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INVERSE RANDOM POTENTIAL SCATTERING FOR ELASTIC
WAVES*

JIANLIANG LI\dagger , PEIJUN LI\ddagger , AND XU WANG\S 

Abstract. This paper is concerned with the inverse elastic scattering problem for a random
potential in three dimensions. Interpreted as a distribution, the potential is assumed to be a mi-
crolocally isotropic Gaussian random field whose covariance operator is a classical pseudodifferential
operator. Given the potential, the direct scattering problem is shown to be well-posed in the sense
of distributions by studying the equivalent Lippmann--Schwinger integral equation. For the inverse
scattering problem, we demonstrate that the microlocal strength of the random potential can be
uniquely determined with probability one by a single realization of the high frequency limit of the
averaged compressional or shear backscattered far-field pattern of the scattered wave. The analysis
employs the integral operator theory, the Born approximation in the high frequency regime, the
microlocal analysis for the Fourier integral operators, and the ergodicity of the wave field.

Key words. inverse scattering problem, elastic wave equation, generalized Gaussian random
field, pseudodifferential operator, principal symbol, uniqueness
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1. Introduction. Inverse problems seek the causal factors which produce obser-
vations. Mathematically, they determine unknown parameters in partial differential
equations via external measurements. The field of inverse problems has undergone
tremendous growth in the last several decades. Motivated by diverse scientific and
industrial applications such as radar and sonar, nondestructive testing, and medical
imaging, inverse scattering has become an area of intense activity and is one of the
most important research topics in scattering theory [11]. Recently, inverse scattering
problems for elastic waves have received much attention due to significant applications
in geophysics, seismology, and elastography [1]. We refer to [4, 5, 6, 7, 15, 16, 35,
36] and the references cited therein for mathematical and computational results on
inverse problems in elasticity. A comprehensive account of elasticity can be found in
the monograph [10].

Stochastic inverse problems refer to inverse problems that involve uncertainties,
which become essential for mathematical models in order to take account of unpre-
dictability of the environments, incomplete knowledge of the systems and measure-
ments, and interference between different scales. In addition to the existing hurdles of
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INVERSE RANDOM POTENTIAL SCATTERING 427

nonlinearity and ill-posedness for deterministic counterparts, stochastic inverse prob-
lems have substantially more difficulties due to randomness and uncertainties. The
area is wide open. It is highly desired to develop new models and methodologies. We
refer to [2, 8, 17] and [14, 18, 19] on inverse scattering problems in random media
and with random sources, respectively. Recent progress can be found in [3, 24, 25,
30, 31] on the inverse random source problems for the wave equations, where the goal
is to determine the statistical properties of the random source from knowledge of the
radiated random wave field.

The inverse random potential problem is more challenging than the inverse ran-
dom source problem due to nonlinearity. There are only a few mathematical results
on the inverse random potential problems, where the potential is assumed to be a
microlocally isotropic Gaussian random field of order  - m as proposed in [22] (cf.
Assumption 1.1). In [23], the authors considered the point source illumination and
studied the inverse random potential problem for the two-dimensional Schr\"odinger
equation with m \in [2,3) by examining the Born series and using the near-field data.
It is shown that the microlocal strength of the random potential can be uniquely deter-
mined by the high frequency limit of the scattered wave averaged over the frequency
band. The work was extended in [26] to the more complicated stochastic elastic wave
equation of rougher potentials with m \in (1,2] in \BbbR 2. The microlocal strength of the
random potential is shown to be uniquely determined by the high frequency limit of
two scattered fields averaged over the frequency band, where the two scattered fields
are excited by two point sources with two unit orthonormal polarization vectors. It
is unclear whether the near-field measurement used in the two-dimensional problems
can be utilized to solve the three-dimensional problems. The difficulty arises from the
fact that the fundamental solutions in three dimensions do not decay with respect to
the frequency, which makes it challenging to estimate the higher order terms in the
Born series. In [9], the authors investigated the inverse random potential problem for
the three-dimensional Schr\"odinger equation with m = 3, where the plane wave was
taken as the incidence and the far-field pattern was used as the data. They showed
that the microlocal strength of the random potential can be uniquely recovered by
the high frequency limit of the backscattered far-field pattern averaged over the fre-
quency band. Motivated by [9], we study the inverse random potential problem for
the three-dimensional elastic wave equation by using the far-field pattern, where the
potential has a larger range of roughness with m \in (2,3]. Since the compressional
and shear components of the elastic wave have different wavenumbers and the dis-
placement is a vector-valued function, the analysis is more sophisticated than the
Schr\"odinger equation. We refer to [27, 28, 29] for closely related inverse problems
of the three-dimensional Schr\"odinger equation. In [27], it was shown that the deter-
ministic potential and statistics of the white noise perturbed source can be uniquely
determined by using both the passive and the active measurement. The work was
extended in [29] to the case that the source is a microlocally isotropic Gaussian ran-
dom field. It was further extended in [28] to the case that both the potential and the
source are microlocally isotropic Gaussian random fields. The estimates are technical
for the problem with both the potential and the source being random. A priori in-
formation is needed about the relationship of the orders for the potential and source.
These interesting results are summarized in the review paper [33]. An inverse random
impedance problem for the acoustic wave equation can be found in [20].

This work is concerned with an inverse random potential scattering problem for
the three-dimensional elastic wave equation. Specifically, we consider the stochastic
elastic wave equation
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428 JIANLIANG LI, PEIJUN LI, AND XU WANG

\mu \Delta \bfitu + (\lambda + \mu )\nabla \nabla \cdot \bfitu + \omega 2\bfitu  - \rho \bfitu = 0 in \BbbR 3,(1.1)

where \omega > 0 is the angular frequency, \lambda and \mu are the Lam\'e constants satisfying
\mu > 0 and \lambda + 2\mu > 0 such that the second order partial differential operator \Delta \ast :=
\mu \Delta +(\lambda +\mu )\nabla \nabla \cdot is strongly elliptic (cf. [34, section 10.4]), and the random potential
\rho stands for a linear load inside a known homogeneous and isotropic elastic solid and
is assumed to be a generalized Gaussian random field whose definition is given as
follows.

Assumption 1.1. Assume that the random potential \rho is a centered microlocally
isotropic Gaussian random field of order  - m supported in D with m \in (2,3] and
D \subset \BbbR 3 being a bounded domain. More precisely, the covariance operator \scrC \rho of \rho ,
defined by

\langle \scrC \rho \varphi ,\psi \rangle :=\BbbE [\langle \rho ,\varphi \rangle \langle \rho ,\psi \rangle ] \forall \varphi ,\psi \in \scrD ,

is a classical pseudodifferential operator. Its principal symbol has the form \phi (x)| \xi |  - m,
where \phi is called the microlocal strength of \rho and satisfies supp(\phi )\subset D, \phi \in C\infty 

0 (D),
and \phi \geq 0.

The total field \bfitu consists of the scattered field \bfitu sc and the incident field \bfitu inc,
which is assumed to be the elastic plane wave of the general form

\bfitu inc(x) = \alpha \bfitu inc
p (x) + \beta \bfitu inc

s (x), \alpha ,\beta \in \BbbC .(1.2)

Here, \bfitu inc
p := \theta ei\kappa \mathrm{p}x\cdot \theta is the compressional plane wave and \bfitu inc

s := \theta \bot ei\kappa \mathrm{s}x\cdot \theta denotes

the shear plane wave, where \theta \in \BbbS 2 := \{ x\in \BbbR 3 : | x| = 1\} represents the unit propagation
direction, \theta \bot \in \BbbS 2 is a unit vector orthogonal to \theta , and \kappa p := cp\omega and \kappa s := cs\omega with
cp := (\lambda + 2\mu ) - 

1
2 and cs := \mu  - 1

2 denote the compressional and shear wavenumbers,
respectively. In this paper, we consider separately these two types of incident plane
waves: one is the compressional plane wave \bfitu inc = \bfitu inc

p with \alpha = 1 and \beta = 0; the
other is the shear plane wave \bfitu inc = \bfitu inc

s with \alpha = 0 and \beta = 1. It can be verified
that the incident field \bfitu inc satisfies

\mu \Delta \bfitu inc + (\lambda + \mu )\nabla \nabla \cdot \bfitu inc + \omega 2\bfitu inc = 0 in \BbbR 3.

Since the problem is formulated in the whole space \BbbR 3, an appropriate radiation
condition is needed to ensure the uniqueness of the solution. As usual, the scattered
field \bfitu sc is required to satisfy the Kupradze--Sommerfeld radiation condition. Based
on the Helmholtz decomposition (cf. [5, Appendix B]), the scattered field \bfitu sc can
be decomposed into the compressional wave component \bfitu sc

p := - 1
\kappa 2
\mathrm{p}
\nabla \nabla \cdot \bfitu sc and the

shear wave component \bfitu sc
s := 1

\kappa 2
\mathrm{s}
\nabla \times (\nabla \times \bfitu sc) in \BbbR 3 \setminus D. The Kupradze--Sommerfeld

radiation condition reads that \bfitu sc
p and \bfitu sc

s satisfy the Sommerfeld radiation condition

lim
| x| \rightarrow \infty 

| x| 
\bigl( 
\partial | x| \bfitu 

sc
p  - i\kappa p\bfitu 

sc
p

\bigr) 
= 0, lim

| x| \rightarrow \infty 
| x| 
\bigl( 
\partial | x| \bfitu 

sc
s  - i\kappa s\bfitu 

sc
s

\bigr) 
= 0(1.3)

uniformly in all directions \^x := x/| x| \in \BbbS 2. The radiation condition (1.3) leads to the
following asymptotic expansion of \bfitu sc:

\bfitu sc(x) =
ei\kappa \mathrm{p}| x| 

| x| 
\bfitu \infty 
p (\^x) +

ei\kappa \mathrm{s}| x| 

| x| 
\bfitu \infty 
s (\^x) +O(| x|  - 2), | x| \rightarrow \infty ,(1.4)

where \bfitu \infty 
p (\^x) and \bfitu \infty 

s (\^x) are known as the compressional and shear far-field patterns
of the scattered field \bfitu sc, respectively.
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INVERSE RANDOM POTENTIAL SCATTERING 429

Note that the wave fields \bfitu ,\bfitu \infty 
p ,\bfitu 

\infty 
s also depend on the angular frequency \omega 

and the propagation direction \theta . For clarity, we write \bfitv (x) as \bfitv (x,\omega , \theta ) when it is
necessary to express explicitly the dependence of the wave field \bfitv on \omega and \theta .

