
Third order maximum-principle-satisfying and

positivity-preserving Lax-Wendroff discontinuous Galerkin

methods for hyperbolic conservation laws∗

Ziyao Xu†and Chi-Wang Shu‡

Abstract

There have been intensive studies on maximum-principle-satisfying and positivity-preserving methods

for hyperbolic conservation laws. Most of them are based on the method of lines type time marching

approaches, e.g. the Runge-Kutta methods, multi-step methods and backward Euler method. As an

alternative, the Lax-Wendroff time marching approach utilizes the information of PDEs in the Taylor

expansion of the solution in time, hence it is a high order and single-stage method. In this work, we

propose third order maximum-principle-satisfying and positivity-preserving schemes for scalar conser-

vation laws and the Euler equations based on the Lax-Wendroff time discretization and discontinuous

Galerkin spatial discretization. The accuracy and effectiveness of the maximum-principle-satisfying and

positivity-preserving techniques are demonstrated by ample numerical tests.

Key Words: maximum-principle-satisfying, positivity-preserving, Lax-Wendroff discontinuous Galerkin

methods (LWDG), scalar conservation laws, Euler equations.

1 Introduction

Hyperbolic conservation laws are basic tools to characterize the phenomena of flow and transport, e.g. the

Burgers’ equation for traffic flow and the Buckley-Leverett equation for two phase flow as the scalar cases,

and the Euler equations for compressible gas dynamics and shallow water equations for water with shallow

depth as the system cases.
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The scalar conservation laws are known to satisfy the maximum-principle, e.g. for the one dimensional

scalar equation

ut + f(u)x = 0, x ∈ R, t > 0, (1.1)

with initial condition

u(x, 0) = u0(x), x ∈ R,

the entropy solution satisfies m ≤ u(x, t) ≤ M, ∀x ∈ R, t > 0, where m = minx∈R u0(x) and M =

maxx∈R u0(x). Same results also hold for periodic boundary conditions, bounded domain with compactly

supported solution, and higher dimensions.

Similarly, the positivity of certain important physical quantities are satisfied by some hyperbolic systems,

e.g. for the Euler equations

ut + f(u)x = 0, x ∈ R, t > 0 (1.2)

where

u =


ρ

m

E

 , f(u) =


m

ρu2 + p

(E + p)u

 ,

with

m = ρu, E =
1

2
ρu2 + ρe, p = (γ − 1)ρe,

in which ρ is the density of fluid, m is the momentum, u is the velocity, E is the total energy, p is the

pressure, e is the specific internal energy, and γ > 1 is the ratio of specific heats, it is well-known that the

physical solution u ∈ G for all t > 0 if it holds at t = 0, where G is the admissible set of solutions defined as

G = {u : ρ ≥ 0, p(u) ≥ 0} . (1.3)

Rigorously preserving these physical bounds of solutions is of great importance for the robustness of

numerical algorithms, in that once the quantities were out of their physical range, the hyperbolicity of

equations is lost, which often leads to the simulation failure. There have been intensive studies on the

maximum-principle-satisfying and positivity-preserving numerical methods for hyperbolic conservation laws.

In 2010, the genuinely maximum-principle satisfying high-order discontinuous Galerkin (DG) and finite

volume methods for scalar conservation laws were proposed by Zhang and Shu in [40]. The algorithm is

composed of two steps under the DG framework. The first step is to prove desired physical bounds for the
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cell averages of numerical solutions are automatically satisfied by the unmodulated high order DG scheme

with appropriate CFL conditions and numerical fluxes. Then a scaling limiter, which does not destroy

accuracy and mass conservation, are adopted to modify the solution such that the physical bounds satisfied

by cell averages are extended to the entire solution. Based on this simple and general framework, the high

order maximum-principle-satisfying and positivity-preserving numerical schemes have been rapidly developed

for different problems ever since, for instance, the Euler equations [39, 41, 34], the Navier-Stokes equations

[38], the shallow water equations [36, 35, 19], convection diffusion equations [42, 17, 2], and hyperbolic

equations involving δ−singularities [44, 37], etc. For convenience, we call both maximum-principle-satisfying

and positivity-preserving techniques the bound-preserving methods in this paper.

It should be noted that, in order to gain high order accuracy, the bound-preserving schemes also need

to combine with temporal discretization whose order is consistent with the order of spatial discretization.

Almost all time discretizations in the aforementioned bound-preserving methods are based on the method

of lines, which treats the spatially discretized equation as ODE systems and use appropriate time marching

approaches to evolve in time. In particular, the strong stability preserving Runge-Kutta (SSP-RK) methods

or the SSP multi-step methods [13, 14, 31] are preferable because they are convex combinations of forward

Euler time discretization, which greatly simplifies the proof of the bound-preserving since all analysis only

need to be carried out on a single forward Euler time step. Besides the explicit methods, there are also

studies on backward Euler time discretization [23, 16].

As an alternative to method of lines, the Lax-Wendroff methods are also widely used in the computation

of time-dependent partial differential equations, for instance, the combination of Lax-Wendroff type time

discretization with DG (LWDG) methods [26, 24, 15] or with the WENO schemes [27, 25], the two-stage

fourth-order methods [22, 18], the arbitrary high order derivative Riemann problem (ADER) approach

[32, 12, 11], and its variant based on the Galerkin space-time predictor [9, 1, 10], etc. The Lax-Wendroff

methods utilizes the information of the partial differential equations to replace temporal derivatives by

spatial derivatives in the Taylor expansion of the solution in time. Therefore, the Lax-Wendroff methods are

one-stage, explicit, high order methods, and only need the stabilizing scaling limiters once per time step.

Regarding to the situation that there are very limited researches on bound-preserving techniques for

Lax-Wendroff schemes, we study the LWDG to construct third order maximum-principle-satisfying and

positivity-preserving LWDG schemes for scalar conservation laws and the Euler equations in one and two

space dimensions. Different to the previous works [21, 30] on positivity-preserving Lax-Wendroff type meth-
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ods, our algorithm does not rely on the flux limiter that needs to combine low order positivity-preserving

flux and high order flux together, hence the high order accuracy of our approach is easier to guarantee.

The construction of our numerical schemes is based on the third order Taylor expansion of solution in

time

u(x, tn+1) = u(x, tn) + ∆tut(x, t
n) +

∆t2

2
utt(x, t

n) +
∆t3

6
uttt(x, t

n) +O(∆t4), (1.4)

where ∆t = tn+1 − tn. Due to the Lax-wendroff procedure, there will be many spatial derivatives to replace

the original time derivatives in (1.4), especially for the system case in high dimensions. In this paper, we

adopt the discontinuous Galerkin methods for the spatial discretization of the derivatives. In 1970, Reed et

al. [28] proposed the first discontinuous Galerkin method to solve the steady linear transport problem. It

was developed into Runge-Kutta discontinuous galerkin methods (RKDG) by Cockburn et al. in a series

papers [7, 6, 4, 3, 8] to solve nonlinear hyperbolic conservation laws. Limiters such as the total variation

bounded (TVB) limiter [8] are usually applied to stabilize the solution near shocks after each Runge-Kutta

stage. Discontinuous Galerkin methods have been widely used in computational fluid dynamics due to their

advantages in high order accuracy, flexibility in complex geometry and easiness to be parallelized, and is one

of the most common choices in developing bound-preserving schemes.

In our work, we develop the idea of bound-preserving direct discontinuous Galerkin (DDG) method from

[2] to resolve the difficulty caused by high order spatial derivatives produced by the Lax-Wendroff procedure.

When it extends to multi-dimensions, we avoid the appearance of mixed derivatives in our numerical schemes

based on carefully designed expansions of high order temporal derivatives in the Lax-Wendroff procedure,

which is the key for the success of bound-preserving in high dimensions. We only demonstrate the treatments

in two dimensions but the technique can be generalized into three dimensions directly.

It is worth mentioning that, the tedious CFL conditions to be derived for bound-preserving in the paper is

not explicitly used in the implementation. But rather, they are used as a theoretical guarantee. In practice,

one can use standard CFL conditions in computation, and rewind the computation back to the beginning

of the step with halved time step-size when the cell averages exceeds their desired bounds at that step. The

theoretical results in the paper guarantee that one only needs to halve the step-size finite number of times.

Moreover, since the LWDG is an explicit single stage method, the temporal derivatives of the solution only

need to be computed once per time step, which makes the cost of rewinding computation very cheap.

The rest of the paper is organized as follows. In Section 2, we first introduce the notations to be
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used throughout the paper, and then construct the maximum-principle-satisfying LWDG methods for scalar

conservation laws in one and two space dimensions. In Section 3, we establish the positivity-preserving LWDG

schemes for the Euler equations in one and two dimensional spaces. The scaling limiters are introduced in

Section 4 to ensure the boundedness and stability of the numerical solution. In Section 5, we give extensive

numerical examples to demonstrate the effectiveness of our algorithm. We end up with some concluding

remarks in Section 6. The discussion in the above sections are based on uniform meshes. In the appendices,

we give illustrations on how to extend the algorithms to nonuniform meshes and take the one dimensional

scalar conservation law as an example.

2 Maximum-principle-preserving for scalar conservation laws

In this section, we study the maximum-principle-satisfying LWDG methods for scalar conservation laws.

Based on the framework of [40], we only need to put our effort on attaining the maximum-principle for cell

averages of the solution, i.e. m ≤ ūn+1 ≤ M , provided m ≤ un ≤ M , where the superscripts n and n + 1

denote the time level tn and tn+1, respectively. The slope limiters introduced in Section 4 will make up the

gap between the maximum-principles of ūn+1 and un+1.

For simplicity, we only discuss the one and two dimensional problems with periodic boundary conditions

on uniform meshes, but the results can be directly extended to three space dimensions and non-periodic

cases. However, the extension from uniform meshes to nonuniform meshes is not trivial, which will be

demonstrated in the appendices with one dimensional space as an example.

We first introduce the notations to be used throughout the paper, then construct and prove the maximum-

principle-satisfying LWDG schemes.

