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Abstract

There have been intensive studies on maximum-principle-satisfying and positivity-preserving methods
for hyperbolic conservation laws. Most of them are based on the method of lines type time marching
approaches, e.g. the Runge-Kutta methods, multi-step methods and backward Euler method. As an
alternative, the Lax-Wendroff time marching approach utilizes the information of PDEs in the Taylor
expansion of the solution in time, hence it is a high order and single-stage method. In this work, we
propose third order maximum-principle-satisfying and positivity-preserving schemes for scalar conser-
vation laws and the Euler equations based on the Lax-Wendroff time discretization and discontinuous
Galerkin spatial discretization. The accuracy and effectiveness of the maximum-principle-satisfying and
positivity-preserving techniques are demonstrated by ample numerical tests.
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methods (LWDG), scalar conservation laws, Euler equations.

1 Introduction

Hyperbolic conservation laws are basic tools to characterize the phenomena of flow and transport, e.g. the
Burgers’ equation for traffic flow and the Buckley-Leverett equation for two phase flow as the scalar cases,
and the Euler equations for compressible gas dynamics and shallow water equations for water with shallow

depth as the system cases.
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The scalar conservation laws are known to satisfy the maximum-principle, e.g. for the one dimensional
scalar equation

us+ f(u)y, =0, zeR, t>0, (1.1)

with initial condition

U(Z‘,O) :’Ll,o(ﬂf), T ERa

the entropy solution satisfies m < wu(x,t) < M,Vx € R,t > 0, where m = mingegruo(z) and M =
maxzer Uo(z). Same results also hold for periodic boundary conditions, bounded domain with compactly
supported solution, and higher dimensions.

Similarly, the positivity of certain important physical quantities are satisfied by some hyperbolic systems,

e.g. for the Euler equations

u +f(u), =0, ze€R,t>0 (1.2)
where
p m
u= o fw =1 p?+p |,
E (E+pu
with

1
m=pu, E=gpu’+pe, p=(y-1)pe,

in which p is the density of fluid, m is the momentum, w is the velocity, E is the total energy, p is the
pressure, e is the specific internal energy, and v > 1 is the ratio of specific heats, it is well-known that the

physical solution u € G for all t > 0 if it holds at ¢ = 0, where G is the admissible set of solutions defined as
G={u:p>0,p(u)>0}. (1.3)

Rigorously preserving these physical bounds of solutions is of great importance for the robustness of
numerical algorithms, in that once the quantities were out of their physical range, the hyperbolicity of
equations is lost, which often leads to the simulation failure. There have been intensive studies on the
maximum-principle-satisfying and positivity-preserving numerical methods for hyperbolic conservation laws.
In 2010, the genuinely maximum-principle satisfying high-order discontinuous Galerkin (DG) and finite
volume methods for scalar conservation laws were proposed by Zhang and Shu in [40]. The algorithm is

composed of two steps under the DG framework. The first step is to prove desired physical bounds for the



cell averages of numerical solutions are automatically satisfied by the unmodulated high order DG scheme
with appropriate CFL conditions and numerical fluxes. Then a scaling limiter, which does not destroy
accuracy and mass conservation, are adopted to modify the solution such that the physical bounds satisfied
by cell averages are extended to the entire solution. Based on this simple and general framework, the high
order maximum-principle-satisfying and positivity-preserving numerical schemes have been rapidly developed
for different problems ever since, for instance, the Euler equations [39, 41, 34|, the Navier-Stokes equations
[38], the shallow water equations [36, 35, 19|, convection diffusion equations [42, 17, 2|, and hyperbolic
equations involving d—singularities [44, 37|, etc. For convenience, we call both maximum-principle-satisfying
and positivity-preserving techniques the bound-preserving methods in this paper.

It should be noted that, in order to gain high order accuracy, the bound-preserving schemes also need
to combine with temporal discretization whose order is consistent with the order of spatial discretization.
Almost all time discretizations in the aforementioned bound-preserving methods are based on the method
of lines, which treats the spatially discretized equation as ODE systems and use appropriate time marching
approaches to evolve in time. In particular, the strong stability preserving Runge-Kutta (SSP-RK) methods
or the SSP multi-step methods [13, 14, 31] are preferable because they are convex combinations of forward
Euler time discretization, which greatly simplifies the proof of the bound-preserving since all analysis only
need to be carried out on a single forward Euler time step. Besides the explicit methods, there are also
studies on backward Euler time discretization [23, 16].

As an alternative to method of lines, the Lax-Wendroff methods are also widely used in the computation
of time-dependent partial differential equations, for instance, the combination of Lax-Wendroff type time
discretization with DG (LWDG) methods [26, 24, 15| or with the WENO schemes [27, 25|, the two-stage
fourth-order methods [22, 18], the arbitrary high order derivative Riemann problem (ADER) approach
[32, 12, 11], and its variant based on the Galerkin space-time predictor [9, 1, 10], etc. The Lax-Wendroff
methods utilizes the information of the partial differential equations to replace temporal derivatives by
spatial derivatives in the Taylor expansion of the solution in time. Therefore, the Lax-Wendroff methods are
one-stage, explicit, high order methods, and only need the stabilizing scaling limiters once per time step.

Regarding to the situation that there are very limited researches on bound-preserving techniques for
Lax-Wendroff schemes, we study the LWDG to construct third order maximum-principle-satisfying and
positivity-preserving LWDG schemes for scalar conservation laws and the Euler equations in one and two

space dimensions. Different to the previous works [21, 30] on positivity-preserving Lax-Wendroff type meth-



ods, our algorithm does not rely on the flux limiter that needs to combine low order positivity-preserving
flux and high order flux together, hence the high order accuracy of our approach is easier to guarantee.
The construction of our numerical schemes is based on the third order Taylor expansion of solution in
time
2 A3

A
u(z, t" ) = u(z, t") + Atug (2, t") + Ttutt(x,t") + %uttt(aﬁ,tn) + O(AtY), (1.4)

where At = t"*! —¢". Due to the Lax-wendroff procedure, there will be many spatial derivatives to replace
the original time derivatives in (1.4), especially for the system case in high dimensions. In this paper, we
adopt the discontinuous Galerkin methods for the spatial discretization of the derivatives. In 1970, Reed et
al. [28] proposed the first discontinuous Galerkin method to solve the steady linear transport problem. It
was developed into Runge-Kutta discontinuous galerkin methods (RKDG) by Cockburn et al. in a series
papers [7, 6, 4, 3, 8] to solve nonlinear hyperbolic conservation laws. Limiters such as the total variation
bounded (TVB) limiter [8] are usually applied to stabilize the solution near shocks after each Runge-Kutta
stage. Discontinuous Galerkin methods have been widely used in computational fluid dynamics due to their
advantages in high order accuracy, flexibility in complex geometry and easiness to be parallelized, and is one
of the most common choices in developing bound-preserving schemes.

In our work, we develop the idea of bound-preserving direct discontinuous Galerkin (DDG) method from
[2] to resolve the difficulty caused by high order spatial derivatives produced by the Lax-Wendroff procedure.
When it extends to multi-dimensions, we avoid the appearance of mixed derivatives in our numerical schemes
based on carefully designed expansions of high order temporal derivatives in the Lax-Wendroff procedure,
which is the key for the success of bound-preserving in high dimensions. We only demonstrate the treatments
in two dimensions but the technique can be generalized into three dimensions directly.

It is worth mentioning that, the tedious CFL conditions to be derived for bound-preserving in the paper is
not explicitly used in the implementation. But rather, they are used as a theoretical guarantee. In practice,
one can use standard CFL conditions in computation, and rewind the computation back to the beginning
of the step with halved time step-size when the cell averages exceeds their desired bounds at that step. The
theoretical results in the paper guarantee that one only needs to halve the step-size finite number of times.
Moreover, since the LWDG is an explicit single stage method, the temporal derivatives of the solution only
need to be computed once per time step, which makes the cost of rewinding computation very cheap.

The rest of the paper is organized as follows. In Section 2, we first introduce the notations to be



used throughout the paper, and then construct the maximum-principle-satisfying LWDG methods for scalar
conservation laws in one and two space dimensions. In Section 3, we establish the positivity-preserving LWDG
schemes for the Euler equations in one and two dimensional spaces. The scaling limiters are introduced in
Section 4 to ensure the boundedness and stability of the numerical solution. In Section 5, we give extensive
numerical examples to demonstrate the effectiveness of our algorithm. We end up with some concluding
remarks in Section 6. The discussion in the above sections are based on uniform meshes. In the appendices,
we give illustrations on how to extend the algorithms to nonuniform meshes and take the one dimensional

scalar conservation law as an example.

2 Maximum-principle-preserving for scalar conservation laws

In this section, we study the maximum-principle-satisfying LWDG methods for scalar conservation laws.
Based on the framework of [40], we only need to put our effort on attaining the maximum-principle for cell
averages of the solution, i.e. m < artt < M, provided m < u”™ < M, where the superscripts n and n + 1
denote the time level t* and t"*!, respectively. The slope limiters introduced in Section 4 will make up the
gap between the maximum-principles of #"*! and u"*!.

For simplicity, we only discuss the one and two dimensional problems with periodic boundary conditions
on uniform meshes, but the results can be directly extended to three space dimensions and non-periodic
cases. However, the extension from uniform meshes to nonuniform meshes is not trivial, which will be
demonstrated in the appendices with one dimensional space as an example.

We first introduce the notations to be used throughout the paper, then construct and prove the maximum-

principle-satisfying LWDG schemes.

2.1 Notations

In the one dimensional space, we assume the domain 2 = [a, b] is discretized by a = r1<x3 <oyl = b,

and denote by I; = [a:j_% , xj+%] the cells on € for j = 1,2,... N. Moreover, we denote the length and center

1

of the cell I; by Azj ==, 1 —x;_1 and z; = 5 (xj_% + xj+%), respectively, and let u; = u(z;)

1
2
Similarly, in the two dimensional space, we assume 2 = [a,b] X [c,d] is discretized by a = x1 < 23 <
<y 1 = b and ¢ = Y1 <ys <. <yYn,41 = d in the x and y directions, respectively. We denote

by Kij = I; x J; = [z;_1 xH%] X [yj,;,yj+%] the cells in Q for ¢ = 1,...,N;,j = 1,...,N,, and by

=3’ 3



Azily; = (zip1 — 2 1) Wi —y5-1)s (Ti,y;) = (%(mF% +Tiy1), %(yj;% +Y;41)) the area and center of
the cell K; j, respectively, and let u; ; = u(x;,y;).

We only consider the uniform meshes in this section and the next section to simplify the discussion, i.e.
Az; = Az and Ay; = Ay, fori=1,...,N,,j=1,...,N,. The case of nonuniform meshes will be discussed
in the appendices.

The finite element spaces in the DG schemes are taken as V = {v € L? : v|;, € P*(I;), j =1,2,...,N}
and W = {v € L?: vlk,,; € Q*(K;;), i=1,...,N;,j = 1,...,N,} in one and two dimensional spaces,
respectively, where P?(I) is the space of quadratic polynomials on interval I and Q?(K) is the tensor product
space of quadratic polynomials on rectangle K.

Due to discontinuities, functions in the schemes may have double values on cell interfaces. In one

space dimension, we denote by vj:_ , and ’U;:_l the left and right limits of v at z; 41 respectively, i.e.
2

2

+ ; _1(, - +
Vi = v(x;41 +0). Moreover, we denote the average and jump of v at x;, 1 by {v}; 1 =3 (Uﬂ_% + Uj+%)
and [v]j v = v;_% — Ujjr Iy respectively. Similarly, in two space dimensions, we denote the left/right

and lower/upper limits of v on vertical and horizontal cell interfaces by 1)(ij+ 1 y) = v(r;, 1+ 0,y) and
v(:s,yji+ 1 ) = v(®, Y4 1 E 0), respectively. The averages and jumps of v on vertical and horizontal cell in-
terfaces are defined as {v}(z;1,y) = 1 (v(x;%,y) +v(xj+%,y)>, W(@iy1,y) = v(x;:%,y) - v(a:l;%,y)
and {v}(x,yj_%) = % (v(m,y;_%) —&—v(x,y;:_%)), [v](m,yﬂr%) = v(m,y;:_%) - v(x,yjjr%), respectively. For
simplicity, these notations will be abbreviated as v*, {v} and [v] when the cell interface is clear from the
context.