Given the random potential \rho , the direct scattering problem is to investigate the
well-posedness and regularity of the solution \bfitu to (1.1)--(1.3). The inverse scattering
problem aims to determine the microlocal strength \phi of the random potential from
knowledge of the wave field \bfitu . In this work, we consider both the direct and inverse
scattering problems. The direct scattering problem is shown to be well-posed in the
sense of distributions (cf. Theorem 2.2). Below, we present the main result on the
uniqueness of the inverse scattering problem and outline the steps of its proof for
readability.

Theorem 1.2. Let the random potential \rho satisfy Assumption 1.1 with m\in ( 145 ,3].
Denote by \bfitu \infty 

p and \bfitu \infty 
s the compressional and shear far-field patterns of the scattered

wave \bfitu sc associated with \bfitu inc = \bfitu inc
p and \bfitu inc = \bfitu inc

s , respectively. For any fixed

\theta \in \BbbS 2 and \tau \geq 0, it holds almost surely that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
p ( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

p ( - \theta ,\omega + \tau , \theta )d\omega =Cp
\^\phi (2cp\tau \theta ),(1.5)

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
s ( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

s ( - \theta ,\omega + \tau , \theta )d\omega =Cs
\^\phi (2cs\tau \theta ),(1.6)

where Cp = 2 - m - 4\pi  - 2c4 - m
p , Cs = 2 - m - 4\pi  - 2c4 - m

s , and

\^\phi (\xi ) =\scrF [\phi ](\xi ) =

\int 
\BbbR 3

\phi (x)e - ix\cdot \xi dx

is the Fourier transform of \phi . Moreover, the microlocal strength \phi is uniquely deter-
mined from (1.5) or (1.6) with (\tau , \theta )\in \Theta and \Theta \subset \BbbR + \times \BbbS 2 being any open domain.

Since the potential is random, the scattered wave and its far-field pattern are also
random fields. In general, the scattering data used to recover the random coefficients
involved in the stochastic inverse problems depend on the realizations of the random
coefficients. Interestingly, the results in Theorem 1.2 demonstrate that the scattering
data given on the left-hand side of (1.5)--(1.6) are statistically stable, i.e., they are
independent of the realizations of the potential. The compressional or shear backscat-
tered far-field pattern generated by any single realization of the random potential can
determine with probability one the microlocal strength \phi of the random potential.

To prove Theorem 1.2, we consider the equivalent Lippmann--Schwinger integral
equation and show that the solution can be written as a Born series for sufficiently
large frequency, i.e.,

\bfitu sc(x,\omega , \theta ) =

\infty \sum 
j=1

\bfitu j(x,\omega , \theta ).

Correspondingly, the far-field pattern \bfitu \infty := \bfitu \infty 
p + \bfitu \infty 

s of the scattered field \bfitu sc has
the form

\bfitu \infty (\^x,\omega , \theta ) =\bfitu \infty 
1 (\^x,\omega , \theta ) +\bfitu \infty 

2 (\^x,\omega , \theta ) + \bfitb (\^x,\omega , \theta ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
23

 to
 1

28
.2

10
.1

06
.7

6 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s­
pr

iv
ac

y



430 JIANLIANG LI, PEIJUN LI, AND XU WANG

where \bfitb (\^x,\omega , \theta ) :=
\sum \infty 

j=3\bfitu 
\infty 
j (\^x,\omega , \theta ) and \bfitu \infty 

j denotes the far-field pattern of \bfitu j . For
the first order far-field pattern \bfitu \infty 

1 , we show by using the Fourier analysis in section
3.1 that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
1,p( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega + \tau , \theta )d\omega =Cp
\^\phi (2cp\tau \theta ),

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
1,s( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,s( - \theta ,\omega + \tau , \theta )d\omega =Cs
\^\phi (2cs\tau \theta ),

where \bfitu \infty 
j,p and \bfitu \infty 

j,s are the compressional and shear far-field patterns of \bfitu \infty 
j for j \in \BbbN .

For the second order far-field pattern \bfitu \infty 
2 , the higher order far-field pattern \bfitb , and

their interactions to the first order far-field pattern, we employ microlocal analysis of
Fourier integral operators and show that they are negligible in sections 3.2 and 3.3,
i.e.,

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m| \bfitu \infty 
2 ( - \theta ,\omega , \theta )| 2d\omega = 0, lim

Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m| \bfitb ( - \theta ,\omega , \theta )| 2d\omega = 0.

The paper is organized as follows. In section 2, the well-posedness is established
for the direct scattering problem by studying the equivalent Lippmann--Schwinger
integral equation; the convergence of the series solution is proved for the Lippmann--
Schwinger integral equation for sufficiently large frequency. Section 3 is devoted to
the inverse scattering problem, where a uniqueness result is obtained to determine the
microlocal strength of the random potential. The paper concludes with some general
remarks in section 4.

2. The direct scattering problem. This section is devoted to addressing the
well-posedness of the scattering problem (1.1)--(1.3) and the regularity of the solution
\bfitu . The challenge arises from the roughness of the random potential \rho . By the follow-
ing lemma, the potential \rho should be interpreted as a distribution in W

m - 3
2  - \epsilon ,p(D)

almost surely for any \epsilon > 0 and p \in (1,\infty ). The proof of Lemma 2.1 can be found
in [23, 30].

Lemma 2.1. Let \rho be a microlocally isotropic Gaussian random field of order  - m
in D\subset \BbbR n with m\in [0, n+ 2).

(i) If m\in (n,n+ 2), then \rho \in C0,\alpha (D) almost surely for all \alpha \in (0, m - n
2 ).

(ii) If m \in [0, n], then \rho \in W
m - n

2  - \epsilon ,p(D) almost surely for any \epsilon > 0 and p \in 
(1,\infty ).

Since the potential \rho is a distribution, the well-posedness of the problem (1.1)--
(1.3) is examined in the sense of distributions by studying the equivalent Lippmann--
Schwinger integral equation

(\scrI +\scrK \omega )\bfitu =\bfitu inc,(2.1)

where \scrI is the identity operator and the operator \scrK \omega is defined by

(\scrK \omega \bfitu )(x) :=

\int 
\BbbR 3

\bfitG (x, z,\omega )\rho (z)\bfitu (z)dz.

Here, \bfitG \in \BbbC 3\times 3 denotes the Green tensor for the elastic wave equation and is given
by

\bfitG (x, z,\omega ) =
1

\mu 
\Phi (x, z,\kappa s)\bfitI +

1

\omega 2
\nabla x\nabla \top 

x

\Bigl[ 
\Phi (x, z,\kappa s) - \Phi (x, z,\kappa p)

\Bigr] 
,(2.2)
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INVERSE RANDOM POTENTIAL SCATTERING 431

where \bfitI is the 3\times 3 identity matrix and \Phi (x, z,\kappa ) = e\mathrm{i}\kappa | x - z| 

4\pi | x - z| is the fundamental solution
of the three-dimensional Helmholtz equation.

In what follows, we denote by \bfitV = \{ \bfitv = (v1, v2, v3)
\top : vi \in V, i = 1,2,3\} the

Cartesian product vector space of the space V . For example, \bfitW \gamma ,q(D) denotes the
Sobolev space of vector-valued functions \bfitu = (u1, u2, u3)

\top with each component ui,
i= 1,2,3, belonging to the scalar Sobolev space W \gamma ,q(D). The notation a\lesssim b stands
for a\leq Cb, where C is a positive constant whose value is not required and may change
step by step in the proofs.

Theorem 2.2. Let \rho satisfy Assumption 1.1. Then the scattering problem (1.1)--
(1.3) is well-defined in the sense of distributions and admits a unique solution \bfitu \in 
\bfitW \gamma ,q

loc (\BbbR 3) almost surely with q \in (2, 6
7 - 2m ) and \gamma \in ( 3 - m

2 , 3
2q  - 

1
4 ).

Proof . To address the existence of the solution to the scattering problem (1.1)--
(1.3), we first show that the Lippmann--Schwinger equation (2.1) admits a unique
solution in \bfitW \gamma ,q

loc (\BbbR 3), and then we prove that the solution to (2.1) is also a solution
to (1.1)--(1.3) in the sense of distributions.

By [32, Lemma 3.1], the operator \scrK \omega :\bfitW \gamma ,q(U) \rightarrow \bfitW \gamma ,q(U) is compact, where
\gamma \in ( 3 - m

2 , 3q  - 1
2 ) and U \subset \BbbR 3 is any bounded open set with a locally Lipschitz

boundary. Noting that the incident wave \bfitu inc given in (1.2) is smooth in \BbbR 3, we have
\bfitu inc \in \bfitW \gamma ,q(U). It follows from the Fredholm alternative theorem that (2.1) admits
a unique solution \bfitu \in \bfitW \gamma ,q

loc (\BbbR 3) (cf. [25, 32]).
Next we show that the solution \bfitu obtained above is also a solution to the scattering

problem (1.1)--(1.3). Denote by \bfscrD the space \bfitC \infty 
0 (\BbbR 3) equipped with a locally convex

topology, which is also known as the space of test functions, and by \langle \cdot , \cdot \rangle the following
dual product between a pair of dual spaces \bfitV and \bfitV \ast :

\langle \bfitv ,\bfitw \rangle :=
\int 
\BbbR 3

\bfitv (x)\top \bfitw (x)dx \forall \bfitv \in \bfitV ,\bfitw \in \bfitV \ast .

