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1. Introduction

The scattering problems for elastic waves have attracted considerable attention due to the significant applications in 
diverse scientific areas such as nondestructive testing, medical imaging, and seismic exploration [1,16]. Although many 
mathematical and computational results are available, it still presents a challenging question on accurate computing of the 
scattering problems for elastic waves, especially in three dimensions, due to the complexity of the underlying equation. This 
paper is concerned with a numerical solution for the time-harmonic elastic scattering problem of a rigid obstacle embedded 
in a homogeneous and isotropic elastic medium in three dimensions. The goal is to develop a spectral boundary integral 
method for the elastic obstacle scattering problem.

Compared with the finite element or finite difference methods, the method of boundary integral equations has two in-
trinsic advantages: it is only required to discretize the boundary of the domain and the radiation condition at infinity is 
satisfied automatically [21,23]. However, it also brings an extra difficulty that boundary integrals are usually singular and 
their accurate numerical approximation is highly involved, especially for three dimensional geometries. Over the years, vari-
ous methods of boundary integral equations have been proposed to solve the three-dimensional elastic scattering problems. 
A high order singular integral quadrature method with GMRES was developed in [3] for the elastic scattering problems with 
the Dirichlet and Neumann boundary conditions on closed and open surfaces. In [4], the elastic wave scattering of a time-

harmonic incident wave that impinges on a penetrable obstacle was considered, and the singular integral was discretized 
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by the use of partition of unity. Based on the fact that for analytic functions on a smooth closed surface that is isomorphic 
to a sphere and the interpolation based on spherical harmonics gives spectral accuracy, a high order method for singular 
integrals in the boundary integral equation was developed in [10] and [12] for the acoustic wave equation and Maxwell’s 
equations, respectively. In [19], a high order spectral method was proposed for solving elastic obstacle scattering problem 
with the Dirichlet or Neumann boundary condition by directly utilizing the Green function of the three-dimensional elastic 
wave equation.

It is worth mentioning that the Green function of the elastic wave equation is a second order tensor and the singularity is 
tedious to be separated in the computation of boundary integral equations, especially for the Neumann boundary condition 
and the three-dimensional problem [2–4,18,19,24]. To bypass this complexity, we employ the Helmholtz decomposition by 
introducing one scalar potential function and one vector potential function to split the displacement of the elastic wave 
field into the compressional and shear wave components. The two wave components, one of which satisfies the three-
dimensional Helmholtz equation and the other one satisfies the Maxwell equation, are coupled at the boundary of the 
obstacle. Therefore, the boundary value problem of the elastic wave equation is converted equivalently into a coupled 
boundary value problem of the Helmholtz and Maxwell equations for the potentials. Such a decomposition greatly reduces 
the complexity for the computation of the elastic scattering problem. Similar techniques have also been successfully applied 
to many other problems such as the unsteady and incompressible flow, the two-dimensional elastic scattering, and inverse 
scattering problems [7–9,14,17,25].

In this work, by making use of the Helmholtz decomposition, the elastic obstacle scattering problem is reduced to a 
coupled boundary value problem, which is shown to have a unique solution. Based on the potential theory for the Helmholtz 
and Maxwell equations, a system of boundary integral equations is formulated for the coupled boundary value problem, and 
the uniqueness of the solution is discussed for the boundary integral formulation. For the numerical discretization, we adopt 
the Galerkin method and use the surface differential operators and Stokes’ formula to reduce the strong singular operators 
to weakly singular ones. The approach leads to a high order full-discrete scheme which is similar to the one developed for 
the acoustic obstacle scattering problem in three dimensions [10]. It should be emphasized that all operations in the full 
discretization scheme are scalar, which greatly simplify the numerical implementation. Numerical experiments are provided 
for various geometries and different wavenumbers to demonstrate the superior performance of the proposed method.

To summarize, the paper contains three contributions:

(1) propose a novel boundary integral formulation for the elastic boundary value problem via the Helmholtz decomposition;

(2) regularize the singularity of the boundary integral by making use of the Stokes’ formula and surface differential opera-
tors;

(3) develop a spectral method for the approximation of the coupled boundary integral equations by using spherical har-
monics.

The paper is organized as follows. In Section 2, we introduce the elastic scattering problem and reduce it to a coupled 
boundary value problem by using the Helmholtz decomposition. In Section 3, the system of coupled boundary integral 
equations is presented and the uniqueness is examined for the solution. Section 4 gives the spherical parameterization of 
the surface integral and discusses the regularization of the strong singular operators. The full-discrete spectral scheme is 
proposed in Section 5 for the system of the coupled boundary integral equations. Numerical experiments are shown in 
Section 6 to demonstrate the effectiveness of the proposed method. The paper concludes with some general remarks in 
Section 7.

2. Problem formulation

Consider a three-dimensional elastically rigid obstacle, which is given as a bounded domain D ⊂ R3 with analytic bound-
ary ŴD . Denote by ν the unit normal vector and τ1, τ2 the orthonormal tangential vectors on ŴD , respectively. The exterior 
domain R3 \ D is assumed to be filled with a homogeneous and isotropic elastic medium with a unit mass density.

Let the obstacle be illuminated by a time-harmonic wave given explicitly by either the compressional plane wave ui(x) =
deiκpd·x or the shear plane wave ui(x) = d × peiκsd·x , where d = (sin θ cosϕ, sin θ sinϕ, cos θ)⊤ is the unit propagation 
direction vector with θ ∈ [0, π ], ϕ ∈ [0, 2π) being the incident angles, p is the unit polarization vector satisfying p · d = 0, 
and

κp = ω√
λ + 2μ

, κs = ω
√

μ

are the compressional and shear wavenumbers, respectively. Here ω > 0 is the angular frequency and λ, μ are the Lamé 
constants satisfying μ > 0, λ + μ > 0. It can be verified that the incident wave ui satisfies the Navier equation

μ�ui + (λ + μ)∇∇ · ui + ω2ui = 0 in R
3.

The displacement of the total field u satisfies the Navier equation

μ�u + (λ + μ)∇∇ · u + ω2u = 0 in R
3 \ D.
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The total field u consists of the incident field ui and the scattered field v , i.e.,

u = ui + v.

Since the obstacle is assumed to be rigid, we have

u = 0 on ŴD .

Hence the scattered field v satisfies the boundary value problem
{
μ�v + (λ + μ)∇∇ · v + ω2v = 0 in R

3 \ D,

v = −ui on ŴD .
(2.1)

For any solution v of the Navier equation in (2.1), it has the Helmholtz decomposition

v = vp + vs, (2.2)

where

vp = ∇φ, vs = curlψ, ∇ · ψ = 0.

Here vp and vs are known as the compressional and shear wave components of v , respectively. Combining (2.1) and (2.2), 
we may obtain the Helmholtz equation for the scalar potential φ and the Maxwell equation for the vector potential ψ , 
respectively:

�φ + κ2
pφ = 0, curlcurlψ − κ2

sψ = 0.

In addition, φ and ψ are required to satisfy the Sommerfeld and the Silver–Müller radiation conditions, respectively:

lim
ρ→∞

ρ(∂ρφ − iκpφ) = 0, lim
ρ→∞

ρ(curlψ × x̂− iκsψ) = 0, ρ = |x|.

It follows from the Helmholtz decomposition and boundary condition on ŴD that

v = ∇φ + curlψ = −ui .

Taking the dot product and the cross product of the above equation with ν , respectively, we get

∂νφ + ν · curlψ = f1, ν × ∇φ + ν × curlψ = f 2, (2.3)

where

f1 := −ν · ui, f 2 := −ν × ui .

In summary, the scalar potential function φ and the vector potential function ψ satisfy the coupled boundary value 
problem

⎧
⎪⎪⎨
⎪⎪⎩

�φ + κ2
pφ = 0, curlcurlψ − κ2

sψ = 0 in R
3 \ D,

∂νφ + ν · curlψ = f1 ν × ∇φ + ν × curlψ = f 2 on ŴD ,

lim
ρ→∞

ρ(∂ρφ − iκpφ) = 0, lim
ρ→∞

ρ(curlψ × x̂− iκsψ) = 0, ρ = |x|.
(2.4)

The following result concerns the uniqueness of the boundary value problem (2.4).

Theorem 2.1. The coupled boundary value problem (2.4) has at most one solution for κp > 0 and κs > 0.