We denote the L? inner product on cell I ; in one space dimension as

and on K; ; in two space dimensions as

mi+%
(ua U)Ki,j = / /
z,_1 Yy

yj 1
" ula, y)o(e, y)dady,

i-3
for u,v € L*(Q).

We use the Gauss-Lobatto quadrature of 2N, — 1 points to evaluate integrals in one dimensional cells,
where IV, is taken such that the third order accuracy is attained in the scheme, e.g. N, = 3. We denote the
quadrature points on I; as {#,,v=1,...,2N, — 1}, and let {&.,,v =1,...,2N, — 1} be the corresponding
quadrature weights satisfying Ziﬁqfl wy = 1. In particular, ; =z

-1, TN, = T and Ton, -1 = Ti1. We



denote 47 = u(&,), for vy =1,...,2N, — 1. The quadrature rule adopted in two dimensional cells follows

from tensor product and we denote 477 = u(Zg,Yy), for B,y =1,...,2N; — 1, on the cell K ;.

2.2 Scalar conservation laws in one dimension

Consider the scalar conservation law (1.1). Direct computation gives the expressions of ug, us and wug as

follows:

up = —f(u)e, (2.1)
Uty = ((f/)zux)x (2.2)
wee = — (3" (f)*uf + (') uaz) (2.3)

Based on the expansions (2.1), (2.2) and (2.3), the third order maximum-principle-satisfying LWDG scheme
of (1.1) at time level t" is to find u"*! € V, s.t. V€ € V, the equation

n+1 Atz N2 Atg 1" enN2, 2 N3
(u af)lj :(u’g)Ij +At(f(u)’€$)1j - T((f) u$’€w)1j + T(&f (f) Uy + (f) umwvfw)lj (2 4)

7 - 7 +
— AtFj+%§j+% + AtFJ;%fj_%,
holds for j =1,2,..., N, where the superscript n denoting time level ¢t on the right hand side is omitted.

In the scheme (2.4), F;, 1 is the numerical flux at ;1 defined as

. « At _ppa | At?
oy =Ff = S Ui + = 30207 + P} (2.5)

where

P o

Y = {fhry — Sluley, = max|f(w) (2.6)
is the Lax-Friedriches flux as used in [40], and

— [ul41

is the bound-preserving direct discontinuous Galerkin (DDG) flux [20, 2|, with S, £1 satisfying
1 1
§<61<Z’ Bo> 5 —4b (2.8)

The following lemmas are useful in the proofs of maximum-principle-satisfying and positivity-preserving

in this section and the next section.



Lemma 2.1. Foru €V, the DDG flux ﬂ;fféc defined in (2.7) can be expanded on uniform meshes as

Tt} = Alx((—wl) Ly (24 8By + (<ot o — 48y,

(2.9)
3
+ (Bo—5+ 4p1 )t rr T2 =8B)uj + (—f +4pB1)u; )
Proof. Since the mesh is uniform and w is piecewise quadratic, it follows from direct calculations. O
Lemma 2.2. Ifu eV and m <u < M, then
du, 5(M —m)
— < —s V¥ 1. 2.10
‘dx‘ - Az rTEL (2.10)
Proof. We first consider v € P?([—1,1]) with —& < v < £. The Lagrange interpolation gives
v(r) =v(=1)L_1(r) + v(0)Lo(r) + v(1) L1 (7), 7€ [-1,1], (2.11)

where L_1(r) = 4r(r — 1), Lo(r) = —(r + 1)(r = 1), L () = br(r + 1)
Therefore, |o/(r)| < [o(=1)| |y (7)] + [o(0)]- [ 4()] + (D] |4 (r)] < B x §+ B x 24 Bx 3 =3 vr e
.10

[—1,1]. Then (2.10) follows from changing of variables and the chain rule. O

We now state our main result for the LWDG scheme (2.4).

Theorem 2.3. Given m < u™ < M, the cell averages u L j=1,...,N of the solution of scheme (2.4) are

bounded between m and M under the CFL condition (2.12).

)\Smin{qlaq27"'aq6}7 (212)
— At e S N ot/ M
where A = X5, @1 = 55,92 = 5(M—m)My+ 20,0 B = 20(81— m)Mngr San W T s m2)M2+ B =

.1/2 /2
Ml(/got_ui+451)1/2aQ6 = M1(6—g11151)1/2’ and My = maX;,<u<m |f (’LL)|,M2 = MaXm<u<M |f (u)|

Proof. Take the test function £ = 1 on I; and zero anywhere else in the scheme (2.4) and denote A = At

Az
we obtain the equation satisfied by cell average of u™*! on cell I;,
Wt = af = AFj oy + A =T+ (2.13)
where
1
=3 (u — 22 fFF, 422 fol) , (2.14)
2



and

1 2N, -1
= > aar
y=1
At + \~DDG
-\ (_4(f/2]+2 +f/2 ) w]+7
At? + + + +
+7(3f'2j+1f”J+1uI]+1 +3f/2 f//j+7 i]+1 + f J+1U,11]+1 +f/3]+1um£;r+%)

At _—
+A( T U+ 1w

At?
+ (3f,2j—7f//j** x]—l+3f/2j_—* Nj** ij—l'i'f/g' 1uwl 1+f/3 1uwc-~_ ))

Note that the cell average a7 is split equally in I and II just for the ease of written, rather than to obtain
an optimal CFL condition, which is the same case for all other proofs in this paper.

Since I has exactly the same form as in [40], we have %m <I< %M , under the condition A < ¢; based
on the conclusion therein. One can refer to [40] for more details.

As for II, it can be expanded as follows:

2N,—2

Z wvA'y—I—f Z Wy

SN (2.15)

+ zlu{”

+zu
j— 4

2 + zou;—1 + 23uj_ + z5u; + zeU il + Z7u i + 28Uj41 + 29U

1 1 35
2 2 +

where

1 4N

_ A? 12— "— 2+ 1
Zlfzfj (451**)+Atf ol 1+§f]_, + f >%(451*§),

_ _ 8\ ,—
2y (s —an g - B ) e s

A2 o 3 - 4\ 3
=170 ((Bo — 5 HAB) +3ALT e+ 3f]_> + f’Qi%(ﬂo -5 T461)

2
s =g o 77y (o o+ 4B) - —f’?j,, ((/30 AR A T, - )

)2 4\ A2
- *f/21+ <(451 B 5) AL ey 3 3 ) 4 T 24P )

1.

%7y

o, = 21880 - oy (- —aau ut, + )

A2 5 A2
- 7f/2]+ ((2 = 801) —AAL sy — ey > 7f’2;r+%(2 —861)

1 A2 1 .
26*2W2N—1*7f/2 %(‘Wl**)**f’z

i1
2

((4511)+Atf“j_ s f’ﬁ;)

2
- *fa_ ((ﬂo -3 +4p1) + BALf" dug TRt 43)\f it+3 ) - if/2;+%(50 RERECY



A2 3 A2 3
27 = Zflzﬁ-%(ﬂO*5+4ﬂl)+zf/2;.% <(50+451)+3Atf”j+1 Uy LT f]+2>

A2 22 . 8\
28 = Zf/2j+%(2—851)+1f/2j+% ((2—8ﬁ1)—4Ath +1’LL1 j+i + 3 fj+2)
1

. . 1 A\
*f/2 148 - 5)+ f/2 ((4ﬂ1 5t Atf//;:*%ul;:_% - 3f/;r+;>

It is not difficult to verify that

1 N,—1 1 2N, —2 1
5 Z C:er“r§ Z (217+21+22+"'+29=§,
y=2 y=Ng4+1
Moreover, we claim that zq,29,...,29 > 0 under the CFL conditions (2.12). In fact, the following

estimates can be made under the CFL conditions,

2 2
a2 217y (@8- ) = 5AOT = m)d = 0 ) + L1245 - ) 2

2> % ((2 —861) — 20A(M — m) M, — 83)\M1> + f’2+ 1(2-861) >0

((502+4[31)15)\(Mm)M2?Ml>+1f’2j_2(ﬁo3+4Bl)
9 2
@~ %Mf(ﬁo_;-l-‘lﬂl) - /\ZME ((ﬁo _z+4ﬁl>+l5A(M_m)M2+?Ml>

A2 1 4\ A2 1
=20 (81— )+ 3O -+ S0 ) - P arz s - ) 20

1 A\? A2
z5 >2LUN — ZMI( 861) 7M1 (( 851) + 20)\(M m M2 + M1>
A2 8\ A2
=20 (2= 880 + 20000~y + 00 ) - A -89 >

1. A2 1 A2 1 4
Z6 Z§w21\/q_1 — ZMlQ(Zlﬂl — *) — fMl <(4ﬂ1 - 5) + 5)\(M - m)M2 + 3M1>

2 3 4\ A2 3
*M1 ((50 -3 +461) + 15AM(M — m)M; + 3M1) - IMEWO 5 +4p1) >0,

2
= )\Zf 1 (Bo—5 +4ﬂ1> + f/ﬁ ((50 - g +4B1) = 15A(M —m) M — 43)\M1) =0

2
> %f L(2—88) + f’2+ ((2 — 88y) — 20A(M — m) M, — 8:?%) >0,

2
Z9 > ):1 f (451 1) fl2;‘+% <(4ﬁ1 - %) —5A(M —m)M;y — 43)\M1) > (.

Therefore, II is one half of a convex combination of values of u™ at different quadrature points, which implies
ém <II< %M since we assume m < u"™ < M.

Since ﬂ?+1 = I 4 II, we finish the proof by summing up the inequalities of I and 1T . O

10



Remark 2.1. The CFL condition in Theorem 2.5 is not sharp, because we split the cell average uj equally

into I and II for the convenience of the proof. The same case applies to all later theorems. In order to

n+1 +1

get a sharp CFL condition, one has to analyze/estimate u or u"™" as a whole, which makes the proof
extremely tedious. But even if we did so, the task of finding optimal By and By to obtain an exact upper
bound of the CFL number would still be very difficult if not impossible, since the CFL condition also depends
on the lower and upper bounds of the solution, the mazximum norms of the first and second derivatives of the
flux function, and the quadrature rule, etc.

However, we can get an intuition about the CFL constraints in the LWDG by analyzing the equation
up + u, = 0. In this case, the Lax-Friedrichs flux becomes the upwind flux, and the upper bound on the time
step constraints can be computed exactly. Calculation shows that, using the 5-point Gauss-Lobatto quadrature,
the CFL number of the LWDG is Rt = 0.049917, with the optimal parameters 5y = 0.999978, 51 = 0.133326.
In comparison, under the same quadrature rule, the CFL numbers of the mazimum-principle-satisfying DG

schemes [40] are Af = 0.05 and Af = 0.016666, for the SSP-RKS3 method (three stages) and SSP3 multi-step

method (single-stage), respectively.

2.3 Scalar conservation laws in two dimensions

Consider the scalar conservation law in two space dimensions

ur + f(u)e + g(u)y =0. (2.16)

Direct computation gives the expressions of us, us, Uyt as follows:
up = —f(u)g — g(u)y, (2.17)

i = (), + (F'g'uy), + (fg'us), + (9w, . (2.18)

Upps = — (3fl2f”'u325 + 6f’g'g”u§ + 39'2]"”1@ + f/SUIZ + 3f/g/2uyy)m
(2.19)
o (6f f// 2 +3f/2 // +3912 1" 2 +3f/29/u$m +g uyy)y
Note that there are different ways to expand wus, among which we choose the one that avoids the

appearance of mixed derivatives in the numerical scheme.