Noting that \bfitu satisfies \bfitu =\bfitu inc  - \scrK \omega \bfitu , we have for any \bfitpsi \in \bfscrD that

\langle \Delta \ast \bfitu + \omega 2\bfitu  - \rho \bfitu ,\bfitpsi \rangle 

=\langle \Delta \ast \bfitu inc + \omega 2\bfitu inc,\bfitpsi \rangle  - 

\Biggl\langle \int 
\BbbR 3

(\Delta \ast + \omega 2)\bfitG (\cdot , z,\omega )\rho (z)\bfitu (z)dz,\bfitpsi 

\Biggr\rangle 
 - \langle \rho \bfitu ,\bfitpsi \rangle 

= - 
\int 
\BbbR 3

\rho (z)\bfitu (z)\top \langle (\Delta \ast + \omega 2)\bfitG (\cdot , z,\omega ),\bfitpsi \rangle dz  - \langle \rho \bfitu ,\bfitpsi \rangle 

=

\int 
\BbbR 3

\rho (z)\bfitu (z)\top \bfitpsi (z)dz  - \langle \rho \bfitu ,\bfitpsi \rangle = 0,

where we use the facts that \Delta \ast \bfitu inc+\omega 2\bfitu inc = 0 and (\Delta \ast +\omega 2)\bfitG (x, z,\omega ) = - \delta (x - z)\bfitI 
with \delta being the Dirac delta function. Thus, \bfitu satisfies (1.1). Moreover, (2.1) implies
that the scattered wave \bfitu sc has the form

\bfitu sc(x) = - 
\int 
\BbbR 3

\bfitG (x, z,\omega )\rho (z)\bfitu (z)dz,

which satisfies the Kupradze--Sommerfeld radiation condition (1.3) since \bfitG (\cdot , z,\omega )
satisfies the Kupradze--Sommerfeld radiation condition (1.3). Hence, \bfitu is a solution
of the scattering problem (1.1)--(1.3).

The uniqueness follows directly from the proof of [32, Theorem 4.3], which re-
quires in addition \gamma < 3

2q  - 
1
4 and concludes that the scattering problem (1.1)--(1.3) is

equivalent to the Lippmann--Schwinger integral equation.
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432 JIANLIANG LI, PEIJUN LI, AND XU WANG

Due to the equivalence of the scattering problem (1.1)--(1.3) and the Lippmann--
Schwinger integral equation (2.1), we only need to consider the Lippmann--Schwinger
integral equation (2.1) in order to study the regularity of the solution.

Define the Born sequence

\bfitu j(x) = - (\scrK \omega \bfitu j - 1)(x), j \in \BbbN ,(2.3)

where the leading term

\bfitu 0(x) =\bfitu 
inc(x).

The rest of this section shows that, for sufficiently large frequency \omega , the Born series\sum \infty 
j=0\bfitu j converges to the solution \bfitu of the scattering problem (1.1)--(1.3).
Introduce the following weighted Lp space (cf. [26, 28]):

Lp
\zeta (\BbbR 

3) :=
\Bigl\{ 
f \in L1

loc(\BbbR 3) : \| f\| Lp
\zeta (\BbbR 3) <\infty 

\Bigr\} 
,

where

\| f\| Lp
\zeta (\BbbR 3) := \| (1 + | \cdot | 2)

\zeta 
2 f\| Lp(\BbbR 3) =

\biggl( \int 
\BbbR 3

(1 + | x| 2)
\zeta p
2 | f(x)| pdx

\biggr) 1
p

.

Let \scrS be the set of all rapidly decreasing functions on \BbbR 3 and let \scrS \prime denote the dual
space of \scrS . Define the space

Hs,p
\zeta (\BbbR 3) :=

\Bigl\{ 
f \in \scrS \prime : (\scrI  - \Delta )

s
2 f \in Lp

\zeta (\BbbR 
3)
\Bigr\} 
,

which is equipped with the norm

\| f\| Hs,p
\zeta (\BbbR 3) = \| (\scrI  - \Delta )

s
2 f\| Lp

\zeta (\BbbR 3).

We use the notation Hs
\zeta (\BbbR 3) := Hs,2

\zeta (\BbbR 3) if in particular p = 2. Moreover, the

space Hs,p
0 (\BbbR 3) coincides with the classical Sobolev spaceW s,p(\BbbR 3). These definitions

enable us to present the following results which give the estimates for the operator
\scrK \omega .

Lemma 2.3. Let \rho satisfy Assumption 1.1. Then for any s \in ( 3 - m
2 , 12 ), it holds

almost surely that

\| \scrK \omega \| \scrL (\bfitH s
 - 1(\BbbR 3),\bfitH s

 - 1(\BbbR 3)) \lesssim \omega  - 1+2s,

\| \scrK \omega \| \scrL (\bfitH s
 - 1(\BbbR 3),\bfitL \infty (\scrV )) \lesssim \omega s+\epsilon + 1

2 ,

where \scrV \subset \BbbR 3 is a bounded domain and \epsilon > 0 is an arbitrary constant.

Proof . Define the operator

(\scrH \omega \bfitv )(x) :=

\int 
\BbbR 3

\bfitG (x, z,\omega )\bfitv (z)dz.

Clearly, we have \scrK \omega \bfitu =\scrH \omega (\rho \bfitu ). For any bounded set \scrV and arbitrary constant \epsilon > 0,
we may follow the same procedure as the one used in [26, Lemma 4.1] and obtain

\| \scrH \omega \| \scrL (\bfitH  - s
1 (\BbbR 3),\bfitH s

 - 1(\BbbR 3)) \lesssim \omega  - 1+2s,

\| \scrH \omega \| \scrL (\bfitH  - s
1 (\BbbR 3),\bfitL \infty (\scrV )) \lesssim \omega s+\epsilon + 1

2 .

Next we show that \rho \bfitu \in \bfitH  - s
1 (\BbbR 3) for any \bfitu \in \bfitH s

 - 1(\BbbR 3).
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INVERSE RANDOM POTENTIAL SCATTERING 433

For any \bfitu ,\bfitv \in \bfscrS , it holds that \langle \rho \bfitu ,\bfitv \rangle = \langle \rho ,\bfitu \cdot \bfitv \rangle . Define a cutoff function
\chi \in C\infty 

0 (\BbbR 3), which has a bounded support U with a locally Lipschitz boundary such
that D\subset U and \chi (x)\equiv 1 if x\in D. It is clear to note that

| \langle \rho \bfitu ,\bfitv \rangle | = | \langle \rho , (\chi \bfitu ) \cdot (\chi \bfitv )\rangle | 
= | \langle (\scrI  - \Delta ) - \gamma \rho , (\scrI  - \Delta )\gamma [(\chi \bfitu ) \cdot (\chi \bfitv )]\rangle | 
\lesssim \| \rho \| W - \gamma ,p(D)\| (\scrI  - \Delta )\gamma [(\chi \bfitu ) \cdot (\chi \bfitv )]\| 

Lp
\prime 
(\BbbR 3)

,

where p, p\prime \in (1,\infty ) are conjugate indices satisfying 1
p + 1

p
\prime = 1. Using the fractional

Leibniz principle leads to

\| (\scrI  - \Delta )\gamma [(\chi \bfitu ) \cdot (\chi \bfitv )]\| 
Lp

\prime 
(\BbbR 3)

\leq \| \chi \bfitu \| \bfitL 2(U)\| \chi \bfitv \| \bfitW \gamma ,q(U) + \| \chi \bfitv \| \bfitL 2(U)\| \chi \bfitu \| \bfitW \gamma ,q(U),

where q satisfies 1

p
\prime =

1
2 +

1
q . Since s >

3 - m
2 , there exists \gamma \in ( 3 - m

2 , s) and p\prime > 1 such

that 1

p
\prime  - 1

2 = 1
q >

1
2  - s - \gamma 

3 , which implies from the Kondrachov compact embedding

theorem that \bfitH s(U) \lhook \rightarrow \bfitW \gamma ,q(U). Hence,

| \langle \rho \bfitu ,\bfitv \rangle | \lesssim \| \rho \| W - \gamma ,p(D)\| \chi \bfitu \| \bfitW \gamma ,q(U)\| \chi \bfitv \| \bfitW \gamma ,q(U)

\lesssim \| \rho \| W - \gamma ,p(D)\| \chi \bfitu \| \bfitH s(U)\| \chi \bfitv \| \bfitH s(U)

\lesssim \| \rho \| W - \gamma ,p(D)\| \bfitu \| \bfitH s
 - 1(\BbbR 3)\| \bfitv \| \bfitH s

 - 1(\BbbR 3),

where in the last step we use the fact \| \chi \bfitu \| \bfitH s(U) \lesssim \| \bfitu \| \bfitH s
 - 2(\BbbR 3) \leq \| \bfitu \| \bfitH s

 - 1(\BbbR 3) (cf. [9,
28]). The proof is completed by noting

\| \rho \bfitu \| \bfitH  - s
1 (\BbbR 3) := sup

\bfitv \in \bfitH s
 - 1(\BbbR 3)

| \langle \rho \bfitu ,\bfitv \rangle | 
\| \bfitv \| \bfitH s

 - 1(\BbbR 3)
\lesssim \| \rho \| W - \gamma ,p(D)\| \bfitu \| \bfitH s

 - 1(\BbbR 3)

and \rho \in W m - 3
2  - \epsilon ,p(D)\subset W - \gamma ,p(D) according to Lemma 2.1.

By the definition of \bfitu j given in (2.3), we have

(\scrI +\scrK \omega )

N\sum 
j=0

\bfitu j =\bfitu 0 + ( - 1)N\scrK N+1
\omega \bfitu 0.

For the leading term \bfitu 0 =\bfitu 
inc, a simple calculation yields

\| \bfitu 0\| \bfitL 2(D) \lesssim 1, \| \bfitu 0\| \bfitH 1(D) \lesssim \omega .

