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1. Introduction

The scattering problems for elastic waves have attracted considerable attention due to the significant applications in
diverse scientific areas such as nondestructive testing, medical imaging, and seismic exploration [1,16]. Although many
mathematical and computational results are available, it still presents a challenging question on accurate computing of the
scattering problems for elastic waves, especially in three dimensions, due to the complexity of the underlying equation. This
paper is concerned with a numerical solution for the time-harmonic elastic scattering problem of a rigid obstacle embedded
in a homogeneous and isotropic elastic medium in three dimensions. The goal is to develop a spectral boundary integral
method for the elastic obstacle scattering problem.

Compared with the finite element or finite difference methods, the method of boundary integral equations has two in-
trinsic advantages: it is only required to discretize the boundary of the domain and the radiation condition at infinity is
satisfied automatically [21,23]. However, it also brings an extra difficulty that boundary integrals are usually singular and
their accurate numerical approximation is highly involved, especially for three dimensional geometries. Over the years, vari-
ous methods of boundary integral equations have been proposed to solve the three-dimensional elastic scattering problems.
A high order singular integral quadrature method with GMRES was developed in [3] for the elastic scattering problems with
the Dirichlet and Neumann boundary conditions on closed and open surfaces. In [4], the elastic wave scattering of a time-
harmonic incident wave that impinges on a penetrable obstacle was considered, and the singular integral was discretized
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by the use of partition of unity. Based on the fact that for analytic functions on a smooth closed surface that is isomorphic
to a sphere and the interpolation based on spherical harmonics gives spectral accuracy, a high order method for singular
integrals in the boundary integral equation was developed in [10] and [12] for the acoustic wave equation and Maxwell’s
equations, respectively. In [19], a high order spectral method was proposed for solving elastic obstacle scattering problem
with the Dirichlet or Neumann boundary condition by directly utilizing the Green function of the three-dimensional elastic
wave equation.

It is worth mentioning that the Green function of the elastic wave equation is a second order tensor and the singularity is
tedious to be separated in the computation of boundary integral equations, especially for the Neumann boundary condition
and the three-dimensional problem [2-4,18,19,24]. To bypass this complexity, we employ the Helmholtz decomposition by
introducing one scalar potential function and one vector potential function to split the displacement of the elastic wave
field into the compressional and shear wave components. The two wave components, one of which satisfies the three-
dimensional Helmholtz equation and the other one satisfies the Maxwell equation, are coupled at the boundary of the
obstacle. Therefore, the boundary value problem of the elastic wave equation is converted equivalently into a coupled
boundary value problem of the Helmholtz and Maxwell equations for the potentials. Such a decomposition greatly reduces
the complexity for the computation of the elastic scattering problem. Similar techniques have also been successfully applied
to many other problems such as the unsteady and incompressible flow, the two-dimensional elastic scattering, and inverse
scattering problems [7-9,14,17,25].

In this work, by making use of the Helmholtz decomposition, the elastic obstacle scattering problem is reduced to a
coupled boundary value problem, which is shown to have a unique solution. Based on the potential theory for the Helmholtz
and Maxwell equations, a system of boundary integral equations is formulated for the coupled boundary value problem, and
the uniqueness of the solution is discussed for the boundary integral formulation. For the numerical discretization, we adopt
the Galerkin method and use the surface differential operators and Stokes’ formula to reduce the strong singular operators
to weakly singular ones. The approach leads to a high order full-discrete scheme which is similar to the one developed for
the acoustic obstacle scattering problem in three dimensions [10]. It should be emphasized that all operations in the full
discretization scheme are scalar, which greatly simplify the numerical implementation. Numerical experiments are provided
for various geometries and different wavenumbers to demonstrate the superior performance of the proposed method.

To summarize, the paper contains three contributions:

(1) propose a novel boundary integral formulation for the elastic boundary value problem via the Helmholtz decomposition;

(2) regularize the singularity of the boundary integral by making use of the Stokes’ formula and surface differential opera-
tors;

(3) develop a spectral method for the approximation of the coupled boundary integral equations by using spherical har-
monics.

The paper is organized as follows. In Section 2, we introduce the elastic scattering problem and reduce it to a coupled
boundary value problem by using the Helmholtz decomposition. In Section 3, the system of coupled boundary integral
equations is presented and the uniqueness is examined for the solution. Section 4 gives the spherical parameterization of
the surface integral and discusses the regularization of the strong singular operators. The full-discrete spectral scheme is
proposed in Section 5 for the system of the coupled boundary integral equations. Numerical experiments are shown in
Section 6 to demonstrate the effectiveness of the proposed method. The paper concludes with some general remarks in
Section 7.

2. Problem formulation

Consider a three-dimensional elastically rigid obstacle, which is given as a bounded domain D ¢ R3 with analytic bound-
ary I'p. Denote by v the unit normal vector and 71, 7, the orthonormal tangential vectors on I'p, respectively. The exterior
domain R3\ D is assumed to be filled with a homogeneous and isotropic elastic medium with a unit mass density.

Let the obstacle be illuminated by a time-harmonic wave given explicitly by either the compressional plane wave u'(x) =
der9* or the shear plane wave ui(x) =d x pe*=9* where d = (sinf cos, sin@sing, cosd)T is the unit propagation
direction vector with 6 € [0, ], ¢ € [0, 27r) being the incident angles, p is the unit polarization vector satisfying p-d =0,
and

w w
Kp = ———, Ks=—
VTR

are the compressional and shear wavenumbers, respectively. Here w > 0 is the angular frequency and A, u are the Lamé
constants satisfying i > 0, A + u > 0. It can be verified that the incident wave u' satisfies the Navier equation

pAU + O+ ) VY -ul + 0?u' =0 inR3.
The displacement of the total field u satisfies the Navier equation

uAU+ A+ wWVV - u+w*u=0 inR>\D.
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The total field u consists of the incident field u' and the scattered field v, i.e.,
u=u' +v.
Since the obstacle is assumed to be rigid, we have

u=0 onl)p.

Hence the scattered field v satisfies the boundary value problem

UAV+ A+ wW)VV-v+w?v=0 inR3\D,

21
v=—-u onTp. (21
For any solution v of the Navier equation in (2.1), it has the Helmholtz decomposition
V=v,+ Vs, (2.2)

where

vy =V, vs=curly, V-¢=0.