2.1 Notations

In the one dimensional space, we assume the domain Ω = [a, b] is discretized by a = x 1
2
< x 3

2
< · · ·xN+ 1

2
= b,

and denote by Ij = [xj− 1
2
, xj+ 1

2
] the cells on Ω for j = 1, 2, . . . N . Moreover, we denote the length and center

of the cell Ij by ∆xj = xj+ 1
2
− xj− 1

2
and xj = 1

2

(
xj− 1

2
+ xj+ 1

2

)
, respectively, and let uj = u(xj)

Similarly, in the two dimensional space, we assume Ω = [a, b] × [c, d] is discretized by a = x 1
2
< x 3

2
<

· · · < xNx+ 1
2

= b and c = y 1
2
< y 3

2
< · · · < yNy+ 1

2
= d in the x and y directions, respectively. We denote

by Ki,j = Ii × Jj = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] the cells in Ω for i = 1, . . . , Nx, j = 1, . . . , Ny, and by
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∆xi∆yj = (xi+ 1
2
− xi− 1

2
)(yj+ 1

2
− yj− 1

2
), (xi, yj) = ( 1

2 (xi− 1
2

+ xi+ 1
2
), 1

2 (yj− 1
2

+ yj+ 1
2
)) the area and center of

the cell Ki,j , respectively, and let ui,j = u(xi, yj).

We only consider the uniform meshes in this section and the next section to simplify the discussion, i.e.

∆xi ≡ ∆x and ∆yj ≡ ∆y, for i = 1, . . . , Nx, j = 1, . . . , Ny. The case of nonuniform meshes will be discussed

in the appendices.

The finite element spaces in the DG schemes are taken as V = {v ∈ L2 : v|Ij ∈ P 2(Ij), j = 1, 2, . . . , N}

and W = {v ∈ L2 : v|Ki,j ∈ Q2(Ki,j), i = 1, . . . , Nx, j = 1, . . . , Ny} in one and two dimensional spaces,

respectively, where P 2(I) is the space of quadratic polynomials on interval I and Q2(K) is the tensor product

space of quadratic polynomials on rectangle K.

Due to discontinuities, functions in the schemes may have double values on cell interfaces. In one

space dimension, we denote by v−
j+ 1

2

and v+
j+ 1

2

the left and right limits of v at xj+ 1
2
, respectively, i.e.

v±
j+ 1

2

= v(xj+ 1
2
±0). Moreover, we denote the average and jump of v at xj+ 1

2
by {v}j+ 1

2
= 1

2

(
v−
j+ 1

2

+ v+
j+ 1

2

)
and [v]j+ 1

2
= v+

j+ 1
2

− v−
j+ 1

2

, respectively. Similarly, in two space dimensions, we denote the left/right

and lower/upper limits of v on vertical and horizontal cell interfaces by v(x±
i+ 1

2

, y) = v(xi+ 1
2
± 0, y) and

v(x, y±
j+ 1

2

) = v(x, yj+ 1
2
± 0), respectively. The averages and jumps of v on vertical and horizontal cell in-

terfaces are defined as {v}(xi+ 1
2
, y) = 1

2

(
v(x−

i+ 1
2

, y) + v(x+
i+ 1

2

, y)
)
, [v](xi+ 1

2
, y) = v(x+

i+ 1
2

, y) − v(x−
i+ 1

2

, y)

and {v}(x, yj+ 1
2
) = 1

2

(
v(x, y−

j+ 1
2

) + v(x, y+
j+ 1

2

)
)
, [v](x, yj+ 1

2
) = v(x, y+

j+ 1
2

) − v(x, y−
j+ 1

2

), respectively. For

simplicity, these notations will be abbreviated as v±, {v} and [v] when the cell interface is clear from the

context.

We denote the L2 inner product on cell Ij in one space dimension as

(u, v)Ij =

∫ x
j+ 1

2

x
j− 1

2

u(x)v(x)dx,

and on Ki,j in two space dimensions as

(u, v)Ki,j =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

u(x, y)v(x, y)dxdy,

for u, v ∈ L2(Ω).

We use the Gauss-Lobatto quadrature of 2Nq − 1 points to evaluate integrals in one dimensional cells,

where Nq is taken such that the third order accuracy is attained in the scheme, e.g. Nq = 3. We denote the

quadrature points on Ij as {x̂γ , γ = 1, . . . , 2Nq − 1}, and let {ω̂γ , γ = 1, . . . , 2Nq − 1} be the corresponding

quadrature weights satisfying
∑2Nq−1
γ=1 ω̂γ = 1. In particular, x̂1 = xj− 1

2
, x̂Nq = xj and x̂2Nq−1 = xj+ 1

2
. We
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denote ûγ = u(x̂γ), for γ = 1, . . . , 2Nq − 1. The quadrature rule adopted in two dimensional cells follows

from tensor product and we denote ûβ,γ = u(x̂β , ŷγ), for β, γ = 1, . . . , 2Nq − 1, on the cell Ki,j .

2.2 Scalar conservation laws in one dimension

Consider the scalar conservation law (1.1). Direct computation gives the expressions of ut, utt and uttt as

follows:

ut = −f(u)x, (2.1)

utt = ((f ′)2ux)x (2.2)

uttt = −
(
3f ′′(f ′)2u2

x + (f ′)3uxx
)
x

(2.3)

Based on the expansions (2.1), (2.2) and (2.3), the third order maximum-principle-satisfying LWDG scheme

of (1.1) at time level tn is to find un+1 ∈ V , s.t. ∀ξ ∈ V , the equation

(un+1, ξ)Ij =(u, ξ)Ij + ∆t(f(u), ξx)Ij −
∆t2

2
((f ′)2ux, ξx)Ij +

∆t3

6
(3f ′′(f ′)2u2

x + (f ′)3uxx, ξx)Ij

−∆tF̂j+ 1
2
ξ−
j+ 1

2

+ ∆tF̂j− 1
2
ξ+
j− 1

2

,

(2.4)

holds for j = 1, 2, . . . , N , where the superscript n denoting time level tn on the right hand side is omitted.

In the scheme (2.4), F̂j+ 1
2
is the numerical flux at xj+ 1

2
defined as

F̂j+ 1
2

=f̂LF
j+ 1

2
− ∆t

2
{f ′2}j+ 1

2
ûx

DDG
j+ 1

2
+

∆t2

6
{3f ′2f ′′u2

x + f ′3uxx}j+ 1
2
, (2.5)

where

f̂LF
j+ 1

2
= {f}j+ 1

2
− α

2
[u]j+ 1

2
, α = max

u
|f ′(u)| (2.6)

is the Lax-Friedriches flux as used in [40], and

ûx
DDG
j+ 1

2
= β0

[u]j+ 1
2

∆x
+ {ux}j+ 1

2
+ β1∆x[uxx]j+ 1

2
(2.7)

is the bound-preserving direct discontinuous Galerkin (DDG) flux [20, 2], with β0, β1 satisfying

1

8
< β1 <

1

4
, β0 >

3

2
− 4β1 (2.8)

The following lemmas are useful in the proofs of maximum-principle-satisfying and positivity-preserving

in this section and the next section.
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Lemma 2.1. For u ∈ V , the DDG flux ûx
DDG
j+ 1

2
defined in (2.7) can be expanded on uniform meshes as

ûx
DDG
j+ 1

2
=

1

∆x

(
(
1

2
− 4β1)u+

j− 1
2

+ (−2 + 8β1)uj + (−β0 +
3

2
− 4β1)u−

j+ 1
2

+ (β0 −
3

2
+ 4β1)u+

j+ 1
2

+ (2− 8β1)uj+1 + (−1

2
+ 4β1)u−

j+ 3
2

) (2.9)

Proof. Since the mesh is uniform and u is piecewise quadratic, it follows from direct calculations.

Lemma 2.2. If u ∈ V and m ≤ u ≤M , then

|du
dx
| ≤ 5(M −m)

∆xj
, ∀x ∈ Ij . (2.10)

Proof. We first consider v ∈ P 2([−1, 1]) with −R2 ≤ v ≤
R
2 . The Lagrange interpolation gives

v(r) = v(−1)L−1(r) + v(0)L0(r) + v(1)L1(r), r ∈ [−1, 1], (2.11)

where L−1(r) = 1
2r(r − 1), L0(r) = −(r + 1)(r − 1), L1(r) = 1

2r(r + 1).

Therefore, |v′(r)| ≤ |v(−1)| · |L′−1(r)|+ |v(0)| · |L′0(r)|+ |v(1)| · |L′1(r)| ≤ R
2 ×

3
2 + R

2 ×2+ R
2 ×

3
2 = 5R

2 , ∀r ∈

[−1, 1]. Then (2.10) follows from changing of variables and the chain rule.

We now state our main result for the LWDG scheme (2.4).

Theorem 2.3. Given m ≤ un ≤M , the cell averages ūn+1
j , j = 1, . . . , N of the solution of scheme (2.4) are

bounded between m and M under the CFL condition (2.12).