Proof. It suffices to show that φ = 0 and ψ = 0 in R3 \ D when f1 = 0, f 2 = 0. Let BR be a ball with radius R > 0 such 
that D ⊂ BR and ŴB be the boundary of BR . Denote by � the bounded domain � = BR \ D enclosed by ŴD and ŴB . Using 
the first Green’s theorem [6, (2.2) and (6.2)] and noting ∇ · ψ = 0, we have

∫

ŴB

φ∂ν φ̄ ds =
∫

�

(
φ�φ̄ + ∇φ · ∇φ̄

)
dx+

∫

ŴD

φ∂ν φ̄ ds

=
∫

�

(
− κ2

p|φ|2 + |∇φ|2
)
dx+

∫

ŴD

φ∂ν φ̄ ds

3
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and
∫

ŴB

(
curlψ̄ × x̂

)
· ψ ds =

∫

ŴB

(
x̂× ψ

)
· curlψ̄ ds

=
∫

�

(
ψ · �ψ̄ + curlψ · curlψ̄

)
dx+

∫

ŴD

(
ν × ψ

)
· curlψ̄ ds

=
∫

�

(
− κ2

s |ψ |2 + |curlψ |2
)
dx+

∫

ŴD

(
curlψ̄ × ν

)
· ψ ds.

Using the boundary condition (2.3), the relation between the gradient and the surface gradient

∇ϕ = Gradϕ + ν∂νϕ,

and the identity (cf. [6, Page 204])
∫

ŴD

ϕ(ν · curlψ)ds =
∫

ŴD

Gradϕ · (ν × ψ)ds,

we obtain

ℑ
∫

ŴD

(
φ∂ν φ̄ + (curlψ̄ × ν) · ψ

)
ds

=ℑ
∫

ŴD

(
− φ(curlψ̄ · ν) − (∇φ̄ × ν) · ψ

)
ds

= − ℑ
∫

ŴD

(
Gradφ · (ν × ψ̄) + Gradφ̄ · (ν × ψ)

)
ds = 0.

(2.5)

It follows from the radiation conditions (2.4) that

∫

ŴB

(
|∂νφ|2 + κ2

p|φ|2 + 2κpℑ(φ∂ν φ̄)
)
ds =

∫

ŴB

|∂νφ − iκpφ|2 ds → 0 (2.6)

and
∫

ŴB

(
|curlψ × x̂|2 + κ2

s |ψ |2 + 2κsℑ((curlψ̄ × x̂) · ψ)
)
ds

=
∫

ŴB

|curlψ × x̂− iκsψ |2 ds → 0 (2.7)

as R → ∞. Since κp > 0 and κs > 0, it follows from (2.5)–(2.7) that

lim
R→∞

∫

ŴB

( 1

κp
|∂νφ|2 + κp|φ|2 + 1

κs
|curlψ × x̂|2 + κs|ψ |2

)
ds = 0.

We have from Rellich’s lemma that φ = 0 and ψ = 0 in R3 \ D , which completes the proof. �

It is known that a radiating solution of (2.1) has the asymptotic behavior of the form

v(x) = eiκp|x|

|x| v∞
p (x̂) + eiκs|x|

|x| v∞
s (x̂) +O

(
1

|x|2
)

, |x| → ∞

uniformly in all directions x̂ := x/|x|, where v∞
p and v∞

s , defined on the unit sphere S2 = {x̂ ∈ R3 : |x̂| = 1}, are called the 
compressional and shear far-field patterns of v , respectively.

4
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Remark 2.2. By extending the result [9, Theorem 3.1] to three dimensions and using [6, Theorem 6.9], we can establish the 
relationship between the far-field pattern of the compressional wave v p or the shear wave v s and the far-field pattern of 
the scalar potential φ or the vector potential ψ , i.e.,

v∞
p (x̂) = iκpφ∞(x̂)x̂, v∞

s (x̂) = iκs x̂× ψ∞, (2.8)

where the complex-valued functions φ∞(x̂) and ψ∞(x̂) are the far-field patterns corresponding to φ and ψ , respectively. 
Therefore, in view of (2.2) and (2.8), we can obtain the compressional and shear wave components vp, vs and the corre-
sponding far-field patterns v∞

p , v∞
s by solving the coupled boundary value problem (2.4).

3. Boundary integral equations

In this section, we deduce the coupled system of boundary integral equations for solving the boundary value problem 
(2.4).

Define a vector potential

Ag(x) :=
∫

ŴD

�(x, y;κ)g(y)ds(y), x ∈ R
3 \ ŴD ,

where g is a continuous tangential vector function on ŴD and

�(x, y;κ) = 1

4π

eiκ |x−y|

|x− y| , x �= y (3.1)

is the fundamental solution to the three-dimensional Helmholtz equation. Using [6, Theorem 6.13], we have the jump 
relation

curlA±g(x) =
∫

ŴD

∇x�(x, y;κ) × g(y)ds(y) ∓ 1

2
ν(x) × g(x), (3.2)

where

curlA±g(x) := lim
h→+0

curlAg(x ± hν(x)).

Meanwhile, we have from the Maxwell equation that

(curlcurlcurlAg)±(x) = κ2(curlAg)±(x).

We represent the solutions of (2.4) by
{

φ(x) =
∫
ŴD

�(x, y;κp)g1(y)ds(y),
ψ(x) = 1

κ2
s

curlcurl
∫
ŴD

�(x, y;κs)g2(y)ds(y),
x ∈ R

3 \ ŴD , (3.3)

where g1 is a scalar density function and g2 is a tangential vector density function satisfying g2 · ν = 0. It can be verified 
from simple calculations that the corresponding far-field patterns can be represented as follows

{
φ∞(x̂) = 1

4π

∫
ŴD

e−iκp x̂·y g1(y)ds(y),

ψ∞(x̂) = 1
4π x̂×

∫
ŴD

g2(y) × x̂e−iκs x̂·y ds(y).
(3.4)

Letting x ∈ R3 \ D approach the boundary ŴD in (3.3), using the jump relations (3.2) and

∇φ±(x) =
∫

ŴD

∇x�(x, y;κp)g1(y)ds(y) ∓ 1

2
ν(x)g1(x),

and the boundary condition (2.4), we deduce the coupled boundary integral equations for the density functions g1 and g2

on ŴD :⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x) = − 1
2
g1(x) +

∫
ŴD

∂�(x,y;κp)

∂ν(x)
g1(y)ds(y)

+ν(x) · curlx
∫
ŴD

�(x, y;κs)g2(y)ds(y),

f 2(x) = ν(x) × ∇x

∫
ŴD

�(x, y;κp)g1(y)ds(y)
+ν(x) × curlx

∫
ŴD

�(x, y;κs)g2(y)ds(y) + 1
2
g2(x).

(3.5)

Denote by C(ŴD) the space of all continuous functions on ŴD , and C T (ŴD) the space of all continuous tangential vector 
fields on ŴD . The following result concerns the uniqueness of the solution to (3.5).

5



H. Dong, J. Lai and P. Li Journal of Computational Physics 469 (2022) 111546

Theorem 3.1. The system of boundary integral equations (3.5) has at most one solution in C(ŴD) × C T (ŴD) provided that κp is not an 
interior Dirichlet eigenvalue for the Helmholtz equation in D and κs is not an interior Maxwell eigenvalue in D with the homogeneous 
perfectly conducting boundary condition.

Proof. It suffices to show that g1 = 0 and g2 = 0 if f1 = 0 and f 2 = 0. By the uniqueness result in Theorem 2.1, we have

φ(x) = 0, ψ(x) = 0, x ∈ R
3 \ D.

It follows from the continuity of the single layer potential that φ(x) = 0 for x ∈ ŴD . Since κp is not an interior Dirichlet 
eigenvalue for the Helmholtz equation in D , we get φ(x) = 0 for x ∈ D . Using the jump relation of the derivative of the 
scalar single-layer potential, we obtain g1 = 0.

Define the integral operator M : C T (ŴD) → C T (ŴD) by

(Mg2)(x) := 2ν(x) × curl

∫

ŴD

�(x, y;κs)g2(y)ds(y).

Substituting g1 = 0 into the second equation of (3.5), we obtain

g2(x) + (Mg2)(x) = 0.

