
08

4.
17

1.
56

17
e
−
08

4.
23

1.
65

76
e
−
08

4.
25

1.
75

20
e
−

0
8

4
.1
9

8
3.
14

08
e
−
05

3
.0
5

6.
36

88
e
−

06
2.
38

8.
40

33
e
−
10

4.
13

8.
64

44
e
−
10

4.
18

8.
90

40
e
−
10

4.
22

9.
17

88
e
−

1
0

4
.2
5

9
7.
72

96
e
−
06

2
.0
2

1.
55

75
e
−

06
2.
03

5.
05

05
e
−
11

4.
06

5.
11

36
e
−
11

4.
08

5.
18

04
e
−
11

4.
10

5.
25

11
e
−

1
1

4
.1
3

T
a
b
le

5
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
cl
a
ss
ic
a
l
W

E
N
O

m
et
h
o
d
fo
r
r
=

3
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
0
,
i.
e.

η
=

0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
21

87
e
−
03

-
6.
50

48
e
−

05
-

1.
02

93
e
−
05

-
1.
89

00
e
−
05

-
3.
28

51
e
−
05

-
5.
31

30
e
−

0
5

-
6

5.
28

18
e
−
04

2
.0
7

6.
37

19
e
−

06
3.
35

3.
43

82
e
−
07

4.
90

4.
73

87
e
−
07

5.
32

6.
51

98
e
−
07

5.
65

8.
92

50
e
−

0
7

5
.9
0

7
1.
94

64
e
−
04

1
.4
4

7.
35

26
e
−

07
3.
12

1.
55

43
e
−
08

4.
47

1.
83

18
e
−
08

4.
69

2.
15

31
e
−
08

4.
92

2.
52

84
e
−

0
8

5
.1
4

8
3.
13

77
e
−
05

2
.6
3

7.
93

47
e
−

08
3.
21

7.
49

84
e
−
10

4.
37

8.
19

86
e
−
10

4.
48

8.
93

71
e
−
10

4.
59

9.
72

10
e
−

1
0

4
.7
0

9
7.
72

96
e
−
06

2
.0
2

9.
40

94
e
−

09
3.
08

4.
06

69
e
−
11

4.
20

4.
27

00
e
−
11

4.
26

4.
47

69
e
−
11

4.
32

4.
68

79
e
−

1
1

4
.3
7

T
a
b
le

6
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
n
ew

W
E
N
O

m
et
h
o
d
fo
r
r
=

3
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
0
,
i.
e.

η
=

0
.

22



q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
09

44
e
+
0
0

-
5.
04

17
e
−
01

-
7.
55

02
e
−

02
-

1.
15

12
e
−

07
-

1.
10

23
e
−

07
-

1.
04

57
e
−
0
7

-
6

1.
18

83
e
+
0
0

0
.8
2

3.
08

28
e
−
01

0.
71

5.
10

31
e
−

02
0.
57

1.
91

37
e
−

09
5.
91

1.
87

31
e
−

09
5.
88

1.
83

53
e
−
0
9

5
.8
3

7
6.
23

62
e
−
01

0
.9
3

8.
34

83
e
−
02

1.
88

2.
06

43
e
−

03
4.
63

3.
09

62
e
−

11
5.
95

3.
05

91
e
−

11
5.
94

3.
02

30
e
−
1
1

5
.9
2

8
5.
47

24
e
−
01

0
.1
9

6.
69

70
e
−
02

0.
32

4.
12

87
e
−

03
−
1.
00

4.
95

60
e
−

13
5.
97

4.
90

72
e
−

13
5.
96

4.
88

94
e
−
1
3

5
.9
5

9
3.
94

48
e
−
01

0
.4
7

3.
39

41
e
−
02

0.
98

8.
25

73
e
−

03
−
1.
00

7.
10

54
e
−

15
6.
12

1.
19

90
e
−

14
5.
35

7.
54

95
e
−
1
5

6
.0
2

T
a
b
le

7
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
li
n
ea

r
L
a
g
ra
n
g
e
m
et
h
o
d
fo
r
r
=

4
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
0
,
i.
e.