λ ≤ min {q1, q2, . . . , q6} , (2.12)

where λ = ∆t
∆x , q1 = ω̂1

2M1
, q2 =

4β1− 1
2

5(M−m)M2+ 4
3M1

, q3 = 2−8β1

20(M−m)M2+ 8
3M1

, q4 =
β0− 3

2 +4β1

15(M−m)M2+ 4
3M1

, q5 =

ω̂
1/2
1

M1(β0−1+4β1)1/2 , q6 =
ω̂

1/2
Nq

M1(6−24β1)1/2 , and M1 = maxm≤u≤M |f ′(u)|,M2 = maxm≤u≤M |f ′′(u)|

Proof. Take the test function ξ = 1 on Ij and zero anywhere else in the scheme (2.4) and denote λ = ∆t
∆x ,

we obtain the equation satisfied by cell average of un+1 on cell Ij ,

ūn+1
j = ūnj − λF̂j+ 1

2
+ λF̂j− 1

2
= I + II, (2.13)

where

I =
1

2

(
ūnj − 2λf̂LF

j+ 1
2

+ 2λf̂LF
j− 1

2

)
, (2.14)
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and

II =
1

2

2Nq−1∑
γ=1

ω̂γ û
γ

− λ
(
−∆t

4
(f ′2

−
j+ 1

2
+ f ′2

+
j+ 1

2
)ûx

DDG
j+ 1

2

+
∆t2

12
(3f ′2

−
j+ 1

2
f ′′
−
j+ 1

2
u2
x
−
j+ 1

2
+ 3f ′2

+
j+ 1

2
f ′′

+
j+ 1

2
u2
x

+

j+ 1
2

+ f ′3
−
j+ 1

2
uxx
−
j+ 1

2

+ f ′3
+
j+ 1

2
uxx

+
j+ 1

2

)

)
+ λ

(
−∆t

4
(f ′2

−
j− 1

2
+ f ′2

+
j− 1

2
)ûx

DDG
j− 1

2

+
∆t2

12
(3f ′2

−
j− 1

2
f ′′
−
j− 1

2
u2
x
−
j− 1

2
+ 3f ′2

+
j− 1

2
f ′′

+
j− 1

2
u2
x

+

j− 1
2

+ f ′3
−
j− 1

2
uxx
−
j− 1

2

+ f ′3
+
j− 1

2
uxx

+
j− 1

2

)

)
Note that the cell average ūnj is split equally in I and II just for the ease of written, rather than to obtain

an optimal CFL condition, which is the same case for all other proofs in this paper.

Since I has exactly the same form as in [40], we have 1
2m ≤ I ≤ 1

2M , under the condition λ ≤ q1 based

on the conclusion therein. One can refer to [40] for more details.

As for II, it can be expanded as follows:

II =
1

2

Nq−1∑
γ=2

ω̂γ û
γ +

1

2

2Nq−2∑
γ=Nq+1

ω̂γ û
γ

+ z1u
+
j− 3

2

+ z2uj−1 + z3u
−
j− 1

2

+ z4u
+
j− 1

2

+ z5uj + z6u
−
j+ 1

2

+ z7u
+
j+ 1

2

+ z8uj+1 + z9u
−
j+ 3

2

,

(2.15)

where

z1 =
λ2

4
f ′2
−
j− 1

2

(
(4β1 −

1

2
) + ∆tf ′′

−
j− 1

2
ux
−
j− 1

2

+
4λ

3
f ′
−
j− 1

2

)
+
λ2

4
f ′2

+
j− 1

2
(4β1 −

1

2
),

z2 =
λ2

4
f ′2
−
j− 1

2

(
(2− 8β1)− 4∆tf ′′

−
j− 1

2
ux
−
j− 1

2

− 8λ

3
f ′
−
j− 1

2

)
+
λ2

4
f ′2

+
j− 1

2
(2− 8β1)

z3 =
λ2

4
f ′2
−
j− 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

−
j− 1

2
ux
−
j− 1

2

+
4λ

3
f ′
−
j− 1

2

)
+
λ2

4
f ′2

+
j− 1

2
(β0 −

3

2
+ 4β1)

z4 =
1

2
ω̂1 −

λ2

4
f ′2
−
j− 1

2
(β0 −

3

2
+ 4β1)− λ2

4
f ′2

+
j− 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λ

3
f ′

+
j− 1

2

)
− λ2

4
f ′2
−
j+ 1

2

(
(4β1 −

1

2
) + ∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λ

3
f ′
−
j+ 1

2

)
− λ2

4
f ′2

+
j+ 1

2
(4β1 −

1

2
)

z5 =
1

2
ω̂Nq −

λ2

4
f ′2
−
j− 1

2
(2− 8β1)− λ2

4
f ′2

+
j− 1

2

(
(2− 8β1)− 4∆tf ′′

+
j− 1

2
ux

+
j− 1

2

+
8λ

3
f ′

+
j− 1

2

)
− λ2

4
f ′2
−
j+ 1

2

(
(2− 8β1)− 4∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

− 8λ

3
f ′
−
j+ 1

2

)
− λ2

4
f ′2

+
j+ 1

2
(2− 8β1)

z6 =
1

2
ω̂2Nq−1 −

λ2

4
f ′2
−
j− 1

2
(4β1 −

1

2
)− λ2

4
f ′2

+
j− 1

2

(
(4β1 −

1

2
) + ∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λ

3
f ′

+
j− 1

2

)
− λ2

4
f ′2
−
j+ 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λ

3
f ′
−
j+ 1

2

)
− λ2

4
f ′2

+
j+ 1

2
(β0 −

3

2
+ 4β1)
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z7 =
λ2

4
f ′2
−
j+ 1

2
(β0 −

3

2
+ 4β1) +

λ2

4
f ′2

+
j+ 1

2

(
(β0 −

3

2
+ 4β1) + 3∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

− 4λ

3
f ′

+
j+ 1

2

)
z8 =

λ2

4
f ′2
−
j+ 1

2
(2− 8β1) +

λ2

4
f ′2

+
j+ 1

2

(
(2− 8β1)− 4∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

+
8λ

3
f ′

+
j+ 1

2

)
z9 =

λ2

4
f ′2
−
j+ 1

2
(4β1 −

1

2
) +

λ2

4
f ′2

+
j+ 1

2

(
(4β1 −

1

2
) + ∆tf ′′

+
j+ 1

2
ux

+
j+ 1

2

− 4λ

3
f ′

+
j+ 1

2

)
It is not difficult to verify that

1

2

Nq−1∑
γ=2

ω̂γ +
1

2

2Nq−2∑
γ=Nq+1

ω̂γ + z1 + z2 + · · ·+ z9 =
1

2
,

Moreover, we claim that z1, z2, . . . , z9 ≥ 0 under the CFL conditions (2.12). In fact, the following

estimates can be made under the CFL conditions,

z1 ≥
λ2

4
f ′2
−
j− 1

2

(
(4β1 −

1

2
)− 5λ(M −m)M2 −

4λ

3
M1

)
+
λ2

4
f ′2

+
j− 1

2
(4β1 −

1

2
) ≥ 0,

z2 ≥
λ2

4
f ′2
−
j− 1

2

(
(2− 8β1)− 20λ(M −m)M2 −

8λ

3
M1

)
+
λ2

4
f ′2

+
j− 1

2
(2− 8β1) ≥ 0,

z3 ≥
λ2

4
f ′2
−
j− 1

2

(
(β0 −

3

2
+ 4β1)− 15λ(M −m)M2 −

4λ

3
M1

)
+
λ2

4
f ′2

+
j− 1

2
(β0 −

3

2
+ 4β1) ≥ 0,

z4 ≥
1

2
ω̂1 −

λ2

4
M2

1 (β0 −
3

2
+ 4β1)− λ2

4
M2

1

(
(β0 −

3

2
+ 4β1) + 15λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1

(
(4β1 −

1

2
) + 5λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1 (4β1 −
1

2
) ≥ 0,

z5 ≥
1

2
ω̂N −

λ2

4
M2

1 (2− 8β1)− λ2

4
M2

1

(
(2− 8β1) + 20λ(M −m)M2 +

8λ

3
M1

)
− λ2

4
M2

1

(
(2− 8β1) + 20λ(M −m)M2 +

8λ

3
M1

)
− λ2

4
M2

1 (2− 8β1) ≥ 0,

z6 ≥
1

2
ω̂2Nq−1 −

λ2

4
M2

1 (4β1 −
1

2
)− λ2

4
M2

1

(
(4β1 −

1

2
) + 5λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1

(
(β0 −

3

2
+ 4β1) + 15λ(M −m)M2 +

4λ

3
M1

)
− λ2

4
M2

1 (β0 −
3

2
+ 4β1) ≥ 0,

z7 ≥
λ2

4
f ′2
−
j+ 1

2
(β0 −

3

2
+ 4β1) +

λ2

4
f ′2

+
j+ 1

2

(
(β0 −

3

2
+ 4β1)− 15λ(M −m)M2 −

4λ

3
M1

)
≥ 0,

z8 ≥
λ2

4
f ′2
−
j+ 1

2
(2− 8β1) +

λ2

4
f ′2

+
j+ 1

2

(
(2− 8β1)− 20λ(M −m)M2 −

8λ

3
M1

)
≥ 0,

z9 ≥
λ2

4
f ′2
−
j+ 1

2
(4β1 −

1

2
) +

λ2

4
f ′2

+
j+ 1

2

(
(4β1 −

1

2
)− 5λ(M −m)M2 −

4λ

3
M1

)
≥ 0.

Therefore, II is one half of a convex combination of values of un at different quadrature points, which implies

1
2m ≤ II ≤ 1

2M since we assume m ≤ un ≤M .

Since ūn+1
j = I + II, we finish the proof by summing up the inequalities of I and II .
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Remark 2.1. The CFL condition in Theorem 2.3 is not sharp, because we split the cell average ūnj equally

into I and II for the convenience of the proof. The same case applies to all later theorems. In order to

get a sharp CFL condition, one has to analyze/estimate ūn+1 or ūn+1 as a whole, which makes the proof

extremely tedious. But even if we did so, the task of finding optimal β0 and β1 to obtain an exact upper

bound of the CFL number would still be very difficult if not impossible, since the CFL condition also depends

on the lower and upper bounds of the solution, the maximum norms of the first and second derivatives of the

flux function, and the quadrature rule, etc.

However, we can get an intuition about the CFL constraints in the LWDG by analyzing the equation

ut + ux = 0. In this case, the Lax-Friedrichs flux becomes the upwind flux, and the upper bound on the time

step constraints can be computed exactly. Calculation shows that, using the 5-point Gauss-Lobatto quadrature,

the CFL number of the LWDG is ∆t
∆x = 0.049917, with the optimal parameters β0 = 0.999978, β1 = 0.133326.

In comparison, under the same quadrature rule, the CFL numbers of the maximum-principle-satisfying DG

schemes [40] are ∆t
∆x = 0.05 and ∆t

∆x = 0.016666, for the SSP-RK3 method (three stages) and SSP3 multi-step

method (single-stage), respectively.