Since κs is not an interior Maxwell eigenvalue in D with the perfectly conducting boundary condition ν ×ψ = 0, we obtain 
from [5, Theorem 4.23] that g2 = 0, which completes the proof. �

Next we introduce the single-layer boundary integral operators Sσ , σ = p, s and the normal derivative boundary integral 
operator K for g ∈ C(ŴD) and g ∈ C T (ŴD) by

(Spg)(x) = 2

∫

ŴD

�(x, y;κp)g(y)ds(y), x ∈ ŴD ,

(Ssg)(x) = 2

∫

ŴD

�(x, y;κs)g(y)ds(y), x ∈ ŴD ,

(K g)(x) = 2

∫

ŴD

∂�(x, y;κp)
∂ν(x)

g(y)ds(y), x ∈ ŴD ,

and we also define boundary integral operators N , H and M by

(N g)(x) = 2ν(x) · curlx
∫

ŴD

�(x, y;κs)g(y)ds(y),

(Hg)(x) = 2ν(x) × ∇x

∫

ŴD

�(x, y;κp)g(y)ds(y),

(Mg)(x) = 2ν(x) × curlx

∫

ŴD

�(x, y;κs)g(y)ds(y),

where g and g are the scalar and vector densities, respectively. Then the system (3.5) can be rewritten as
{

−g1 + K g1 + N g2 = f1,

Hg1 + g2 + Mg2 = f 2.
(3.6)

By the decomposition in [10, (2.5)-(2.6)], the kernels of weakly singular integral operators Sσ and K can be decomposed 
into a general form as

m(x, y) = 1

|x− y|m1(x, y) +m2(x, y)

with mi (i = 1, 2) given by

mi(x, y) =mi,1(x, y) +mi,2(x, y)
(x− y) · ν(y)

|x− y|2 +mi,3(x, y)
(x − y) · ν(x)

|x− y|2 ,

6
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where each mi, j (i = 1, 2, j = 1, 2, 3) is infinitely continuously differentiable on R3 × R3 under the assumption that ŴD is 
analytic. Hence, we have for x ∈ ŴD that

(Spg)(x) =
∫

ŴD

( 1

|x− y| s
p

1 (x, y) + s
p

2 (x, y)
)
g(y)ds(y),

(Ssg)(x) =
∫

ŴD

( 1

|x− y| s
s
1(x, y) + ss2(x, y)

)
g(y)ds(y),

(K g)(x) =
∫

ŴD

( 1

|x− y|k
p

1 (x, y) + k
p

2 (x, y)
)
g(y)ds(y),

(3.7)

where

sσ1 (x, y) =
cos
(
κσ |x− y|

)

2π
, sσ2 (x, y) =

{
i sin

(
κσ |x−y|

)

2π |x−y| , x �= y,
iκσ
2π , x = y,

σ = p, s,

k
p

1 (x, y) = −ν(x) · (x− y)

|x− y|2 s
p

1 (x, y) + iκpν(x) · (x − y)s
p

2 (x, y),

k
p

2 (x, y) = −ν(x) · (x− y)

|x− y|2
[
s
p

2 (x, y) − iκps
p

1 (x, y)
]
.

Similarly, the kernel of weakly singular integral operator M can be decomposed into

(Mg)(x) =
∫

ŴD

( 1

|x− y|m1(x, y) +m2(x, y)
)
g(y)ds(y)

with mi (i = 1, 2) being of the form

mi(x, y) = m̃i,1(x, y)
(x− y)[ν(x) − ν(y)]⊤

|x− y|2 + m̃i,2(x, y)
(x − y) · ν(y)

|x− y|2 I + m̃i,3(x, y),

where I is the 3 × 3 identity matrix, m̃2,3 is the 3 × 3 zero matrix, and each m̃i, j (i = 1, 2, j = 1, 2, 3) is infinitely continu-
ously differentiable on R3 × R3 . We refer to [12, (2.8)-(2.9)] for the detailed expressions of m̃i, j .

Since all the boundary operators Sσ , K , M have weakly singular kernels, their spectrally accurate discretization can 
be conveniently obtained by using the spherical harmonics. The details are given in Section 5. However, for the integral 
operators N and H , their kernels have Cauchy type strong singularities, direct discretization will introduce large errors. In 
order to design a spectral method for (3.6) via the Galerkin discretization, it is necessary to regularize the singularity of N
and H , which is examined in the next section.

4. Spherical parametrization

From now on, we assume that the boundary ŴD is an isomorphism of a unit sphere, which is a common assumption in 
the areas of wave scattering and inverse scattering [6]. For two vectors a, b ∈ R3 and two 3 ×3 matrices A = (a1, a2, a3), B =
(b1, b2, b3), we define

a ⊗ b = ab⊤, A : B = a1 · b1 + a2 · b2 + a3 · b3.

Based on a bijective parameterization map q : S2 → ŴD , the boundary integral equations (3.6) can be transformed on the 
unit sphere S2 . By the change of variables x = q(x̂), for any integrable function g defined on ŴD , it holds

∫

ŴD

g(x)ds(x) =
∫

S2

g(q(x̂)) Jq(x̂)ds(x̂),

where Jq(x̂) is the Jacobian of the transformation q.
Denote by (θ, ϕ) the spherical coordinates of any point x̂ ∈ S2 , i.e.,

x̂ = p(θ,ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)⊤, θ ∈ [0,π ], ϕ ∈ [0,2π),

and the corresponding Jacobian is J p(θ, ϕ) = sin θ . The tangent plane at any point x̂ ∈ S2 is generated by the unit vectors

7



H. Dong, J. Lai and P. Li Journal of Computational Physics 469 (2022) 111546

eθ ◦ p = ∂p

∂θ
(θ,ϕ) = (cos θ cosϕ, cos θ sinϕ,− sin θ)⊤,

eϕ ◦ p = 1

sin θ

∂p

∂ϕ
(θ,ϕ) = (− sinϕ, cosϕ,0)⊤.

The triplet (x̂, eθ , eϕ) forms an orthonormal system. Following the notations in [19,20], we define the tangent vectors on 
ŴD by

t1(x̂) = ∂q ◦ p

∂θ
◦ p−1(x̂) = [DS2q(x̂)]eθ (x̂),

t2(x̂) =
( 1

sin θ

∂q ◦ p

∂ϕ

)
◦ p−1(x̂) = [DS2q(x̂)]eϕ(x̂),

where the matrix [DS2q(x̂)] = t1 ⊗ eθ + t2 ⊗ eϕ maps the tangent plane to S2 at the point x̂ onto the tangent plane to ŴD

at the point q(x̂), the Jacobian Jq and the normal vector ν ◦ q are given by

Jq = |t1 × t2|, ν ◦ q = t1 × t2

Jq
.

By the conclusions in [19,20] and the change of variables x = q(x̂), for any smooth w and w = (w1, w2, w3)
⊤ , we may 

define the following surface scalar and vector curl operators on ŴD :

(curlŴD
w) ◦ q = 1

Jq
[DS2q(x̂)]curlS2(w ◦ q), (4.1)

(curlŴD
w) ◦ q = − 1

Jq
[DS2q(x̂)]⊤ : curlS2(w ◦ q), (4.2)

where curlS2 (w ◦ q) =
(
GradS2 (w ◦ q)

)
× x̂, and

GradS2(w ◦ q) =
(∂w ◦ q ◦ p

∂θ

)
◦ p−1eθ +

( 1

sin θ

∂w ◦ q ◦ p

∂ϕ

)
◦ p−1eϕ . (4.3)

Here curlS2 (w ◦ q) is a matrix whose j-th column is curlS2w j ◦ q. Using (4.3) and the representation of DS2q and 
curlS2 (w ◦ q), we obtain

(
[DS2q]⊤ : curlS2(w ◦ q)

)
◦ p

= 1

sin θ
(t1 ◦ p) · ∂w ◦ q ◦ p

∂ϕ
− (t2 ◦ p) · ∂w ◦ q ◦ p

∂θ
.

(4.4)

After the parametrization, the boundary operators Sσ , K , M can be equivalently rewritten as:

(SpG)(x̂) =
∫

S2

( 1

|x̂− ŷ| S̃
p

1 (x̂, ŷ) + S̃
p

2 (x̂, ŷ)
)
G( ŷ)ds( ŷ),

(SsG)(x̂) =
∫

S2

( 1

|x̂− ŷ| S̃
s
1(x̂, ŷ) + S̃s2(x̂, ŷ)

)
G( ŷ)ds( ŷ),

(KG)(x̂) =
∫

S2

( 1

|x̂− ŷ| K̃1(x̂, ŷ) + K̃2(x̂, ŷ)
)
G( ŷ)ds( ŷ),

(MG)(x̂) =
∫

S2

( 1

|x̂− ŷ| M̃1(x̂, ŷ) + M̃2(x̂, ŷ)
)
G( ŷ)ds( ŷ),

(4.5)

where G = g ◦ q, G = g ◦ q, and the kernels for σ = p or s are given by

R(x̂, ŷ) = |x̂− ŷ|
|q(x̂) − q( ŷ)| ,

S̃σ
1 (x̂, ŷ) = R(x̂, ŷ)sσ1 (q(x̂),q( ŷ)) Jq( ŷ), S̃σ

2 (x̂, ŷ) = sσ2 (q(x̂),q( ŷ)) Jq( ŷ),

K̃1(x̂, ŷ) = R(x̂, ŷ)k
p

1 (q(x̂),q( ŷ)) Jq( ŷ) Jq(x̂), K̃2(x̂, ŷ) = k
p

2 (q(x̂),q( ŷ)) Jq( ŷ) Jq(x̂),

M̃1(x̂, ŷ) = R(x̂, ŷ)m1(q(x̂),q( ŷ)) Jq( ŷ) Jq(x̂), M̃2(x̂, ŷ) = m2(q(x̂),q( ŷ)) Jq( ŷ) Jq(x̂).