Based on the expansions (2.17), (2.18) and (2.19), the third order maximum-principle-preserving LWDG

11



scheme of (2.16) at time level ¢" is to find u"™! € W, s.t. V€ € W, the equation

Wk, , =(u.Ox,, + At(f(u), &) K, ; + At(g(). &), ,

At? At?
- 7(.]?/2”9: + f,g/umfw)K',j - T(f/g,uz + g/2uya§y)K1 3
At3
4+ = 5 (3f/2f// 2+6f/ / //u +3g/2f//u2_|_f/3ugm_|_3f/ /2uyy’§w)Ki)j
A3 2.20
4+ = 5 (Gf/g/f//UQ +3f/2 NU _|_3g/2 HUZ+3f/2gluxa+g/3uyya§y)K1,j ( )
Yi+d . _ Yi+d . n
- At/ Fipyy €@ 1,y)dy + At/ Fioy; €@y y)dy
Y1 Y1
CL‘7‘,+l ~ _ z-f—l ~
_ At/ F Gy ) At/ Gy Elayl e
Ii—% Ii—%
holds for i =1,...,N,;,5 =1,..., Ny. In the scheme, FZ+ ; and Gi’ﬂ% are numerical fluxes defined as
R 20 ~1 .
Fiyys= Fi+%,j + Fi+%,j’ Gij+s = G g+ T G} ij+5°
where
~DDG
L T W I R LY R LT T (2.21)
- 1 At At?
FilJr%A,j = —ia;[u]u_%d — 7{f’gluy}i+%,j + 7{GJc/g/g//,U? + 3g’2f’/u2 13fg /2Uyy}i+%,j’ (2.22)
GO _ ~LF H 2 —~DDG = 1342 // 3 (2 23)
ig+s =Yg+t T g {97 ity i1 + { 9%9"wy + 9 by '
A1 1 1 4 A rorett 2 12 11, 2 2 2.94
Gi,j+% = *gay[u]i,j+% - 7{fgur}zj+ {Gf g fus +3f7g"ui +3f“g um}lj+2 (2.24)

in which the Lax-Friedrichs fluxes and DDG fluxes are defined the same way as before, and oy, are
positive viscosity constants that can be taken as 0.05 max,, | f'(u)| and 0.05 max,, |¢’(u)| for instance. In fact,
any constants strictly positive should be enough for positivity-preserving, which just makes difference on the
CFL numbers and the dissipation effect.

We now state the main result for the LWDG scheme (2.20).

Theorem 2.4. Given m < u"™ < M, the cell averages u: ;H, i=1,...,N;,j=1,...,Ny of the solution of

scheme (2.20) are bounded between m and M under the CFL condition (2.25):

/\m S min{Ql? Q3}a >‘y S min{QQv Q4}7 (225)
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where A\, = %, Ay = ﬁ—;, and the definitions of Q1, @2, Q3, Q4 are given in Appendix A.1.

The proof is very similar to that of the one dimensional case, except that the expansions are much more

tedious, which results in much more complicated CFL conditions.

Proof. Take the test function £ = 1 on K, ; and zero anywhere else in the scheme (2.20) and denote by

_ At _ At .
Az = Rpr Ay = Ay e obtain

uf =T+ 1+ 141V,

where

1 . 1 [Yi+d oy 1 [Yi+d o
=7, _/\””Ay/y_ Fi+;,jdy+/\wAy/y Fi_1,59;

_1.a Y3 20 L [T3 0
III = zum —)\yE/T 1 G1]+%d$+)\yEA Gm._%dx

_ 1 —n 1 xi+% A1 1 $i+% A1
IV = 1Y~ )\Uﬂ/x ) Gi,j-i—%dx + )‘yﬂ i Gi,j—ldx
i—3 i

1
2
It suffices to shown %m <LIIL iM under the CFL condition (2.25), due to the symmetry in « and y

directions.

It is clear that I can be decomposed in the form of convex combination

where
2N,—1

H’Y = Z "Dﬁ’&ﬁry - 4/\J;Fﬁi_%,j(xi+%vg'y) + 4)\wFiO_%,j(xi—%ag'y)a
B=1
Notice that H. has exactly the same structure as (2.13). Therefore, I € [+m, M], under the CFL

condition (2.12) for one dimensional scalar case with X replaced by 4\,, i.e. A\; < Q1.

13



As for the term II, it can be expanded as follows,

2N, —22N,—1 2N, -2

1 Az . .
DIBIEELEE z X alutey i)+ S anatule )
a=2 B=Ng+1
Ng—1 \ 2N, —2
+ > 5 wsgu(rf s, 9p) + > 5 @sgu(r 1, 9s)
B=2 B=Ny+1
+ zlu(:ﬁz_%,y;r_%) + z2u(w;_%ayj) + zzu(z, T, 17y ) + Z4U<$i+_%vy]+ %) + zsu(x; T, %7yj) + Z6U($i+_%,y;+

+Z7U( +17y,%)+28u( +1ayj)+29u( +1ay )Jrzlou(x:r%,y]t%)+211u(x:'+%,yj)+212u(xl+1,y
Ny—1 IN,—2 N,—1 2N, —2
+ > wpziz,pulr; 1, Pp) + > wpz13,pu(;, 1, Up) + > Wpza (1, Gp) + Y Gpzapu( g
p=2 B=Ng+1 p=2 B=N,+1
(2.26)
where the expressions of z1,..., 214,38 are given in Appendix A.2.

It can be verified that the following equality holds,

—22N,— 2N, 2 2N =2y
1 Z Z WaWg + Z —wgoz Z —wgoz Z —w/;oz + Z 796@/3%15
B=Ng+1 B=Ng+1

+ 21+ 22+ 23+ 24+ 25 + 26 + 27+ 28 + 29 + 210 + 211 + 212

2Ng—2 2Ny—2

—|—Zw5z135—|— Z w52135+zw52’145+ Z w52’145—%

B=Ng+1 B=Ng4+1
Moreover, all z’s are nonnegative under the CFL condition (2.25). The detailed estimates can be found in
Appendix A.2
To sum up, II can be written as one fourth of a convex combination of point values of ™ under the CFL
condition (2.25), which implies im <II< iM since m < u™ < M. The similar arguments apply to III and
v

Since u"+1 =TI+ 11411+ 1V, we finish the proof by summing up the inequalities of I, II, IIl and IV. O

3 Positivity-preserving for the Euler equations

3.1 The Euler equations in one dimension

Consider the Euler equations (1.2). Direct computation gives the expressions of p, pi: and py as follows:

pr = —(pu)a, (3.1)

14



Pet = ((Puz)x + ’?(Pe)z)r ) (3.2)

where 4 = v — 1. Moreover,

3
My = A

x)

Myt — A2

x?

mt:Al

x?

and

E,=B,, Eu=B}, Euw =B,

x

where A', A%, A3, B', B2, B? are shorthand notations introduced for convenience of later discussion. For the
full expressions of my, mss, My, and By, By, By, see Appendix B.1.
The positivity-preserving LWDG scheme of (1.2) for p at time level t" is to find p"™! € V, s.t. V€ € V,

the equation

A 2
(074,601, =(p, €)1, + Atlpu, )1, — S- (0 +3(pe)as )1
A 3
* Tt (um(pu2) + 2“1(/’“2)1 + U(pUQ)a:m +’?’7umx(pe) + ’?(3 + W)Um(ﬂe)x + 3’?u(pe)m, fx)lj

~ _ 2 +
T AE 8 AL,

(3.4)
holds for j =1,2,..., N. In the scheme, FH% is the numerical flux of p at Tii1 defined as
. . At —— DDG At __—— DDG
Fioy =fiiy - - @)1 = 5 HZ(Pe)) s
At? 2 2 2 3.5
+ T{um(pu )+ 2uy (Z(pu?)), +u (Z(pu?))  bivs ; (3.5)
At? . .
+ =5 7uas(pe) + 43 + 7us (Z(pe)), + 370 (Z(pe))ze} i
where
R 1
1 = toudiy = oleliey, a=I(ul+ o)l (3.6)

is the Lax-Friedriches flux used in the positivity-preserving for the Euler equations in [39], ¢ = , /% is the
_—_ DDG _—_ DDG
sound speed, (Z(pu?)),;, 1 and (Z(pe)), ;1 are the DDG fluxes defined in (2.7), with u replaced by Z(pu?)
2 2
and Z(pe), respectively, where Z is the quadratic interpolation operator with interpolation points at a:;r_l T,
2

and x;_l on I;, in order to get the similar expansions of the DDG flux as in (2.9).
2

15



The variables m and E are discretized by the standard discontinuous Galerkin method with the first

order flux terms adopting the Lax-Friedriches flux and high-order flux terms adopting the average flux, i.e.

(mn+1a§)1j :(m7£)1j - At(A17£$)Ij

+AH{AY L1+ Atalm]y 1

— At{Al}J;% — Ato&[m}];% (3.7)
At? At? _ At?

- T(Azém)fj + T{Az}j%fﬂ% - 7{A2}j—%£j+_%
At? At? _ At3

= T W + S A - T A

(En+17£)fj :(E7§)Ij - At(Bl7€$)Ij

+AHB'} 1+ Ata[E] s

- At{Bl}j7% - AtOz[E]j7% (38)
A2, A2, _ A,

- (B &) + B}, — B }j_%fjt%
At AL _ A

5 (B &)y + = B Y16, — B }j_%E;Z%

We now state the result for the positivity-preserving of ﬁ;’“.

Theorem 3.1. Given u"™ € G, the cell averages ﬁ;”'l,j = 1,...,N of the solution of scheme (3.4) are

nonnegative under the CFL condition (3.9):

A <min{qi,¢q2,...,q11}, (3.9)
_ & _ 6(Bo—35+451) _ 3(2—881) . 3(4B81—1)
where q; = mvlfh = Azznum\|m+6A§suumulm+4uu|\m’ 93 = TA&alfuslleoHull)? ¥ = m’

1 wy 2 1 WN, 2 _ 6(481—3) _ 3(2-8B1)
95 = Fulle \Bo—2+861 ) 96 = 2ufl< \2@3861) ) 17 = BrAelluslle +12ulle’ B = 267 Az [ua]loo + 12/l ’
1

_ 6(Bo—5+4p1) _ w1 2 _ WNg 2
99 = A urelloo 1337 Al [ug [eo+12[Julloo * 110 = \ B3(Bo—2+880)Melle ) * 111 = \B5@—2B) el ) -

Proof. Take £ =1 on I; and zero on other cells in the scheme (3.4), we obtain

Pt =T+ 114111, (3.10)

where

-n ;LF fLF
1= (pj — 2 j+%+2)\fj_%)

N | =
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1? 6

DDG  A¢t?

1= 17 A (<5 T + 5 o) 4 20 (Ta?), + 0 (), )
2 (—f(z@)w = (e (pu®) + 20, (Z(pu?), +u (I<pu2>)m}j_;)

o 2
M= 7= A (= 3TN,y + G (ruaa(p0) + A6+ 2)us (), + 350 (o)) )
o 2
+A <_A2%(I(pe))rfic + A% {Avtze(pe) +4(3 +7)ua (Z(pe)), + 39u (I(pe))m}j_;>

Since I has exactly the same form as in [39], I > 0 is guaranteed under the condition A < ¢; from the

conclusion therein. Now we expand II as follows,

1 Ny—1 1 2N, —2
= > @7 + 5 S @y
y=2 y=Ng+1

+ Z1Pj+_% + z9pj-1 + 23,0;_% + 24/?;_% + z5p5 + ZGP;+% + Z?PL% + 2zgpj+1 + 29,0;+%7

where

1 1 At A 2
2t 1 =0 — A +
=2 <2(4ﬂ1 )t (ediy 3“‘%) (w4)

5= qen =¥ (;(451 ) Gy 50— 5 48 1A2t; (el + G )y (“j%» (v
25 iwz\rq - A2 (;(2 —861) — 2§t (uw);+% - g)\ujj_% + %(2 —861) — ?t (Ua:);r 1+ g/\uj_5> ()
o= o1 =3 (300 = 34450 + 208 - D+ B ey + 5 iy + R 43 (1) - 5ot
27 =\ (;(30 - g +461) — %tj\ (Um);;% + % (Uz);r% - % (UL;)) (UL%)Q

1 1 At A 2
2t 4t =y + o+ -
29 =A (2(451 LR COME! 3“j+§) (“j+%)

We claim that 21, 29,...,29 > 0 under the CFL condition A < min{gs,qs,...,¢s}. In fact, we have the

following estimates

1 1 At A 2
2 (= Ty =" - +
212 A (2(451 2) 6 [tz oo 3|u||00> (Uj,%) >0,
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1 2At 2\
2 (2@ - 881) = 2 sl = 2l ) 1527 2 0,

At2 At A 2
> 2 _ I — = N >

J—3

1 1 At? 2At 2\
2474(4)1 A <2(50 2+8p1) + 12/\HUMHOO+ 3 |tz | oo + 3 |U||00)|u|| >0,

1 4At 4
25 2w, = N ((2 —881) + o llualloe + 3A||u||oo) Jull% > o,

L 1 At? 2A¢t 2\
0 Ziszq_l_v <2(50_2+851)+12)\||um||oo+3|Ux||oo+3|u||oo> [|ul|2 >0,
1 3 At? At A 9
> A2 Z(8, — At A N N
272 A <2(50 2+ 4p1) — 12)\HUMHOO 5 ||t |so 3|u||oo) (uj+%) >0,
1 2At 2\
282)\2<2(2—851)—||uw|oo—3||u||oo) (w01)? > 0,
1 1 At A 2
=2 YA -3 (,‘ >
202 0 (50481 - 3) = Gl = Gllulle ) (u75) 20

Similarly, we can expand III as

1 N,—1 1 2N, —
W=7 > @7+ Z
=2 y=No+ (3.11)
+ Zlop s tzupj1+ 212/) 1t 213/) _1 t2up; + Zl5p;+; + Z16P;r+; + z17p54+1 + ZISP;+37
2 2 2 2 2 2
and z19,...,218 > 0 under the condition A < min{qz,gs,q9,q10,¢q11}. The expressions and estimates of
210, - - - , 218 are similar to those of z1,..., zg, thus are given in Appendix A.3.