Here v, and v, are known as the compressional and shear wave components of v, respectively. Combining (2.1) and (2.2),
we may obtain the Helmholtz equation for the scalar potential ¢ and the Maxwell equation for the vector potential ¥,
respectively:

Ap+k}p=0, curlcurly — 2y =0.
In addition, ¢ and ¢ are required to satisfy the Sommerfeld and the Silver-Miiller radiation conditions, respectively:

pli_)rr;o,o(ap¢ —ikp) =0, pli_)rr;o po(eurly x X —iks¥) =0, p=|x|.

It follows from the Helmholtz decomposition and boundary condition on I'p that

v=V¢+curly = —u'.
Taking the dot product and the cross product of the above equation with v, respectively, we get

ho+v-curly = f1, vxVo+vxcurly = f,, (2.3)
where

fii=—v-u, fr,=—-vxu.

In summary, the scalar potential function ¢ and the vector potential function ¢ satisfy the coupled boundary value
problem

Ap+kpp=0, curlcurly —k2y =0 inR3\ D,
ho+v-curly = f1 vxVo+vxcurly = f, onIp, (2.4)
lim p(8p¢ —ikpp) =0, lim p(curly x X —iks9) =0, 0 =lx|.
pP—>00 p—>0
The following result concerns the uniqueness of the boundary value problem (2.4).

Theorem 2.1. The coupled boundary value problem (2.4) has at most one solution for k, > 0 and ks > 0.

Proof. It suffices to show that ¢ =0 and ¥ =0 in R3\ D when f; =0, f, =0. Let Bg be a ball with radius R > 0 such
that D C Bg and 'y be the boundary of Bg. Denote by Q2 the bounded domain Q = By \5 enclosed by I'p and I'g. Using
the first Green’s theorem [6, (2.2) and (6.2)] and noting V - ¥ = 0, we have

/qbavd_)ds:/(¢>A¢_>+V¢~V¢_>)dx+/¢8v¢_>ds
I'p Q I'p

=/(_K§|¢>|2+|V¢>|2)dx+/¢avq‘>ds
Ip

Q
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and

/(curln/_/ x X) - 1//ds=/(5< x ¥) - curly ds

I'p '

/ (¥ - AY + curly - curly) dx + / (v x ¢) - curly ds

Q I'p
:/(—K52|1/f|2 + |curh//|2)dx+/(curlr} X V) - ¥ ds.
Q I'p
Using the boundary condition (2.3), the relation between the gradient and the surface gradient
Vo =Gradg 4 vd, @,

and the identity (cf. [6, Page 204])

/(p(v-curM)ds:/Gradgo - (v x ¥)ds,

FD r‘D

we obtain

“s/. (¢3v¢ + (curly x v) - ¥)ds

I'p
:sf (— ¢ (curly - v) — (Vg x v) - ¥) ds (2.5)
I'p
:—S/(Gradqb-(v x ¥) +Gradg - (v x ¥))ds =0.
I'p

It follows from the radiation conditions (2.4) that
/(|av¢|2 + kP11 + 26, 3(pdyp)) ds = / |9y — ikcpp|? ds — 0 (2.6)
I'p I'p

and

f (leurly x X2 + k2|¥|* + 253 ((curly x X) - ¢)) ds

I'p

:f lcurly x X — iks¥|*>ds — 0 (2.7)
I'p

as R — oo. Since kp > 0 and «; > 0, it follows from (2.5)-(2.7) that
. 1 1 A
lim (7 10012 + kp | + — |curly x R + K5|¢|2) ds = 0.
R—o0 Kp Ks
I'p

We have from Rellich’s lemma that ¢ =0 and ¢ =0 in R3\ D, which completes the proof. O

It is known that a radiating solution of (2.1) has the asymptotic behavior of the form

ei/(,J |X] R ei/(5 |x|
] vgo(x) +

uniformly in all directions X := x/|x|, where v";o and vJ°, defined on the unit sphere S? = {8 eR3:|x| =1}, are called the

compressional and shear far-field patterns of v, respectively.

v(x) = v?(&)—i—(’)(i), |x] = o0

Ix| |x|2
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Remark 2.2. By extending the result [9, Theorem 3.1] to three dimensions and using [6, Theorem 6.9], we can establish the
relationship between the far-field pattern of the compressional wave v, or the shear wave v and the far-field pattern of
the scalar potential ¢ or the vector potential ¥, i.e.,

VIR =ikpdoo®R,  VER) = ikek X Yoy, (2.8)

where the complex-valued functions ¢.o(X) and ¥, (X) are the far-field patterns corresponding to ¢ and ¥, respectively.
Therefore, in view of (2.2) and (2.8), we can obtain the compressional and shear wave components vy, vs and the corre-
sponding far-field patterns v3°, v3° by solving the coupled boundary value problem (2.4).

3. Boundary integral equations

In this section, we deduce the coupled system of boundary integral equations for solving the boundary value problem
(2.4).
Define a vector potential

Ag(x) := / D(x, y; k)8 ds(y), x€R>\Tp,
I'p
where g is a continuous tangential vector function on I'p and
1 elklx—yl

X, y; ) =——

e 3.1
pr X#£Yy (3.1)

is the fundamental solution to the three-dimensional Helmholtz equation. Using [6, Theorem 6.13], we have the jump
relation

1
curlALg(x) = / Vy®(x, y; 1) x g(y)ds(y) F EU(X) x g(X), (3.2)
Ip

where
curlALg(x) := lim curlAg(x +hv(x)).
h—+0
Meanwhile, we have from the Maxwell equation that

(curlcurlcurlAg) .+ (x) =« 2 (curlAg)+ (x).

We represent the solutions of (2.4) by

{¢(x) =, P, ¥i kp)g1(y) ds(y),

1 xeR3\ Ip, (3.3)

¥(x) = eurleurl [[. ®(x, y; ks)g2(y) ds(y),

- 2
Ks
where g is a scalar density function and g, is a tangential vector density function satisfying g, - v = 0. It can be verified
from simple calculations that the corresponding far-field patterns can be represented as follows

$oc®) =gz [, e PV g1(y) ds(y), G4
Voo®) = 5X X [1) 82(y) x Re ™5V ds(y). '

Letting x € R3\ D approach the boundary I'p in (3.3), using the jump relations (3.2) and

1
Voi(X) =/Vx<l>(x,y; Kkp)g1(y)ds(y) F EV(X)gl (),
Ip
and the boundary condition (2.4), we deduce the coupled boundary integral equations for the density functions g; and g,
onI'p:

[ =—1a®+ fr, Dokl e (y) ds(y)

+v(0) - curly i, DX, yi k5)82(y) ds(y).
F20) =) x Vx [r) @(x, yi kp)81() ds(y)
+V(0) x curly [ DX, y; ks)82(¥) ds(y) + 382(%).