Using the interpolation inequality [21] leads to

\| \bfitu 0\| \bfitH s
 - 1(D) = \| (1 + | \cdot | 2) - 1

2 (\scrI  - \Delta )
s
2\bfitu 0\| \bfitL 2(D) \leq \| (\scrI  - \Delta )

s
2\bfitu 0\| \bfitL 2(D)

\lesssim \| \bfitu 0\| \bfitH s(D) \lesssim \| \bfitu 0\| 1 - s
\bfitL 2(D)

\| \bfitu 0\| s\bfitH 1(D) \lesssim \omega s,

which, together with Lemma 2.3, yields

\| \scrK N+1
\omega \bfitu 0\| \bfitH s

 - 1(\BbbR 3) \lesssim \| \scrK \omega \| N\scrL (\bfitH s
 - 1(\BbbR 3),\bfitH s

 - 1(\BbbR 3))\| \scrK \omega \| \scrL (\bfitH s
 - 1(D),\bfitH s

 - 1(\BbbR 3))\| \bfitu 0\| \bfitH s
 - 1(D)

\lesssim \omega ( - 1+2s)(N+1)\omega s \rightarrow 0 as N \rightarrow \infty .

Hence, we conclude

(\scrI +\scrK \omega )

N\sum 
j=0

\bfitu j \rightarrow \bfitu 0 = (\scrI +\scrK \omega )\bfitu as N \rightarrow \infty .
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434 JIANLIANG LI, PEIJUN LI, AND XU WANG

Noting the invertibility of the operator \scrI +\scrK \omega , we have

\bfitu =

\infty \sum 
j=0

\bfitu j in \bfitH s
 - 1(\BbbR 3).(2.4)

Moreover, for any bounded domain U \subset \BbbR 3, it holds that

\| \bfitu  - 
N\sum 
j=0

\bfitu j\| \bfitL \infty (U) \lesssim 
\infty \sum 

j=N+1

\| \scrK j
\omega \bfitu 0\| \bfitL \infty (U)

\lesssim 
\infty \sum 

j=N+1

\| \scrK \omega \| \scrL (\bfitH s
 - 1(\BbbR 3),\bfitL \infty (U))\| \scrK \omega \| j - 2

\scrL (\bfitH s
 - 1(\BbbR 3),\bfitH s

 - 1(\BbbR 3))

\times \| \scrK \omega \| \scrL (\bfitH s
 - 1(D),\bfitH s

 - 1(\BbbR 3))\| \bfitu 0\| \bfitH s
 - 1(D)

\lesssim 
\infty \sum 

j=N+1

\omega s+\epsilon + 1
2+(j - 1)( - 1+2s)+s \rightarrow 0 as N \rightarrow \infty ,

which implies that the convergence (2.4) also holds in \bfitL \infty (U).

3. The inverse scattering problem. This section studies the inverse problem,
which aims to determine the microlocal strength \phi of the random potential \rho from
the backscattered far-field pattern of the scattered wave.

By (2.4), we rewrite the scattered wave as

\bfitu sc(x) =\bfitu 1(x) +\bfitu 2(x) + \bfitb (x),(3.1)

where the residual \bfitb (x) :=
\sum \infty 

j=3\bfitu j(x). Note that

\bfitu j(x) = - (\scrK \omega \bfitu j - 1)(x) = - 
\int 
\BbbR 3

\bfitG (x, z,\omega )\rho (z)\bfitu j - 1(z)dz,(3.2)

where the Green tensor \bfitG has the asymptotic behavior (cf. [12, section 2.2])

\bfitG (x, z,\omega ) =
c2p
4\pi 

\^x\otimes \^x
ei\kappa \mathrm{p}| x| 

| x| 
e - i\kappa \mathrm{p}\^x\cdot z

+
c2s
4\pi 

(\bfitI  - \^x\otimes \^x)
ei\kappa \mathrm{s}| x| 

| x| 
e - i\kappa \mathrm{s}\^x\cdot z +O(| x|  - 2).(3.3)

Here, the symbol \^x\otimes \^x := \^x\top \^x \in \BbbR 3\times 3 is the tensor product. Substituting (3.3) into
(3.2) leads to

\bfitu j(x) =
ei\kappa \mathrm{p}| x| 

| x| 
\bfitu \infty 
j,p(\^x) +

ei\kappa \mathrm{s}| x| 

| x| 
\bfitu \infty 
j,s(\^x) +O(| x|  - 2),(3.4)

where \bfitu \infty 
j,p and \bfitu \infty 

j,s are the compressional and shear far-field patterns of \bfitu j , respec-
tively. A simple calculation from (3.2) and (3.4) gives

\bfitu \infty 
j,p(\^x) := - 

c2p
4\pi 

\^x\otimes \^x

\int 
\BbbR 3

e - i\kappa \mathrm{p}\^x\cdot z\rho (z)\bfitu j - 1(z)dz,

\bfitu \infty 
j,s(\^x) := - c2s

4\pi 
(\bfitI  - \^x\otimes \^x)

\int 
\BbbR 3

e - i\kappa \mathrm{s}\^x\cdot z\rho (z)\bfitu j - 1(z)dz.

(3.5)
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INVERSE RANDOM POTENTIAL SCATTERING 435

Combining (1.4), (3.1), and (3.4), we get the following compressional and shear far-
field patterns \bfitu \infty 

p and \bfitu \infty 
s of the scattered wave \bfitu sc:

\bfitu \infty 
p (\^x) =\bfitu \infty 

1,p(\^x) +\bfitu 
\infty 
2,p(\^x) + \bfitb 

\infty 
p (\^x), \bfitb \infty p (\^x) :=

\infty \sum 
j=3

\bfitu \infty 
j,p(\^x),

\bfitu \infty 
s (\^x) =\bfitu \infty 

1,s(\^x) +\bfitu 
\infty 
2,s(\^x) + \bfitb 

\infty 
s (\^x), \bfitb \infty s (\^x) :=

\infty \sum 
j=3

\bfitu \infty 
j,s(\^x).

(3.6)

As mentioned in the introduction, two types of incident plane waves are used as
the illumination and two corresponding backscattered far-field patterns are measured
as the data to reconstruct the strength \phi : one is the compressional plane wave \bfitu 0(x) =
\bfitu inc
p (x) = \theta ei\kappa \mathrm{p}x\cdot \theta and the compressional far-field pattern \bfitu \infty 

p (\^x) is measured; the
other is the shear plane wave \bfitu 0(x) = \bfitu inc

s (x) = \theta \bot ei\kappa \mathrm{s}x\cdot \theta and the shear far-field
pattern \bfitu \infty 

s (\^x) is measured.
To prove Theorem 1.2, we analyze separately the three terms in the far-field

patterns (3.6): the first order far-field patterns \bfitu \infty 
1,p and \bfitu \infty 

1,s, the second order far-
field patterns \bfitu \infty 

2,p and \bfitu \infty 
2,s, and the higher order far-field patterns \bfitb \infty p and \bfitb \infty s .

3.1. The first order far-field patterns. We begin with analyzing the first
order backscattered far-field patterns by employing the Fourier analysis and ergodicity
arguments. Below is the main result of this subsection.

Theorem 3.1. Let the random potential \rho satisfy Assumption 1.1, and let \bfitu \infty 
1,p

and \bfitu \infty 
1,s be given by (3.5) with \bfitu 0 = \bfitu 

inc
p and \bfitu 0 = \bfitu 

inc
s , respectively. For any fixed

\theta \in \BbbS 2 and \tau \geq 0, it holds almost surely that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
1,p( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega + \tau , \theta )d\omega =Cp
\^\phi (2cp\tau \theta ),(3.7)

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
1,s( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,s( - \theta ,\omega + \tau , \theta )d\omega =Cs
\^\phi (2cs\tau \theta ),(3.8)

where Cp and Cs are constants defined in Theorem 1.2.

The proof of Theorem 3.1 is left to the end of this subsection. The following
lemmas are useful for the proof of Theorem 3.1.

Lemma 3.2. Under assumptions in Theorem 3.1, for any fixed \theta \in \BbbS 2 and \tau \geq 0,
it holds that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\BbbE 
\Bigl[ 
\bfitu \infty 
1,p( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega + \tau , \theta )
\Bigr] 
d\omega =Cp

\^\phi (2cp\tau \theta ),(3.9)

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\BbbE 
\Bigl[ 
\bfitu \infty 
1,s( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,s( - \theta ,\omega + \tau , \theta )
\Bigr] 
d\omega =Cs

\^\phi (2cs\tau \theta ),(3.10)

where Cp and Cs are constants defined in Theorem 1.2.

Proof . Using (1.2), (3.5), and noting (\theta \otimes \theta )\theta = \theta and (\theta \otimes \theta )\theta \bot = 0, we obtain

\bfitu \infty 
1,p( - \theta ,\omega , \theta ) = - 

c2p
4\pi 
\theta \otimes \theta 

\int 
\BbbR 3

ei\kappa \mathrm{p}\theta \cdot z\rho (z)\theta ei\kappa \mathrm{p}\theta \cdot zdz

= - 
c2p
4\pi 
\theta 

\int 
\BbbR 3

e2i\kappa \mathrm{p}\theta \cdot z\rho (z)dz
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436 JIANLIANG LI, PEIJUN LI, AND XU WANG

and

\bfitu \infty 
1,s( - \theta ,\omega , \theta ) = - c2s

4\pi 
(\bfitI  - \theta \otimes \theta )

\int 
\BbbR 3

ei\kappa \mathrm{s}\theta \cdot z\rho (z)\theta \bot ei\kappa \mathrm{s}\theta \cdot zdz

= - c2s
4\pi 
\theta \bot 
\int 
\BbbR 3

e2i\kappa \mathrm{s}\theta \cdot z\rho (z)dz.