8
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As we mentioned before, due to the strong singularities in N and H , it is difficult to achieve high order accuracy by the 
direct discretization of N and H . As a regularization technique, the following two theorems describe the Galerkin approach 
by transforming the singularities of N and H to the test functions.

Theorem 4.1. For any smooth scalar function ϕ(x̂) on S2 , we have
(
Jq(N g) ◦ q,ϕ

)
=
(
S
sG, [DS2q]curlS2ϕ

)
, (4.6)

where (·, ·) is the L2 inner product on S2 .

Proof. Using [22, Theorem 2.5.20], we have

N g(x) = curlŴD

(
(ν(x) × (Ssg)(x)) × ν(x)

)
, x ∈ ŴD . (4.7)

It follows from Stokes’ theorem that∫

ŴD

w · curlŴD
u ds =

∫

ŴD

u curlŴD
w ds, (4.8)

for any differentiable scalar function u and tangential vector function w on ŴD . Combining (4.1) and (4.7)–(4.8) gives

(
Jq(N g) ◦ q,ϕ

)
=
∫

S2

Jq(x̂)(N g) ◦ q(x̂)ϕ(x̂)ds(x̂)

=
∫

ŴD

(N g)(x)ϕ ◦ q−1(x)ds(x)

=
∫

ŴD

ϕ ◦ q−1(x) curlŴD

(
(ν(x) × (Ssg)(x)) × ν(x)

)
ds(x)

=
∫

ŴD

(
(ν(x) × (Ssg)(x)) × ν(x)

)
· curlŴD

ϕ ◦ q−1(x)ds(x)

=
∫

ŴD

(Ssg)(x) · curlŴD
ϕ ◦ q−1(x)ds(x)

=
∫

S2

(SsG)(x̂) · [DS2q(x̂)]curlS2ϕ(x̂)ds(x̂),

which completes the proof. �

Theorem 4.2. For any smooth vector function ϕ(x̂) on S2 , we have
(
Jq(Hg) ◦ q,ϕ

)
=
(
S
pG, [DS2q]⊤ : curlS2ϕ

)
. (4.9)

Proof. For x ∈ ŴD , since ∇w = GradŴD
w + ν∂νw , we have

(Hg)(x) = 2ν(x) × GradŴD

∫

ŴD

�(x, y;κp)g(y)ds(y) = −curlŴD
(Spg)(x). (4.10)

Using (4.2), (4.10) and Stokes’ theorem (4.8), we obtain

(
Jq(Hg) ◦ q,ϕ

)
=
∫

S2

Jq(x̂)[(Hg) ◦ q(x̂)] · ϕ(x̂)ds(x̂)

=
∫

ŴD

(Hg)(x) · ϕ ◦ q−1(x)ds(x)

= −
∫

ŴD

curlŴD
(Spg)(x) · ϕ ◦ q−1(x)ds(x)

9
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= −
∫

ŴD

(Spg)(x)curlŴD
ϕ ◦ q−1(x)ds(x)

=
∫

S2

(SpG)(x̂)[DS2q]⊤ : curlS2ϕ ds(x̂),

which completes the proof. �

5. Numerical discretization

Motivated by [10], we propose a fully discrete Galerkin type method with spectral accuracy. To approximate the scalar 
density functions on the unit sphere, we choose (n + 1)2-dimensional space of all spherical harmonics of degree less than 
or equal to n, denoted by

Xn = span{Y l, j(x̂) : 0 ≤ l ≤ n, | j| ≤ l},
where

Y l, j(x̂) = Y l, j(p(θ,ϕ)) = c
j

l
P

| j|
l

(cos θ)ei jϕ, c
j

l
= (−1)( j+| j|)/2

√
2l + 1

4π

(l − | j|)!
(l + | j|)!

for l = 0, 1, 2, · · · , | j| ≤ l form a complete orthonormal system in L2(S2), and P | j|
l

denote the associated Legendre functions 
of degree l with order | j|. Analogously to [11], we introduce

Xn = span{Y l, j,k(x̂) : Y l, j,k = Y l, jek, 0 ≤ l ≤ n, | j| ≤ l,k = 1,2,3},
where ek denotes the kth Euclidean vector.

It follows from [20] and (4.3) that the tangential gradient of the spherical harmonics is given by

GradS2Y l, j(p(θ,ϕ))

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c
j

l

(
∂ P

| j|
l

(cos θ)

∂θ
ei jϕeθ ◦ p + i j P

| j|
l

(cos θ)ei jϕ
eϕ◦p
sin θ

)
, sin θ �= 0,√

2l+1
4π

√
l(l + 1)

(
(cos θ)l

2
eθ ◦ p + i j (cos θ)l+1

2
eϕ ◦ p

)
, sin θ = 0, | j| = 1,

(0,0,0)⊤, sin θ = 0, | j| �= 1,

where

∂ P
| j|
l

(cos θ)

∂θ
= − (l + 1) cos θ

sin θ
P

| j|
l

(cos θ) + l − | j| + 1

sin θ
P

| j|
l+1

(cos θ), sin θ �= 0.

It is clear to note that GradS2Y l, j is a tangential vector on S2 but may not be a tangential vector on the boundary ŴD . 
To approximate the tangential vector density functions on the parametrized surface ŴD , we choose the following ansatz 
space [12]:

Tn = span
{
Z

(k̃)

l, j
(x̂) : 1 ≤ l ≤ n, | j| ≤ l, k̃ = 1,2

}
,

where

Z
(1)
l, j

(x̂) = 1√
l(l + 1)

F(x̂)GradS2Y l, j(x̂),

Z
(2)
l, j

(x̂) = 1√
l(l + 1)

F(x̂)x̂× GradS2Y l, j(x̂),

and Z (1)
0,0 = Z

(2)
0,0 = 0. Here F(x̂) is an orthogonal transformation that transforms tangential functions on S2 to tangential 

functions on ŴD . More explicitly, for a given vector y ∈ C3 , F(x̂) is given by

F(x̂)y = cosψy+ [x̂× ν ◦ q] × y+ 1

1+ cosψ
[x̂× ν ◦ q]⊤y[x̂× ν ◦ q],

where ψ is the angle between x̂ and ν ◦ q(x̂). More properties on F(x̂) can be found in [12].
Let −1 < z1 < z2 < · · · < zn+1 < 1 denote the zeros of the Legendre polynomial Pn+1 , and consider the Gaussian product 

rule for the numerical integration of a continuous function over S2:

10
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∫

S2

f ( ŷ)ds( ŷ) ≈
2n+1∑

r=0

n+1∑

s=1

μrνs f (p(θs,ϕr)) := Qn( f ),

where the weights μr and νs are given by

μr = π

n + 1
, νs = 2(1− z2s )

[(n + 1)Pn(zs)]2
,

and the quadrature knots θs and ϕr are

θs = arccos zs, ϕr = rπ

n + 1
.

Let C(S2) be the space of continuous functions on S2 and C(S2) the vector function space on S2 with each component 
in C(S2). Define the discrete orthogonal projection operators Lp

n : C(S2) → Xn and Ls
n : C(S2) → Xn by

L
p
nψ =

n∑

l=0

∑

| j|≤l

(ψ, Y l, j)nY l, j, ψ ∈ C(S2),

L
s
n� =

n∑

l=0

∑

| j|≤l

3∑

k=1

(�,Y l, j,k)nY l, j,k, � ∈ C(S2),

where we have set (ψ, Y l, j)n = Qn(ψY l, j) and the discrete inner product on S2 for two vector functions G and Z is denoted 

by (G, Z)n = Qn(Z
⊤
G).

Now we describe the approximation in details for (4.6) and (4.9). Following [10,12], we split the kernels in (4.5) into a 
weakly singular part and an analytic part. In order to accurately integrate the weakly singular part, an orthogonal transfor-
mation is introduced on S2 and the singularity is transferred to the north pole n̂ = (0, 0, 1). In particular, if x̂ = p(θ, ϕ), the 
orthogonal transformation is defined by T x̂ := D P (ϕ)DQ (θ)D P (−ϕ), i.e., T x̂ x̂ = n̂, where

D P (ψ) =

⎡
⎣

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤
⎦ , DQ (ψ) =

⎡
⎣

cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ

⎤
⎦ .

Define the linear and bilinear transformations by

T x̂�(ẑ) := �(T−1
x̂

ẑ), T x̂�(ẑ1, ẑ2) := �(T−1
x̂

ẑ1, T
−1
x̂

ẑ2).