Denote by C(I'p) the space of all continuous functions on I'p, and C7(I'p) the space of all continuous tangential vector
fields on I'p. The following result concerns the uniqueness of the solution to (3.5).

(3.5)

5
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Theorem 3.1. The system of boundary integral equations (3.5) has at most one solution in C(I'p) x Ct(I'p) provided that ky, is not an
interior Dirichlet eigenvalue for the Helmholtz equation in D and k5 is not an interior Maxwell eigenvalue in D with the homogeneous
perfectly conducting boundary condition.

Proof. It suffices to show that gy =0 and g, =0 if f{ =0 and f, = 0. By the uniqueness result in Theorem 2.1, we have

¢(x)=0, ¥(x)=0, xeR>\D.

It follows from the continuity of the single layer potential that ¢ (x) = 0 for x € I'p. Since «}, is not an interior Dirichlet
eigenvalue for the Helmholtz equation in D, we get ¢(x) =0 for x € D. Using the jump relation of the derivative of the
scalar single-layer potential, we obtain g1 =0.

Define the integral operator M : Ct(I'p) — Ct(I'p) by

(Mg3) (%) :=2v(X) x curl/ P(x, y: k5)82(¥) ds(y).
I'p
Substituting g; = 0 into the second equation of (3.5), we obtain
82(x) + (Mgy)(x) =0.
Since «; is not an interior Maxwell eigenvalue in D with the perfectly conducting boundary condition v x ¥ = 0, we obtain

from [5, Theorem 4.23] that g, =0, which completes the proof. O

Next we introduce the single-layer boundary integral operators S°, o = p, s and the normal derivative boundary integral
operator K for ge C(I'p) and g € Cr(I'p) by

(Spg)(X)=2/<I>(x,y;f<p)g(y)d5(y), xelp,

I'p
(Ssg)(X)=2/4>(x,y;lcs)g(y)ds(y), xelp,
I'p
_ 0P(x, y; Kkp)
(Kg)(X)—Z/—av(x) g(y)ds(y), xeTlp,
I'p

and we also define boundary integral operators N, H and M by

(Ng)(x) =2v(x) - curly / D, y; ks)8(Y) ds(y),

Ip
(Hg)(x) =2v(x) x fo D(x,y: kp)g(y)ds(y),
I'p
(Mg)(x) =2v(x) x curlx/ﬂb(x, Viks)g(y)ds(y),
I'p

where g and g are the scalar and vector densities, respectively. Then the system (3.5) can be rewritten as

(3.6)

—g1+Kgi+Ng, = fi1,
Hgi + 8, + Mgy = f>.

By the decomposition in [10, (2.5)-(2.6)], the kernels of weakly singular integral operators S° and K can be decomposed
into a general form as

1
m(x, y) = mml x,y) +ma(x, y)

with m; (i=1,2) given by

(x—y)-v(y) x—=y)-vX

mi(x, y) =mj1(x,y) +mi2(x, y) >— +mi3(x,y) 3
Ix—yl Ix—yl

’
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where each m; ; (i=1,2, j=1,2,3) is infinitely continuously differentiable on R3 x R3? under the assumption that T'p is
analytic. Hence, we have for x € I'p that

1
(72100 = [ (st + 55 ) s ds,

[x — ¥
I'p
o= [ ( LS y) 55 )80) ds(y)
T Nx—y Tt 2 ’ (3.7)
I'p
1 p p
(Kg)(x) = / ( ki (x, y) + k5 (x, y))g(y) ds(y),
[x =yl
I'p
where
_ isin (ko [x—y1)
sT(x, y) = w, S, y) = { -yl 0 X7V o=p,s,
2 Ko X=y
2w’ ’
b V@ x—Y) . ,
ki(x,y)=— Wsl (%, ¥) +ikpv(®) - (x — ¥)s5 (X, ¥),
k5 (x, y) = —%ﬁ/'—zw[sg (x, y) — ikpst (x, y)].

Similarly, the kernel of weakly singular integral operator M can be decomposed into

1
W@@sz——mmw+mmwﬁm@m

Ix—yI
I'p
with m; (i =1, 2) being of the form

x—hE —vl"
Ix—yI?

w’ +mi3(x,y),
|x—yI

m;(x, y) =m;1(x, y) +mj2(x, y)

where [ is the 3 x 3 identity matrix, M 3 is the 3 x 3 zero matrix, and each rﬁi,j (i=1,2, j=1,2,3) is infinitely continu-
ously differentiable on R3 x R3. We refer to [12, (2.8)-(2.9)] for the detailed expressions of m; ;.

Since all the boundary operators S°, K, M have weakly singular kernels, their spectrally accurate discretization can
be conveniently obtained by using the spherical harmonics. The details are given in Section 5. However, for the integral
operators N and H, their kernels have Cauchy type strong singularities, direct discretization will introduce large errors. In
order to design a spectral method for (3.6) via the Galerkin discretization, it is necessary to regularize the singularity of N
and H, which is examined in the next section.

4. Spherical parametrization

From now on, we assume that the boundary I'p is an isomorphism of a unit sphere, which is a common assumption in
the areas of wave scattering and inverse scattering [6]. For two vectors a, b € R3 and two 3 x 3 matrices A = (a1, az,a3), B=
(b1, by, b3), we define

a®b=ab", A:B=a; -bi+ay-by+as-bs.

Based on a bijective parameterization map q : S* — I'p, the boundary integral equations (3.6) can be transformed on the
unit sphere S2. By the change of variables x = q(x), for any integrable function g defined on I'p, it holds

/g(X)dS(X)Z/g(Q(&))]q(Q) ds(),
I'p S2

where J4(X) is the Jacobian of the transformation q.
Denote by (6, @) the spherical coordinates of any point % € S?, i.e.,

X=p(@, ) = (sinf cos ¢, sinf sin g, cos@)T, 0el0,m], ¢ €[0,2m),
and the corresponding Jacobian is J, (0, ¢) =sin6. The tangent plane at any point X € S? is generated by the unit vectors

7
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d
eyop= %(9, @) = (cosf cos @, cosf sing, —sinb) ',
e ! ap(@ )= (—sing, cosp,0)"
op=—— =(— .
¢°P=Snoag ¥ ¢ cose.

The triplet (X, es, ey) forms an orthonormal system. Following the notations in [19,20], we define the tangent vectors on
I'p by

N d . . .
0160 =~ 0 p™! (0 = [Dsaq ) les (.