It suffices to show (3.9) since the proof is similar for (3.10).
We have for \omega 1, \omega 2 \geq 1 that

\BbbE 
\Bigl[ 
\bfitu \infty 
1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega 2, \theta )
\Bigr] 

=
c4p

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e2ic\mathrm{p}\omega 1\theta \cdot ye - 2ic\mathrm{p}\omega 2\theta \cdot z\BbbE (\rho (y)\rho (z))dydz

=
c4p

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e2ic\mathrm{p}\theta \cdot (\omega 1y - \omega 2z)K\rho (y, z)dydz,(3.11)

where K\rho \in \scrD \prime (\BbbR 3 \times \BbbR 3;\BbbR ) is the symmetric covariance kernel of \rho satisfying

\langle \scrC \rho \varphi ,\psi \rangle =\BbbE [\langle \rho ,\varphi \rangle \langle \rho ,\psi \rangle ] =
\int 
\BbbR 3

\int 
\BbbR 3

K\rho (y, z)\varphi (y)\psi (z)dydz \forall \varphi ,\psi \in \scrD .

Let s\rho \in \scrS  - m(\BbbR 3 \times \BbbR 3) be the symbol of the covariance operator \scrC \rho satisfying

(\scrC \rho \varphi )(x) =
1

(2\pi )3

\int 
\BbbR 3

eix\cdot \xi s\rho (x, \xi ) \^\varphi (\xi )d\xi \forall \varphi \in \scrD ,

where \scrS  - m(\BbbR 3 \times \BbbR 3) is defined by

\scrS  - m(\BbbR 3 \times \BbbR 3) :=
\Bigl\{ 
s(x, \xi )\in C\infty (\BbbR 3 \times \BbbR 3) :

| \partial \gamma 1

\xi \partial \gamma 2
x s(x, \xi )| \leq C(\gamma 1, \gamma 2)(1 + | \xi | ) - m - | \gamma 1| 

\Bigr\} 
with \gamma 1 and \gamma 2 being any multiple indices and | \gamma 1| denoting the sum of its components.
A simple calculation gives the oscillatory integral form of K\rho (cf. [30]):

K\rho (y, z) =
1

(2\pi )3

\int 
\BbbR 3

ei(z - y)\cdot \xi s\rho (z, \xi )d\xi .(3.12)

According to Assumption 1.1, we have s\rho (x, \xi ) = \phi (x)| \xi |  - m + a(x, \xi ), where a \in 
\scrS  - m - 1(\BbbR 3 \times \BbbR 3), and suppK\rho \subset D\times D. Substituting (3.12) into (3.11) yields

\BbbE 
\Bigl[ 
\bfitu \infty 
1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega 2, \theta )
\Bigr] 

=
c4p

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e2ic\mathrm{p}\theta \cdot (\omega 1y - \omega 2z)

\biggl[ 
1

(2\pi )3

\int 
\BbbR 3

ei(z - y)\cdot \xi s\rho (z, \xi )d\xi 

\biggr] 
dydz

=
c4p

16\pi 2

\int 
\BbbR 3

\int 
\BbbR 3

e - 2ic\mathrm{p}\omega 2\theta \cdot z+iz\cdot \xi s\rho (z, \xi )\delta (\xi  - 2cp\omega 1\theta )d\xi dz

=
c4p

16\pi 2

\int 
D

s\rho (z,2cp\omega 1\theta )e
2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot zdz

=
c4p

16\pi 2

\biggl[ \int 
D

\phi (z)| 2cp\omega 1\theta |  - me2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot zdz +

\int 
D

a(z,2cp\omega 1\theta )e
2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot zdz

\biggr] 

=Cp
\^\phi (2cp(\omega 2  - \omega 1)\theta )\omega 

 - m
1 +O(\omega  - m - 1

1 ).

(3.13)
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INVERSE RANDOM POTENTIAL SCATTERING 437

Letting \omega 1 = \omega and \omega 2 = \omega + \tau in (3.13) gives

\BbbE 
\Bigl[ 
\bfitu \infty 
1,p( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega + \tau , \theta )
\Bigr] 
=Cp

\^\phi (2cp\tau \theta )\omega 
 - m +O(\omega  - m - 1),

which implies (3.9) and completes the proof.

Lemma 3.3. Under assumptions in Theorem 3.1, it holds for all \theta \in \BbbS 2, \omega 1, \omega 2 \geq 1,
and N \in \BbbN that\bigm| \bigm| \bigm| \BbbE \Bigl[ \bfitu \infty 

1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 
1,p( - \theta ,\omega 2, \theta )

\Bigr] \bigm| \bigm| \bigm| \lesssim \omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N ,(3.14)

\bigm| \bigm| \bigm| \BbbE \Bigl[ \bfitu \infty 
1,s( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,s( - \theta ,\omega 2, \theta )
\Bigr] \bigm| \bigm| \bigm| \lesssim \omega  - m

1 (1 + | \omega 1  - \omega 2| ) - N ,(3.15)

\bigm| \bigm| \BbbE \bigl[ \bfitu \infty 
1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega 2, \theta )
\bigr] \bigm| \bigm| \lesssim \omega  - m

1 (1 + \omega 1 + \omega 2)
 - N ,(3.16)

\bigm| \bigm| \BbbE \bigl[ \bfitu \infty 
1,s( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,s( - \theta ,\omega 2, \theta )
\bigr] \bigm| \bigm| \lesssim \omega  - m

1 (1 + \omega 1 + \omega 2)
 - N .(3.17)

Proof . For the case | \omega 1  - \omega 2| < 1, it follows from (3.13) that\bigm| \bigm| \bigm| \BbbE \Bigl[ \bfitu \infty 
1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega 2, \theta )
\Bigr] \bigm| \bigm| \bigm| 

\leq 
c4p

16\pi 2

\int 
D

\bigm| \bigm| \bigm| s\rho (z,2cp\omega 1\theta )e
2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot z

\bigm| \bigm| \bigm| dz
\lesssim (1 + \omega 1)

 - m \lesssim 2N (1 + \omega 1)
 - m(1 + | \omega 1  - \omega 2| ) - N

\lesssim \omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N ,

where we use the fact s\rho \in \scrS  - m and hence | s\rho (z,2cp\omega 1\theta )| \lesssim (1 + | \omega 1| ) - m.
For the case | \omega 1  - \omega 2| \geq 1, denoting z = (z1, z2, z3)

\top and \theta = (\theta 1, \theta 2, \theta 3)
\top , we

obtain from (3.13) and the integration by parts that

\BbbE 
\Bigl[ 
\bfitu \infty 
1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega 2, \theta )
\Bigr] 

=
c4p

16\pi 2

\int 
D

s\rho (z,2cp\omega 1\theta )e
2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot zdz

=
c4p

16\pi 2

1

2icp(\omega 1  - \omega 2)\theta 1

\int 
D

s\rho (z,2cp\omega 1\theta )

\times e2ic\mathrm{p}(\omega 1 - \omega 2)(\theta 2z2+\theta 3z3)de2ic\mathrm{p}(\omega 1 - \omega 2)\theta 1z1dz2dz3

= - 
c4p

16\pi 2

1

2icp(\omega 1  - \omega 2)\theta 1

\int 
D

\partial z1s\rho (z,2cp\omega 1\theta )e
2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot zdz

= ( - 1)N
c4p

16\pi 2

1

(2icp(\omega 1  - \omega 2)\theta 1)N

\int 
D

\partial Nz1s\rho (z,2cp\omega 1\theta )e
2ic\mathrm{p}(\omega 1 - \omega 2)\theta \cdot zdz.(3.18)

Since s\rho \in \scrS  - m, we have \bigm| \bigm| \partial Nz1s\rho (z,2cp\omega 1\theta )
\bigm| \bigm| \lesssim (1 + \omega 1)

 - m.

Combining the above estimates leads to\bigm| \bigm| \bigm| \BbbE \Bigl[ \bfitu \infty 
1,p( - \theta ,\omega 1, \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega 2, \theta )
\Bigr] \bigm| \bigm| \bigm| 

\lesssim (1 + \omega 1)
 - m | \omega 1  - \omega 2|  - N
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438 JIANLIANG LI, PEIJUN LI, AND XU WANG

\lesssim 

\biggl( 
1 +

1

| \omega 1  - \omega 2| 

\biggr) N

\omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N

\lesssim 2N\omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N

\lesssim \omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N ,(3.19)

which shows (3.14).
The inequality (3.15) can be obtained by following the same procedure; the in-

equalities (3.16) and (3.17) can be proved similarly by replacing \omega 2 with  - \omega 2 in (3.18)
and (3.19), respectively.

The following two lemmas help to replace the results in the expectation sense
stated in Lemma 3.2 with the ones in the almost surely sense given in Theorem 3.1.
Lemma 3.5 gives a sufficient condition for the convergence to its expectation of the
time average of a stochastic process. The proof of Lemma 3.4 can be found in [9].
The proof of Lemma 3.5 is motivated by [13] and is given below for the reader's
convenience.

Lemma 3.4. Let X and Y be two random variables such that the pair (X,Y ) is a
Gaussian random vector. If \BbbE [X] =\BbbE [Y ] = 0, then

\BbbE 
\bigl[ 
(X2  - \BbbE X2)(Y 2  - \BbbE Y 2)

\bigr] 
= 2(\BbbE [XY ])

2
.

Lemma 3.5. Let \{ Xt\} t\geq 0 be a real-valued centered stochastic process with contin-
uous paths and \BbbE [Xt] = 0. Assume that for some constants \eta \geq 0 and \sigma > 0, it holds
that

| \BbbE [XtXt+r]| \lesssim (1 + | r - \eta | ) - \sigma \forall t, r\geq 0.

Then

lim
T\rightarrow \infty 

1

T

\int T

0

Xtdt= lim
T\rightarrow \infty 

1

T

\int 2T

T

Xtdt= 0 a.s.