2.3 Scalar conservation laws in two dimensions

Consider the scalar conservation law in two space dimensions

ut + f(u)x + g(u)y = 0. (2.16)

Direct computation gives the expressions of ut, utt, uttt as follows:

ut = −f(u)x − g(u)y, (2.17)

utt =
(
f ′2ux

)
x

+ (f ′g′uy)x + (f ′g′ux)y +
(
g′2uy

)
y
, (2.18)

uttt =−
(
3f ′2f ′′u2

x + 6f ′g′g′′u2
y + 3g′2f ′′u2

y + f ′3uxx + 3f ′g′2uyy
)
x

−
(
6f ′g′f ′′u2

x + 3f ′2g′′u2
x + 3g′2g′′u2

y + 3f ′2g′uxx + g′3uyy
)
y

(2.19)

Note that there are different ways to expand uttt, among which we choose the one that avoids the

appearance of mixed derivatives in the numerical scheme.

Based on the expansions (2.17), (2.18) and (2.19), the third order maximum-principle-preserving LWDG
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scheme of (2.16) at time level tn is to find un+1 ∈W , s.t. ∀ξ ∈W, the equation

(un+1, ξ)Ki,j =(u, ξ)Ki,j + ∆t(f(u), ξx)Ki,j + ∆t(g(u), ξy)Ki,j

− ∆t2

2
(f ′2ux + f ′g′uy, ξx)Ki,j −

∆t2

2
(f ′g′ux + g′2uy, ξy)Ki,j

+
∆t3

6

(
3f ′2f ′′u2

x + 6f ′g′g′′u2
y + 3g′2f ′′u2

y + f ′3uxx + 3f ′g′2uyy, ξx
)
Ki,j

+
∆t3

6

(
6f ′g′f ′′u2

x + 3f ′2g′′u2
x + 3g′2g′′u2

y + 3f ′2g′uxx + g′3uyy, ξy
)
Ki,j

−∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i+ 1
2 ,j

ξ(x−
i+ 1

2

, y)dy + ∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i− 1
2 ,j

ξ(x+
i− 1

2

, y)dy

−∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j+ 1
2
ξ(x, y−

j+ 1
2

)dx+ ∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j− 1
2
ξ(x, y+

j− 1
2

)dx

(2.20)

holds for i = 1, . . . , Nx, j = 1, . . . , Ny. In the scheme, F̂i+ 1
2 ,j

and Ĝi,j+ 1
2
are numerical fluxes defined as

F̂i+ 1
2 ,j

= F̂ 0
i+ 1

2 ,j
+ F̂ 1

i+ 1
2 ,j
, Ĝi,j+ 1

2
= Ĝ0

i,j+ 1
2

+ Ĝ1
i,j+ 1

2
,

where

F̂ 0
i+ 1

2 ,j
= f̂LF

i+ 1
2 ,j
− ∆t

2
{f ′2}i+ 1

2 ,j
ûx

DDG
i+ 1

2 ,j
+

∆t2

6
{3f ′2f ′′u2

x + f ′3uxx}i+ 1
2 ,j
, (2.21)

F̂ 1
i+ 1

2 ,j
= −1

2
α1
x[u]i+ 1

2 ,j
− ∆t

2
{f ′g′uy}i+ 1

2 ,j
+

∆t2

6
{6f ′g′g′′u2

y + 3g′2f ′′u2
y + 3f ′g′2uyy}i+ 1

2 ,j
, (2.22)

Ĝ0
i,j+ 1

2
= ĝLF

i,j+ 1
2
− ∆t

2
{g′2}i,j+ 1

2
ûy

DDG
i,j+ 1

2
+

∆t2

6
{3g′2g′′u2

y + g′3uyy}i,j+ 1
2
, (2.23)

Ĝ1
i,j+ 1

2
= −1

2
α1
y[u]i,j+ 1

2
− ∆t

2
{f ′g′ux}i,j+ 1

2
+

∆t2

6
{6f ′g′f ′′u2

x + 3f ′2g′′u2
x + 3f ′2g′uxx}i,j+ 1

2
, (2.24)

in which the Lax-Friedrichs fluxes and DDG fluxes are defined the same way as before, and α1
x, α

1
y are

positive viscosity constants that can be taken as 0.05 maxu |f ′(u)| and 0.05 maxu |g′(u)| for instance. In fact,

any constants strictly positive should be enough for positivity-preserving, which just makes difference on the

CFL numbers and the dissipation effect.

We now state the main result for the LWDG scheme (2.20).

Theorem 2.4. Given m ≤ un ≤ M , the cell averages ūn+1
i,j , i = 1, . . . , Nx, j = 1, . . . , Ny of the solution of

scheme (2.20) are bounded between m and M under the CFL condition (2.25):

λx ≤ min{Q1, Q3}, λy ≤ min{Q2, Q4}, (2.25)
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where λx = ∆t
∆x , λy = ∆t

∆y , and the definitions of Q1, Q2, Q3, Q4 are given in Appendix A.1.

The proof is very similar to that of the one dimensional case, except that the expansions are much more

tedious, which results in much more complicated CFL conditions.

Proof. Take the test function ξ = 1 on Ki,j and zero anywhere else in the scheme (2.20) and denote by

λx = ∆t
∆x , λy = ∆t

∆y , we obtain

ūn+1
i,j = I + II + III + IV,

where

I =
1

4
ūni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i+ 1

2 ,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i− 1

2 ,j
dy,

II =
1

4
ūni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i+ 1

2 ,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i− 1

2 ,j
dy,

III =
1

4
ūni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j− 1

2
dx

IV =
1

4
ūni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j− 1

2
dx

It suffices to shown 1
4m ≤ I, II ≤ 1

4M under the CFL condition (2.25), due to the symmetry in x and y

directions.

It is clear that I can be decomposed in the form of convex combination

I =
1

4

2Nq−1∑
γ=1

ω̂γHγ

where

Hγ =

2Nq−1∑
β=1

ω̂β û
β,γ − 4λxF̂

0
i+ 1

2 ,j
(xi+ 1

2
, ŷγ) + 4λxF̂

0
i− 1

2 ,j
(xi− 1

2
, ŷγ),

Notice that Hγ has exactly the same structure as (2.13). Therefore, I ∈ [ 1
4m,

1
4M ], under the CFL

condition (2.12) for one dimensional scalar case with λ replaced by 4λx, i.e. λx ≤ Q1.
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As for the term II, it can be expanded as follows,

II =
1

4

2Nq−2∑
α=2

2Nq−1∑
β=1

ω̂αω̂β û
α,β +

Nq−1∑
β=2

λx
2
ω̂βα

1
xu(x−

i− 1
2

, ŷβ) +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
xu(x−

i− 1
2

, ŷβ)

+

Nq−1∑
β=2

λx
2
ω̂βα

1
xu(x+

i+ 1
2

, ŷβ) +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
xu(x+

i+ 1
2

, ŷβ)

+ z1u(x−
i− 1

2

, y+
j− 1

2

) + z2u(x−
i− 1

2

, yj) + z3u(x−
i− 1

2

, y−
j+ 1

2

) + z4u(x+
i− 1

2

, y+
j− 1

2

) + z5u(x+
i− 1

2

, yj) + z6u(x+
i− 1

2

, y−
j+ 1

2

)

+ z7u(x−
i+ 1

2

, y+
j− 1

2

) + z8u(x−
i+ 1

2

, yj) + z9u(x−
i+ 1

2

, y−
j+ 1

2

) + z10u(x+
i+ 1

2

, y+
j− 1

2

) + z11u(x+
i+ 1

2

, yj) + z12u(x+
i+ 1

2

, y−
j+ 1

2

),

+

Nq−1∑
β=2

ω̂βz13,βu(x−
i+ 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz13,βu(x−
i+ 1

2

, ŷβ) +

Nq−1∑
β=2

ω̂βz14,βu(x+
i− 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz14,βu(x+
i− 1

2

, ŷβ),

(2.26)

where the expressions of z1, . . . , z14,β are given in Appendix A.2.

It can be verified that the following equality holds,

1

4

2Nq−2∑
α=2

2Nq−1∑
β=1

ω̂αω̂β +

Nq−1∑
β=2

λx
2
ω̂βα

1
x +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
x +

Nq−1∑
β=2

λx
2
ω̂βα

1
x +

2Nq−2∑
β=Nq+1

λx
2
ω̂βα

1
x

+ z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12

+

Nq−1∑
β=2

ω̂βz13,β +

2Nq−2∑
β=Nq+1

ω̂βz13,β +

Nq−1∑
β=2

ω̂βz14,β +

2Nq−2∑
β=Nq+1

ω̂βz14,β =
1

4
,

Moreover, all z’s are nonnegative under the CFL condition (2.25). The detailed estimates can be found in

Appendix A.2

To sum up, II can be written as one fourth of a convex combination of point values of un under the CFL

condition (2.25), which implies 1
4m ≤ II ≤ 1

4M since m ≤ un ≤M . The similar arguments apply to III and

IV

Since ūn+1
i,j = I+ II+ III+ IV, we finish the proof by summing up the inequalities of I, II, III and IV.

3 Positivity-preserving for the Euler equations

3.1 The Euler equations in one dimension

Consider the Euler equations (1.2). Direct computation gives the expressions of ρt, ρtt and ρttt as follows:

ρt = −(ρu)x, (3.1)
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ρtt =
(
(ρu2)x + γ̂(ρe)x

)
x
, (3.2)

ρttt = −
(
uxx(ρu2) + 2ux(ρu2)x + u(ρu2)xx +γ̂γuxx(ρe) + γ̂(3 + γ)ux(ρe)x + 3γ̂u(ρe)xx)x (3.3)

where γ̂ = γ − 1. Moreover,

mt = A1
x, mtt = A2

x, mttt = A3
x,

and

Et = B1
x, Ett = B2

x, Ettt = B3
x,

where A1, A2, A3, B1, B2, B3 are shorthand notations introduced for convenience of later discussion. For the

full expressions of mt,mtt,mttt, and Et, Ett, Ettt, see Appendix B.1.