By the same arguments as in the scalar cases, we have II,IIT > 0, provided the positivity of p™. Since

ﬁ?“ = I+ II 4 III, we finish the proof by collecting the results for I, II and III. O

The remaining task is to preserve the positivity of internal energy of cell averages of the solution, i.e.

e(ﬁ?“) > 0. We have the results as follows.

Theorem 3.2. Given u" € G, the specific internal energy of the cell averages e(Q ”H) j=1,...,N of

scheme (3.4), (3.7) and (3.8) are nonnegative under the CFL condition (3.12):

y+1 : (p;+1)2 (p;r+%)2
=2a2(y—1) 5 o, o, [ (8.12)
v 7+2 ]+2
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where

= (<2E- sy (17 + @l 1) + 207, (171 + @uaal 2, 1)
(\ e+ Quaalfl 1) (15, + Quaal iy, )
F@ (172, 1+ uaal 2, 1)
+<2|m;+%|+3+2>(| Lo+ QA |)>
and
cr Aj((mnw D (7 @aal i) 20,y (1741 + @uaal i)

(\ alr@uaalfl, ) (172, +Quaclf )
ol (12, @an,)

+
@t 4 ) (172,14 Qi) 2 |)>

Proof. Take £ = 1 on I; and zero anywhere else in the scheme (3.4),(3.7) and (3.8), we can obtain the

following vector equation satisfied by the cell average of u"*! on I;,

J**

Wt =y A (B A+ AT ) A (BT Ay AR )

where f}f% =1 (f( ) + f(ut 2) -« ( ;_% - uj.;%)) ya = ||(Ju]+¢)||oo, s the standard Lax-Friedriches

flux, which is the leading term in the total flux constructed in the LWDG scheme (3.4)-(3.8), f'j+%

( f Y ch2+ L f3 ) and f]+2 ( f! HEE f]2+ L f ) are the remaining second and third order terms contained
in the flux of (3.5), (3.7) and (3.8), in which the abbreviated terms can be found in Appendix B.1, respectively.

Similar to [39], we have the decomposition

2N,
_ R . al al _
u;”l: E Oyu” 4@y _ uf1+wQN,1 1— - u.
w1 J— J+3
7=2

WaN, 1
+ 5 (“j+; LU G At'ﬂ‘*%))
2 ot 2 50.0)
+5 (“j_; R % (s + M”))
+ 5 (“f—; F ot (B s Mﬂé))



Since Wy, > 0,7y =1,...,2N;,— 1 and (1 —

Zi‘), (1——22_) >0 from the CFL condition (3.9), by convexity

WaNg—1
of G, it suffices to show

1 At/ ;
+ +
wh, +—f(uf ) x = (B, 1 ad,, ) e

* . € G. For simplicity, we omit the superscripts and subscripts in the following proof.

rovided u’
1% j+1

Using the equality p?e = pE — $m?, one can calculate that
1 At /= -
2 — E—
e (ui ~f(u) £ = (f+ Atf))
Ty P Sk ) B (N 2 ((1 + YHp+ Ep)
a?(y—1) 2 a a e
At i3 u At? o 1\ ( 73 73 LAE 722

£ (P atf) (L D)p) + =5 (F + AP + ALfY) = S (72 + Atf?)

+ A4 Ay ((1 £ Yt lp)
8] @] @]

Y+l 5
2302 —1)" CA,
where
_ Az 71 F1 73 £3
¢ ==2 (@B +p) (17 + @uael 1) + 20 (1) + QAal )
Az /-~ . ~ .
+ @ =" (171 + @uaal M) (171 + Quaal /)
a
1 Az /= 22\ 2
3@ (1714 Quasl )
b 2 72
+@m| +2) (172 + Qaalf2])).
Under the CFL condition (3.12), we can get the positivity of p%e, which finishes the proof. O

Collecting the above two theorems, we reach our final result.

Theorem 3.3. Given u”™ € G, we have ﬁ?'H €G,j=1,...,N for scheme (3.4), (3.7) and (3.8), under the

CFL conditions (3.9) and (3.12).

3.2 The Euler equations in two dimensions

Consider the Euler equations in two space dimensions

w + f(u); +g(u), =0, (3.13)
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where

with

P pu pv
2
m pus+p puv
u= , () = , g(u) = ,
n puv pv? +p
E (E+ p)u (E +p)v

1 1
m=pu, n=pv, E=gpu’+pv*+pe, p=(y-1)pe,

in which v and v are velocities in = and y directions, respectively, and m and n are momentums in = and y

directions, respectively.

Direct computation gives the expressions of pg, pir and pyy as follows:

Pttt = —

po = —(pw)a — (o), (3.14)
pre = ((0u?)e +3(pe)a) , +2 (puv),, + ((00?)y +(pe)y), » (3.15)

FyvUzz(pe) + (F(3 + 7)us + '3’27’11)(!)6)1 + 3'3’“(/76)90&6)1

- (vyy(PUQ) + 2vy(/w2)y + U(Pvg)yy

+Y7vyy (pe) ( (3 + 7)”14 + 9 Ux)(pe) + 37U(pe)yy)
(’y’yevm +5(y + 3)exv, + 61)u + 12uu, v, + 3yvey, + 3u? Vpz + OUVUL, — ’?2uyem) p)y
(3.16)
(69ves + 4(y + 3)evy + 6u(uv, + 2vu,) — ’y2uye) pw)y

(’y'yeuyy + (v + 3)eyuy + 6uv + 12vuyvy + 3Jueyy + 302 Uyy + 6UVVy, — '3/21)1;69) p)/ch

= (
=
— (33 +u*)v)paa),,
= (
=

(65uey + 4 (v + 3)euy + 6v(vuy + 2uvy) — Y vee) py)

= ((3( Fe +v?) )pyy)

where 4 = v — 1. Note that there are a lot of ways to expand ps, among which we choose the one that

avoids the appearance of mixed derivatives in the LWDG scheme.

Moreover,

=B+ B}, my=B>+B,, mu=DB)+B),

=C, +C§7 ny = C3 +C;7 ny = Ch +CS7
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and

E,=D,+D,, Ey=D}+D,, FEuy=D)+D,,

where B!, B2, B3, B*, B>, BS, C',C?,C3,C*,C%,C% D', D?, D3 D* D5 DS, are shorthand notations intro-
duced for convenience of later discussion. For the full expressions of my, mys, Myse, Mgy Nty Ngge,and By, By, By,
see Appendix B.2.

The positivity-preserving LWDG of p at time level t" is to find p"*' € W, s.t. V€ € W, the equation

(pn+1?€)Ki,j :(p?g)Ki,j + At(pu7£x)Ki,j + At(pv’gy)Ki,j

2
_ A;f((mﬂ)z +9(pe)e + (puv)y, &) K,
A2 .
— T((pv )y +Y(pe)y + (Puv):rafy)Ki,j (3.17)

holds for i = 1,2,..., Ny, j = 1,2,...,N,. Fi 1

2 _ 0 Al
Firys =Fiy s+ Fiigp (3.18)
and
A _A0 A1
Gijet =G 1 G0 (3.19)
where
~ 1 At ——— DDG At _—— DDG
Fﬁr%d :{PU}H%,]‘ - 5042[P]i+%,j - 7(1(:0“2))1”%,]- - 77(1(/)@))9;”%,]-
At?
+ T{um(mf) + 2uy, (I(qu))z +u (I(pUQ))m}H%,j ) (3.20)

4 20 e (pe) + (3034 1)+ 4704) (Z(00)), + 350 (Z(00), )3

- 1 At At?
Fly = —50ullivgy = 5 {pyuwo + pluyv +uvy)}t + == {Ap + A%y + A%py, }
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1 o0 At —— DDG At —— DDG

G?JJF% :{Pv}z’,ﬂ% D) y[p]i,jJr% - 7(I(P02))yi’j+% - 7?(1(06))%%%
At?
+ T{vyy(pvz) + 2v, (I(pUQ))y +v (I(pvQ))yy}i,‘H% 5 (3.21)
At?

+ =5 {ivuy(pe) + (VB + 7)oy +5us) (Z(pe),, + 390 (Z(pe))yy bijvs

1 1, At A2, 5 6
Gw+2 = —iozy[P]i,ﬁ% - T{pxuv + p(uvg + ugv)} + 5 {A% + A%py + A%pys}
in which af = ||(|u| + ¢)]]oo, 042 = ||(Jv] + )]0, a;,a; > 0, and

Yyeuyy +Y(y + 3)eyuy + 6uv + 120Uy vy + 3Yuey, + 3v? Uyy + 6UVVy, — &%Iey)

69uey, + (v + 3)euy + 6v(vuy, + 2uvy,) — ;727)9&)

= (
(
(3(5e + v*)u)
(vvevm +5(y+ 3)esv, + 6vu + 12uu, v, + 3Jver, + 3u? Vpr + OUVUL, — ’y2uyez)
( Ave, + (v + 3)evs + 6u(uv, + 2vuy) — 'AyQuye)
A® =(3(Fe + u?)v)

The variables m, n and F are discretized by the standard discontinuous Galerkin method with the first

order flux terms adopting the Lax-Friedriches flux, in which the viscosity constant a, = af + al for the

vertical cell interfaces and oy, = ag + 0411/ for the horizontal cell interfaces, and high-order flux terms adopting

the average flux, i.e.

(mn+17§)Ki,j :(mﬁg)K'i,j - At(Bl’fl)Kl‘] - At(327£y)K¢ j

At? At?
- 5Bk, — 5 (B'.&)x.,
At3 At3
- T(BS’&E)KLJ' - 7<B6 gy)
Yit} L 4y Ao -
+ At {B }—i—ozx[m]—i-?{B }—i—T{B } f(xH%,y)dy
Yi-g (3.22)
Yivd At At?
— At — (1 y)dy
YL

+At/ e

i—

1

2

Tl

fAt/ :
xT.
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(nn+1’§) K ; (’I’L g) - At(cl7§I)K1,J‘ - At(027£y)K'i,j

At? At?
- 7t<c3,fz>m,j - S(C &)
At At
- S (O 6k, — S (C )k,
cac [T (0 vl + 7{03} " {05}) € 1 )y
Yi-} (3.23)
Y+l
—ae [ (10 + skl + FHEY + BHEN) ety
Yl
m’+% A 2
o[ (102 + aylal + GO + SHCY ) elanny, s
—ae [ (10 + gl + HEY + BEHCY) o o
and
(B, )k, =(E.O)x,, ~ AD" &), — MD 6,
At? At?
- S (D6, — S (DL 6K,
A3 A
- S (D% )k, — T(D%y)m 7
vl 2
rac [T (01 +audsl+ 5D + S0 sl iy
Y-} (3.24)

-4

N /;”% ({D?} oy lE]+ 5D + =

3 At At?
fAt/ " <{D2}+ay[E]+2{D4}+6

i—

)

_ At /yy”% ({Dl} + o [E] + %{D?’} - 6{D5}) §( 1 y)dy
)
)

1
2

Similar to the one dimensional Euler equations, we have the results for positivity of p"*! as follows.