Proof . Without loss of generality, we assume that \sigma \in (0,1). If the condition in
Lemma 3.5 holds for \sigma \prime \geq 1, then we can always find some \sigma \in (0,1) such that

| \BbbE [XtXt+r]| \lesssim (1 + | r - \eta | ) - \sigma 
\prime 
< (1 + | r - \eta | ) - \sigma .

For T being large enough such that T > \eta , we have

\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 1T
\int T

0

Xtdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

=
1

T 2

\int T

0

\int T

0

\BbbE [XtXu]dtdu

\lesssim 
1

T 2

\int T

0

\int T

0

(1 + | | t - u|  - \eta | ) - \sigma 
dtdu

=
1

T 2

\int T

0

\biggl[ \int (u - \eta )\vee 0

0

(1 + u - \eta  - t) - \sigma dt+

\int u

(u - \eta )\vee 0

(1 + t - u+ \eta ) - \sigma dt

+

\int (u+\eta )\wedge T

u

(1 + u+ \eta  - t) - \sigma dt+

\int T

(u+\eta )\wedge T

(1 + t - u - \eta ) - \sigma dt

\biggr] 
du

=
2(1 + \eta )1 - \sigma 

(1 - \sigma )T
+

2
\bigl[ 
(1 + T  - \eta )2 - \sigma  - (1 - \eta )2 - \sigma 

\bigr] 
(2 - \sigma )(1 - \sigma )T 2
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INVERSE RANDOM POTENTIAL SCATTERING 439

 - 2

(1 - \sigma )T 2

\biggl[ 
(1 + \eta )2 - \sigma  - (1 - \eta )2 - \sigma 

2 - \sigma 
+ 2(T  - \eta )

\biggr] 
\lesssim 

1

T\sigma 
,

where we use the notation a\vee b :=max\{ a, b\} and a\wedge b :=min\{ a, b\} .
Based on the estimate above, the rest of the proof follows directly from [13, p. 95].

More precisely, we choose some constant k > 0 sufficiently large such that k\sigma > 1 and
2k > \eta . Taking Tn := (2n)k > \eta for n\in \BbbN +, then the time averages \xi n := 1

Tn

\int Tn

0
Xtdt,

n\in \BbbN +, satisfy

\infty \sum 
n=1

\BbbE | \xi n| 2 \lesssim 
\infty \sum 

n=1

1

(2n)k\sigma 
<\infty ,

which implies limn\rightarrow \infty \xi n = 0 almost surely according to Markov's inequality and the
Borel--Cantelli lemma. Define the nonnegative random variable

Yn := sup
Tn\leq T<Tn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1T
\int T

0

Xtdt - \xi n

\bigm| \bigm| \bigm| \bigm| \bigm| .
We next investigate the convergence of Yn. Note that

\BbbE | Yn| 2 =\BbbE 

\Biggl( 
sup

Tn\leq T<Tn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1T
\int T

0

Xtdt - 
1

Tn

\int Tn

0

Xtdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr) 2

=\BbbE 

\Biggl( 
sup

Tn\leq T<Tn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 
\biggl( 
1

T
 - 1

Tn

\biggr) \int Tn

0

Xtdt+
1

T

\int T

Tn

Xtdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggr) 2

\leq \BbbE 

\Biggl( 
Tn+1  - Tn

T 2
n

\int Tn

0

| Xt| dt+
1

Tn

\int Tn+1

Tn

| Xt| dt

\Biggr) 2

\leq 2

\biggl( 
Tn+1  - Tn

T 2
n

\biggr) 2 \int Tn

0

\int Tn

0

\BbbE | XtXu| dtdu

+
2

T 2
n

\int Tn+1

Tn

\int Tn+1

Tn

\BbbE | XtXu| dtdu

\leq 4
(Tn+1  - Tn)

2

T 2
n

= 4

\biggl( 
(n+ 1)k  - nk

nk

\biggr) 2

\lesssim 
1

n2
,

and hence
\infty \sum 

n=1

\BbbE | Yn| 2 =
\infty \sum 

n=1

1

n2
<\infty .

We then get limn\rightarrow \infty Yn = 0 almost surely based on the same procedure as the proof
of the almost sure convergence for \xi n. The almost sure convergence of both Yn and
\xi n leads to

lim
T\rightarrow \infty 

1

T

\int T

0

Xtdt= 0 a.s.

and

lim
T\rightarrow \infty 

1

T

\int 2T

T

Xtdt= lim
T\rightarrow \infty 

\Biggl[ 
1

T

\int 2T

0

Xtdt - 
1

T

\int T

0

Xtdt

\Biggr] 
= 0 a.s.,

which complete the proof.
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440 JIANLIANG LI, PEIJUN LI, AND XU WANG

Now we are in position to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, to prove (3.7), it suffices to show that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
1,p( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega + \tau , \theta )d\omega 

= lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m\BbbE 
\Bigl[ 
\bfitu \infty 
1,p( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

1,p( - \theta ,\omega + \tau , \theta )
\Bigr] 
d\omega ,

or equivalently,\sum 
j=1,2,3

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m
\Bigl( 
uj(\omega )uj(\omega + \tau ) - \BbbE 

\Bigl[ 
uj(\omega )uj(\omega + \tau )

\Bigr] \Bigr) 
d\omega = 0,(3.20)

where \bfitu \infty 
1,p( - \theta ,\omega , \theta ) = (u1(\omega ), u2(\omega ), u3(\omega ))

\top .
Denote by Uj(\omega ) and Vj(\omega ) the real and imaginary parts of uj(\omega ), respectively,

which read

uj(\omega ) =Uj(\omega ) + iVj(\omega ), j = 1,2,3.(3.21)

It then leads to

2uj(\omega )uj(\omega + \tau ) = 2(Uj(\omega ) + iVj(\omega ))(Uj(\omega + \tau ) - iVj(\omega + \tau ))

= (1 + i)
\bigl[ 
U2
j (\omega ) +U2

j (\omega + \tau ) + V 2
j (\omega ) + V 2

j (\omega + \tau )
\bigr] 

 - (Uj(\omega ) - Uj(\omega + \tau ))2  - (Vj(\omega ) - Vj(\omega + \tau ))2

 - i(Uj(\omega ) + Vj(\omega + \tau ))2  - i(Vj(\omega ) - Uj(\omega + \tau ))2.

For simplicity, let W\omega be any random variable in the set \Gamma := \{ Uj(\omega ),Uj(\omega + \tau ),
Vj(\omega ), Vj(\omega + \tau ),Uj(\omega )  - Uj(\omega + \tau ), Vj(\omega )  - Vj(\omega + \tau ),Uj(\omega ) + Vj(\omega + \tau ), Vj(\omega )  - 
Uj(\omega + \tau )\} j=1,2,3.

Then it is only required to show

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m
\bigl( 
W 2

\omega  - \BbbE W 2
\omega 

\bigr) 
d\omega = 0,(3.22)

which indicates (3.20). Using Lemmas 3.5 and 3.4 and noting that W\omega is Gaussian
since \rho is Gaussian, to get (3.22), we need to show that for any W\omega \in \Gamma , there exist
positive constants \eta and \sigma such that\bigm| \bigm| \BbbE \bigl[ \omega m

\bigl( 
W 2

\omega  - \BbbE W 2
\omega 

\bigr) 
(\omega + r)m

\bigl( 
W 2

\omega +r  - \BbbE W 2
\omega +r

\bigr) \bigr] \bigm| \bigm| 
= 2

\bigl( 
\BbbE 
\bigl[ 
\omega 

m
2 (\omega + r)

m
2 W\omega W\omega +r

\bigr] \bigr) 2
\lesssim (1 + | r - \eta | ) - \sigma \forall \omega \geq 1, r\geq 0.(3.23)

It follows from (3.21) that

Uj(\omega ) =
1

2

\Bigl[ 
uj(\omega ) + uj(\omega )

\Bigr] 
, Vj(\omega ) =

1

2i

\Bigl[ 
uj(\omega ) - uj(\omega )

\Bigr] 
,

which give

Uj(\omega 1)Uj(\omega 2) =
1

4

\Bigl[ 
uj(\omega 1) + uj(\omega 1)

\Bigr] \Bigl[ 
uj(\omega 2) + uj(\omega 2)

\Bigr] 
,

Vj(\omega 1)Vj(\omega 2) = - 1

4

\Bigl[ 
uj(\omega 1) - uj(\omega 1)

\Bigr] \Bigl[ 
uj(\omega 2) - uj(\omega 2)

\Bigr] 
,

Uj(\omega 1)Vj(\omega 2) =
1

4i

\Bigl[ 
uj(\omega 1) + uj(\omega 1)

\Bigr] \Bigl[ 
uj(\omega 2) - uj(\omega 2)

\Bigr] 
.
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INVERSE RANDOM POTENTIAL SCATTERING 441

Using the same procedure as that in Lemma 3.3 yields

| \BbbE [Uj(\omega 1)Uj(\omega 2)]| \lesssim \omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N ,

| \BbbE [Vj(\omega 1)Vj(\omega 2)]| \lesssim \omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N ,

| \BbbE [Uj(\omega 1)Vj(\omega 2)]| \lesssim \omega  - m
1 (1 + | \omega 1  - \omega 2| ) - N ,

which lead to\bigm| \bigm| \BbbE \bigl[ \omega m
2 (\omega + r)

m
2 Uj(\omega )Uj(\omega + r)

\bigr] \bigm| \bigm| \lesssim \Bigl( 1 + r/\omega 

1 + r

\Bigr) m
2

(1 + r)
m
2  - N

\lesssim (1 + r)
m
2  - N

for any \omega \geq 1 and N \in \BbbN . Similarly, we may conclude that\bigm| \bigm| \BbbE \bigl[ \omega m
2 (\omega + r)

m
2 W\omega W\omega +r

\bigr] \bigm| \bigm| \lesssim (1 + r)
m
2  - N(3.24)

holds for W\omega \in \{ Uj(\omega ), Vj(\omega ),Uj(\omega + \tau ), Vj(\omega + \tau )\} j=1,2,3.
For the case W\omega =Uj(\omega ) - Uj(\omega + \tau ), we have from Lemma 3.3 that

| \BbbE [(Uj(\omega ) - Uj(\omega + \tau ))(Uj(\omega + r) - Uj(\omega + r+ \tau ))]| 
\lesssim | \BbbE [Uj(\omega )Uj(\omega + r)]| + | \BbbE [Uj(\omega )Uj(\omega + r+ \tau )]| 
+ | \BbbE [Uj(\omega + \tau )Uj(\omega + r)]| + | \BbbE [Uj(\omega + \tau )Uj(\omega + r+ \tau )]| 

\lesssim \omega  - m(1 + r) - N + \omega  - m(1 + r+ \tau ) - N + (\omega + \tau ) - m(1 + | r - \tau | ) - N

+ (\omega + \tau ) - m(1 + r) - N

\lesssim \omega  - m(1 + r) - N + (\omega + \tau ) - m(1 + | r - \tau | ) - N + (\omega + \tau ) - m(1 + r) - N .