The positivity-preserving LWDG scheme of (1.2) for ρ at time level tn is to find ρn+1 ∈ V , s.t. ∀ξ ∈ V ,

the equation

(ρn+1, ξ)Ij =(ρ, ξ)Ij + ∆t(ρu, ξx)Ij −
∆t2

2
((ρu2)x + γ̂(ρe)x, ξx)Ij

+
∆t3

6

(
uxx(ρu2) + 2ux(ρu2)x + u(ρu2)xx +γ̂γuxx(ρe) + γ̂(3 + γ)ux(ρe)x + 3γ̂u(ρe)xx, ξx)Ij

−∆tF̂j+ 1
2
ξ−
j+ 1

2

+ ∆tF̂j− 1
2
ξ+
j− 1

2

,

(3.4)

holds for j = 1, 2, . . . , N . In the scheme, F̂j+ 1
2
is the numerical flux of ρ at xj+ 1

2
defined as

F̂j+ 1
2

=f̂LF
j+ 1

2
− ∆t

2
̂(I(ρu2))x

DDG

j+ 1
2
− ∆t

2
γ̂ ̂(I(ρe))x

DDG

j+ 1
2

+
∆t2

6
{uxx(ρu2) + 2ux

(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx
}j+ 1

2

+
∆t2

6
{γ̂γuxx(ρe) + γ̂(3 + γ)ux (I(ρe))x + 3γ̂u (I(ρe))xx}j+ 1

2

, (3.5)

where

f̂LF
j+ 1

2
= {ρu}j+ 1

2
− 1

2
α[ρ]j+ 1

2
, α = ||(|u|+ c)||∞, (3.6)

is the Lax-Friedriches flux used in the positivity-preserving for the Euler equations in [39], c =
√

γp
ρ is the

sound speed, ̂(I(ρu2))x
DDG

j+ 1
2

and ̂(I(ρe))x
DDG

j+ 1
2

are the DDG fluxes defined in (2.7), with u replaced by I(ρu2)

and I(ρe), respectively, where I is the quadratic interpolation operator with interpolation points at x+
j− 1

2

, xj ,

and x−
j+ 1

2

on Ij , in order to get the similar expansions of the DDG flux as in (2.9).
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The variables m and E are discretized by the standard discontinuous Galerkin method with the first

order flux terms adopting the Lax-Friedriches flux and high-order flux terms adopting the average flux, i.e.

(mn+1, ξ)Ij =(m, ξ)Ij −∆t(A1, ξx)Ij

+ ∆t{A1}j+ 1
2

+ ∆tα[m]j+ 1
2

−∆t{A1}j− 1
2
−∆tα[m]j− 1

2

− ∆t2

2
(A2, ξx)Ij +

∆t2

2
{A2}j+ 1

2
ξ−
j+ 1

2

− ∆t2

2
{A2}j− 1

2
ξ+
j− 1

2

− ∆t3

6
(A3, ξx)Ij +

∆t3

6
{A3}j+ 1

2
ξ−
j+ 1

2

− ∆t3

6
{A3}j− 1

2
ξ+
j− 1

2

(3.7)

(En+1, ξ)Ij =(E, ξ)Ij −∆t(B1, ξx)Ij

+ ∆t{B1}j+ 1
2

+ ∆tα[E]j+ 1
2

−∆t{B1}j− 1
2
−∆tα[E]j− 1

2

− ∆t2

2
(B2, ξx)Ij +

∆t2

2
{B2}j+ 1

2
ξ−
j+ 1

2

− ∆t2

2
{B2}j− 1

2
ξ+
j− 1

2

− ∆t3

6
(B3, ξx)Ij +

∆t3

6
{B3}j+ 1

2
ξ−
j+ 1

2

− ∆t3

6
{B3}j− 1

2
ξ+
j− 1

2

(3.8)

We now state the result for the positivity-preserving of ρ̄n+1
j .

Theorem 3.1. Given un ∈ G, the cell averages ρ̄n+1
j , j = 1, . . . , N of the solution of scheme (3.4) are

nonnegative under the CFL condition (3.9):

λ ≤ min{q1, q2, . . . , q11}, (3.9)

where q1 = ω̂1

2||(|u|+c)||∞ , q2 =
6(β0− 3

2 +4β1)

∆x2||uxx||∞+6∆x||ux||∞+4||u||∞ , q3 = 3(2−8β1)
4(∆x||ux||∞+||u||∞) , q4 =

3(4β1− 1
2 )

∆x||ux||∞+2||u||∞ ,

q5 = 1
2||u||∞

(
ω1

β0−2+8β1

) 1
2

, q6 = 1
2||u||∞

(
ωNq

2(2−8β1)

) 1
2

, q7 =
6(4β1− 1

2 )

(3+γ)∆x||ux||∞+12||u||∞ , q8 = 3(2−8β1)
2(3+γ)∆x||ux||∞+12||u||∞ ,

q9 =
6(β0− 3

2 +4β1)

γ∆x2||uxx||∞+3(3+γ)∆x||ux||∞+12||u||∞ , q10 =
(

ω1

4γ̂(β0−2+8β1)||e||∞

) 1
2

, q11 =
(

ωNq
8γ̂(2−8β1)||e||∞

) 1
2

.

Proof. Take ξ = 1 on Ij and zero on other cells in the scheme (3.4), we obtain

ρ̄n+1
j = I + II + III, (3.10)

where

I =
1

2

(
ρ̄nj − 2λf̂LF

j+ 1
2

+ 2λf̂LF
j− 1

2

)
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II =
1

4
ρ̄n − λ

(
−∆t

2
̂(I(ρu2))x

DDG

j+ 1
2

+
∆t2

6

{
uxx(ρu2) + 2ux

(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx

}
j+ 1

2

)
+ λ

(
−∆t

2
̂(I(ρu2))x

DDG

j− 1
2

+
∆t2

6

{
uxx(ρu2) + 2ux

(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx

}
j− 1

2

)

III =
1

4
ρ̄n − λ

(
−∆t

2
γ̂ ̂(I(ρe))x

DDG

j+ 1
2

+
∆t2

6
{γ̂γuxx(ρe) + γ̂(3 + γ)ux (I(ρe))x + 3γ̂u (I(ρe))xx}j+ 1

2

)
+ λ

(
−∆t

2
γ̂ ̂(I(ρe))x

DDG

j− 1
2

+
∆t2

6
{γ̂γuxx(ρe) + γ̂(3 + γ)ux (I(ρe))x + 3γ̂u (I(ρe))xx}j− 1

2

)
Since I has exactly the same form as in [39], I ≥ 0 is guaranteed under the condition λ ≤ q1 from the

conclusion therein. Now we expand II as follows,

II =
1

4

Nq−1∑
γ=2

ω̂γ ρ̂
γ +

1

4

2Nq−2∑
γ=Nq+1

ω̂γ ρ̂
γ

+ z1ρ
+
j− 3

2

+ z2ρj−1 + z3ρ
−
j− 1

2

+ z4ρ
+
j− 1

2

+ z5ρj + z6ρ
−
j+ 1

2

+ z7ρ
+
j+ 1

2

+ z8ρj+1 + z9ρ
−
j+ 3

2

,

where

z1 = λ2

(
1

2
(4β1 −

1

2
) +

∆t

6
(ux)

−
j− 1

2
+
λ

3
u−
j− 1

2

)(
u+
j− 3

2

)2

z2 = λ2

(
1

2
(2− 8β1)− 2∆t

3
(ux)

−
j− 1

2
− 2λ

3
u−
j− 1

2

)
(uj−1)

2

z3 = λ2

(
1

2
(β0 −

3

2
+ 4β1) +

∆t2

12λ
(uxx)

−
j− 1

2
+

∆t

2
(ux)

−
j− 1

2
+
λ

3

(
u−
j− 1

2

))(
u−
j− 1

2

)2

z4 =
1

4
ω1 − λ2

(
1

2
(4β1 −

1

2
) +

∆t

6
(ux)

−
j+ 1

2
+
λ

3
u−
j+ 1

2

+
1

2
(β0 −

3

2
+ 4β1) −∆t2

12λ
(uxx)

+
j− 1

2
+

∆t

2
(ux)

+
j− 1

2
− λ

3

(
u+
j− 1

2

))(
u+
j− 1

2

)2

z5 =
1

4
ωNq − λ2

(
1

2
(2− 8β1)− 2∆t

3
(ux)

−
j+ 1

2
− 2

3
λu−

j+ 1
2

+
1

2
(2− 8β1) −2∆t

3
(ux)

+
j− 1

2
+

2

3
λu+

j− 1
2

)
(uj)

2

z6 =
1

4
ω2Nq−1 − λ2

(
1

2
(β0 −

3

2
+ 4β1) +

1

2
(4β1 −

1

2
) +

∆t2

12λ
(uxx)

−
j+ 1

2
+

∆t

2
(ux)

−
j+ 1

2
+

∆t

6
(ux)

+
j− 1

2
+
λ

3

(
u−
j+ 1

2

)
− λ

3
u+
j− 1

2

)(
u−
j+ 1

2

)2

z7 = λ2

(
1

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
(uxx)

+
j+ 1

2
+

∆t

2
(ux)

+
j+ 1

2
− λ

3

(
u+
j+ 1

2

))(
u+
j+ 1

2

)2

z8 = λ2

(
1

2
(2− 8β1)− 2∆t

3
(ux)

+
j+ 1

2
+

2λ

3
u+
j+ 1

2

)
(uj+1)

2

z9 = λ2

(
1

2
(4β1 −

1

2
) +

∆t

6
(ux)

+
j+ 1

2
− λ

3
u+
j+ 1

2

)(
u−
j+ 3

2

)2

We claim that z1, z2, . . . , z9 ≥ 0 under the CFL condition λ ≤ min{q2, q3, . . . , q6}. In fact, we have the

following estimates

z1 ≥ λ2

(
1

2
(4β1 −

1

2
)− ∆t

6
||ux||∞ −

λ

3
||u||∞

)(
u+
j− 3

2

)2

≥ 0,
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z2 ≥ λ2

(
1

2
(2− 8β1)− 2∆t

3
||ux||∞ −

2λ

3
||u||∞

)
(uj−1)