Using the fact that

|x̂− ŷ| = |T−1
x̂

(n̂ − ẑ)| = |n̂ − ẑ|,
we can write Sσ in (4.5) as

(Sσ G̃σ )(x̂) =
∫

S2

( 1

|n̂ − ẑ| T x̂ S̃
σ
1 (n̂, ẑ) + T x̂ S̃

σ
2 (n̂, ẑ)

)
T x̂G̃σ (ẑ)ds(ẑ)

for σ = p, s, where G̃p = g1 ◦ q and G̃s = g2 ◦ q. Then, by using
∫

S2

1

|x̂− ŷ|Y l, j( ŷ)ds( ŷ) = 4π

2l + 1
Y l, j(x̂), x̂ ∈ S

2

and the addition theorem

l∑

j=−l

Y l, j(x̂)Y l, j( ŷ) = 2l + 1

4π
P l(cos θ̄ ),

where θ̄ denotes the angle between x̂ and ŷ, the approximation Sσ
n′ for the operators Sσ can be represented as

(Sσ
n′ G̃σ )(x̂) :=

∫

S2

1

|n̂ − ẑ|L
σ
n′

{
T x̂ S̃

σ
1 (n̂, ẑ)T x̂G̃σ (ẑ)

}
ds(ẑ) +

∫

S2

L
σ
n′

{
T x̂ S̃

σ
2 (n̂, ẑ)T x̂G̃σ (ẑ)

}
ds(ẑ)

=
2n′+1∑

r′=0

n′∑

s′=1

ξr′ηs′
[
αn′
s′ T x̂ S̃

σ
1 (n̂, ŷr′s′) + T x̂ S̃

σ
2 (n̂, ŷr′s′)

]
T x̂G̃σ ( ŷr′s′).

11
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Here αn′
s′ :=

∑n′
l=0 P l(n̂ · ŷr′s′ ), ξr′ = μr′ and ηs′ = νs′ .

In view of Theorems 4.1 and 4.2, the Galerkin method for (3.6) seeks to approximate solutions G̃n
p ∈ Xn and G̃n

s ∈ Tn , 
which can be written as

G̃n
p(x̂) =

n∑

l=0

l∑

j=−l

wl jY l, j(x̂), G̃n
s(x̂) =

n∑

l=0

l∑

j=−l

2∑

k̃=1

W
l jk̃

Z
(k̃)

l, j
(x̂),

and satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−( Jq G̃
n
p, Y l′, j′)n+1 + (Kn′ G̃n

p, Y l′, j′)n+1

+
(
S
s

n′ G̃
n
s, [DS2q]curlS2Y l′, j′

)
n+1

= 2( f̃1 Jq, Y l′, j′)n+1,(
S
p

n′ G̃
n
p, [DS2q]⊤ : curlS2 Z

(1)
l′, j′
)
n+1

+ ( Jq G̃
n
s, Z

(1)
l′, j′)n+1

+(Mn′ G̃n
s, Z

(1)
l′, j′)n+1 = 2( f̃ 2 Jq, Z

(1)
l′, j′)n+1,(

S
p

n′ G̃
n
p, [DS2q]⊤ : curlS2 Z

(2)
l′, j′
)
n+1

+ ( Jq G̃
n
s, Z

(2)
l′, j′)n+1

+(Mn′ G̃n
s, Z

(2)
l′, j′)n+1 = 2( f̃ 2 Jq, Z

(2)
l′, j′)n+1

(5.1)

for l′ = 0, 1, · · · , n, | j′| ≤ l′ , where f̃1 = f1 ◦ q, f̃ 2 = f 2 ◦ q and n′ = an + 1 with a > 1.

To assemble the matrix, we denote the corresponding matrix elements in (5.1) by

Nk̃
l′ j′,l j :=

(
S
s

n′ Z
(k̃)

l, j
, [DS2q]curlS2Y l′, j′

)
n+1

, k̃ = 1,2,

Hk′
l′ j′,l j :=

(
S
p

n′Y l, j, [DS2q]⊤ : curlS2 Z
(k′)
l′, j′
)
n+1

, k′ = 1,2,

U
k′,k̃
l′ j′,l j :=

(
Jq Z

(k̃)

l, j
, Z

(k′)
l′, j′
)
n+1

, Il′ j′,l j :=
(
JqY l, j, Y l′, j′

)
n+1

, k′, k̃ = 1,2,

M
k′,k̃
l′ j′,l j := (Mn′ Z

˜(k)
l j

, Z
(k′)
l′ j′ )n+1, Kl′ j′,l j := (Kn′Y l, j, Y l′, j′)n+1, k′, k̃ = 1,2.

Let us also introduce the following notations

x̂rs = p(θs,ϕr), ŷr′s′ = p(Θs′ ,Φr′), (5.2)

ŷr
′s′
rs = T−1

p(θs,ϕr)
p(Θs′ ,Φr′) := p(Λr′s′

rs ,Ξ r′s′
rs ) (5.3)

with the quadrature knots θs , ϕr , Θs′ , Φr′ . Note that sin θs �= 0 and sinΘs′ �= 0 as taking Gaussian quadrature nodes. Since 
the singularity is transferred to the north pole, we need the representation of rotated spherical harmonics. It follows from 
standard calculations [11] that

Y l, j( ŷ
r′s′
rs ) =

l∑

j̃=−l

F
sl j̃ j

ei( j− j̃)ϕr Y
l, j̃

( ŷr′s′), (5.4)

Z
(k̃)

l, j
( ŷr

′s′
rs ) = F( ŷr

′s′
rs )

l∑

j̃=−l

F
sl j̃ j

ei( j− j̃)ϕr

2∑

d=1

α
(k̃,d)

l, j
(Θs′)e

i j̃Φr′ T−1
x̂rs

v(d)(Θs′ ,Φr′), (5.5)

where

F
sl j̃ j

= ei( j− j̃)π/2
l∑

m=−l

d
(l)

j̃m
(π/2)d

(l)
jm

(π/2)eimθs ,

v(1)(θ,φ) = (cos θ cosφ, cos θ sinφ,− sin θ)T ,

v(2)(θ,φ) = (− cosφ, cos θ,0)T ,

α
(1,1)
l, j

(θ) = α
(2,2)
l, j

(θ) = 1√
l(l + 1)

c
j

l

∂ P
| j|
l

(cos θ)

∂θ
,

α
(1,2)
l, j

(θ) = α
(2,1)
l, j

(θ) = 1√
l(l + 1)

c
j

l

i j

sin θ
P

| j|
l

(cos θ).

Here

d
(l)
jm

(π/2) = 2 j

√
(l + j)!(l − j)!
(l +m)!(l −m)!P

(m− j,−m− j)

l+ j
(0),

12
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and P(α,β)

n̄
is the normalized Jacobi polynomial with

P
(α,β)

n̄
(0) = 2−n̄

n̄∑

t̄=0

(−1)t̄
(
n̄ + α
n̄ − t̄

)(
n̄ + β

t̄

)
, α ≥ 0, β ≥ 0.

If m − j or −m − j is negative, then the following symmetry relation can be used to compute d(l)
jm

(π/2):

d
(l)
jm

(ϕ) = (−1) j−md
(l)
mj

(ϕ) = d
(l)
−m− j

(ϕ) = d
(l)
mj

(−ϕ).

Combining (5.2)–(5.5) and (4.4), we find that the element Nk̃
l′ j′,l j can be evaluated by

Nk̃
l′ j′,l j =

2n+3∑

r=0

n+2∑

s=1

μrνs

2n′+1∑

r′=0

n′+1∑

s′=1

ξr′ηs′ S̃
s

rsr′s′

l∑

j̃=−l

F
sl j̃ j

ei( j− j̃)ϕr

2∑

d=1

α
(k̃,d)

l, j
(Θs′)e

i j̃Φr′
(
F( ŷr

′s′
rs )T−1

x̂rs
v(d)(Θs′ ,Φr′)

)

·
(

− c
j′

l′
∂ P

| j′|
l′ (cos θs)

∂θs
e−i j′ϕr t2(x̂rs) − i j′c j′

l′ P
| j′|
l′ (cos θs)e

−i j′ϕr
1

sin θs
t1(x̂rs)

)

for k′ = 1, 2, where

S̃σ
rsr′s′ := αn′

s′ S̃
σ
1 (x̂rs, ŷ

r′s′
rs ) + S̃σ

2 (x̂rs, ŷ
r′s′
rs ), σ = p, s,

and the element Hk̃
l′ j′,l j is given by

Hk′
l′ j′,l j =

2n+3∑

r=0

n+2∑

s=1

μrνs

2n′+1∑

r′=0

n′+1∑

s′=1

ξr′ηs′ S̃
p

rsr′s′

l∑

j̃=−l

F
sl j̃ j

ei( j− j̃)ϕr c
j̃

l
P

| j̃|
l

(cosΘs′)e
i jΦr′

(
t1(x̂rs) ·

[ 1

sin θs

∂ Z
(k′)
l′, j′ ◦ p(θs,ϕr)

∂ϕr

]
− t2(x̂rs) ·

∂ Z
(k′)
l′, j′ ◦ p(θs,ϕr)