Hence, \bigm| \bigm| \BbbE \bigl[ \omega m
2 (\omega + r)

m
2 (Uj(\omega ) - Uj(\omega + \tau ))(Uj(\omega + r) - Uj(\omega + r+ \tau ))

\bigr] \bigm| \bigm| 
\lesssim (1 + r)

m
2  - N +

\Bigl( \omega + r

\omega + \tau 

\Bigr) m
2

(1 + | r - \tau | ) - N +
\Bigl( \omega + r

\omega + \tau 

\Bigr) m
2

(1 + r) - N

\lesssim (1 + r)
m
2  - N + (1+ | r - \tau | )m

2  - N .

Similarly, we may show that the inequality\bigm| \bigm| \BbbE \bigl[ \omega m
2 (\omega + r)

m
2 W\omega W\omega +r

\bigr] \bigm| \bigm| \lesssim (1 + r)
m
2  - N + (1+ | r - \tau | )m

2  - N(3.25)

holds forW\omega \in \{ Uj(\omega ) - Uj(\omega +\tau ), Vj(\omega ) - Vj(\omega +\tau ),Uj(\omega )+Vj(\omega +\tau ), Vj(\omega ) - Uj(\omega +
\tau )\} j=1,2,3.

Combining (3.24) and (3.25), we get that (3.23) holds for all W\omega \in \Gamma , which
completes the proof of (3.7). The proof of (3.8) is analogous to the proof of (3.7) and
is omitted here.

3.2. The second order far-field patterns. In this subsection, we show that
the contribution of the second order backscattered far-field pattern can be ignored.
According to (3.2) and (3.5), the far-field patterns \bfitu \infty 

2,p and \bfitu \infty 
2,s associated with

incident waves \bfitu 0 =\bfitu 
inc
p and \bfitu 0 =\bfitu 

inc
s , respectively, admit the following forms:

\bfitu \infty 
2,p( - \theta ,\omega , \theta ) =

c2p
4\pi 
\theta \otimes \theta 

\int 
\BbbR 3

\int 
\BbbR 3

\rho (y)\rho (z)\bfitG (y, z,\omega )\theta ei\kappa \mathrm{p}\theta \cdot (y+z)dzdy,

\bfitu \infty 
2,s( - \theta ,\omega , \theta ) =

c2s
4\pi 

(\bfitI  - \theta \otimes \theta )

\int 
\BbbR 3

\int 
\BbbR 3

\rho (y)\rho (z)\bfitG (y, z,\omega )\theta \bot ei\kappa \mathrm{s}\theta \cdot (y+z)dzdy.

(3.26)
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The main result of this subsection is stated in the following theorem.

Theorem 3.6. Let the random potential \rho satisfy Assumption 1.1, and let \bfitu \infty 
2,p

and \bfitu \infty 
2,s be given by (3.26). For all \theta \in \BbbS 2, it holds almost surely that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m
\bigm| \bigm| \bfitu \infty 

2,p( - \theta ,\omega , \theta )
\bigm| \bigm| 2 d\omega = 0,

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m
\bigm| \bigm| \bfitu \infty 

2,s( - \theta ,\omega , \theta )
\bigm| \bigm| 2 d\omega = 0.

The Green tensor \bfitG given in (2.2) can be split into three parts

\bfitG (y, z,\omega ) =\bfitG 1(y, z,\omega ) +\bfitG 2(y, z,\omega ) +\bfitG 3(y, z,\omega ),(3.27)

where

\bfitG 1(y, z,\omega ) =
c2s
4\pi 

ei\kappa \mathrm{s}| y - z| 

| y - z| 
\bfitI ,

\bfitG 2(y, z,\omega ) =
c2pe

i\kappa \mathrm{p}| y - z|  - c2se
i\kappa \mathrm{s}| y - z| 

4\pi | y - z| 3
(y - z)\otimes (y - z),

\bfitG 3(y, z,\omega ) = \omega  - 2 \beta (y, z,\omega )

4\pi | y - z| 5
\bigl[ 
| y - z| 2\bfitI  - 3(y - z)\otimes (y - z)

\bigr] 
.

Here

\beta (y, z,\omega ) := ei\kappa \mathrm{s}| y - z| (i\kappa s| y - z|  - 1) - ei\kappa \mathrm{p}| y - z| (i\kappa p| y - z|  - 1).

Substituting (3.27) into (3.26), we can see that \bfitu \infty 
2,p and \bfitu \infty 

2,s also consist of three
parts corresponding to \bfitG 1, \bfitG 2, and \bfitG 3. The components in the first and second
parts are linear combinations of

\BbbI (\omega , \theta ) :=
\int 
\BbbR 3

\int 
\BbbR 3

\rho (y)\rho (z)eic1\omega \theta \cdot (y+z)eic2\omega | y - z| \BbbK (y, z)dydz(3.28)

and the components in the third part are linear combinations of

\BbbJ (\omega , \theta ) := \omega  - 2

\int 
\BbbR 3

\int 
\BbbR 3

\rho (y)\rho (z)eic1\omega \theta \cdot (y+z)\beta (y, z,\omega )\BbbK (y, z)dydz,(3.29)

where c1, c2 \in \{ cs, cp\} and

\BbbK (y, z) =
(y1  - z1)

p1(y2  - z2)
p2(y3  - z3)

p3

| y - z| p4
.

Here, (p1, p2, p3, p4)\in S\BbbI for \BbbI (\omega , \theta ) and (p1, p2, p3, p4)\in S\BbbJ for \BbbJ (\omega , \theta ) with

S\BbbI := \{ (0,0,0,1), (2,0,0,3), (0,2,0,3), (0,0,2,3), (1,1,0,3), (1,0,1,3), (0,1,1,3)\} ,
S\BbbJ := \{ (0,0,0,3), (2,0,0,5), (0,2,0,5), (0,0,2,5), (1,1,0,5), (1,0,1,5), (0,1,1,5)\} 

such that p1 + p2 + p3  - p4 = - 1 for S\BbbI and p1 + p2 + p3  - p4 = - 3 for S\BbbJ .
Since the components of \bfitu \infty 

2,p and \bfitu \infty 
2,s are linear combinations of \BbbI (\omega , \theta ) and

\BbbJ (\omega , \theta ), Theorem 3.6 can be obtained directly from the following lemma, whose proof
is technical and is given in supplementary materials (supplement.pdf [local/web
297KB]) to avoid a possible distraction from the presentation of the main results.
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Lemma 3.7. Let the random potential \rho satisfy Assumption 1.1, and let \BbbI (\omega , \theta )
and \BbbJ (\omega , \theta ) be given by (3.28) and (3.29), respectively. For all \theta \in \BbbS 2, it holds almost
surely that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m| \BbbI (\omega , \theta )| 2d\omega = 0,(3.30)

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\omega m| \BbbJ (\omega , \theta )| 2d\omega = 0.(3.31)

3.3. The higher order far-field patterns. It follows from (3.6) that the higher
order backscattered far-field patterns can be expressed by

\bfitb \infty p ( - \theta ,\omega , \theta ) =
\infty \sum 
j=3

\bfitu \infty 
j,p( - \theta ,\omega , \theta ),(3.32)

\bfitb \infty s ( - \theta ,\omega , \theta ) =
\infty \sum 
j=3

\bfitu \infty 
j,s( - \theta ,\omega , \theta ),(3.33)

where

\bfitu \infty 
j,p( - \theta ,\omega , \theta ) = - 

c2p
4\pi 
\theta \otimes \theta 

\int 
\BbbR 3

eic\mathrm{p}\omega \theta \cdot z\rho (z)\bfitu j - 1(z)dz,(3.34)

\bfitu \infty 
j,s( - \theta ,\omega , \theta ) = - c2s

4\pi 
(\bfitI  - \theta \otimes \theta )

\int 
\BbbR 3

eic\mathrm{s}\omega \theta \cdot z\rho (z)\bfitu j - 1(z)dz.(3.35)

The goal is to estimate the order of \bfitb \infty p and \bfitb \infty s with respect to the frequency \omega and
to show that the contribution of the higher order far-field patterns can be ignored as
well.