Theorem 3.4. Given u™ € G, the cell averages p?jl, i =1,...,Nz,5=1,..., Ny of the solution of scheme

(3.17) are nonnegative under the CFL condition (3.25):

)\z S min{Qla Q3}7 Ay S min{Q27 Q4} (325)

where the definitions of Q1,...,Q4 are given in Appendix A .4.

24



Proof. Take { =1 in K; j and zero on other cells in (3.17), we obtain

it =T+ 41 +1V, (3.26)

where

- o i—5,]
2 2
]'—n 1 Yj 2 A1 UJ*% A1
II Z 2,7 - AIA /yj Fz+l’jdy+)\IA yjil FZ*%’jdy7
2 2
L L[ L[ g
III* 4/)1] )\yA / Gi’j+1dx+AyA7x . Gl‘]i%dﬂf
-3
I dotr,—— [Per L
V= 4Pm yA Gl thgg |G e

Tt suffices to show I, II > 0 under the CFL condition (3.25), due to the symmetry in the x and y directions

One can observe that I can be decomposed in the form of convex combination

1 2N,—1
1= &y Hy,
y=1
where
2N,—1
= > @ = ANE (i) H AN ED L (g 0n),

Notice that H, has the same structure as (3.10). Thus I > 0 provided A, < Q1. We omit the proof since it

is almost the same with that of the one dimensional Euler equations
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The expressions of zy,...,

As for II, we have the expansion as follows.

2N, —22N,—

n-g > zwﬁp

+ap(r,_ 1,y ) + e

+ Lyt
+ z4p(xi7 LY

1
2

)

+ Z7p<$;+%

_1
2

+210p(@], 10y 1) el 1) + 2eel Ly

Ng—1
+ Z Ws213,8P(T;_ 1ay[3
p=2
Ng—1

+ Z @5Z14,5P($j+%71?ﬂ) +

p=2
Ng—1

+ Z wﬂzls,ﬁp(ﬂc;%,ﬂﬁ) +

B=2
Ng—1
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(3.27)

216,83 and their estimates can be found in Appendix A.5. The conclusion is

that all coefficients of point values of p™ appearing in (3.27) are nonnegative under the CFL condition (3.25),
which implies the nonnegativity of II. Similar arguments also apply to III and IV.
Since ﬁz;-rl =14+ I+ III + IV, we finish the proof of positivity of ﬁ;’jl by summing up the inequalities

of I 1L IIT and IV. O

It remains to show the positivity of specific internal energy of cell averages. Similar to Theorem 3.2, we

have the result as follows.

Theorem 3.5. Given u” € G, the specific internal energy of the cell averages e(ﬁz;'l),i =1,2,...N,,j =

1,2

g Ly eeny

N, of scheme (3.17),(3.22) ,(3.23) and (3.24) are nonnegative under the CFL condition (3.28).

— A \2 + N oN\2
TdaZ(y—1) is | Oz 1,08) Clx) 1, 0p)
i “ra (3.28)
1 p(i'a7y'7 1)2 p(‘%onyﬂ» 1)2
A\ v+ min{ its Jjt+3 }
Yy = L ~ — ) < )
40412/('7— 1) ] D(:L'Oéaijr%) D(xavy;;%)

where the definitions of the constants are given in Appendix A.6.
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Proof. By taking £ = 1 on K; ; and zero anywhere else in (3.17), (3.22), (3.23) and (3.24), we have the

decomposition of ﬁ?;l in x and y directions:
,

where

where FH%,;‘ = f'gf%’j + Atf'H%,j + At2f'i+%’j, Gi7j+% = QZEJF.JF% + Alg; 1+ At2gi’j+% are the total fluxes
of LWDG defined before, f}féyj,g£§+% are Lax-Friedriches fluxes, E%J,gi,ﬂ% and fi+%,j, gm-_% are the
second and third order terms in the total flux.

By symmetry and concaveness of the internal energy pe, it suffices to show pe(I) > 0. We can decompose

the term I as

1 2N, —12N,—1 2N,—1 2N,—1
=3 D> @adpu™? = > GpF (w1 s) + A Y GpF (i1, 1)
a=1 B=1 B=1 B=1

L 2Naz1
=3 2 “sHs,
p=1

where Hy = S0 7 dque? — 20, (B, + Ay + A2F ) +2x, (B, + A,y + ACF,

a=1

)

Following the same lines as the proof of (3.2), we can show pe(Hg) > 0, which implies pe(I) > 0 O

Nl=

Collecting the above two theorems, we reach our final result.

Theorem 3.6. Given u" € G, we have ﬁ?jl € G,i=1,...,N;,j=1,...,N, for the schemes (3.17),

(3.22), (3.23) and (3.24), under the CFL conditions (3.25) and (3.28).

Remark 3.1. To this end, we would like to comment on the CFL conditions obtained in this paper. These
conditions are not optimal for bound-preserving since the splitting of cell averages in the proofs are just for
the ease of writing and the bounds may not be sharp in some of the estimates. Moreover, the expressions of
the CFL conditions are too tedious to be coded up in practice. Therefore, we actually take the CFL conditions
of the bound-preserving Euler forward DG schemes derived in [0, 39] as the initial guess in practice, since

the Euler forward methods are the first order approximation of the LWDG in our work. Once the initial step
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size is not small enough to obtain boundedness of the cell averages, we rewind the computation back to the
beginning of the time step with a halved step-size of time. The value of the theoretical proofs in this paper
is that we can be guaranteed to obtain bound-preserving cell averages with finitely many halvings of the time
step-size.

We also want to note that, for simplicity, we take the viscosity parameter in the Lax-Friedrichs flux to be
global in all proofs. However, the local Laz-Friedrichs fluz can be used in the bound-preserving technique as
well. In practice, the global Lax-Friedrichs flux is more dissipative, thus it may preserve the bounds of target

variables more easily, but may result in a more smeared solution.

4 Scaling limiters

In the Sections 2 and 3, we have constructed the maximum-principle-satisfying and positivity-preserving
LWDG schemes for hyperbolic equations of scalar and system cases. The cell averages of the target variables
fall into their physical bounds under appropriate CFL conditions, provided these bounds are satisfied by the
entire solution at the previous time level. To close the cycle of the algorithm, it remains to use appropriate
scaling limiters to achieve the bound-preserving for the entire solution.

We adopt the following maximum-principle-satisfying limiter for scalar conservation laws. Given v € V'

with m <u; < M,j=1,2,...,N, define the modified solution & € V' as follows:

M —a, uj—m}
)

() = 0 (u(x) —u;) + a5, 0; = min{l’ M; —a;’ a; —m;

M; = I;lefxli;uj(x), mj = géilrjl_uj(x), j=1,2,...,N.
It is clear that the modified solution @;(z) € [m, M],j =1,..., N and it preserves the cell average. Moreover,

it was proved in [38] that such a limiter does not destroy the order of convergence, i.e. ||u—1||o = O(AxF*+1),
where k is the order of polynomial space V', which is 2 in this paper. In practice, one usually take the max and
min in the definition of M; and m; only over the quadrature points, i.e. M; = max;< <an,—1u;j(Z), m; =
ming<y<2N, -1 Uj (Z,), as we only need to control the values at quadrature points. Such a treatment does
not affect the accuracy and cell average of the modified solution, as indicated in [40], and we shall use this
definition in the numerical section.

For the solution u = (p,m,E)T € V x V x V of the Euler equations with u; € G,j = 1,2,..., N, we
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adopt the following limiting process which is introduced in [39] and modified in [34]

First, enforce the positivity of the density function p by,

N _ _ . Dj .
i(x) =02 (pi(x) — p;) + pjs szmln{l,_ - J ~ }, =1,2,...,N.
p]( ) 3 (pJ( ) p]) Pj j pj—m1n1§7§21vq71p(m,y) J

Then let 0 = (pj, m;, E;)T and define

_ . - e . pe(u;) } .
u;(x) =65 (a;(z) —u,;)+u,;, 05=minql, — - — , =1,2,...,N.
() = 650y () = 05) + 85, 6 { pe(;) — miny <y <on, -1 pe(;(2y)) ’

It follows from the concaveness of the function pe(u) that 0;(z,) € G,v=1,2,...,2N, — 1, and also it
does not destroy accuracy of the solution, see the detailed proof in [39] and [34].

The above limiters are demonstrated based on one space dimension but can be directly extended to multi-
dimensions. In implementation, to enhance the stability of algorithms, we can set a threshold e = 107!° and
let @; = u; if M —a; < € or u; —m < ¢ for scalar conservation law, and u; = u; if p; < € or pe(u;) < € for

the Euler equations.

5 Numerical tests

In this section, we demonstrate the accuracy and effectiveness of the third order maximum-principle-satisfying
and positivity-preserving LWDG schemes by ample numerical tests. The tests are presented from scalar to
systems and from one space dimension to two space dimensions with an order of increasing complexity. Most
of them can be found in [40, 39, 38, 34].

We have tried both global Lax-Friedrichs and local Lax-Friedrichs fluxes in simulations. The plots of
their solutions are very close. However, the accuracy and order of convergence of the global one may be not
as good as the local one for some nonlinear problems when the order of DG polynomial space is even, see [5],
which is our case. We demonstrate this phenomenon in the tests for Burgers’ equation. For all other tests,
we only present the results computed using the local Lax-Friedrichs flux to save space. In all the tests, we
take the parameters Sy = 1,5, = % in the DDG fluxes.

As mentioned in Remark 3.1, we take the initial guess of CFL numbers in our tests the same as the
bound-preserving Euler forward DG schemes [40, 39|, and rewind the computation back to the beginning of
the time step with a halved step-size of time if the cell average of solutions exceed their bounds. We report

the number of times that the rewinding happens, together with the total number of time steps in each test.
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As we will see, the actual CFL conditions of LWDG are almost the same with that of the bound-preserving

Euler forward DG schemes in most cases.

5.1 Scalar conservation laws

Example 5.1. We solve the linear equation us + u; = 0 in the domain Q = [—1,1] with periodic boundary

conditions.

To test the accuracy, we take the smooth initial condition ug(x) = sin(wx) and the terminal time T = 1.

To show the effect of mazximum-principle-preserving, we adopt the discontinuous initial condition

and take the terminal time T = 100.

1, —-1<z<0,

The errors and order of convergence of the problem with the smooth initial condition are given in Table

1, from which the third order accuracy can be clearly observed.

The results of the problem with the discontinuous initial condition is shown in Figure 1, where a com-

parison with the exact solution and the result of the unlimited LWDG solution are given.

maximum-principle-preserving is obvious by comparison.

No rewinding of computation happens in this test.

N | L' error | order | L™ error | order
20 | 2.06E-04 - 5.09E-04 -

40 | 2.48E-05 | 3.05 | 6.38E-05 | 3.00
80 | 3.08E-06 | 3.01 | 7.97TE-06 | 3.00
160 | 3.85E-07 | 3.00 | 9.97E-07 | 3.00
320 | 4.81E-08 | 3.00 | 1.25E-07 | 3.00
640 | 6.01E-09 | 3.00 | 1.56E-08 | 3.00

Table 1: Results of Example 5.1 with smooth initial condition

Example 5.2. We solve the Burgers’ equation u; + (“;)

xT

condition ug(z) = % + sin(x) and periodic boundary conditions.
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051

(a) with limiter

05

(b) without limiter

Figure 1: Results of Example 5.1 for discontinuous initial condition. N = 160. Solid line: exact solution;

Squares: numerical solution (cell averages).

The solution is smooth up to t = 1, when shock appears. We list the errors and order of convergence at

T = 0.3 in Table 2 for both the local Lax-Friedrichs flux and global Lax-Friedrichs fluz, which shows third

order accuracy, and plot the comparison of the numerical solution based on the local Lax-Friedrichs flux with

the exact solution at T = 2.0 in Figure 2.

No rewinding of computation happens in this test.