∂θs

)

for k̃ = 1, 2. It can be seen that the direct computation for each element needs O(n4) computational cost, which leads to 
O(n8) total computational complexity since there are O(n4) matrix elements. To accelerate the evaluation, we adopt the 
idea of [12,13] and carry out the following operations:

E
1,d

srs′ j̃
= −

2n′+1∑

r′=0

ξr′e
i j̃Φr′ S̃

p

rsr′s′

(
F( ŷr

′s′
rs )T−1

x̂rs
v(d)(Θs′ ,Φr′)

)
· t2(x̂rs),

E
2,d

srs′ j̃
= −

2n′+1∑

r′=0

ξr′e
i j̃Φr′ S̃

p

rsr′s′

(
F( ŷr

′s′
rs )T−1

x̂rs
v(d)(Θs′ ,Φr′)

)
· t1(x̂rs),

D
k̃,h

srl j̃
=

n′+1∑

s′=1

2∑

d=1

ηs′α
(k̃,d)

l, j̃
(Θs′)E

h,d

srs′ j̃
, h = 1,2,

C
k̃,h
srlj

=
∑

| j̃|≤l

F
sl j̃ j

ei( j− j̃)ϕr D
k̃,h

srl j̃
, B

k̃,h
sj′l j =

2n+3∑

r=0

μre
−i j′ϕrC

k̃,h
srlj

, h = 1,2,

which lead to

Nk̃
l′ j′,l j =

n+2∑

s=1

νs

(
c
j′

l′
∂ P

| j′|
l′ (cos θs)

∂θs
B
k̃,1
sj′l j + i j′c j′

l′ P
| j′|
l′ (cos θs)

1

sin θs
B
k̃,2
sj′l j

)
.

Then the computational complexity reduces to O(n5) for O(n4) matrix elements, since each operation only requires O(n)

amount of work, which is a great cost saving compared to the original computational complexity O(n8).
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Similarly, we take the following operations to assemble Hk′
l′ j′,l j :

E
1,d

srs′ j̃
=

2n′+1∑

r′=0

ξr′e
i j̃Φr′ S̃

p

rsr′s′

(
F(x̂rs)v

(d)(θs,ϕr)
)

· t1(x̂rs)/ sin θs,

E
2,d

srs′ j̃
=

2n′+1∑

r′=0

ξr′e
i j̃Φr′ S̃

p

rsr′s′

∂
(
F(x̂rs)v

(d)(θs,ϕr)
)

∂ϕr

· t1(x̂rs)/ sin θs,

E
3,d

srs′ j̃
= −

2n′+1∑

r′=0

ξr′e
i j̃Φr′ S̃

p

rsr′s′

(
F(x̂rs)v

(d)(θs,ϕr)
)

· t2(x̂rs),

E
4,d

srs′ j̃
= −

2n′+1∑

r′=0

ξr′e
i j̃Φr′ S̃

p

rsr′s′

∂
(
F(x̂rs)v

(d)(θs,ϕr)
)

∂θs
· t2(x̂rs),

D
w,d

srl j̃
=

n′+1∑

s′=1

ηs′c
j̃

l
P

| j̃|
l

(cosΘs′)E
w,d

srs′ j̃
, w = 1,2,3,4,

C
w,d
srlj

=
∑

| j̃|≤l

F
sl j̃ j

ei( j− j̃)ϕr D
w,d

srl j̃
, B

w,d
sj′l j =

2n+3∑

r=0

μre
−i j′ϕrC

w,d
srlj

, w = 1,2,3,4.

Here we have F⊤(x̂rs) = [F1(x̂rs), F2(x̂rs), F3(x̂rs)], and then

∂

∂θs

(
F(x̂rs)v

(d)(θs,ϕr)
)

=

⎡
⎣

∂θs F1(x̂rs) · v(d)(θs,ϕr) + F1(x̂rs) · ∂θs v
(d)(θs,ϕr)

∂θs F2(x̂rs) · v(d)(θs,ϕr) + F2(x̂rs) · ∂θs v
(d)(θs,ϕr)

∂θs F3(x̂rs) · v(d)(θs,ϕr) + F3(x̂rs) · ∂θs v
(d)(θs,ϕr)

⎤
⎦ .

One can analogously obtain ∂
∂ϕr

(
F(x̂rs)v

(d)(θs, ϕr)
)
. Then Hk′

l′ j′,l j can be evaluated by

Hk′
l′ j′,l j =

n+2∑

s=1

2∑

d=1

νs

(
i j′α(k′,d)

l′, j′ (θs)B
1,d
sj′l j + α

(k′,d)
l′, j′ (θs)B

2,d
sj′l j +

∂α
(k′,d)
l′, j′ (θs)

∂θs
B
3,d
sj′l j + α

(k′,d)
l′, j′ (θs)B

4,d
sj′l j

)
.

It is worth pointing out that the numerical implementation can be done very efficiently since each step of the operations 
only involves scalar functions.

We briefly mention the evaluation of Uk′,k̃
l′ j′,l j and Il′ j′,l j . Noting that F is an orthogonal transformation, we may obtain 

U
k′,k̃
l′ j′,l j via

C
k̃,d′

srlj
= α

(k̃,d′)
l, j

(θs)e
i jϕr Jq ◦ p(θs,ϕr), B

k̃,d′

sj′l j =
2n+3∑

r=0

μre
−i j′ϕrC

k̃,d′

srlj
, k̃,d′ = 1,2,

U
k′,k̃
l′ j′,l j =

n+2∑

s=1

2∑

d′=1

νsα
(k′,d′)
l′, j′ (θs)B

k̃,d′

sj′l j,

and Il′ j′,l j via

Csrlj = c
j

l
P

| j|
l

(cos θs)e
i jϕr Jq ◦ p(θs,ϕr), Bsj′l j =

2n+3∑

r=0

μre
−i j′ϕrCsrlj,

Il′ j′,l j =
n+2∑

s=1

νsc
j′

l′ P
| j′|
l′ (cos θs)Bsj′l j.

The approximations Kl′ j′,l j and Mk′,k̃
l′ j′,l j for K and M are discussed in [12,13], and we give them in the appendix with slight 

modifications.
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Fig. 1. Geometries of the obstacles.

Table 1

Parametrizations of the obstacles.

Type Parametrization

Ellipsoid x21 +
x22

0.752
+

x23

0.52
= 1

Cushion x(θ,ϕ) =
√
0.27+ 0.065(cos2ϕ − 1)(cos4θ − 1)x̂(θ,ϕ)

Bean
x21

0.64
(
1− 0.1cos(πx3)

) +
(
0.3cos(πx3) + x2

)2

0.64
(
1− 0.4cos(πx3)

) + x23 = 1

Table 2

Numerical results for the ellipsoid-shaped obstacle at ω = π .

Ellipsoid: ω = π

n ||ǫps||∞ ||ǫpw ||∞ Tcoe T sol

5 2.0854e-04 7.8646e-03 0.2 s 0.0003 s

15 2.1597e-08 6.7751e-08 2.9 s 0.008 s

25 2.6595e-12 3.6123e-11 16.8 s 0.1 s

35 2.9117e-14 3.3012e-11 64.3 s 0.5 s

45 5.8231e-14 3.0243e-11 239.8 s 2.0 s

55 4.4362e-14 4.0796e-11 874.4 s 6.1 s

Remark 5.1. The convergence analysis of the proposed numerical method depends on the invertibility of the boundary in-
tegral system (3.5) as well as the discretized system (5.1), which is beyond the scope of this paper and currently under 
investigation. We refer to [7] for the convergence analysis for the two-dimensional problems. It is expected that the follow-

ing estimate holds under certain conditions:

||(G̃n
p ◦ q−1, G̃n

s ◦ q−1)⊤ − (g1, g2)
⊤||∞,ŴD

≤ C

nq
||(g1, g2)

⊤||q+1,∞,ŴD
, ∀q ∈ N,

where (g1, g2)
⊤ is the exact solution to the integral equation system (3.6), || · ||∞,ŴD

is the maximum norm for functions in 
C(ŴD) ×C T (ŴD), and || · ||q,∞,ŴD

is the norm for continuously differentiable vector functions on ŴD up to order q. Numerical 
experiments show that the spectral convergence is achieved as long as n′ ≥ 2n + 1 with sufficiently large n.

6. Numerical experiments

In this section, we present some numerical experiments to demonstrate the superior performance of the proposed 
method. We consider three different geometries for the obstacle: ellipsoid, cushion, and bean, as shown in Fig. 1. Their 
parametrizations are given in Table 1. Throughout the numerical experiments, we take the Lamé parameters λ = 2, μ = 1

and the truncation number n′ = 2n + 1. The method is implemented using MATLAB on a server with two Intel Xeon cores 
and 256 GB RAM. No special effort is paid to solving the resulted linear system of equations other than the backslash
command in MATLAB.