R 1 9qo 1A n ~
@ = (G550 ) 0P B =Dsa@ley®,

where the matrix [Dg2q(X)] =t ® ey +t2 ® e, maps the tangent plane to S? at the point ¥ onto the tangent plane to I'p
at the point q(%), the Jacobian J4 and the normal vector v o q are given by
t1 Xty
Jg=1t1 xt2], voq= .
Ja
By the conclusions in [19,20] and the change of variables x = q(%), for any smooth w and w = (w1, wy, w3) |, we may
define the following surface scalar and vector curl operators on I'p:

(curlp,w)oq = %[Dgzq(&)]cuﬂgz (woq), (4.1)
q
(curlrp,w)oq = —]l[Dgzq(f()]T rcurlg2 (woq), (4.2)
q

where curlg2(w o q) = (Gradgz (wo q)) x X, and

dwoqop 1 1 owoqop 1
T) Op 89+ (_—) Op e(p. (4.3)

d =
Gradg: (w o q) ( g o

Here curlg2(w o q) is a matrix whose j-th column is curlg2w; o q. Using (4.3) and the representation of Dg2q and
curlg2 (w o q), we obtain

([DSZQ]T ccurlg2(Woq))op
1 dwoqop dwoqop (44)
=—(t —_— — (t _
sin9(1013) P (tz0p) py:

After the parametrization, the boundary operators S°, K, M can be equivalently rewritten as:

5 1 =p o o0 = on A A
SO0 = [ (55505 + 350 )60 ds(h,

X =
S2?
5 % T sis o T 5 5
S O® = f (f=351@ D +33G 7)€@ dsi).
s? _ } (4.5)
weri = [ (fogi K& 9+ Ko )6 ds3),
S? Y
. 1 ~ .~ . N
(ME)®) = f (fg MG )+ M2k )6 ds(3).
S?

where G =goq, G=gogq, and the kernels for o =p or s are given by

R §) = 2=

lg(x) — q(¥)|
ST, ) =RR&, )57 @R),q(3)) Jq(D), SR, ) =55 @R, q9()) Jq(P),
Ki& 9)=R& MK @R),q4()) I1q(3) Jq®), K22, 9) =k5@®),q4(9) Jq() Jq®),

M1, 9)=RR, 5)mi@R®),9(0) Jq() Jg®, M2k ) =mrqR),9())Jq(3) Jg®).
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As we mentioned before, due to the strong singularities in N and H, it is difficult to achieve high order accuracy by the
direct discretization of N and H. As a regularization technique, the following two theorems describe the Galerkin approach
by transforming the singularities of N and H to the test functions.

Theorem 4.1. For any smooth scalar function ¢ (%) on S2, we have

(Jq(Ng) 0 q.¢) = (S°G, [Ds2q]curlg2¢), (4.6)

where (-, -) is the Ly inner product on S2.

Proof. Using [22, Theorem 2.5.20], we have

Ng(x) = curlr, ((v(x) x (§°8)(x)) x v(x)), xelp. (4.7)
It follows from Stokes’ theorem that

/ w-curlr uds = / u curlr, wds, (4.8)

I'p I'p

for any differentiable scalar function u and tangential vector function w on I'p. Combining (4.1) and (4.7)-(4.8) gives

(]q(Ng)oq,QO)Z/Jq(&)(Ng)OQ(&)mdS(ﬁ)
SZ
Z/(Ng)(x)fﬂOQ’l(X) ds(x)
I'p

= / @ oq~1(x) curlp, (V(x) x (S°g)(x)) x V(x)) ds(x)

I'p

= f ((v(x) x (5°8)(x) x v(x)) - curlr, @ o g1 (x) ds(x)

I'p

= f(Sﬁg)(x) -curlr, ¢ o g~ 1(x) ds(x)
I'p

= /(SEG)()?) . [Dqu(fc)]curlSz(p(fc) ds(x),
SZ

which completes the proof. O

Theorem 4.2. For any smooth vector function ¢ (%) on S2, we have
(Jq(Hg) 0q,9) = (SPG, [Dg2q]" : curlg> ). (4.9)

Proof. For x € I'p, since Vw = Gradr, w + vd, w, we have

(Hg)(x) =2v(x) x Gradr, / D (x, y; kp)g(y) ds(y) = —curlp, (S g) (x). (4.10)
I'p

Using (4.2), (4.10) and Stokes’ theorem (4.8), we obtain

(Jg(H®) 0q,9) = / Ja®)[(Hg) 0 q(®)]- 9(R) dsR)
S2

= f(Hg)(X) @ oq~1(x)ds(x)
I'p

__ / curl, (SP2)(X) - @ 0 g~ 100 ds(x)
I'p



H. Dong, J. Lai and P. Li Journal of Computational Physics 469 (2022) 111546

=- /(Spg)(x)curlrbgo oq~1(x)ds(x)
I'p
= /(SPG)()A()[Dqu]T s curlg2 @ ds(X),
SZ
which completes the proof. O

5. Numerical discretization

Motivated by [10], we propose a fully discrete Galerkin type method with spectral accuracy. To approximate the scalar
density functions on the unit sphere, we choose (1 + 1)2-dimensional space of all spherical harmonics of degree less than
or equal to n, denoted by

Xn=span{Y, j(X):0<l<n, [j| <},

where
) i o bz (2T A= 1D
(N =Y — Ll i J_ (J+lih/2
YLi®) =Y1j(p©, ) =] P (cos0)e?, ¢ =(-1) —
SO RSP = AT ! an A+ 1j)!
for1=0,1,2,---,|j| <! form a complete orthonormal system in L?(S?), and le denote the associated Legendre functions

of degree | with order |j|. Analogously to [11], we introduce

Xn=span{Y; (X): Y k=Y jer, 0<I=<n, |jl<lk=1,2,3]},

where ey denotes the kth Euclidean vector.
It follows from [20] and (4.3) that the tangential gradient of the spherical harmonics is given by

Gradg:Y; ;(p(8, ¢))

- aplil iy i o ep0
cl](ww‘peg op+ ijP}”(cos@)eW es‘i"Tg), sinf #£ 0,
=1V ALV 1)(“%9%9 op+ijleeste, op), sinf =0, j| =1,
0,0,0)7, sinf =0, [j] #1,
where
13l :
aP,” (cosh) (I+1)cosf i; I=1j1+1 :
I 1l jl
= — P, (cos6 ——P cosd), sinf #0.
90 sin6 - (cosO)+ sin6 r1(c0s0) 7

It is clear to note that Grads:Y; j is a tangential vector on S? but may not be a tangential vector on the boundary I'p.
To approximate the tangential vector density functions on the parametrized surface I'p, we choose the following ansatz
space [12]:

Ty =span{ZH®):1=l=n, |jI <1 k=1.2},

where
zD R) = ;}‘(&)Grad 2Y) i(R)
Lj [T+ 1) S
1
ZPR) = —— F(®)X x Grade2 Y, ;(R),
b O = g W Crte

and Zéln()) = ZBZ()) =0. Here F (%) is an orthogonal transformation that transforms tangential functions on S? to tangential
functions on I'p. More explicitly, for a given vector y € C3, F(®) is given by

N N 1 N N
FX)y=cosyy+[Xxvoq] xy+ m[xx voql 'y xvoql,

where v is the angle between % and v o q(X). More properties on F(X) can be found in [12].
Let —1 <z <z3 <--- < Zzpy1 < 1 denote the zeros of the Legendre polynomial P41, and consider the Gaussian product
rule for the numerical integration of a continuous function over S?:

10
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2n+1n+1

/ FOAs@ ~ Y > wrvsf(pls, 0) = Qu(f),

r=0 s=1

where the weights 1, and vs are given by

o b 21-2%)
T TN )Y MERTEN
and the quadrature knots 65 and ¢, are
T
65 = arccos zs, (pr=n~|—1'

Let C(S?) be the space of continuous functions on S? and €(S2) the vector function space on S? with each component
in C(S?). Define the discrete orthogonal projection operators £} : C(S?) — X, and L5 : C(S?) — Xy by

LRy =YWV paYij. ¥eC(S?,

I=0 j|=!

n 3
Low=>">"> (WY jnYjk PeCS?),

1=0 |jl<l k=1

where we have set (¥, Y j)n = Qn(l/fVI_j) and the discrete inner product on S2 for two vector functions G and Z is denoted
by (G. Z)n= Qu(Z  G).

Now we describe the approximation in details for (4.6) and (4.9). Following [10,12], we split the kernels in (4.5) into a
weakly singular part and an analytic part. In order to accurately integrate the weakly singular part, an orthogonal transfor-
mation is introduced on S? and the singularity is transferred to the north pole #i = (0, 0, 1). In particular, if = p(9, ¢), the
orthogonal transformation is defined by Ty := Dp(¢)Dq (0)Dp(—¢), i.e., Tgk =f, where

cosyy —siny 0 cosyy 0 —siny
Dp(¢)=| sinyy cosyy O |, Dqo(¥)= 0 1 0
0 0 1 sinyy 0 cosy

Define the linear and bilinear transformations by
TRW(2) = W(T{ '), TRW(21,20) = V(T 21, T, ' 2a).
Using the fact that
R—Jl =T "G —2)| =72,
we can write S§? in (4.5) as
o~ 5 1 To 5 TO (A 5 = (5 5
(S7Go)®) = (HT&% (i, 2) + T4S9 (n,z)) T;Go (2)ds(2)
SZ

for o =p, 5, where Ep =g10q and Gs= 8, o q. Then, by using

47 N
/| Yu(y)ds(y) +Y,]oo xes?

and the addition theorem

I
AT 1 _
YoV ®YLG) = Pi(cosf),

j=1

where 6 denotes the angle between % and J, the approximation Sy, for the operators S° can be represented as
(8%Go)®) :=/ mlﬁan", {T;S‘{(ﬁ, )T;Co (2)} ds(2) + / £ {T;Sg(ﬁ, 2)T;Go (2)} ds(2)
S2 S?
2n'+1 o’
= Z Z &y [012// T)‘cg:? (1, 5’r’s’) + T;Sg @, }A’r’s’)] T;”caa ()A’r’s’)-
=0 s'=1

11
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Here a o Z— Zl 0 P[(n yr/s/) é:r/ = Uy and Ng = Vg'.
In view of Theorems 4.1 and 4.2, the Galerkin method for (3.6) seeks to approximate solutions G” € Xp and G" € ’]I‘n,
which can be written as

n 1
5';(&) = Z Z WUYZ.J'()A(), G"(x) Z Z Z Wl]kz(k)(x)

=0 j=-I =0 j=—Ij{—

and satisfy

—(JqGP. Yy jns1 + (fc G Yy nt )
+(Sy [DSNI]C“l‘lsz Yy, ‘/)n+1 =2(f1)q, Yr,jIn+1,
( [Dqu]T curlSZ ZV '/)nJrl + (]qu ZV )11+1 (5 _l)
‘l .
+(My G ,S n1 = 2<f21q, ,, Do,
(SyGh. [Ds2q] " : curlge z,,y j,),,+1 +(UgGh 2P n
= 2 r 2
+Mw G, 22 n1 =2(F2 g, 2 n
for ' =0,1,---,n, |j)| <I', where f; = f10q, fzzfzoq and n’ =an + 1 with a > 1.
To assemble the matrix, we denote the corresponding matrix elements in (5.1) by
N jii=(S32z) ;, [Dg2q]curlg: Yy -f)nﬂ, k=1,2,
HY o= (ShY1j. Dg2q]" Clll‘lgzz A )nﬂ, K=1,2,
Kk (GIP() — ) . Ik —
U= 0aZ 5 2y p) s V= (JaYeo Yo )y Kok=1.2,
Kk kLK) =
My = (M ZL, Z‘ Dnsts Ky o= K Yij, Yo pner, K k=1,2.
Let us also introduce the followmg notations
Xs=pOs, 1), Jrsy =p(Oy, ‘Dr’) (5.2)
I = Toiby PO Br) = p(AL BLE (53)

with the quadrature knots 6s, ¢, @y, ®@,. Note that sinfs # 0 and sin @y # 0 as taking Gaussian quadrature nodes. Since
the singularity is transferred to the north pole, we need the representation of rotated spherical harmonics. It follows from
standard calculations [11] that

l

YiGr) =Y Fys@709Y 5(9rs), (5.4)
j=-1
zM G = F @) Z Fyie'™ WfZa“““(o VeI T VD (g, ), (5.5)
]_71 d=1
where

Fsljj — el(J j)T[/Z Z d(l) (71'/2)d(l) (n/z)elmeg
m=—1
vD (6, ¢) = (cos6 cos ¢, cosf sin¢g, — sin Q)T,
v®(0,¢) = (—cos¢,cos6,0),

jl
1 idP," (cosB)
(1 ])(9) (2 2)( 0)= l(l+1)c'] l 90 ,
1 Coij ;
(1 2) 2,1) i U Ll
0) = oe” (e)zl(l—-i—l)clmpl (cos ).