Theorem 3.8. For any s\in ( 3 - m
2 , 12 ), it holds almost surely that

sup
\theta \in \BbbS 2

\bigm| \bigm| \bfitb \infty p ( - \theta ,\omega , \theta )
\bigm| \bigm| \lesssim \omega  - 2+6s,(3.36)

sup
\theta \in \BbbS 2

| \bfitb \infty s ( - \theta ,\omega , \theta )| \lesssim \omega  - 2+6s.(3.37)

Proof . Define a cutoff function \chi \in C\infty 
0 (\BbbR 3) supported in bounded domain U

such that D \subset U and \chi (z) = 1 if z \in D. For any s \in ( 3 - m
2 , 12 ), p \geq 3/s, and p\prime 

satisfying 1/p+ 1/p\prime = 1, it follows from (3.32) and (3.34) that\bigm| \bigm| \bfitb \infty p ( - \theta ,\omega , \theta )
\bigm| \bigm| \lesssim \bigm| \bigm| \bigm| \bigm| \int 

\BbbR 3

eic\mathrm{p}\omega \theta \cdot z\chi (z)\rho (z)

\infty \sum 
j=3

\bfitu j - 1(z)dz

\bigm| \bigm| \bigm| \bigm| 
\lesssim \| \rho \| W - s,p(\BbbR 3)

\bigm\| \bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\chi 

\infty \sum 
j=3

\bfitu j - 1

\bigm\| \bigm\| \bigm\| 
\bfitW s,p

\prime 
(\BbbR 3)

\lesssim \| \rho \| W - s,p(\BbbR 3)

\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| 
Hs(\BbbR 3)

\bigm\| \bigm\| \bigm\| \chi \infty \sum 
j=3

\bfitu j - 1

\bigm\| \bigm\| \bigm\| 
\bfitH s(\BbbR 3)

\lesssim \| \rho \| W - s,p(\BbbR 3)

\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| 
Hs(\BbbR 3)

\bigm\| \bigm\| \bigm\| \infty \sum 
j=3

\bfitu j - 1

\bigm\| \bigm\| \bigm\| 
\bfitH s

 - 1(\BbbR 3)
,(3.38)
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where we use the facts (cf. [9, 26])

\| fg\| 
W s,p

\prime 
(\BbbR 3)

\lesssim \| f\| Hs(\BbbR 3)\| g\| Hs(\BbbR 3) \forall f, g \in \scrS 

for p\geq 3
s and p\prime satisfying 1

p + 1

p
\prime = 1, and

\| \chi \bfitu \| \bfitH s(\BbbR 3) \lesssim \| \bfitu \| \bfitH s
 - 2(\BbbR 3) \lesssim \| \bfitu \| \bfitH s

 - 1(\BbbR 3) \forall \bfitu \in \bfscrS 

with \bfscrS being dense in \bfitH s
 - 1(\BbbR 3). It is easy to check that\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| 

L2(\BbbR 3)
\lesssim 1,

\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| 
H1(\BbbR 3)

\lesssim \omega .

Using the interpolation between spaces L2(\BbbR 3) and H1(\BbbR 3) yields\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| 
Hs(\BbbR 3)

\lesssim 
\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| 1 - s

L2(\BbbR 3)

\bigm\| \bigm\| \chi eic\mathrm{p}\omega \theta \cdot (\cdot )\bigm\| \bigm\| s
H1(\BbbR 3)

\lesssim \omega s.(3.39)

Note also that\bigm\| \bigm\| \bigm\| \infty \sum 
j=3

\bfitu j - 1

\bigm\| \bigm\| \bigm\| 
\bfitH s

 - 1(\BbbR 3)
=
\bigm\| \bigm\| \bigm\| \infty \sum 

j=2

\bfitu j

\bigm\| \bigm\| \bigm\| 
Hs

 - 1(\BbbR 3)

\lesssim 
\infty \sum 
j=2

\| \scrK j
\omega \bfitu 0\| Hs

 - 1(\BbbR 3)

\lesssim 
\infty \sum 
j=2

\| \scrK \omega \| j - 1
\scrL (Hs

 - 1(\BbbR 3),Hs
 - 1(\BbbR 3))\| \scrK \omega \| \scrL (Hs

 - 1(D),Hs
 - 1(\BbbR 3))\| \bfitu 0\| Hs

 - 1(D)

\lesssim 
\infty \sum 
j=2

\| \scrK \omega \| j\scrL (Hs
 - 1(\BbbR 3),Hs

 - 1(\BbbR 3))\| \bfitu 0\| Hs(D)

\lesssim 
\infty \sum 
j=2

\omega j( - 1+2s)\omega s \lesssim \omega  - 2+5s,(3.40)

where we use Lemma 2.3 and the inequality \| \cdot \| Hs
 - 1(\BbbR 3) \leq \| \cdot \| Hs(\BbbR 3) which can be

easily checked by the definition. Combining (3.38)--(3.40), we get

sup
\theta \in \BbbS 2

\bigm| \bigm| \bfitb \infty p ( - \theta ,\omega , \theta )
\bigm| \bigm| \lesssim \omega  - 2+6s,

which completes the proof of (3.36). The estimate (3.37) can be obtained similarly
by using (3.33) and (3.35).

Now we are in position to prove the main result of the work.

Proof of Theorem 1.2. Recall from (3.6) that the compressional far-field pattern
\bfitu \infty 
p has the form

\bfitu \infty 
p ( - \theta ,\omega , \theta ) =\bfitu \infty 

1,p( - \theta ,\omega , \theta ) +\bfitu \infty 
2,p( - \theta ,\omega , \theta ) + \bfitb 

\infty 
p ( - \theta ,\omega , \theta ).

A simple calculation gives

1

Q

\int 2Q

Q

\omega m\bfitu \infty 
p ( - \theta ,\omega , \theta ) \cdot \bfitu \infty 

p ( - \theta ,\omega + \tau , \theta )d\omega =

3\sum 
i,j=1

Ii,j ,
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where

Ii,j :=
1

Q

\int 2Q

Q

\omega m\bfitv i( - \theta ,\omega , \theta ) \cdot \bfitv j( - \theta ,\omega + \tau , \theta )d\omega , i, j = 1,2,3,

with \bfitv 1 = \bfitu 
\infty 
1,p, \bfitv 2 = \bfitu 

\infty 
2,p, and \bfitv 3 = \bfitb 

\infty 
p . It then follows from Theorems 3.1, 3.6, and

3.8 that

lim
Q\rightarrow \infty 

I1,1 =Cp
\^\phi (2cp\tau \theta ),

\bigm| \bigm| \bigm| lim
Q\rightarrow \infty 

I1,2

\bigm| \bigm| \bigm| \leq lim
Q\rightarrow \infty 

\Biggl[ 
1

Q

\int 2Q

Q

\omega m| \bfitu \infty 
1,p( - \theta ,\omega , \theta )| 2d\omega 

\Biggr] 1
2

\times 

\Biggl[ 
1

Q

\int 2Q

Q

\omega m| \bfitu \infty 
2,p( - \theta ,\omega + \tau , \theta )| 2d\omega 

\Biggr] 1
2

= 0

and \bigm| \bigm| \bigm| lim
Q\rightarrow \infty 

I1,3

\bigm| \bigm| \bigm| 
\leq lim

Q\rightarrow \infty 

\Biggl[ 
1

Q

\int 2Q

Q

\omega m| \bfitu \infty 
1,p( - \theta ,\omega , \theta )| 2d\omega 

\Biggr] 1
2
\Biggl[ 
1

Q

\int 2Q

Q

\omega m| \bfitb \infty p ( - \theta ,\omega + \tau , \theta )| 2d\omega 

\Biggr] 1
2

\lesssim lim
Q\rightarrow \infty 

\Biggl[ 
1

Q

\int 2Q

Q

\omega m| \bfitu \infty 
1,p( - \theta ,\omega , \theta )| 2d\omega 

\Biggr] 1
2
\Biggl[ 
1

Q

\int 2Q

Q

\omega m(\omega + \tau ) - 4+12sd\omega 

\Biggr] 1
2

\leq lim
Q\rightarrow \infty 

\Biggl[ 
1

Q

\int 2Q

Q

\omega m| \bfitu \infty 
1,p( - \theta ,\omega , \theta )| 2d\omega 

\Biggr] 1
2
\Biggl[ 
1

Q

\int 2Q

Q

\omega m - 4+12sd\omega 

\Biggr] 1
2

=
\Bigl[ 
Cp

\^\phi (0)
\Bigr] 1

2

lim
Q\rightarrow \infty 

\biggl[ 
(2Q)m - 3+12s  - Qm - 3+12s

(m - 3 + 12s)Q

\biggr] 1
2

= 0

for any s \in ( 3 - m
2 , 13  - m

12 ), where the domain is nonempty since m > 14
5 and hence

such an s exists.
Based on the same procedure used for the estimates of \{ I1,j\} j=1,2,3, we may also

show that elements in \{ Ii,j\} i=2,3,j=1,2,3 have limits of zero when Q\rightarrow \infty and conclude
that (1.5) holds. The result (1.6) for the shear far-field pattern can be obtained
similarly. The details are omitted.

Due to continuation of a dense set and the fact that \phi is analytic, the microlocal
strength \phi can be uniquely determined by \{ \^\phi (2cp\tau \theta )\} (\tau ,\theta )\in \Theta or \{ \^\phi (2cs\tau \theta )\} (\tau ,\theta )\in \Theta with
\Theta being any open domain of \BbbR + \times \BbbS 2.

4. Conclusion. In this paper, we have studied the inverse scattering problem for
the three-dimensional time-harmonic elastic wave equation with a random potential.
The potential is assumed to be a microlocally isotropic Gaussian random field such
that its covariance operator is a classical pseudodifferential operator and should be
interpreted as a distribution. For the direct problem, we prove that it is well-posed in
the sense of distributions by examining the equivalent Lippmann--Schwinger integral
equation. For the inverse scattering problem, we show that the strength of the random
potential can be uniquely determined by a single realization of the high frequency
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limit of the averaged compressional (resp., shear) backscattered far-field pattern of
the scattered wave associated to the compressional (resp., shear) plane incident wave.

This paper is concerned with the three-dimensional problem in a homogeneous
medium, where the Green tensor has an explicit form which makes it possible to get
the reconstruction formula of the strength. It is open for the two-dimensional inverse
random potential scattering problem with the far-field data due to the complexity
of the Hankel functions involved in the Green tensor. The problem is even more
challenging if the medium is inhomogeneous where the explicit Green tensors are
not available any more. Another interesting problem is to simultaneously reconstruct
both the order m and the strength \phi of the random potential \rho . The present approach
seems not to work since the measurement depends on the given order m. We hope to
be able to report the progress on these problems elsewhere in the future.
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