To test the accuracy of the proposed method, we construct an exact solution in form of

v∗(x) = G(x, y0)p, y0 = (0,0.05,0.0866)⊤, p = (1,0,0)⊤, (6.1)
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Table 3

Numerical results for the cushion-shaped obstacle at ω = π .

Cushion: ω = π

n ||ǫps||∞ ||ǫpw ||∞ Tcoe T sol

5 3.2246e-04 3.9169e-02 0.3 s 0.0003 s

15 8.9083e-07 5.4441e-06 3.3 s 0.009 s

25 1.5665e-09 4.1725e-08 17.5 s 0.1 s

35 1.0287e-11 3.6207e-10 67.1 s 0.5 s

45 2.4172e-13 3.6305e-11 254.1 s 2.1 s

55 6.2876e-14 4.5173e-11 930.5 s 7.0 s

Table 4

Numerical results for the bean-shaped obstacle at ω = π .

Bean: ω = π

n ||ǫps||∞ ||ǫpw ||∞ Tcoe T sol

5 4.7523e-03 1.4119e-01 0.2 s 0.0003 s

15 4.8644e-05 1.7490e-04 3.2 s 0.008 s

25 2.4575e-07 1.7558e-06 18.0 s 0.1 s

35 3.3519e-09 2.1805e-08 66.3 s 0.5 s

45 8.9240e-11 9.1735e-11 237.5 s 2.2 s

55 2.9727e-11 7.0980e-11 905.0 s 5.9 s

Table 5

Scattering by an ellipsoid-shaped obstacle at ω = 8π .

Ellipsoid: ω = 8π

n ||ǫps||∞ ℜ{v∞
n,pw (d) · p} ℑ{v∞

n,pw (d) · p}
25 3.6217e-05 -1.564489047510042e+00 1.051655398026258e+01

30 1.1212e-07 -1.564570656025764e+00 1.051657743451597e+01

35 2.7707e-10 -1.564570705114201e+00 1.051657744366693e+01

40 1.9588e-12 -1.564570705195090e+00 1.051657744366860e+01

45 5.0535e-13 -1.564570705193652e+00 1.051657744366452e+01

which is the same as the first test in [19], where the tensor

G(x, y) = 1

μ

(
�(x, y;κs)I + 1

κ2
s

∇x∇⊤
x

(
�(x, y;κs) − �(x, y;κp)

))

is the fundamental solution of the elastic wave equation and �(x, y, κ) is the fundamental solution for the three-
dimensional Helmholtz equation given in (3.1). Then, the corresponding far-field is given by

v∞

∗,ps(x̂) = 1

μ

e−iκs x̂·y0

4π
(x̂× p) × x̂+ 1

λ + 2μ

e−iκp x̂·y0

4π
(x̂ · p)x̂.

Due to the uniqueness result given in Theorem 2.1, we can solve the boundary value problem (2.4) by enforcing the follow-

ing boundary conditions on ŴD :

u = v∗.

Then, the numerical far-field pattern v∞
n = v∞

n,p + v∞
n,s can be calculated by using (2.8) and (3.4). The maximum errors are 

calculated over 1300 observations (equally spaced for the observation angles θ and ϕ) in accordance with the expression

‖ǫps‖∞ := ‖v∞
n,ps − v∞

∗,ps‖∞ = max
x̂∈S2

|v∞
n,ps(x̂) − v∞

∗,ps(x̂)|.

In addition to the point source case, we also compute the far-field pattern, denoted by v∞
pw , resulted from the elastic 

plane wave incidence

ui(x) = 1

μ
eiκsx·d(d × p) × d + 1

λ + 2μ
eiκpx·d(d · p)d, d, p ∈ S

2, (6.2)

where the incident direction vector d = (0, 0, 1)⊤ and the polarization vector p = (1, 0, 0)⊤ . Again, we calculate the maxi-

mum errors over the observations on the unit sphere by using

‖ǫpw‖∞ := ‖v∞
n,pw − v∞

n∗,pw‖∞ = max
x̂∈S2

|v∞
n,pw(x̂) − v∞

n∗,pw(x̂)|,

where n∗ is a sufficiently large number.
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Table 6

Scattering by a cushion-shaped obstacle at ω = 8π .

Cushion: ω = 8π

n ||ǫps||∞ ℜ{v∞
n,pw (d) · p} ℑ{v∞

n,pw (d) · p}
25 2.5022e-04 -1.569712590870811e+00 5.039800881189093e+00

30 1.0344e-05 -1.574459019608859e+00 5.043376519089912e+00

35 2.6371e-07 -1.574531401615982e+00 5.043437889542368e+00

40 1.4952e-08 -1.574531761370081e+00 5.043437868795261e+00

45 1.5917e-09 -1.574531768527667e+00 5.043437902490211e+00

50 1.7031e-10 -1.574531769006316e+00 5.043437900206628e+00

Table 7

Scattering by a bean-shaped obstacle at ω = 8π .

Bean: ω = 8π

n ||ǫps||∞ ℜ{v∞
n,pw (d) · p} ℑ{v∞

n,pw (d) · p}
35 1.7121e-02 -2.387421716629113e+00 1.012728600300475e+01

40 1.5762e-03 -2.385302268097332e+00 1.011101559995000e+01

45 1.2892e-04 -2.384320155063459e+00 1.010913376752758e+01

50 3.4649e-06 -2.384311423020166e+00 1.010898949549377e+01

55 1.9260e-07 -2.384312575610280e+00 1.010899080953868e+01

Fig. 2. The scattered field v for the ellipsoid-shaped obstacle with ω = 8π .

Fig. 3. The scattered field v for the cushion-shaped obstacle with ω = 8π .

6.1. Example 1

In this example, we evaluate the elastic scattering problem for three different obstacles at the frequency ω = π . We 
choose n∗ = 60 when the analytical solution is not available. Numerical results for the ellipsoid-shaped obstacle are given 
in Table 2. It is shown that the solver rapidly achieves 13 digits accuracy for the point source test with n = 35 and stops 
increasing due to the round off errors. For the plane wave scattering, 10 digits accuracy is obtained with n = 25. Table 2

also shows the time to construct the scattering matrix, denoted by Tcoe in seconds, and the time to solve the linear system, 
denoted by T sol in seconds. It is clear to note that the time is dominated by the matrix construction and roughly scales 
on the order of O(n5), which is consistent with our complexity analysis. Tables 3 and 4 give the numerical results for the 
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Fig. 4. The scattered field v for the bean-shaped obstacle with ω = 8π .

Table 8

Elastic scattering for the ellipsoid-shaped obstacle at high frequencies.

Ellipsoid: ||ǫps||∞
ω n = 75 n = 80 n = 85

16π 1.2813e-11 2.8726e-12 4.4200e-11

24π 3.0964e-05 1.3045e-07 2.2170e-10

Table 9

Elastic scattering for the cushion-shaped obstacle at high frequencies.

Cushion: ||ǫps||∞
ω n = 75 n = 80 n = 85

16π 9.5257e-10 4.5437e-10 4.0872e-09

24π 1.5524e-05 8.9533e-07 3.0466e-08

cushion- and bean-shaped obstacles, respectively. Both tables show a rapid convergence as n increases, which confirms the 
spectral accuracy of the solver.

6.2. Example 2

We consider the elastic scattering of three obstacles at higher frequency ω = 8π . The real and the imaginary parts of 
the quantity v∞

n,pw(d) · p, together with the errors ‖ǫps‖∞ for three obstacles are shown in Tables 5, 6, and 7, respectively. 
Similarly, we observe a rapid convergence both for the point source test and plane wave scattering when n increases. For a 
fixed n, the accuracy for the scattering of the ellipsoid is higher than that of the cushion and bean. This is due to the reason 
that the convergence rate depends on the smoothness of the obstacle boundary [15] and it is expected that a less smooth 
boundary will lead to slower convergence rate. In Fig. 2, Fig. 3 and Fig. 4, we show the real part of the first component 
of the scattered field v = (v1, v2, v3)⊤ , i.e. ℜv1 , generated by a plane wave ui(x) with d = (0, 0, 1)⊤ and p = (1, 0, 0)⊤ in 
(6.2) for ellipsoid-, cushion- and bean-shaped obstacles, respectively.

6.3. Example 3

In this example, we consider the high frequency scattering problem, which is challenging due to the high oscillation of 
the solution. In particular, we apply the spectral method to test the point source scattering by the ellipsoid and cushion 
at ω = 16π and ω = 24π , respectively. Numerical errors for the two obstacles with different discretization number n are 
shown in Tables 8 and 9. It can be seen that the high order convergence can still be achieved at high frequencies, which 
demonstrates that the solver is robust for the scattering problem in both low and high frequencies.