Local Lax—Friedrichs Flux

Global Lax—Friedrichs Flux

N L' error | order | L™ error | order || L' error | order | L* error | order
20 || 9.05E-04 - 1.40E-03 - 1.05E-03 - 1.46E-03 -

40 || 1.13E-04 | 3.00 | 2.35E-04 | 2.58 || 1.53E-04 | 2.77 | 2.81E-04 | 2.38
80 || 1.37E-05 | 3.05 | 3.23E-05 | 2.87 || 2.24E-05 | 2.78 | 4.60E-05 | 2.61
160 || 1.66E-06 | 3.04 | 4.23E-06 | 2.93 || 3.23E-06 | 2.79 | 7.20E-06 | 2.68
320 || 2.04E-07 | 3.03 | 5.38E-07 | 2.98 || 4.59E-07 | 2.82 | 1.09E-06 | 2.72
640 || 2.52E-08 | 3.02 | 6.78E-08 | 2.99 || 6.43E-08 | 2.84 | 1.66E-07 | 2.72

Table 2: Results of Example 5.2 at T'= 0.3
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Figure 2: Results of Example 5.2 at T = 2.0. N = 160. Solid line: exact solution; Squares: numerical

solution (cell averages).

Example 5.3. We solve the two dimensional linear equation uy + uy +uy = 0 in the domain Q = [—1,1] x
[—1, 1] with periodic boundary conditions.
To show the accuracy, we take the smooth initial condition ug(x,y) = sin(n(z+y)) and the terminal time
T=1.
To test the effect of maximum-principle-preserving, we adopt a discontinuous initial condition
L (o) € -4 4P

up(z) =

—1, elsewhere,
and take the terminal time T = 100.
The errors and order of convergence for the smooth initial condition are given in Table 3, from which the
third order accuracy can be observed.
The results of the problem with the discontinuous initial condition is shown in Figure 3, where a compar-
ison with the exact solution and the result of the unlimited LWDG solution are given, from which we can see
the maximum-principle-preserving limiter works effectively.

No rewinding of computation happens in this test.

Example 5.4. We solve the two dimensional Burgers’ equation u; + (“72) + (%) = 0 in the domain
x Y
Q = [0,27] x [0,27] with the initial condition uo(z,y) = % + sin(z + y) and periodic boundary conditions.
The solution is smooth up to t = 0.5, when shock appears. We list the errors and order of convergence

for both the local Lax-Friedrichs flux and global Lax-Friedrichs fluz, at T = 0.2 under the L' and L> norms
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N, x N, | L' error | order | L™ error | order

20 x 20 | 7.49E-04 - 1.11E-03 -

40 x 40 | 7.99E-05 | 3.23 | 1.29E-04 | 3.11

80 x 80 | 9.71E-06 | 3.04 | 1.61E-05 | 3.00
160 x 160 | 1.21E-06 | 3.01 | 2.01E-06 | 3.00
320 x 320 | 1.51E-07 | 3.00 | 2.51E-07 | 3.00

640 x 640 | 1.89E-08 | 3.00 | 3.14E-08 | 3.00

Table 3: Results of Example 5.3 with smooth initial condition

051

(a) with limiter (b) without limiter

Figure 3: Results of Example 5.3 with discontinuous initial condition cut along the diagonal (z = y) of Q.

N, =160, N, = 160. Solid line: exact solution; Squares: numerical solution (cell averages).
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in Table 4, and plot the comparison of the numerical solution based on the local Lax-Friedrichs flux with the
exact solution at T = 1.0 along the diagonal of Q in Figure 4.

No rewinding of computation happens in this test.

Local Lax—Friedrichs Flux Global Lax—Friedrichs Flux

N, x N, || L' error | order | L> error | order || L' error | order | L™ error | order

20 x 20 1.06E-02 - 5.33E-03 - 1.15E-02 5.38E-03 -

40 x 40 1.33E-03 | 2.99 | 7.67E-04 | 2.80 1.63E-03 | 2.82 | 8.54E-04 | 2.66
80 x 80 1.67E-04 | 3.00 | 1.12E-04 | 2.77 || 2.43E-04 | 2.75 | 1.42E-04 | 2.59
160 x 160 || 2.09E-05 | 3.00 | 1.52E-05 | 2.89 || 3.61E-05 | 2.75 | 2.30E-05 | 2.62
320 x 320 || 2.59E-06 | 3.01 | 1.95E-06 | 2.97 || 5.26E-06 | 2.78 | 3.47E-06 | 2.73

640 x 640 || 3.20E-07 | 3.01 | 2.45E-07 | 2.99 || 7.46E-07 | 2.82 | 4.99E-07 | 2.80

Table 4: Results of Example 5.4 at T'= 0.2

Figure 4: Results of Example 5.4 cut along the diagonal (z = y) of Q at T'= 1.0. N, = 160, N, = 160. Solid

line: exact solution; Squares: numerical solution (cell averages).

5.2 The Euler equations
Example 5.5. We solve the one dimensional problem in the domain Q = [0, 27] with the initial condition
po(z) =140.999sin(z), wo(x)=1, po(z)=1
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and periodic boundary conditions. The ratio of specific heat is v = 1.4.
The exact solution of the problem is
plx,t) =140.999sin(z —¢), wu(z,t)=1, p(z,t)=1 (5.1)

This is a low density problem with the minimum density 0.001. The positivity of density is preserved
during simulation and the third order convergence of density at time T =1 is shown in Table (5).

No rewinding of computation happens in this test.

N L' error | order | L™ error | order

20 | 1.13E-03 - 8.60E-04 -

40 | 1.40E-04 | 3.01 | 1.07E-04 | 3.01
80 | 1.72E-05 | 3.02 | 1.34E-05 | 3.00
160 | 2.14E-06 | 3.01 | 1.65E-06 | 3.02
320 | 2.67E-07 | 3.00 | 2.04E-07 | 3.01

640 | 3.33E-08 | 3.00 | 2.55E-08 | 3.01

Table 5: Results of Example 5.5 at T =1

Example 5.6. We solve the one dimensional problem of blast waves in the domain Q = [0,1] with initial
condition
(1,0,10)  0<x<0.1,
(Po; 1o, o) = 4 (1,0,1072) 0.1 <z < 0.9
(1,0,10%), 09<z<1
and reflective boundary condition. The ratio of specific heat is v = 1.4.

We plot the density of numerical solutions at T = 0.38 for N = 200, N = 400, and compare them with
the reference solution, which is computed by the WENO-5 scheme on a very fine mesh with 16,000 cells, in
Figure 5. Since the positivity-preserving limiter only works when the density or pressure is close to zero and
no other limiters are used to stabilize shocks in this test, we can observe some oscillations in the figures.

In the test for N = 200, there are 8 times of rewinding of computation, among a total number of 6,535
time steps. In the test for N = 400, there are 15 times of rewinding of computation, among a total number

of 13,061 time steps.
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(a) N =200 (b) N = 400

Figure 5: Results of Example 5.6 at T' = 0.038. Solid line: reference solution; Squares: numerical solution

(cell averages).

Example 5.7. We solve two extreme Riemann problems in one space dimension. The first one is a double

rarefaction problem in the domain Q = [—1,1] with initial condition

(7,-1,0.2), <0

(po, uo,po) =
(7,1,0.2), =z >0.
The second one is the Leblanc shock tube problem in the domain Q = [—10, 10] with initial condition
(2,0,10%), x<0
(po, wo, po) =

(1072,0,1), x> 0.

We take the ratio of specific heat v = 1.4 for both cases. In the first test example, vacuum (zero density) will
be generated around the origin in the exact solution. For both problems, simulation will blow up without the
positivity-preserving limiter in the tests.

We plot the density of numerical solution of the double rarefaction problem at T = 0.6 on N = 200 and
N = 400 meshes, and compare them with the reference solution, which is obtained from the exact Riemann
solver [33], in Figure 6. The density of the numerical solution of the Leblanc shock tube problem at T = 0.0001
on N = 800 and N = 1,600 meshes, together with the exact solution from the eract Riemann solver, are
shown in Figure 7, where the y-axis uses log scales. From the figures, we can see that the positivity of density

and pressure in both cases are preserved, and the numerical solutions agree with the exact solution well.
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No rewinding of computation happens in this test.

Example 5.8. We solve the one dimensional Sedov point-blast wave problem [29] in the domain Q = [—2,2]

with the initial condition

g < 4

10712, otherwise.
The ratio of specific heat is v = 1.4.

This example simulates the point-blast in air, which produces very low density after shock. The simulation
will blow up without the positivity-preserving limiter due to the very low density in the exact solution. We
plot the simulation results of density, pressure and velocity on N = 201 and N = 401 meshes at T = 0.001
in Figure 8.

In the test for N = 201, there is only once of rewinding of computation, among a total number of 7,377
time steps. In the test for N = 401, there is only once of rewinding of computation, among a total number

of 18,661 time steps.

Example 5.9. We solve the two dimensional problem in the domain [0,27]? with the initial condition
po(z,y) =1+40.999sin(z +y), ug=1vy=po=1.

and periodic boundary conditions. The ratio of specific heat is v = 1.4.

The exact solution of the problem is
plx,y,t) =1+0.999sin(x +y — 2t), wu(z,y,t) =v(z,y,t) =plx,y,t) =1.

This is a low density problem with the minimum density 0.001. The positivity of density is preserved during
simulation and the third order convergence of density at time T = 0.1 is shown in Table 6.

No rewinding of computation happens in this test.

Example 5.10. We solve the two dimensional Sedov point-blast wave problem [29] in the domain Q =

[0,1.1] x [0,1.1] with the initial condition

Ray s (@y) €10,Ax] x [0, Ay]

10712, otherwise,
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(a) Density (b) Density

(c) Pressure (d) Pressure

(e) Velocity (f) Velocity

Figure 6: Results of Example 5.7, the double rarefaction problem, at T'= 0.6. Solid line: reference solution;

Squares: numerical solution (cell averages). Left: N 3—8200; Right: N = 400.
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Figure 7: Results of Example 5.7, Leblanc shock tube problem, at 7' = 0.0001. Solid line: reference solution;

Squares: numerical solution (cell averages). Left: N 3—9800; Right: N =1,600.



600

400

200

-200

-400

-600

2
(a) Density
x10°
d b
‘ ‘ ‘ ‘
-2 15 1 -0.5 0 0.5 15
(c) Pressure
d
-2 1.5 1 -0.5 0 0.5 15

(e) Velocity

(cell averages). Left: N = 201; Right: N = 401.

600

200

-200

-400

-600

(b) Density

(d) Pressure

(f) Velocity

Figure 8: Results of Example 5.8 at T = 0.001. Solid line: reference solution; Squares: numerical solution



Ny x Ny L' error | order | L™ error | order

20 x 20 | 8.64E-03 - 1.23E-03 -
40 x 40 1.37E-03 | 2.65 | 2.12E-04 | 2.53
80 x 80 1.79E-04 | 2.94 | 2.71E-05 | 2.97
160 x 160 | 2.23E-05 | 3.00 | 3.33E-06 | 3.03

320 x 320 | 2.75E-06 | 3.02 | 4.12E-07 | 3.02

Table 6: Results of Example 5.9 at T'= 0.1

and the left and bottom boundary the reflective boundary, and other boundaries the outflow boundary. The
ratio of specific heat is v = 1.4.

We plot the density on Q and its profile cut along the diagonal of 2 at T =1 on the N, = 160, N, = 160
mesh, see Figure 9. The simulation blows up if the positivity-preserving limiter is not used in the test.

In this test, there are 605 times of rewinding of computation, among a total number of 344,226 time

steps.

.

/ 1k
0.5

I 0

(a) Density in Q (b) Cut of density along diagonal (z = y) of Q

Figure 9: Results of Example 5.10 at T = 1. Solid line: reference solution; Squares: numerical solution (cell

averages).

Example 5.11. Consider the two-dimensional double Mach reflection problem with a Mach 10 shock in the
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domain Q = [0,4] x [0,1], with the initial condition

(8, %\/37 —33.116.5), y>V3(x—3%) (post-shock)
(PO; Uo, UO;pO) =
(1.4,0,0,1), y <V3(x—13%) (pre-shock).
The left boundary is the inflow boundary, the right boundary is the outflow boundary, {0 < z < %,y = 0}
on the bottom is the boundary with post-shock condition, {% <z <4,y =0} on the bottom is the reflective
boundary, and the condition on top boundary follows the motion of the shock. We show the results at T = 0.2

on the N = 960, N, = 240 mesh in Figure 10. The results are comparable with the results in [38].

No rewinding of computation happens in this test.