η
=

0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
25

40
e
−
04

-
4.
3
78

5e
−

05
-

1.
14

94
e
−
05

-
2.
30

57
e
−

08
-

6.
23

25
e
−

08
-

1.
19

81
e
−
0
7

-
6

2.
58

93
e
−
05

3.
12

5.
1
17

1e
−

06
3.
10

1.
33

71
e
−
06

3.
10

6.
08

56
e
−

11
8.
57

3.
77

01
e
−

11
10

.6
9

1.
07

98
e
−
1
0

1
0
.1
2

7
4.
49

45
e
−
04

−
4.
12

3.
7
30

3e
−

04
−
6.
19

8.
47

39
e
−
05

−
5.
99

3.
69

13
e
−

12
4.
04

2.
39

32
e
−

12
3.
98

1.
37

76
e
−
1
2

6
.2
9

8
4.
40

35
e
−
07

10
.0
0

3.
5
80

2e
−

07
10

.0
3

7.
33

36
e
−
09

13
.5
0

1.
08

36
e
−

13
5.
09

9.
59

23
e
−

14
4.
64

8.
03

80
e
−
1
4

4
.1
0

9
4.
50

85
e
−
08

3.
29

8.
8
88

0e
−

09
5.
33

2.
38

87
e
−
09

1.
62

2.
22

04
e
−

15
5.
61

3.
99

68
e
−

15
4.
58

1.
77

64
e
−
1
5

5
.5
0

T
a
b
le

8
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
cl
a
ss
ic
a
l
W

E
N
O

m
et
h
o
d
fo
r
r
=

4
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
0
,
i.
e.

η
=

0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
27

58
e
−
04

-
8.
22

13
e
−

06
-

8.
36

59
e
−
07

-
1.
40

49
e
−
07

-
2.
02

47
e
−
08

-
1.
50

88
e
−

0
7

-
6

2.
60

96
e
−
05

3
.1
2

4.
52

46
e
−

07
4.
18

2.
56

66
e
−
08

5.
03

3.
17

40
e
−
09

5.
47

3.
16

43
e
−
09

2.
68

2.
90

24
e
−

0
9

5
.7
0

7
2.
92

76
e
−
06

3
.1
6

2.
83

20
e
−

08
4.
00

7.
45

17
e
−
10

5.
11

4.
35

56
e
−
11

6.
19

4.
64

46
e
−
11

6.
09

4.
85

95
e
−

1
1

5
.9
0

8
3.
73

07
e
−
07

2
.9
7

1.
51

79
e
−

09
4.
22

2.
54

95
e
−
11

4.
87

5.
61

33
e
−
13

6.
28

5.
93

75
e
−
13

6.
29

6.
26

17
e
−

1
3

6
.2
8

9
4.
56

39
e
−
08

3
.0
3

9.
12

02
e
−

11
4.
06

8.
15

35
e
−
13

4.
97

7.
54

95
e
−
15

6.
22

6.
21

72
e
−
15

6.
58

8.
88

18
e
−

1
5

6
.1
4

T
a
b
le

9
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
n
ew

W
E
N
O

m
et
h
o
d
fo
r
r
=

4
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
0
,
i.
e.

η
=

0
.

23



q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
1.
88

81
e
+
0
2

-
2.
70

44
e
+
0
1

-
3.
84

05
e
−
06

-
2.
95

91
e
−

06
-

1.
54

04
e
−

06
-

3.
92

72
e
−

0
7

-
6

3.
74

62
e
+
0
2

−
0.
99

5.
35

88
e
+
0
1

−
0.
99

2.
63

40
e
−
07

3.
87

2.
57

74
e
−

07
3.
52

2.
43

16
e
−

07
2.
66

2.
19

83
e
−

0
7

0
.8
4

7
7.
46

24
e
+
0
2

−
0.
99

1.
06

68
e
+
0
2

−
0.
99

1.
62

97
e
−
08

4.
01

1.
64

77
e
−

08
3.
97

1.
65

13
e
−

08
3.
88

1.
64

06
e
−

0
8

3
.7
4

8
1.
49

30
e
+
0
3

−
1.
00

2.
13

35
e
+
0
2

−
1.
00

9.
85

26
e
−
10

4.
05

9.
98

93
e
−

10
4.
04

1.
01

03
e
−

09
4.
03

1.
01

94
e
−

0
9

4
.0
1

9
2.
98

65
e
+
0
3

−
1.
00

4.
26

71
e
+
0
2

−
1.
00

6.
00

34
e
−
11

4.
04

6.
05

90
e
−

11
4.
04

6.
11

11
e
−

11
4.
05

6.
15

89
e
−

1
1

4
.0
5

T
a
b
le

1
0
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
li
n
ea

r
L
a
g
ra
n
g
e
m
et
h
o
d
fo
r
r
=

3
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
1
0
,
i.
e.