7. Conclusion

In this paper, we have proposed a novel boundary integral formulation and developed a high order spectral method 
for solving the elastic obstacle scattering problem in three dimensions. Based on the Helmholtz decomposition, the elastic 
scattering problem is reduced to a coupled boundary value problem. The uniqueness is examined for both the coupled 
boundary value problem and the system of boundary integral equations. By making use of the surface differential opera-
tors and Stokes’ formula, we reduce the strongly singular operators to a weakly singular operator in form of the exterior 
integral of the Galerkin method. In addition, all operations in the full discretization are scalar, which makes the numerical 
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implementation much simpler. Numerical experiments, including three different obstacles and high frequency scattering, are 
shown to demonstrate the superior performance of the proposed method. Future work includes the convergence analysis of 
the proposed method, the extension to other boundary conditions, and applications to solve the inverse elastic scattering 
problems.
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Appendix A

Here we give the approximations Kl′ j′,l j and Mk′,k̃
l′ j′,l j for K and M with a slight modification. Details can be found in 

[12,13]. The approximation Kn′ to K can be simplified as

(Kn′G)(x̂) :=
∫

S2

( 1

|n̂ − ẑ|L
p

n′
{
T x̂ K̃1(n̂, ẑ)T x̂G(ẑ)

}
+L

p

n′
{
T x̂ K̃2(n̂, ẑ)T x̂G(ẑ)

})
ds(ẑ)

=
n′∑

l=0

∑

| j|≤l

4π

2l + 1

(
T x̂ K̃1(n̂, ·)T x̂G(·), Y l, j(·)

)
n′Y l, j(n̂)

+
n′∑

l=0

∑

| j|≤l

(
T x̂ K̃2(n̂, ·)T x̂G(·), Y l, j(·)

)
n′Y l, j(n̂)

=
2n′+1∑

r′=0

n′∑

s′=1

ξr′ηs′
[
αn′
s′ T x̂ K̃1,d(n̂, ŷr′s′) + T x̂ K̃2,d(n̂, ŷr′s′)

]
T x̂G( ŷr′s′).

Then we obtain

Kl′ j′,l j =(Kn′Y l, j, Y l′, j′)n+1

=
2n+3∑

r=0

n+2∑

s=1

μrνs

2n′+1∑

r′=0

n′+1∑

s′=1

ξr′ηs′
[
αn′
s′ K̃1(x̂rs, ŷ

r′s′
rs ) + K̃2(x̂rs, ŷ

r′s′
rs )
]

×
∑

| j̃|≤l

F
sl j̃ j

ei( j− j̃)ϕr Y
l, j̃

(
p(Θs′ ,Φr′)

)
Y l′, j′

(
p(θs,ϕr)

)

via the operations

E1

srs′ j̃
=

2n′+1∑

r′=0

ξr′ K̃1(x̂rs, ŷ
r′s′
rs )ei j̃Φr′ , E2

srs′ j̃
=

2n′+1∑

r′=0

ξr′ K̃2(x̂rs, ŷ
r′s′
rs )ei j̃Φr′ ,

D
srl j̃

=
n′+1∑

s′=1

ηs′
[
αn′
s′ E

1

srs′ j̃
+ E2

srs′ j̃

]
c
j̃

l
P

| j̃|
l

(cosΘs′),

Csrlj =
∑

| j̃|≤l

D
srl j̃

F
sl j̃ j

ei( j− j̃)ϕr , Bsj′l j =
2n+3∑

r=0

Csrljμre
−i j′ϕr ,

Kl′ j′,l j =
n+2∑

s=1

Bsj′l jνsc
j′

l′ P
| j′|
l′ (cos θs).

Analogously, the entry of Mk′,k̃
l′ j′,l j can be obtained via the following operations:

E
d,d′

srs′ j̃
=

2n′+1∑

r′=0

ξr′e
i j̃Φr′ v(d′)(θs,ϕr)

⊤
F

⊤(x̂rs)Mn′(x̂rs, ŷ
r′s′
rs )F(x̂rs)T

−1
x̂rs

v(d)(Θs′ ,Φr′),
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D
k̃,d′

srl j̃
=

n′+1∑

s′=1

2∑

d=1

ηs′α
(k̃,d)

l, j̃
(Θs′)E

d,d′

srs′ j̃
,

C
k̃,d′

srlj
=
∑

| j̃|≤l

F
sl j̃ j

ei( j− j̃)ϕr D
k̃,d′

srl j̃
, B

k̃,d′

sj′l j =
2n+3∑

r=0

μre
−i j′ϕrC

k̃,d′

srlj
,

M
k′,k̃
l′ j′,l j =

n+2∑

s=1

2∑

d′=1

νsα
(k′,d′)
l′, j′ (θs)B

k̃,d′

sj′l j,

where Mn′(x̂rs, ŷr
′s′
rs ) = αn′

s′ M̃1(x̂rs, ŷr
′s′
rs ) + M̃2(x̂rs, ŷr

′s′
rs ), and M̃1(x̂, ŷ), M̃2(x̂, ŷ) are 3 ×3 matrices defined in (4.5). In contrast 

to the operations in [12], which put v(d′)⊤ in B
sj′t′l jk̃ , we combine v(d′)⊤ and F⊤ together so that Ed,d′

srs′ j̃
is a scalar function, 

which makes the numerical implementation simpler since each operation is scalar.

References

[1] H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee, A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press, New Jersey, 2015.
[2] G. Bao, L. Xu, T. Yin, An accurate boundary element method for the exterior elastic scattering problem in two dimensions, J. Comput. Phys. 348 (2017) 

343–363.

[3] O.P. Bruno, T. Yin, Regularized integral equation methods for elastic scattering problems in three dimensions, J. Comput. Phys. 410 (2020) 109350.
[4] F. Bu, J. Lin, F. Reitich, A fast and high-order method for the three-dimensional elastic wave scattering problems, J. Comput. Phys. 258 (2014) 856–870.
[5] D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, SIAM, Philadelphia, 2013.
[6] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, third edition, Springer, New York, 2013.
[7] H. Dong, J. Lai, P. Li, A highly accurate boundary integral method for the elastic obstacle scattering problem, Math. Comput. 90 (2021) 2785–2814.
[8] H. Dong, J. Lai, P. Li, An inverse acoustic-elastic interaction problem with phased or phaseless far-field data, Inverse Probl. 36 (2020) 035014.
[9] H. Dong, J. Lai, P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci. 12 (2019) 809–838.

[10] M. Ganesh, I.G. Graham, A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys. 198 (2004) 211–242.
[11] M. Ganesh, S.C. Hawkins, A hybrid high-order algorithm for radar cross section computations, SIAM J. Sci. Comput. 29 (2007) 1217–1243.
[12] M. Ganesh, S.C. Hawkins, A high-order tangential basis algorithm for electromagnetic scattering by curved surface, J. Comput. Phys. 227 (2008) 

4543–4562.

[13] I.G. Graham, I.H. Sloan, Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in R3, Numer. Math. 92 
(2002) 289–323.

[14] L. Greengard, S. Jiang, A new mixed potential representation for the equations of unsteady, incompressible flow, SIAM Rev. 61 (2019) 733–755.
[15] R. Kress, Linear Integral Equations, third edition, Springer, 2010.
[16] L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Pergamon, Oxford, 1986.
[17] P. Li, X. Yuan, Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl. Imaging 13 (2019) 545–573.
[18] Y. Liu, F.J. Rizzo, Hypersingular boundary integral equations for radiation and scattering of elastic waves in three dimensions, Comput. Methods Appl. 

Mech. Eng. 107 (1993) 131–144.
[19] F.L. Louër, A high order spectral algorithm for elastic obstacle scattering in three dimensions, J. Comput. Phys. 279 (2014) 1–17.
[20] F.L. Louër, A spectrally accurate method for the dielectric obstacle scattering problem and applications to the inverse problem, arXiv:2006 .10830, 2020.
[21] S.G. Mikhlin, S. Prössdorf, Singular Integral Operators, Springer Verlag, Berlin, 1986.
[22] J.C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.
[23] Y.H. Pao, V. Varatharajulu, Huygens’ principle, radiation conditions, and integral formulas for the scattering of elastic waves, J. Acoust. Soc. Am. 59 

(1976) 1361–1371.
[24] M.S. Tong, W.C. Chew, Nyström method for elastic wave scattering by three-dimensional obstacles, J. Comput. Phys. 226 (2007) 1845–1858.
[25] J. Yue, M. Li, P. Li, X. Yuan, Numerical solution of an inverse obstacle scattering problem for elastic waves via the Helmholtz decomposition, Commun. 

Comput. Phys. 26 (2019) 809–837.

20


	A spectral boundary integral method for the elastic obstacle scattering problem in three dimensions
	1 Introduction
	2 Problem formulation
	3 Boundary integral equations
	4 Spherical parametrization
	5 Numerical discretization
	6 Numerical experiments
	6.1 Example 1
	6.2 Example 2
	6.3 Example 3

	7 Conclusion
	Declaration of competing interest
	References