2 ≥ 0,

z3 ≥ λ2

(
1

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
||uxx||∞ −

∆t

2
||ux||∞ −

λ

3
||u||∞

)(
u−
j− 1

2

)2

≥ 0,

z4 ≥
1

4
ω1 − λ2

(
1

2
(β0 − 2 + 8β1) +

∆t2

12λ
||uxx||∞ +

2∆t

3
||ux||∞ +

2λ

3
||u||∞

)
||u||2∞ ≥ 0,

z5 ≥
1

4
ωNq − λ2

(
(2− 8β1) +

4∆t

3
||ux||∞ +

4

3
λ||u||∞

)
||u||2∞ ≥ 0,

z6 ≥
1

4
ω2Nq−1 − λ2

(
1

2
(β0 − 2 + 8β1) +

∆t2

12λ
||uxx||∞ +

2∆t

3
||ux||∞ +

2λ

3
||u||∞

)
||u||2∞ ≥ 0,

z7 ≥ λ2

(
1

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
||uxx||∞ −

∆t

2
||ux||∞ −

λ

3
||u||∞

)(
u+
j+ 1

2

)2

≥ 0,

z8 ≥ λ2

(
1

2
(2− 8β1)− 2∆t

3
||ux||∞ −

2λ

3
||u||∞

)
(uj+1)

2 ≥ 0,

z9 ≥ λ2

(
1

2
(4β1 −

1

2
)− ∆t

6
||ux||∞ −

λ

3
||u||∞

)(
u−
j+ 3

2

)2

≥ 0,

Similarly, we can expand III as

III =
1

4

Nq−1∑
γ=2

ω̂γ ρ̂
γ +

1

4

2Nq−2∑
γ=Nq+1

ω̂γ ρ̂
γ

+ z10ρ
+
j− 3

2

+ z11ρj−1 + z12ρ
−
j− 1

2

+ z13ρ
+
j− 1

2

+ z14ρj + z15ρ
−
j+ 1

2

+ z16ρ
+
j+ 1

2

+ z17ρj+1 + z18ρ
−
j+ 3

2

,

(3.11)

and z10, . . . , z18 ≥ 0 under the condition λ ≤ min{q7, q8, q9, q10, q11}. The expressions and estimates of

z10, . . . , z18 are similar to those of z1, . . . , z9, thus are given in Appendix A.3.

By the same arguments as in the scalar cases, we have II, III ≥ 0, provided the positivity of ρn. Since

ρ̄n+1
j = I + II + III, we finish the proof by collecting the results for I, II and III.

The remaining task is to preserve the positivity of internal energy of cell averages of the solution, i.e.

e(ūn+1
j ) ≥ 0. We have the results as follows.

Theorem 3.2. Given un ∈ G, the specific internal energy of the cell averages e(ūn+1
j ), j = 1, . . . , N of

scheme (3.4), (3.7) and (3.8) are nonnegative under the CFL condition (3.12):

λ ≤ γ + 1

2α2(γ − 1)
min
j

{
(p−
j+ 1

2

)2

C−
j+ 1

2

,
(p+
j+ 1

2

)2

C+
j+ 1

2

}
, (3.12)
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where

C−
j+ 1

2

=
∆x

α

(
(2E−

j+ 1
2

+ p−
j+ 1

2

)
(
|f̃1
j+ 1

2
|+Q1∆x|f̌1

j+ 1
2
|
)

+ 2ρ−
j+ 1

2

(
|f̃3
j+ 1

2
|+Q1∆x|f̌3

j+ 1
2
|
)

+Q1
∆x

α

(
|f̃1
j+ 1

2
|+Q1∆x|f̌1

j+ 1
2
|
)(
|f̃3
j+ 1

2
|+Q1∆x|f̌3

j+ 1
2
|
)

+
1

2
Q1

∆x

α

(
|f̃2
j+ 1

2
|+Q1∆x|f̌2

j+ 1
2
|
)2

+(2|m−
j+ 1

2

|+
p−
j+ 1

2

α
)
(
|f̃2
j+ 1

2
|+Q1∆x|f̌2

j+ 1
2
|
))

and

C+
j+ 1

2

=
∆x

α

(
(2E+

j+ 1
2

+ p+
j+ 1

2

)
(
|f̃1
j+ 1

2
|+Q1∆x|f̌1

j+ 1
2
|
)

+ 2ρ+
j+ 1

2

(
|f̃3
j+ 1

2
|+Q1∆x|f̌3

j+ 1
2
|
)

+Q1
∆x

α

(
|f̃1
j+ 1

2
|+Q1∆x|f̌1

j+ 1
2
|
)(
|f̃3
j+ 1

2
|+Q1∆x|f̌3

j+ 1
2
|
)

+
1

2
Q1

∆x

α

(
|f̃2
j+ 1

2
|+Q1∆x|f̌2

j+ 1
2
|
)2

+(2|m+
j+ 1

2

|+
p+
j+ 1

2

α
)
(
|f̃2
j+ 1

2
|+Q1∆x|f̌2

j+ 1
2
|
))

Proof. Take ξ = 1 on Ij and zero anywhere else in the scheme (3.4),(3.7) and (3.8), we can obtain the

following vector equation satisfied by the cell average of un+1 on Ij ,

ūn+1
j = ūnj − λ

(
f̂LF
j+ 1

2
+ ∆t̃fj+ 1

2
+ ∆t2f̌j+ 1

2

)
+ λ

(
f̂LF
j− 1

2
+ ∆t̃fj− 1

2
+ ∆t2f̌j− 1

2

)
,

where f̂LF
j+ 1

2

= 1
2

(
f(u−

j+ 1
2

) + f(u+
j+ 1

2

)− α
(
u+
j+ 1

2

− u−
j+ 1

2

))
, α = ||(|u|+c)||∞, is the standard Lax-Friedriches

flux, which is the leading term in the total flux constructed in the LWDG scheme (3.4)-(3.8), f̃j+ 1
2

=

(f̃1
j+ 1

2

, f̃2
j+ 1

2

, f̃3
j+ 1

2

) and f̌j+ 1
2

= (f̌1
j+ 1

2

, f̌2
j+ 1

2

, f̌3
j+ 1

2

) are the remaining second and third order terms contained

in the flux of (3.5), (3.7) and (3.8), in which the abbreviated terms can be found in Appendix B.1, respectively.

Similar to [39], we have the decomposition

ūn+1
j =

2Nq−2∑
γ=2

ω̂γu
γ + ω̂1

(
1− αλ

ω̂1

)
u+
j− 1

2

+ ω̂2Nq−1

(
1− αλ

ω̂2Nq−1

)
u−
j+ 1

2

+
αλ

2

(
u−
j+ 1

2

− 1

α
f(u−

j+ 1
2

)− ∆t

α

(
f̃j+ 1

2
+ ∆ťfj+ 1

2

))
+
αλ

2

(
u+
j+ 1

2

− 1

α
f(u+

j+ 1
2

)− ∆t

α

(
f̃j+ 1

2
+ ∆ťfj+ 1

2

))
+
αλ

2

(
u−
j− 1

2

+
1

α
f(u−

j− 1
2

) +
∆t

α

(
f̃j− 1

2
+ ∆ťfj− 1

2

))
+
αλ

2

(
u+
j− 1

2

+
1

α
f(u+

j− 1
2

) +
∆t

α

(
f̃j− 1

2
+ ∆ťfj− 1

2

))
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Since ω̂γ ≥ 0, γ = 1, . . . , 2Nq − 1 and (1− αλ
ω̂1

), (1− αλ
ω̂2Nq−1

) ≥ 0 from the CFL condition (3.9), by convexity

of G, it suffices to show

u+
j+ 1

2

± 1

α
f(u+

j+ 1
2

)± ∆t

α

(
f̃j+ 1

2
+ ∆ťfj+ 1

2

)
∈ G,

provided u+
j+ 1

2

∈ G. For simplicity, we omit the superscripts and subscripts in the following proof.

Using the equality ρ2e = ρE − 1
2m

2, one can calculate that

ρ2e

(
u± 1

α
f(u)± ∆t

α

(
f̃ + ∆ťf

))
=

pρ

α2(γ − 1)

(
(α± u)2 − γ − 1

2γ
c2
)
± ∆t

α
(f̃1 + ∆tf̌1)

(
(1± u

α
)E ± u

α
p
)

± ∆t

α
(f̃3 + ∆tf̌3)

(
(1± u

α
)ρ
)

+
∆t2

α2
(f̃1 + ∆tf̌1)(f̃3 + ∆tf̌3)− 1

2

∆t2

α2
(f̃2 + ∆tf̌2)2

∓ ∆t

α
(f̃2 + ∆tf̌2)

(
(1± u

α
)m± 1

α
p

)
≥ γ + 1

2α2(γ − 1)
p2 − Cλ,

where

C =
∆x

α

(
(2E + p)

(
|f̃1|+Q1∆x|f̌1|

)
+ 2ρ

(
|f̃3|+Q1∆x|f̌3|

)
+Q1

∆x

α

(
|f̃1|+Q1∆x|f̌1|

)(
|f̃3|+Q1∆x|f̌3|

)
+

1

2
Q1

∆x

α

(
|f̃2|+Q1∆x|f̌2|

)2

+(2|m|+ p

α
)
(
|f̃2|+Q1∆x|f̌2|

))
.

Under the CFL condition (3.12), we can get the positivity of ρ2e, which finishes the proof.

Collecting the above two theorems, we reach our final result.

Theorem 3.3. Given un ∈ G, we have ūn+1
j ∈ G, j = 1, . . . , N for scheme (3.4), (3.7) and (3.8), under the

CFL conditions (3.9) and (3.12).