η
=

1
0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
21

87
e
−
03

-
5.
11

91
e
−

04
-

4.
94

91
e
−
06

-
4.
74

19
e
−
06

-
2.
65

10
e
−
06

-
2.
15

99
e
−

0
6

-
6

5.
28

18
e
−
04

2
.0
7

1.
12

85
e
−

04
2.
18

2.
64

89
e
−
07

4.
22

2.
93

52
e
−
07

4.
01

3.
14

52
e
−
07

3.
08

3.
20

63
e
−

0
7

2
.7
5

7
1.
28

91
e
−
04

2
.0
3

2.
66

12
e
−

05
2.
08

1.
46

89
e
−
08

4.
17

1.
56

17
e
−
08

4.
23

1.
65

76
e
−
08

4.
25

1.
75

20
e
−

0
8

4
.1
9

8
3.
13

47
e
−
05

2
.0
4

6.
36

58
e
−

06
2.
06

8.
40

33
e
−
10

4.
13

8.
64

44
e
−
10

4.
18

8.
90

40
e
−
10

4.
22

9.
17

88
e
−

1
0

4
.2
5

9
7.
72

96
e
−
06

2
.0
2

1.
55

75
e
−

06
2.
03

5.
05

05
e
−
11

4.
06

5.
11

36
e
−
11

4.
08

5.
18

04
e
−
11

4.
10

5.
25

11
e
−

1
1

4
.1
3

T
a
b
le

1
1
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
cl
a
ss
ic
a
l
W

E
N
O

m
et
h
o
d
fo
r
r
=

3
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
1
0
,
i.
e.

η
=

1
0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
21

87
e
−
03

-
6.
50

48
e
−

05
-

1.
02

93
e
−
05

-
1.
89

00
e
−
05

-
3.
28

51
e
−
05

-
5.
31

30
e
−

0
5

-
6

5.
28

18
e
−
04

2
.0
7

6.
37

19
e
−

06
3.
35

3.
43

82
e
−
07

4.
90

4.
73

87
e
−
07

5.
32

6.
51

98
e
−
07

5.
65

8.
92

50
e
−

0
7

5
.9
0

7
1.
28

91
e
−
04

2
.0
3

7.
05

03
e
−

07
3.
18

1.
55

43
e
−
08

4.
47

1.
83

18
e
−
08

4.
69

2.
15

31
e
−
08

4.
92

2.
52

84
e
−

0
8

5
.1
4

8
3.
13

47
e
−
05

2
.0
4

7.
93

45
e
−

08
3.
15

7.
49

84
e
−
10

4.
37

8.
19

86
e
−
10

4.
48

8.
93

71
e
−
10

4.
59

9.
72

10
e
−

1
0

4
.7
0

9
7.
72

96
e
−
06

2
.0
2

9.
40

94
e
−

09
3.
08

4.
06

69
e
−
11

4.
20

4.
27

00
e
−
11

4.
26

4.
47

69
e
−
11

4.
32

4.
68

79
e
−

1
1

4
.3
7

T
a
b
le

1
2
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
n
ew

W
E
N
O

m
et
h
o
d
fo
r
r
=

3
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
1
0
,
i.
e.

η
=

1
0
.

24



q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
1.
99

43
e
+
0
2

-
4.
31

71
e
+
0
1

-
5.
40

88
e
+
00

-
1.
15

12
e
−
07

-
1.
10

23
e
−
07

-
1.
04

57
e
−
0
7

-
6

3.
95

85
e
+
0
2

−
0.
99

8.
56

42
e
+
0
1

−
0.
99

1.
07

18
e
+
01

−
0.
99

1.
91

37
e
−
09

5.
91

1.
87

31
e
−
09

5.
88

1.
83

53
e
−
0
9

5
.8
3

7
7.
88

71
e
+
0
2

−
0.
99

1.
70

58
e
+
0
2

−
0.
99

2.
13

35
e
+
01

−
0.
99

3.
09

62
e
−
11

5.
95

3.
05

91
e
−
11

5.
94

3.
02

30
e
−
1
1

5
.9
2

8
1.
57

81
e
+
0
3

−
1.
00

3.
41

27
e
+
0
2

−
1.
00

4.
26

71
e
+
01

−
1.
00

4.
95

60
e
−
13

5.
97

4.
90

72
e
−
13

5.
96

4.
88

94
e
−
1
3

5
.9
5

9
3.
15

69
e
+
0
3

−
1.
00

6.
82

63
e
+
0
2

−
1.
00

8.
53

42
e
+
01

−
1.
00

7.
10

54
e
−
15

6.
12

1.
19

90
e
−
14

5.
35

7.
54

95
e
−
1
5

6
.0
2

T
a
b
le

1
3
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
li
n
ea

r
L
a
g
ra
n
g
e
m
et
h
o
d
fo
r
r
=

4
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
1
0
,
i.
e.