Example 5.12. We solve the two dimensional problem of shock passing a backward facing corner in the
domain = [1,13] x [0,11] U [0, 1] x [6, 11], with the initial condition

(Psy Us, Vs, Di ), @ < 0.5 (post-shock)
(p07u07v07p0) = )

(1.4,0,0,1), x>0.5 (pre-shock)

where (px, Uy, Vi, i )= (7.041132906907898, 4.07794695481336, 0, 30.05945) are taken such that the shock is
right-moving with Mach number 5.09. The boundary {x = 0,6 <y < 11} is the inflow boundary, {0 < x <
1,y=6} and {z = 1,0 < y < 6} are reflexive boundaries, {x = 13,0 <y < 11} and {1 <z <13,y =0} are
outflow boundaries, and the boundary condition on {0 < x < 13,y = 11} follows the motion of the shock.

The density and pressure at T = 2.3 with Ax = Ay = 3—12 are presented in Figure 11. The results are
comparable with the results in [38, 39]

No rewinding of computation happens in this test.

Example 5.13. Consider the two-dimensional astrophysical jets problems with very high Mach number. We
set the domain 0 = [0,0.5] x [0,0.25] with initial condition po(z,y) = 0.5, ug(x,y) = vo(x,y) = 0, po(z,y) =
0.4127. The boundary conditions of the right and top are outflow; the bottom boundary is reflexive; the left
boundary is inflow with (p,u,v,p) = (5,800,0,0.4127) if 0 < y < 0.05, which corresponds to a jet flow of
Mach number 2000, while (p,u,v,p) = (0.5,0,0,0.4127) otherwise. The ratio of specific heat is v = 5/3.

A combination of the total variation bounded limiter [8] and the flux limiter [{3] are used before applying
the positivity-preserving limiter in each time stage to reduce the spurious oscillations where the density and

pressure are far above zero. We would like to note that, the positivity of density and pressure are preserved
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(b) 30 equally spaced contour lines from 1.394 to 23.083 for density

Figure 10: Results of Example 5.11 at 7' = 0.2 on N, = 960, N, = 240 mesh.
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(a) Density in (b) 20 equally spaced contour lines from 0.066227 to 7.0668 for

density

30

(c) Pressure in Q (d) 40 equally spaced contour lines from 0.091 to 37 for pressure

Figure 11: Results of Example 5.12 at T' = 2.3.
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during simulation if only the positivity-preserving limiter is used, however, the simulation blows up very soon
without the positivity-preserving limiter. We compute the solution on N, x Ny = 320 x 160 grid, and show
the density and pressure at T =5 x 10™% in Figurel2.

In this test, there are 1,968,558 times of rewinding of computation, resulting in a total number of 356,643
time steps. The unusually small CFL number is caused by the TV B limiter adopted, without which there
is mo rewinding of computation and the CEL number is almost 10 times larger, but the result is oscillatory,
though the positivity is preserved. Since the scope of this paper is on positivity-preserving algorithms, we do

not further study more compatible slope limiters for this example here.
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(a) Density with log scale, lower part flipped from the upper(b) Pressure with log scale, lower part flipped from the upper

o

*

&
IS

&
&

part part

Figure 12: Results of Example 5.13 at T =5 x 10~%.

6 Concluding remarks

In this paper, we have proposed the third order maximum-principle-satisfying and positivity-preserving
discontinuous Galerkin methods for scalar conservation laws and the Euler equations, respectively, based
on the Lax-Wendroff time discretization. The approach here is specified for DG methods with the use of
DDG discretization for the second temporal derivative terms. The main contribution of the paper is to prove
rigorously that, under suitable CFL conditions, the cell average of the unmodulated LWDG scheme at the

next time step is bounded, provided the solution stay in the desired bounds at the current time step. The
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scaling limiters, which were proved not to affect the high order accuracy and mass conservation, can then
be used to enforce the bounds for the whole solution at the next time step, hence closing the loop of the
bound-preserving LWDG algorithm.

Several possible extensions could be made in future works. For instance, it is of great importance to
extend the algorithm to schemes with accuracy higher than third order. It is also meaningful to extend
the algorithm from structured grids to unstructured meshes for geometry flexibility. The 3D case of the

algorithm will also be studied in the future.
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Appendices

A Skipped details of CFL conditions and proofs of bound-preserving

for the scalar conservation law and Euler equations

A.1 Constants in the CFL condition (2.25)

Denote

le = maxm<u<m | f'(u)],

sz = max,<u<m | f7 (1],

MY = maxpy,<y<m ¢/ (0],

M3 = maxm<u<n 9" (u)],

then the constants @)1 and Q2 in the CFL condition (2.25) are defined as:

Q1 = min{q¢}, q3,...,qt}, where

1 _ 1 . A
q1 = 8M1f mln'y w'Y?
ql = 1—4617%
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ql _ 1 2—8B1
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2 4 M{ (Bo—1+4p1)1/2’
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ql _ 1 Ng
6 7 4 Mmf(6-24p,)1/2°

Q2 = min{q?,¢3, ..., q¢}, where
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Define
¢1 = M MY + Qo(10(M — m) M{ MY M + 5(M — m) M M + 20 M9?),

2 2
co = MI MY + Q(10(M — m)M{ MIMS + 5(M — m)MI ™ MY + 2M9 M),
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then Q3 and Q4 in (2.25) are defined as:

Qs = min{q}, ¢3, 43, ¢3}, where

.2
Wi

3 i e
a1 2010l +4Q2c1

2 2(Z;Nqo¢alc+4Q201 ’
1

3 _ wiay
Q3 T 2¢p
A 1
q3 _ YNgYy
4 262 ?

_ 5 4 4 4 4
Qs = mln{‘l17‘]27 a3, Q4}7 where
4_ o
g 2010y +4Q1c2”

4 __ ©10N,

92 = 20N, a;+4Q1c’
4 _ Giop

Q3 - 2¢1

4 _ DNy

q4 - 201

A.2 Coefficients in the expansion (2.26)

For convenience, we introduce the constants
dY = QLLl(f'y)v d; = 2L6(7§7)7 d; = 2LI1(7§7)a y=12,...,2N; - 1,

where L_1, Lo, L1 are the Lagrange basis in (2.11) and {#,,y = 1,...,2N,—1} are the Gauss-Lobatto points

n [—1,1]. It is clear that |d]| <4, fori=1,2,3,y=1,2,...,2N, — 1.

The coefficients 21, ..., 214,58 in the expansion (2.26) are defined as follows.
1 At 1 At
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Moreover, we have the following lower bound estimates for z1,..., 214, under the CFL condition (2.25).

1
22 A, (Ggenad = Ay (MDY + Qa(10001 = m)M{MEME 4 50 )b *A]) + Qut{ M2 ) 2 0

1
2> A (2%@; = Ay (M MY + Q2 (10(M — m) M{ MM + 5(M — m)M{* M) +2Q;M{ Miﬂ)) >0

1
P (QWQNq_la; — Xy (leM{’ +Q2(10(M — m) MY M{ Mg + 5(M — m)M{* M) + QQM{M{ﬂ)) >0

2

Z5

26

27

Z8

29

1 2
_Zwl

V

1
— SAawiat = Ao Qs (M{”Mf + Qo(10(M — m)M{ MIM + 5(M — m)MI* M) + QQM{MfQ) >0

\/

1
391N,y haon, 0= A Qo (MY MY 4+ Qo(10(M —m)MIM{M +5(M —m)M{* M) +2Q2M{ M{*) > 0
1
UJ1W2Nq71_5)\zw2Nq71aglc_)\a:Q2 (M{Miq + Qo(10(M — m) M{ M{ M§ + 5(M —m)M{* M) + Q2M1fMiQ2) >0

\/

1
192N, 1~ Z Aaw1 0~ Aa Q2 (leM1 + Q2 (10(M — m) M ME MY + 5(M — m)MI* M) +Q2M1fM92) >0

4
1
4
1
4
in WaN,—1— ;/\wa ol =2 Qs (M{Mg + Q2(10(M — m) M MIMY + 5(M — m)MI* M) + 2Q2M{M92) >0

1 1
19BN, 1 5 Aawan, 105~ AsQa (M{Mf +Q2(10(M — m) MY M{ Mg + 5(M — m)M{* M) + QQM{Mlﬁ) >0

v

53



1

210 > A (2w1a - (Mfo + Qo (10(M — m) M MM + 5(M — m)MI* M) + QQM{MgQ ) 0
1 farg Fargnrg 925 rf fara2

2 2 A gwn, o M MY + Qu(10(M — m) M MY M + 5(M — m) MY M) + 2Qo M{ M
1

212 > A ( wan,_1al — X (M{Mf + Q2(10(M — m)M{ MIMS + 5(M — m)M{* M) + QQM{MIQQD >0

and 2138, 214,3 > 0,V5.

A.3 Coefficients in the expansion (3.11)

The coefficients of the expansion (3.11) are
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4 = 6, 0+ 30, QoA 1y 0+t ) o+, QY | A oe+12Q2 (Jlut] oo + G Al sl oo + 2221 45

( (I
¢h = 600} + 301 QuAal| (v + vita)lloo +&1QFAT? [ Aulloe + 121 (Iluvl oo + G Ayl As] oo + G| el )

) = 60N, oy +30N, Q1AL (Vautvue)||so+On, QT AL || Ag]|0o+12Q1 ( [Juv|[o + %Aw\|A5||Oo + 2321 ||A6|\oo)
then

Qs = min{q}, ¢3, 43, ¢i}, where
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A.5 Coefficients in the expansion (3.27)

The coefficients z1, ..., 216, in the expansion (3.27) are defined as follows.
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Under the CFL condition (3.25), we have the following estimates.
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A.6 Constants in the CFL condition (3.28)

The constants appearing in the CFL condition (3.28) are defined as follows.
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Dlaryf, ) =1 (@B ) + 00y ) (17 Fasvya ) + Q2B sy

#2000y, 2) (174G )| + QoY (a1 3)])

A N , - y
Qe (17 (e )| + QA9 (43 (\fm,yﬁ%n + QoA (a1

Y

1 A = , 2
5@ (1P )|+ QoI P y)) o+ 5202 L (172Gl + Qoo Py y))

Y

2fm(@a, 7, )| (172@ar e g) | + QeI (Gary144)])

P(Easyl, 1)
+2(|n(imyj+%)l+7) (|f3(:ba,yg+ )| + QoAyl| P (#a, yjus )I))

Qy
B Derivatives in the Euler equations

To simplify the derivation and coding, we need to compute a lot of intermediate variables before finally
obtaining my, my, My, (and ng, ny, ng in 2D), and Ey, By, Eyyy to be used in the Lax-Wendroff procedure.

The expressions of the intermediate and target variables are given as follows.

B.1 One dimensional space

P )
Uy = % - uzza
gy = —230n Mo (2p  Lag)
Pt = —Mg,
my (’yE +3 Srmgu + 3~ Vmugg)
E, = (WE u+yFEu, — 7mru - 'ymuug;)
w2,
Pt = —Mgy,
Mty = — ('A}/Ednx + 37T’y’rn»acazcu + (3 - V)mxux + %Tvmumz)a
E;, (nymu +2vEuy + YEUz, — 2mmu — 2dmzutty, — Wnu 'ymuum)
Uty = % - mpz2pt - mtpx;;mptz + Zuzgpt7
Pt = — Mg,
mu = — (YBw + S mupu + 232 mauy + 25 myu, + 25 mu, ),

FEy =— (’yEmu +vE up + vE Uy + yEU, — mmu2 MUt — YMpUUE — MU U, — 'Aymuutz>,
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2 2p
Uy = — mtpt+mff _|_u(p _%),

‘H\:

Pttt = _(mtt)wa
mue = — (YEu + 35 myu + 252 muy, + (3 — Yymeuy)
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x

B.2 Two dimensional space
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Myt = (VEtt + S5tmygu +32 Stmug + (3 — y)mius — %nttv - %nvtt - VNtUt)
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N = — (MU + Nt + 2n4u)

(’YEtt MU — Zmutt Amyuy + 2 Stngv + 7m)tt + (33— 'V)ntut)y
By = — (’yEttu +~vEuy + 2vEpuy — mttu2 Am(u? + uug) — Q’ymtm;t
—%mttiﬂ — Am(v? + vvy) — 2&mtm}t>m
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Y

C Maximum-principle-satisfying LWDG schemes for scalar conser-
vation laws in one dimension on nonuniform meshes

We have discussed the bound-preserving LWDG schemes on uniform meshes in Sections 2 and 3. In this
appendix, we show how to extend the technique to nonuniform meshes. For simplicity, we only consider
the scalar conservation law in one space dimension, but the same methodology can be adopted to construct
bound-preserving schemes for the Euler equations and multi-dimensional spaces.