3.2 The Euler equations in two dimensions

Consider the Euler equations in two space dimensions

ut + f(u)x + g(u)y = 0, (3.13)
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where

u =



ρ

m

n

E


, f(u) =



ρu

ρu2 + p

ρuv

(E + p)u


, g(u) =



ρv

ρuv

ρv2 + p

(E + p)v


,

with

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 + ρe, p = (γ − 1)ρe,

in which u and v are velocities in x and y directions, respectively, and m and n are momentums in x and y

directions, respectively.

Direct computation gives the expressions of ρt, ρtt and ρttt as follows:

ρt = −(ρu)x − (ρv)y, (3.14)

ρtt =
(
(ρu2)x + γ̂(ρe)x

)
x

+ 2 (ρuv)xy +
(
(ρv2)y + γ̂(ρe)y

)
y
, (3.15)

ρttt =−
(
uxx(ρu2) + 2ux(ρu2)x + u(ρu2)xx

+γ̂γuxx(ρe) + (γ̂(3 + γ)ux + γ̂2vy)(ρe)x + 3γ̂u(ρe)xx
)
x

−
(
vyy(ρv2) + 2vy(ρv2)y + v(ρv2)yy

+γ̂γvyy(ρe) + (γ̂(3 + γ)vy + γ̂2ux)(ρe)y + 3γ̂v(ρe)yy
)
y

−
((
γγ̂evxx + γ̂(γ + 3)exvx + 6vu2

x + 12uuxvx + 3γ̂vexx + 3u2vxx + 6uvuxx − γ̂2uyex
)
ρ
)
y

−
((

6γ̂vex + γ̂(γ + 3)evx + 6u(uvx + 2vux)− γ̂2uye
)
ρx
)
y

−
(
(3(γ̂e+ u2)v)ρxx

)
y

−
((
γγ̂euyy + γ̂(γ + 3)eyuy + 6uv2

y + 12vuyvy + 3γ̂ueyy + 3v2uyy + 6uvvyy − γ̂2vxey
)
ρ
)
x

−
((

6γ̂uey + γ̂(γ + 3)euy + 6v(vuy + 2uvy)− γ̂2vxe
)
ρy
)
x

−
((

3(γ̂e+ v2)u
)
ρyy
)
x

(3.16)

where γ̂ = γ − 1. Note that there are a lot of ways to expand ρttt, among which we choose the one that

avoids the appearance of mixed derivatives in the LWDG scheme.

Moreover,

mt = B1
x +B2

y , mtt = B3
x +B4

y , mttt = B5
x +B6

y ,

nt = C1
x + C2

y , ntt = C3
x + C4

y , nttt = C5
x + C6

y ,
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and

Et = D1
x +D2

y, Ett = D3
x +D4

y, Ettt = D5
x +D6

y,

where B1, B2, B3, B4, B5, B6, C1, C2, C3, C4, C5, C6, D1, D2, D3, D4, D5, D6, are shorthand notations intro-

duced for convenience of later discussion. For the full expressions ofmt,mtt,mttt, nt, ntt, nttt,and Et, Ett, Ettt,

see Appendix B.2.

The positivity-preserving LWDG of ρ at time level tn is to find ρn+1 ∈W , s.t. ∀ξ ∈W , the equation

(ρn+1, ξ)Ki,j =(ρ, ξ)Ki,j + ∆t(ρu, ξx)Ki,j + ∆t(ρv, ξy)Ki,j

− ∆t2

2
((ρu2)x + γ̂(ρe)x + (ρuv)y, ξx)Ki,j

− ∆t2

2
((ρv2)y + γ̂(ρe)y + (ρuv)x, ξy)Ki,j

−∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i+ 1
2 ,j

ξ(x−
i+ 1

2

, y)dy + ∆t

∫ y
j+ 1

2

y
j− 1

2

F̂i− 1
2 ,j

ξ(x+
i− 1

2

, y)dy

−∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j+ 1
2
ξ(x, y−

j+ 1
2

)dx+ ∆t

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j− 1
2
ξ(x, y+

j− 1
2

)dx

(3.17)

holds for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. F̂i+ 1
2 ,j

and Ĝi,j+ 1
2
are numerical fluxes defined as

F̂i+ 1
2 ,j

=F̂ 0
i+ 1

2 ,j
+ F̂ 1

i+ 1
2 ,j
, (3.18)

and

Ĝi,j+ 1
2

=Ĝ0
i,j+ 1

2
+ Ĝ1

i,j+ 1
2
, (3.19)

where

F̂ 0
i+ 1

2 ,j
={ρu}i+ 1

2 ,j
− 1

2
α0
x[ρ]i+ 1

2 ,j
− ∆t

2
̂(I(ρu2))x

DDG

i+ 1
2 ,j
− ∆t

2
γ̂ ̂(I(ρe))x

DDG

i+ 1
2 ,j

+
∆t2

6
{uxx(ρu2) + 2ux

(
I(ρu2)

)
x

+ u
(
I(ρu2)

)
xx
}i+ 1

2 ,j

+
∆t2

6
{γ̂γuxx(ρe) +

(
γ̂(3 + γ)ux + γ̂2vy

)
(I(ρe))x + 3γ̂u (I(ρe))xx}i+ 1

2 ,j

, (3.20)

F̂ 1
i+ 1

2 ,j
= −1

2
α1
x[ρ]i+ 1

2 ,j
− ∆t

2
{ρyuv + ρ(uyv + uvy)}+

∆t2

6

{
A1ρ+A2ρy +A3ρyy

}
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Ĝ0
i,j+ 1

2
={ρv}i,j+ 1

2
− 1

2
α0
y[ρ]i,j+ 1

2
− ∆t

2
̂(I(ρv2))y

DDG

i,j+ 1
2

− ∆t

2
γ̂ ̂(I(ρe))y

DDG

i,j+ 1
2

+
∆t2

6
{vyy(ρv2) + 2vy

(
I(ρv2)

)
y

+ v
(
I(ρv2)

)
yy
}i,j+ 1

2

+
∆t2

6
{γ̂γvyy(ρe) +

(
γ̂(3 + γ)vy + γ̂2ux

)
(I(ρe))y + 3γ̂v (I(ρe))yy}i,j+ 1

2

, (3.21)

Ĝ1
i,j+ 1

2
= −1

2
α1
y[ρ]i,j+ 1

2
− ∆t

2
{ρxuv + ρ(uvx + uxv)}+

∆t2

6

{
A4ρ+A5ρx +A6ρxx

}
in which α0

x = ||(|u|+ c)||∞, α0
y = ||(|v|+ c)||∞, α1

x, α
1
y > 0, and

A1 =
(
γγ̂euyy + γ̂(γ + 3)eyuy + 6uv2

y + 12vuyvy + 3γ̂ueyy + 3v2uyy + 6uvvyy − γ̂2vxey
)

A2 =
(
6γ̂uey + γ̂(γ + 3)euy + 6v(vuy + 2uvy)− γ̂2vxe

)
A3 =

(
3(γ̂e+ v2)u

)
A4 =

(
γγ̂evxx + γ̂(γ + 3)exvx + 6vu2

x + 12uuxvx + 3γ̂vexx + 3u2vxx + 6uvuxx − γ̂2uyex
)

A5 =
(
6γ̂vex + γ̂(γ + 3)evx + 6u(uvx + 2vux)− γ̂2uye

)
A6 =(3(γ̂e+ u2)v)

The variables m, n and E are discretized by the standard discontinuous Galerkin method with the first

order flux terms adopting the Lax-Friedriches flux, in which the viscosity constant αx = α0
x + α1

x for the

vertical cell interfaces and αy = α0
y +α1

y for the horizontal cell interfaces, and high-order flux terms adopting

the average flux, i.e.

(mn+1, ξ)Ki,j =(m, ξ)Ki,j −∆t(B1, ξx)Ki,j −∆t(B2, ξy)Ki,j

− ∆t2

2
(B3, ξx)Ki,j −

∆t2

2
(B4, ξy)Ki,j

− ∆t3

6
(B5, ξx)Ki,j −

∆t3

6
(B6, ξy)Ki,j

+ ∆t

∫ y
j+ 1

2

y
j− 1

2

(
{B1}+ αx[m] +

∆t

2
{B3}+

∆t2

6
{B5}

)
ξ(x−

i+ 1
2

, y)dy

−∆t

∫ y
j+ 1

2

y
j− 1

2

(
{B1}+ αx[m] +

∆t

2
{B3}+

∆t2

6
{B5}

)
ξ(x+

i− 1
2

, y)dy

+ ∆t

∫ x
i+ 1

2

x
i− 1

2

(
{B2}+ αy[m] +

∆t

2
{B4}+

∆t2

6
{B6}

)
ξ(x, y−

j+ 1
2

)dx

−∆t

∫ x
i+ 1

2

x
i− 1

2

(
{B2}+ αy[m] +

∆t

2
{B4}+

∆t2

6
{B6}

)
ξ(x, y+

j− 1
2

)dx

(3.22)
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(nn+1, ξ)Ki,j =(n, ξ)Ki,j −∆t(C1, ξx)Ki,j −∆t(C2, ξy)Ki,j

− ∆t2

2
(C3, ξx)Ki,j −

∆t2

2
(C4, ξy)Ki,j

− ∆t3

6
(C5, ξx)Ki,j −

∆t3

6
(C6, ξy)Ki,j

+ ∆t

∫ y
j+ 1

2

y
j− 1

2

(
{C1}+ αx[n] +

∆t

2
{C3}+

∆t2

6
{C5}

)
ξ(x−

i+ 1
2

, y)dy

−∆t

∫ y
j+ 1

2

y
j− 1

2

(
{C1}+ αx[n] +

∆t

2
{C3}+

∆t2

6
{C5}

)
ξ(x+

i− 1
2

, y)dy

+ ∆t

∫ x
i+ 1

2

x
i− 1

2

(
{C2}+ αy[n] +

∆t

2
{C4}+

∆t2

6
{C6}

)
ξ(x, y−

j+ 1
2

)dx

−∆t

∫ x
i+ 1

2

x
i− 1

2

(
{C2}+ αy[n] +

∆t

2
{C4}+

∆t2

6
{C6}

)
ξ(x, y+

j− 1
2

)dx

(3.23)

and

(En+1, ξ)Ki,j =(E, ξ)Ki,j −∆t(D1, ξx)Ki,j −∆t(D2, ξy)Ki,j

− ∆t2

2
(D3, ξx)Ki,j −

∆t2

2
(D4, ξy)Ki,j

− ∆t3

6
(D5, ξx)Ki,j −

∆t3

6
(D6, ξy)Ki,j

+ ∆t

∫ y
j+ 1

2

y
j− 1

2

(
{D1}+ αx[E] +

∆t

2
{D3}+

∆t2

6
{D5}

)
ξ(x−

i+ 1
2

, y)dy

−∆t

∫ y
j+ 1

2

y
j− 1

2

(
{D1}+ αx[E] +

∆t

2
{D3}+

∆t2

6
{D5}

)
ξ(x+

i− 1
2

, y)dy

+ ∆t

∫ x
i+ 1

2

x
i− 1

2

(
{D2}+ αy[E] +

∆t

2
{D4}+

∆t2

6
{D6}

)
ξ(x, y−

j+ 1
2

)dx

−∆t

∫ x
i+ 1

2

x
i− 1

2

(
{D2}+ αy[E] +

∆t

2
{D4}+

∆t2

6
{D6}

)
ξ(x, y+

j− 1
2

)dx

(3.24)

Similar to the one dimensional Euler equations, we have the results for positivity of ρ̄n+1 as follows.