η
=

1
0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2
.2
75

8e
−
04

-
4.
3
85

3e
−
0
5

-
1.
14

96
e
−

05
-

2.
30

57
e
−

08
-

6.
23

25
e
−

08
-

1.
19

81
e
−

0
7

-
6

2
.6
09

6e
−
05

3.
12

5.
1
25

8e
−
0
6

3.
10

1.
33

72
e
−

06
3.
10

6.
08

56
e
−

11
8.
57

3.
77

01
e
−

11
10

.6
9

1.
07

98
e
−

1
0

1
0
.1
2

7
3
.1
15

4e
−
06

3.
07

6.
1
77

6e
−
0
7

3.
05

1.
61

58
e
−

07
3.
05

3.
69

13
e
−

12
4.
04

2.
39

32
e
−

12
3.
98

1.
37

76
e
−

1
2

6
.2
9

8
3
.7
30

7e
−
07

3.
06

7.
4
30

6e
−
0
8

3.
06

1.
94

86
e
−

08
3.
05

1.
08

36
e
−

13
5.
09

9.
59

23
e
−

14
4.
64

8.
03

80
e
−

1
4

4
.1
0

9
4
.5
63

9e
−
08

3.
03

9.
1
09

5e
−
0
9

3.
03

2.
39

28
e
−

09
3.
03

2.
22

04
e
−

15
5.
61

3.
99

68
e
−

15
4.
58

1.
77

64
e
−

1
5

5
.5
0

T
a
b
le

1
4
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
cl
a
ss
ic
a
l
W

E
N
O

m
et
h
o
d
fo
r
r
=

4
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
1
0
,
i.
e.

η
=

1
0
.

q
eq 1

oq 1
eq 2

oq 2
eq 3

oq 3
eq 4

oq 4
eq 5

oq 5
eq 6

oq 6

5
2.
27

58
e
−
04

-
8.
22

13
e
−

06
-

8.
36

59
e
−
07

-
1.
40

49
e
−
07

-
2.
02

47
e
−
08

-
1.
50

88
e
−

0
7

-
6

2.
60

96
e
−
05

3
.1
2

4.
52

46
e
−

07
4.
18

2.
56

66
e
−
08

5.
03

3.
17

40
e
−
09

5.
47

3.
16

43
e
−
09

2.
68

2.
90

24
e
−

0
9

5
.7
0

7
3.
11

54
e
−
06

3
.0
7

2.
59

39
e
−

08
4.
12

7.
94

66
e
−
10

5.
01

4.
35

56
e
−
11

6.
19

4.
64

46
e
−
11

6.
09

4.
85

95
e
−

1
1

5
.9
0

8
3.
73

07
e
−
07

3
.0
6

1.
51

79
e
−

09
4.
09

2.
54

96
e
−
11

4.
96

5.
61

33
e
−
13

6.
28

5.
93

75
e
−
13

6.
29

6.
26

17
e
−

1
3

6
.2
8

9
4.
56

39
e
−
08

3
.0
3

9.
12

02
e
−

11
4.
06

8.
15

35
e
−
13

4.
97

7.
54

95
e
−
15

6.
22

6.
21

72
e
−
15

6.
58

8.
88

18
e
−

1
5

6
.1
4

T
a
b
le

1
5
:
G
ri
d
re
fi
n
em

en
t
a
n
a
ly
si
s
fo
r
th

e
n
ew

W
E
N
O

m
et
h
o
d
fo
r
r
=

4
a
lg
o
ri
th

m
fo
r
th

e
fu
n
ct
io
n
in

(4
0
)
fo
r
f
1
0
,
i.
e.

η
=

1
0
.

25


	Introduction and review: central WENO and motivation
	New WENO with progressive adaptation to discontinuities: cases r=3 and r=4
	New WENO for r=3 with progressive adaptation to discontinuities in non-uniform grids
	New WENO with progressive adaptation to discontinuities for r=4 in non-uniform grids

	General new WENO algorithm for derivative values and general optimal weights
	Smoothness indicators and analysis of the accuracy
	Numerical experiments and conclusions
	Conclusions