We first introduce a direct extension of the maximum-principle-satisfying LWDG from uniform meshes,

L~

3 < 2,Vj. Another way of

S . i . . Az,
which is simple and efficient but has constraints on mesh sizes, i.e. %
J

extension is based on the composite Gauss-Lobatto rule, as used in [2]|, which removes the constraints on

meshes but is less efficient. In practice, we recommend to combine both in the way that the composite

A%H

Gauss-Lobatto rule is only used on the cells where it is necessary, i.e. the cells that violate % < 2.

C.1 A direct extension of the maximum-principle-satisfying LWDG scheme
from uniform meshes
We define the DDG flux on nonuniform meshes as

DG _ g [ L+2

u1j+% = ’]+2A —i—{um}jJrl +61]+1Ax [uajw}j+% (Cl)
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where Al‘j+% = min{Az;, Az;;,} and 60’j+%7ﬁ1,j+%7j =1,2,..., N are penalty parameters satisfying (C.2)

for the purpose of maximum-principle-preserving.

1 A.’BJ ijJrl 1 . Aa’,‘] A.Z'jJrl .
- T . — A
SmaX{AQ:j+%’ij+;}<ﬁ1’J+%<4mm{Azj+1 AIJ_,’_I} I

ij+1 Acly 30z, Aafyy : 2
Pojry > max{z Ar,  PLtiTAZ 2R, 74&1’”%@}’ Y

Note that to make sense of (C.2), the nonuniform meshes must have a mild change in mesh size, i.e.
3 < S <29

Similar to (2.9), we have the expansion of the DDG flux on nonuniform meshes.

Lemma C.1. Foru €V, the DDG fluz u, uxH_ “ defined in (C.1) can be expanded on nonuniform meshes as

48111 Aty y 2 8By Biey

1
—DDG B + _ ,
Yeits (Qij A3 )uﬂ—% + Ax; A3 s
L Pojey 3 451“%ij+%) - Pojrs 3 481131841 it
Azjy1 o 20z, Ax? its Arjpr 28z54 Am§+1 i+s
2 851,j+%Al’j+%)u} P AT e A AW
Az Az, T AT Az, it}
(C.3)

The proof follows from direct computation and the fact that u is piecewise quadratic.

We now state the main result.

Theorem C.2. Given m < u™ < M and the DDG flur (C.1) with parameters (C.2), the cell averages

@?H,j =1,2,..., N of the solution of scheme (2.4) are bounded between m and M under the CFL condition

(C.4):
At Smin{ql,QQ,...7qlo}7 (04)
where min; Ax min. {451 1A% 13 AT 1, min, { 4B, ;1 A J+177Aw]+1} —minl{QAz] 86, ,418%,,1 |
T = 2hiy Wity AL, g2 = iy S(M—m)My+ 20, 10 98 = MM 5=, 2ar, 1 44 = MM\ S0 =) Mo+ S0,
Ax
Az J+%
=5 _ 3 2
. 28wj+1-86, ;, 1Az, 1 . Bo i+ 501 S+48, ;11 7 N
o 20(M —m)Ma+3 M1 b 4o = min 15(M —m)Mz+5 M1 zj},
Az
ATjy1 i+
ﬁo,j+% Aijri 2448, J+3 Azﬁj
. 1 _
q7 = it 15(M—m)Ma+3 My Tjt1)s
3
1 : 20.)1A’I'
gg = py, My ~ Amj Y 7
3(’80’1**% 3448, -1 TBw; 2)+3(48, gt+d Tf‘%)

1
2
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1 . 2quAm2
q9 = py, Iy A Az ]+ )
3(2-88, , )~ 3288, |,y ot

1 . QUJqu 1Aa:
gio = 3, M Az &x

Aw, 3 i+s 2 _ 1
3(507j+% A'avjﬁ7§+4ﬁ1,j+l - 2 )+3(4ﬂ1 J7% Am _ 773 5)
2

Proof. We have exactly the same results as in (2.13), (2.14), and (2.15), except that the coefficients in (2.15)

are now
Ax»_fA:c 1 Az Az Ax?
] 2= 4 J i 1 I YAt u, =2y J e I
f -1 <( ﬂl,]** ij—l 2A$j—1) f ]—lu Al’] 1 f 2A:c
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J opr2t J J )73 J
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2
_ Az; 3 Azj_y
o J er2 J J”3
=g ¢ —%(50,3'—5ij_1 35 +461,J—§ Az, )
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BRI ((50]_2&5 ot A ZH?’Atf SR A R R E
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A2 Az.. 1 1 /\2 Az, 1 ]
J g2 Jjt+ "n— - g /2+ J+
-5 <(451,j+;mj2—2)+mf j+%“%+%+ fm) 2 W T )
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4 D2t ) j_ _ 2 J 483, . 2 3At"+1T+ J i
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under the CFL condition (C.4).
Since IT can be written as a half of a convex combination of point values of u", we still have %m <II< %M

as before, which implies m < ﬂ;‘“ <M,j=1,2,...,N O

C.2 A maximum-principle-satisfying scheme on arbitrary nonuniform meshes

To construct the maximum-principle-satisfying scheme on arbitrary nonuniform meshes, we shall first in-

troduce the composite quadrature rule to be used. Define Aa:jJr% = %min{ij,ijH} and denote by

=u(z;_1 — ij_%),ﬂ? =

>
8
Qz
<lw
I
=
8

i + %A:cj_%),ﬁ? = u(w;_y +Az;_1), 4] =

u(zjy 1 —ij+%),ﬁ§?‘ = u(z; 1 — $Az; | 1), al = u(xj+% + %Azj+%),ﬂ§’ =u(z;, 1+ Az, 1), for the cell I;.
We adopt the composite Gauss-Lobatto rule as follows: The interval I; is divided into three subintervals,

Le. Ij =[z;_1,@; 1 + Axy

j JUlz;_1 + Az g @0 — Awj iU [z 0 — Az a2, and each subin-

J+

1
2

terval is assigned with the 2/V, — 1 Gauss-Lobatto quadrature rule, which results in the quadrature points
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o~ s : i g : A
{#],%3,... 7956qu5} and quadrature weights {&f,w?, ... ,wGNr{)} on the interval I; as follows,

iy + (F57) Ay

a=1,2...,2N,— 1,

N

@, = Ti 1 —|—ij7% + (w) (ij —Aac];% —ij+1) o =2Ng,..., 4N, — 3,

2 2
21— Axy o 4 (ot th) Ay a=4N,—2,...,6N, — 5
i+3 i+3 2 J+3 = *Vq y e+ ey 0lVg J
and
Amj,l .
ot Qa a=1,2,...2N,—2
A:vj7% . Amj7% Aa:].+% .
Az WaNg-1 1= Az; Az, w1 o= 2Nq -1,
”‘j _ A.’I)j7% Al‘j+% .
Wy = 1— Az, — Az Wa—2N,+2 o= 2Nq, ce ,4Nq —4,
Azx. 1 Az, 1 Az, 1
_ i3 Jit3 ~ itg A _ _
<1 7AIJ Az, ) W2N, -1 + Az, w1 o= 4Nq 37
Azy1
Az; wa_4Nq+4 « :4Nq 72,...,6Nq 75,

respectively, where {Z,, =1,2,...,2N; — 1} and {@q,a =1,2,...,2N, — 1} are the Gauss-Lobatto points
on [—1, 1] and weights satisfying Ziﬁ"l_l Wa = 1.
We redefine the DDG flux on nonuniform meshes:

__DDG [ul 41
ij+% :60 Az 2

+ {“m}jJr% +51ij+%[um]j+%a (C.5)
Jt+3

where By, 81 are penalty parameters satisfying % < p1 < %,50 > % —481,j =1,2,..., N as in the uniform
meshes.

Similarly, we have the expansion of DDG fluxes for u € V.

__DDG 1 1 ~ - 3 -
Up iyt :ij+; ((2 —4B1)a° + (881 — 2)a® + (—fFo + 5~ 451)Uj+%
2

+(Bo — g 4B,y + (2= 8B)u" + (461 — ;)ﬂ8>

and

—~DDG 1 1 _ _ 3 _
TP =iy (G~ 4808+ (88— 2+ (<o + 5 ~ 48

Nl

1
2

+(Bo — g APy + (2 8B1)a7 + (481 — ;)a‘*)

The main result is as follows,

Theorem C.3. Given m < u™ < M and the DDG flux (C.5), the cell averages 12?“,]’ =1,2,...,N of the

solution of scheme (2.4) are bounded between m and M under the CFL condition (C.6).
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Aj At
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under the CFL condition (C.6).

Therefore, we have m < ﬁ;‘“ <M,j=1,2,...,N following the same arguments as before. O

C.3 Numerical tests on nonuniform meshes

We demonstrate the accuracy and effectiveness of the maximum-principle-satisfying algorithm established

in Section C.1 and Section C.2 on nonuniform meshes.

Example C.1. We solve the linear equation u; + u, = 0 in the domain Q = [—1,1] with periodic boundary

conditions and discontinuous initial condition

and take the terminal time T = 100 to show the effect of the mazximum-principle-preserving.

We solve the Burgers’ equation u; + (“;)I =0 in the domain Q = [0,27] with initial condition ug(z) =
% + sin(z) and periodic boundary conditions, and take the terminal time T = 0.3 to show the accuracy.

For the algorithm established in Section C.1, we generate the nonuniform meshes by adding uniformly
distributed perturbation within [—0.1Az, 0.1Az] on the inner nodes of the uniform mesh. For the algorithm
established in Section C.2, we generate the nonuniform meshes by adding uniformly distributed perturbation
within [—0.3Az,0.3Az] on the inner nodes of the uniform mesh.

The results are given in Table 7 and Figure 13, from which we can observe the third order accuracy and

maximum-principle-preserving effect.
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Figure 13: Results of Example C.1 with discontinuous initial condition at 7" = 100. N = 160. Solid line:

exact solution; Squares: numerical solution (cell averages).
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Algorithm C.1

Algorithm C.2

N | L' error | order | L error | order | L' error | order | L* error | order
20 | 9.33E-04 - 1.50E-03 - 1.19E-03 - 2.37E-03 -

40 | 1.15E-04 | 3.02 | 2.38E-04 | 2.65 | 1.44E-04 | 3.05 | 3.61E-04 | 2.72
80 | 1.41E-05 | 3.03 | 4.09E-05 | 2.54 | 1.90E-05 | 2.92 | 8.56E-05 | 2.08
160 | 1.73E-06 | 3.03 | 5.56E-06 | 2.88 | 2.01E-06 | 3.24 | 9.33E-06 | 3.20
320 | 2.11E-07 | 3.03 | 8.14E-07 | 2.77 | 2.72E-07 | 2.89 | 1.69E-06 | 2.46
640 | 2.59E-08 | 3.03 | 1.04E-07 | 2.96 | 3.23E-08 | 3.07 | 1.93E-07 | 3.13

Table 7: Results of Example C.1, Burgers’ equation at T = 0.3

74



	Introduction
	Maximum-principle-preserving for scalar conservation laws
	Notations
	Scalar conservation laws in one dimension
	Scalar conservation laws in two dimensions

	Positivity-preserving for the Euler equations
	The Euler equations in one dimension
	The Euler equations in two dimensions

	Scaling limiters
	Numerical tests
	Scalar conservation laws
	The Euler equations

	Concluding remarks
	Appendices
	Skipped details of CFL conditions and proofs of bound-preserving for the scalar conservation law and Euler equations
	Constants in the CFL condition (2.25)
	Coefficients in the expansion (2.26)
	Coefficients in the expansion (3.11)
	Constants in the CFL condition (3.25)
	Coefficients in the expansion (3.27)
	Constants in the CFL condition (3.28)

	Derivatives in the Euler equations
	One dimensional space
	Two dimensional space

	Maximum-principle-satisfying LWDG schemes for scalar conservation laws in one dimension on nonuniform meshes
	A direct extension of the maximum-principle-satisfying LWDG scheme from uniform meshes
	A maximum-principle-satisfying scheme on arbitrary nonuniform meshes
	Numerical tests on nonuniform meshes