Here

W i A+ DA=DY _m—j—m—j)
djm(ﬂ/z) =2/ mplﬂ- ! 20,

12
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and Péa’ﬁ ) is the normalized Jacobi polynomial with

PP 0) =27 Z( 1)f<”+“)<ﬁ*{ﬁ), @0, 0.

t=0

If m — j or —m — j is negative, then the following symmetry relation can be used to compute d(l) (r/2):

dj‘lr)n((p)=(_1)j_md,(1’1)j((p)_d@m (@)= d([)( o).

Combining (5.2)-(5.5) and (4.4), we find that the element N,, j1j €an be evaluated by

2n+3 n+2 2n'+1n'+1
Nij = 22 D Hrvs Z D &y Siys
r=0 s=1 =0 s'=1
k.d ,
Z Fys el WrZa( (@)l (FEHT v Oy, 9p))
]——l d=1

apli]
(~d Py (€0s0) _ijip,,

/ 1) )
I 30 1(Xrs)

N - 1
2(Xrs) —ij C[/ Pl] l(cos Os)e ¥ —
sinfs

for k' =1, 2, where
o . n'co iy or's To 5 or's
Srsr’s’ =0y ST Krss Vs )+ S5 (Xes, Vs )y O =9, 5,

and the element Hl, i lj is given by

2n+3 n+2 2n'+1n'+1
1l P,
l/ i Z ZMer Z Z&_r’ns rsr's’ Z Fg; el(J ])(ﬁrc P;" (cos O )ell '
r=0 s=1 =0 s'=1 =i

—k —K
(6| 1 aZ}/,}op(es,cpr)]_ G BZﬁ,Jlop(95,¢r>)
s | Sin 3¢ 2 30s

for k=1,2. It can be seen that the direct computation for each element needs O(n*) computational cost, which leads to
O(n?®) total computational complexity since there are O(n*) matrix elements. To accelerate the evaluation, we adopt the

idea of [12,13] and carry out the following operations:

2n'+1
= Zs/e‘“’r’sp (FEHOTIV D@5, 9p)) - talis),

srs i rsr's’
2n'+1

srs j= Z & elior str/s (]:(yrs )T_lv(d)(os ‘pr’)> b1 (Rrs),

- n+1 2 id
(< ) _
er] Z;ns (O ) srs'j’ h=1,2,
s'=1d=1
2n+3
kh ZF eili— ])(perh kh Z e—l](prckh h=1.2
ST[] STI] 5]’[] Mr srlj? — 1,4,
]
which lead to
n+2 17l
i+ d P, ' (cosbs) 1
V| s) pk,1 L'l k,2
Nl, = sz(cl, 8—95351/“ +1j’ c,, P; (cos@s) ne; BS],U)
s=1

Then the computational complexity reduces to O(n°) for O(n*) matrix elements, since each operation only requires O(n)
amount of work, which is a great cost saving compared to the original computational complexity O(n®).

13
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Similarly, we take the following operations to assemble H,, e

2n'+1

SrS j Z &r elior str s/ (}—(&”)v(d) ©s. §0r)) 1)/ sinds,
=0
2n'+1 3 (.F(;(rs)v(d) (051 901"))

ijo, TP . 5 .
STS] Z &re Sters 90r t1(Xrs)/ sinbs,

2n'+1
Bl = Z 512 3P (FRov @O, 0n) - ta(is),

241 B(F G v @65, 00)
1]<I>r/ Th . ~

STS] Z &ve Siers 205 ty(Xrs),

n'+1
sru Z ns/c,Pm(cos() )E w=1,2,3,4,

s'=1

2n+3
1( Deor pw.d wd —ijor _

srl] ZF ]WDsru SJ’IJ Z“fe Jerc srlJ w=1,2,34.

ljl=t

Here we have F T (Rrs) = [F1Rrs), F2(Rrs), F3(Rr5)], and then

3 06, F1(Rrs) - v (05, @r) + F1(Rrs) - 95,v'D (65, 1)
o (F v @05 00) = | 8F2(Rr0) - VD (O, 1) + Fa(Brs) - 90 v (65, 91)
g 06, F3 (Rrs) - v\ (05, @r) + F3(Rrs) - 9, (6. )

One can analogously obtain 3%% (]—' (Rrs) VD (65, gor)) Then Hl, 7 1j €an be evaluated by

n+2 2 aa[(k/,d)(es)
(K',d) (K, d) " i’ 3.d (k/ d)
HE =0 v (17050 00 BY + ol 6083 + By el ©)BY ).
s=1d=1

It is worth pointing out that the numerical implementation can be done very efficiently since each step of the operations
only involves scalar functions.

We briefly mention the evaluation of Ul, ,lJ and Iyj ;. Noting that F is an orthogonal transformation, we may obtain

Kk
Ul,j,,,j via

- 2n+3
k,d' (k,d") ijo k,d' —ij'orc T
Cotj = 0)e7% Jqo p(Bs, ¢r), By = Z ure el kd' =12,
N n+2 2
(k ,d) k.d'
l/ Y l] Z Z vS ' (QS)BSJ/U’
s=1d'=1
and Iy j; via
2n+3
i plil ij —ij
Corj = ¢ P’ (cos 65)€9 Jq 0 p(0s. @r).  Bgjij= Y pre 49 Cyp,
r=0
n+2

Il/ i’ lj = Z VSCI, P‘ |(COS gs)st’lj-

The approximations Ky ;; and Mf, P for K and M are discussed in [12,13], and we give them in the appendix with slight
modifications.

14
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Fig. 1. Geometries of the obstacles.

Table 1
Parametrizations of the obstacles.
Type Parametrization
2 2
X X
Ellipsoid X} 24 5o
P 170752 T 52
Cushion x(0,9) = \/0.27 +0.065(cos 2¢ — 1)(cos46 — 1)X(0, @)
5 2
pé 0.3 cos(mrx3) + X:
Bean 1 ( () + 1) 2=1
0.64(1—0.1cos(rrx3))  0.64(1 — 0.4cos(7rx3))
Table 2
Numerical results for the ellipsoid-shaped obstacle at w = .
Ellipsoid: w=m
n [l€ps|loo ll€pw oo Teoe Tsol
5 2.0854e-04 7.8646e-03 02s 0.0003 s
15 2.1597e-08 6.7751e-08 29s 0.008 s
25 2.6595e-12 3.6123e-11 16.8 s 01s
35 2.9117e-14 3.3012e-11 64.3 s 05s
45 5.8231e-14 3.0243e-11 2398 s 20s
55 4.4362e-14 4.0796e-11 8744 s 6.1s

Remark 5.1. The convergence analysis of the proposed numerical method depends on the invertibility of the boundary in-
tegral system (3.5) as well as the discretized system (5.1), which is beyond the scope of this paper and currently under
investigation. We refer to [7] for the convergence analysis for the two-dimensional problems. It is expected that the follow-
ing estimate holds under certain conditions:

~ 1~ _ C
1G5 oq™" Cooq™) = (81,82 Tlloory = 181,82 llgs1.00rp, VEN,

where (g1, gz)T is the exact solution to the integral equation system (3.6), || - ||co,r, is the maximum norm for functions in
C(T'p) x Ct(T'p), and [|-|lg,00,rp is the norm for continuously differentiable vector functions on I'p up to order q. Numerical
experiments show that the spectral convergence is achieved as long as n’ > 2n + 1 with sufficiently large n.

6. Numerical experiments

In this section, we present some numerical experiments to demonstrate the superior performance of the proposed
method. We consider three different geometries for the obstacle: ellipsoid, cushion, and bean, as shown in Fig. 1. Their
parametrizations are given in Table 1. Throughout the numerical experiments, we take the Lamé parameters A =2, u =1
and the truncation number n’ = 2n + 1. The method is implemented using MATLAB on a server with two Intel Xeon cores
and 256 GB RAM. No special effort is paid to solving the resulted linear system of equations other than the backslash
command in MATLAB.

To test the accuracy of the proposed method, we construct an exact solution in form of

v.(X) =G(x, yo)p, Yyo=1(0,0.05,0.0866)", p=(1,0,0)", (6.1)

15
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Table 3
Numerical results for the cushion-shaped obstacle at w = .

Cushion: w =1

n [l€ps|loo [l€pwlloo Tcoe Tsol

5 3.2246e-04 3.9169e-02 03s 0.0003 s

15 8.9083e-07 5.4441e-06 33s 0.009 s

25 1.5665e-09 4.1725e-08 175s 01s

35 1.0287e-11 3.6207e-10 671 s 05s

45 2.4172e-13 3.6305e-11 2541 s 21s

55 6.2876e-14 4.5173e-11 9305 s 70 s
Table 4

Numerical results for the bean-shaped obstacle at w = .

Bean: w=m

n [l€ps!loo [l€pwlloo Teoe Tsol

5 4.7523e-03 1.4119e-01 02s 0.0003 s

15 4.8644e-05 1.7490e-04 32s 0.008 s

25 2.4575e-07 1.7558e-06 18.0 s 01s

35 3.3519e-09 2.1805e-08 66.3 s 05s

45 8.9240e-11 9.1735e-11 2375 s 22s

55 2.9727e-11 7.0980e-11 905.0 s 59s
Table 5

Scattering by an ellipsoid-shaped obstacle at w = 8.

Ellipsoid: w =87

n [l€pslloo R{vapw (d) - p} 3{vitpw (@) - p}

25 3.6217e-05 -1.564489047510042e+00 1.051655398026258e+01
30 1.1212e-07 -1.564570656025764e+00 1.051657743451597e+01
35 2.7707e-10 -1.564570705114201e+00 1.051657744366693e+01
40 1.9588e-12 -1.564570705195090e+00 1.051657744366860e+01
45 5.0535e-13 -1.564570705193652e+00 1.051657744366452e+01

which is the same as the first test in [19], where the tensor

1
Gx,y)= M<CD(X y; Kr)I-i- VXVT(CD(X Viks) — DX, y; lcp)))

5
is the fundamental solution of the elastic wave equation and ®(x,y,«) is the fundamental solution for the three-
dimensional Helmholtz equation given in (3.1). Then, the corresponding far-field is given by

1 e—leX Yo e—i/(p)?-yo

1 R
Vaps®) = [,LT(XXP)XXJ’_)L 2MT(X-p)x.

Due to the uniqueness result given in Theorem 2.1, we can solve the boundary value problem (2.4) by enforcing the follow-
ing boundary conditions on I'p:

u=v,.

Then, the numerical far-field pattern vy° = v°° + v;% can be calculated by using (2.8) and (3.4). The maximum errors are
calculated over 1300 observations (equally spaced for the observation angles 6 and ¢) in accordance with the expression

||€ps||oo = ”vro]?ps - V:?ps”OO = mg)z(lvroﬁps(&) - Vi?ps(&)L
Xe

In addition to the point source case, we also compute the far-field pattern, denoted by v35,, resulted from the elastic
plane wave incidence

' (x) = m Laieoxd (g pysed+ —— P 2M erxd(d.pyd, d peS? (62)

where the incident direction vector d = (0,0,1)T and the polarization vector p = (1,0, 0. Again, we calculate the maxi-
mum errors over the observations on the unit sphere by using

P oo [o.¢] — oo 5 o b
||€pW||OO - ”Vn,pw - vn*,anOO - f}relg)zqvn,pw(x) - vn*ypw(X)L
where n, is a sufficiently large number.
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Table 6
Scattering by a cushion-shaped obstacle at @ = 8.

Journal of Computational Physics 469 (2022) 111546

Cushion: w =81

n ll€psloo R{vSw () - P} S{viow (@ - p}

25 2.5022e-04 -1.569712590870811e+00 5.039800881189093e+00
30 1.0344e-05 -1.574459019608859e+00 5.043376519089912e+00
35 2.6371e-07 -1.574531401615982e+00 5.043437889542368e+00
40 1.4952e-08 -1.574531761370081e+00 5.043437868795261e+00
45 1.5917e-09 -1.574531768527667e+00 5.043437902490211e+00
50 1.7031e-10 -1.574531769006316e+00 5.043437900206628e+00

Table 7

Scattering by a bean-shaped obstacle at w = 8.

Bean: w = 8w

n ll€psloo RV, @) - p) (V% (@) - p)

35 1.7121e-02 -2.387421716629113e+00 1.012728600300475e+01
40 1.5762e-03 -2.385302268097332e+00 1.011101559995000e+01
45 1.2892e-04 -2.384320155063459e+00 1.010913376752758e+01
50 3.4649e-06 -2.384311423020166e+00 1.010898949549377e+01
55 1.9260e-07 -2.384312575610280e+00 1.010899080953868e+01
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6.1. Example 1
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Fig. 2. The scattered field v for the ellipsoid-shaped obstacle with w = 8.
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Fig. 3. The scattered field v for the cushion-shaped obstacle with w = 8.

In this example, we evaluate the elastic scattering problem for three different obstacles at the frequency w = w. We
choose n, = 60 when the analytical solution is not available. Numerical results for the ellipsoid-shaped obstacle are given
in Table 2. It is shown that the solver rapidly achieves 13 digits accuracy for the point source test with n =35 and stops
increasing due to the round off errors. For the plane wave scattering, 10 digits accuracy is obtained with n = 25. Table 2
also shows the time to construct the scattering matrix, denoted by T, in seconds, and the time to solve the linear system,
denoted by Ty, in seconds. It is clear to note that the time is dominated by the matrix construction and roughly scales
on the order of O(n®), which is consistent with our complexity analysis. Tables 3 and 4 give the numerical results for the

17



H. Dong, J. Lai and P. Li Journal of Computational Physics 469 (2022) 111546

05
0.4
0.3
0.2

0.1

y-axis
°
z-axis

x-axis

(a) Rv1 on xy-plane (b) Rv1 on xz-plane (c) Rv1 on yz-plane
Fig. 4. The scattered field v for the bean-shaped obstacle with w = 8.

Table 8
Elastic scattering for the ellipsoid-shaped obstacle at high frequencies.

Ellipsoid: ||€ps||oo

w n=75 n=_80 n=2385

16w 1.2813e-11 2.8726e-12 4.4200e-11

24w 3.0964e-05 1.3045e-07 2.2170e-10
Table 9

Elastic scattering for the cushion-shaped obstacle at high frequencies.

Cushion: ||€ps||oo

w n=75 n=380 n=285
16w 9.5257e-10 4.5437e-10 4.0872e-09
241w 1.5524e-05 8.9533e-07 3.0466e-08

cushion- and bean-shaped obstacles, respectively. Both tables show a rapid convergence as n increases, which confirms the
spectral accuracy of the solver.

6.2. Example 2

We consider the elastic scattering of three obstacles at higher frequency w = 8. The real and the imaginary parts of
the quantity v;°,,, (d) - p, together with the errors ||€ps|l for three obstacles are shown in Tables 5, 6, and 7, respectively.
Similarly, we observe a rapid convergence both for the point source test and plane wave scattering when n increases. For a
fixed n, the accuracy for the scattering of the ellipsoid is higher than that of the cushion and bean. This is due to the reason
that the convergence rate depends on the smoothness of the obstacle boundary [15] and it is expected that a less smooth
boundary will lead to slower convergence rate. In Fig. 2, Fig. 3 and Fig. 4, we show the real part of the first component
of the scattered field v = (vq, vy, v3)7, i.e. vy, generated by a plane wave ui(x) with d=(0,0,1)T and p=(1,0,0)T in
(6.2) for ellipsoid-, cushion- and bean-shaped obstacles, respectively.

6.3. Example 3

In this example, we consider the high frequency scattering problem, which is challenging due to the high oscillation of
the solution. In particular, we apply the spectral method to test the point source scattering by the ellipsoid and cushion
at w = 16 and w = 247, respectively. Numerical errors for the two obstacles with different discretization number n are
shown in Tables 8 and 9. It can be seen that the high order convergence can still be achieved at high frequencies, which
demonstrates that the solver is robust for the scattering problem in both low and high frequencies.

7. Conclusion

In this paper, we have proposed a novel boundary integral formulation and developed a high order spectral method
for solving the elastic obstacle scattering problem in three dimensions. Based on the Helmholtz decomposition, the elastic
scattering problem is reduced to a coupled boundary value problem. The uniqueness is examined for both the coupled
boundary value problem and the system of boundary integral equations. By making use of the surface differential opera-
tors and Stokes’ formula, we reduce the strongly singular operators to a weakly singular operator in form of the exterior
integral of the Galerkin method. In addition, all operations in the full discretization are scalar, which makes the numerical
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implementation much simpler. Numerical experiments, including three different obstacles and high frequency scattering, are
shown to demonstrate the superior performance of the proposed method. Future work includes the convergence analysis of
the proposed method, the extension to other boundary conditions, and applications to solve the inverse elastic scattering
problems.
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Appendix A

Here we give the approximations Ky ;; and Ml, ,l for I and M with a slight modification. Details can be found in
[12,13]. The approximation X,y to K can be snnpllﬁed as

(KwG)®) ;:f (mljﬁﬁ,{nfﬁ (7, 2)T;G(2)} +£§,{T,;I?2(ﬁ,2)T;(G(2)}) ds(2)
S2

ZZ o (TR TG0, Y15 0), Yo )
=0 |j|<I
+ 33 (1Ko, ITRG ), Y (), Y i)
=0 [j|=<l
2n'+1 n’

=2 2 e[l TR g o) + TeRaa(h, 960 |TiG .
=0 s'=1

Then we obtain

I(l/j/,lj :(’Cn’ Y[,j, Yl’,j’)n-H

2n+3 n+2 2n'+1n'+1

= Z Zﬂrvs Z Z & ny [Ol?//l?l (Rrs, 5’;/53’) + 1?2(3957 5’;/53’)]

r=0 s=1 r'=0 s'=1
% Z FSl]jei(j*f)wr Yz,](P(@S” @) Yr i (P65, ¢r))
HE

via the operations

2n'+1 m'+1
srs j Z v K] (Rrs. J1s )elf‘P ’ er j Z & KZ Rrs, Vrs )el]¢
r'=0 —0
n'+1
srl] Z Ns' [a E:rs i E?rs j]Cl P“l(COS Oy),
2n+3 A
Corlj = Z Dsrl] slji€ 0= ])(ﬂr Bgjij = Z Csrlj/ireilj/(pr,
i<l r=0
n+2
Kyjij= Z st/lesClJ;/ P,',j/‘ (cos6s).
s=1

Analogously, the entry of M,, 7 g; can be obtained via the following operations:

2n'+1
d d’ ’ 4 A —
E = § &1 v (0, 01) T FT (ys) My (s, 97 FGr) T 0@ (O, D),
=0
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5 n+1 2
(k d)
Dsrl] Z Z ns’a (©s)E srs/]
=1d=1
5 2n+3
k d 1(] Y k.d’ k.d’ —ij’ ere
srl] Z Fy; ’DsrU st/l] Z Hr€ ' srl] ’
i<t
5 n+2 2
Kk NN
My = Z Z VsQp jr (95)351/11’
s=1d'=1

where My (Rys, J1) = ag,’IVI](fcrs, ISy + My(Res, 915, and My (R, 9), Ma(R, §) are 3 x 3 matrices defined in (4.5). In contrast
. . . nT . . N T

to the operations in [12], which put v(@) " in B,z We combine v@ " and FT together so that Ed d~ is a scalar function,

which makes the numerical implementation simpler since each operation is scalar.
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