Theorem 3.4. Given un ∈ G, the cell averages ρ̄n+1
i,j , i = 1, . . . , Nx, j = 1, . . . , Ny of the solution of scheme

(3.17) are nonnegative under the CFL condition (3.25):

λx ≤ min{Q1, Q3}, λy ≤ min{Q2, Q4} (3.25)

where the definitions of Q1, . . . , Q4 are given in Appendix A.4.
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Proof. Take ξ = 1 in Ki,j and zero on other cells in (3.17), we obtain

ρ̄n+1
i,j = I + II + III + IV, (3.26)

where

I =
1

4
ρ̄ni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i+ 1

2 ,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 0
i− 1

2 ,j
dy,

II =
1

4
ρ̄ni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i+ 1

2 ,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂ 1
i− 1

2 ,j
dy,

III =
1

4
ρ̄ni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ0
i,j− 1

2
dx

IV =
1

4
ρ̄ni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j+ 1

2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝ1
i,j− 1

2
dx

It suffices to show I, II ≥ 0 under the CFL condition (3.25), due to the symmetry in the x and y directions.

One can observe that I can be decomposed in the form of convex combination

I =
1

4

2Nq−1∑
γ=1

ω̂γHγ ,

where

Hγ =

2Nq−1∑
β=1

ω̂β ρ̂
β,γ − 4λxF̂

0
i+ 1

2 ,j
(xi+ 1

2
, ŷγ) + 4λxF̂

0
i− 1

2 ,j
(xi− 1

2
, ŷγ),

Notice that Hγ has the same structure as (3.10). Thus I ≥ 0 provided λx ≤ Q1. We omit the proof since it

is almost the same with that of the one dimensional Euler equations.
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As for II, we have the expansion as follows.

II =
1

4

2Nq−2∑
α=2

2Nq−1∑
β=1

ω̂αω̂β ρ̂
α,β

+ z1ρ(x−
i− 1

2

, y+
j− 1

2

) + z2ρ(x−
i− 1

2

, yj) + z3ρ(x−
i− 1

2

, y−
j+ 1

2

)

+ z4ρ(x+
i− 1

2

, y+
j− 1

2

) + z5ρ(x+
i− 1

2

, yj) + z6ρ(x+
i− 1

2

, y−
j+ 1

2

)

+ z7ρ(x−
i+ 1

2

, y+
j− 1

2

) + z8ρ(x−
i+ 1

2

, yj) + z9ρ(x−
i+ 1

2

, y−
j+ 1

2

)

+ z10ρ(x+
i+ 1

2

, y+
j− 1

2

) + z11ρ(x+
i+ 1

2

, yj) + z12ρ(x+
i+ 1

2

, y−
j+ 1

2

)

+

Nq−1∑
β=2

ω̂βz13,βρ(x−
i− 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz13,βρ(x−
i− 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz14,βρ(x+
i+ 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz14,βρ(x+
i+ 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz15,βρ(x−
i+ 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz15,βρ(x−
i+ 1

2

, ŷβ)

+

Nq−1∑
β=2

ω̂βz16,βρ(x+
i− 1

2

, ŷβ) +

2Nq−2∑
β=Nq+1

ω̂βz16,βρ(x+
i− 1

2

, ŷβ),

(3.27)

The expressions of z1, . . . , z16,β and their estimates can be found in Appendix A.5. The conclusion is

that all coefficients of point values of ρn appearing in (3.27) are nonnegative under the CFL condition (3.25),

which implies the nonnegativity of II. Similar arguments also apply to III and IV.

Since ρ̄n+1
i,j = I + II + III + IV, we finish the proof of positivity of ρ̄n+1

i,j by summing up the inequalities

of I, II, III and IV.

It remains to show the positivity of specific internal energy of cell averages. Similar to Theorem 3.2, we

have the result as follows.

Theorem 3.5. Given un ∈ G, the specific internal energy of the cell averages e(ūn+1
i,j ), i = 1, 2, . . . Nx, j =

1, 2, . . . , Ny of scheme (3.17),(3.22) ,(3.23) and (3.24) are nonnegative under the CFL condition (3.28).

λx ≤
γ + 1

4α2
x(γ − 1)

min
i,β

{
p(x−

i+ 1
2

, ŷβ)2

C(x−
i+ 1

2

, ŷβ)
,
p(x+

i+ 1
2

, ŷβ)2

C(x+
i+ 1

2

, ŷβ)

}
,

λy ≤
γ + 1

4α2
y(γ − 1)

min
α,j

{
p(x̂α, y

−
j+ 1

2

)2

D(x̂α, y
−
j+ 1

2

)
,
p(x̂α, y

+
j+ 1

2

)2

D(x̂α, y
+
j+ 1

2

)

}
,

(3.28)

where the definitions of the constants are given in Appendix A.6.
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Proof. By taking ξ = 1 on Ki,j and zero anywhere else in (3.17), (3.22), (3.23) and (3.24), we have the

decomposition of ūn+1
i,j in x and y directions:

ūn+1
i,j = I + II,

where

I =
1

2
ūni,j − λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂i+ 1
2 ,j
dy + λx

1

∆y

∫ y
j+ 1

2

y
j− 1

2

F̂i− 1
2 ,j
dy,

II =
1

2
ūni,j − λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j+ 1
2
dx+ λy

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Ĝi,j− 1
2
dx,

where F̂i+ 1
2 ,j

= f̂LF
i+ 1

2 ,j
+ ∆t̃fi+ 1

2 ,j
+ ∆t2f̌i+ 1

2 ,j
, Ĝi,j+ 1

2
= ĝLF

i,j+ 1
2

+ ∆tg̃i,j+ 1
2

+ ∆t2ǧi,j+ 1
2
are the total fluxes

of LWDG defined before, f̂LF
i+ 1

2 ,j
, ĝLF
i,j+ 1

2

are Lax-Friedriches fluxes, f̃i+ 1
2 ,j
, g̃i,j+ 1

2
and f̌i+ 1

2 ,j
, ǧi,j+ 1

2
are the

second and third order terms in the total flux.

By symmetry and concaveness of the internal energy ρe, it suffices to show ρe(I) ≥ 0. We can decompose

the term I as

I =
1

2

2Nq−1∑
α=1

2Nq−1∑
β=1

ω̂αω̂βuα,β − λx
2Nq−1∑
β=1

ω̂βF̂(xi+ 1
2
, ŷβ) + λx

2Nq−1∑
β=1

ω̂βF̂(xi− 1
2
, ŷβ)

=
1

2

2Nq−1∑
β=1

ω̂βHβ ,

where Hβ =
∑2Nq−1
α=1 ω̂αuα,β − 2λx

(
f̂LF
j+ 1

2

+ ∆t̃fj+ 1
2

+ ∆t2f̌j+ 1
2

)
+ 2λx

(
f̂LF
j− 1

2

+ ∆t̃fj− 1
2

+ ∆t2f̌j− 1
2

)
Following the same lines as the proof of (3.2), we can show ρe(Hβ) ≥ 0, which implies ρe(I) ≥ 0

Collecting the above two theorems, we reach our final result.

Theorem 3.6. Given un ∈ G, we have ūn+1
i,j ∈ G, i = 1, . . . , Nx, j = 1, . . . , Ny for the schemes (3.17),

(3.22), (3.23) and (3.24), under the CFL conditions (3.25) and (3.28).

Remark 3.1. To this end, we would like to comment on the CFL conditions obtained in this paper. These

conditions are not optimal for bound-preserving since the splitting of cell averages in the proofs are just for

the ease of writing and the bounds may not be sharp in some of the estimates. Moreover, the expressions of

the CFL conditions are too tedious to be coded up in practice. Therefore, we actually take the CFL conditions

of the bound-preserving Euler forward DG schemes derived in [40, 39] as the initial guess in practice, since

the Euler forward methods are the first order approximation of the LWDG in our work. Once the initial step
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size is not small enough to obtain boundedness of the cell averages, we rewind the computation back to the

beginning of the time step with a halved step-size of time. The value of the theoretical proofs in this paper

is that we can be guaranteed to obtain bound-preserving cell averages with finitely many halvings of the time

step-size.

We also want to note that, for simplicity, we take the viscosity parameter in the Lax-Friedrichs flux to be

global in all proofs. However, the local Lax-Friedrichs flux can be used in the bound-preserving technique as

well. In practice, the global Lax-Friedrichs flux is more dissipative, thus it may preserve the bounds of target

variables more easily, but may result in a more smeared solution.

4 Scaling limiters

In the Sections 2 and 3, we have constructed the maximum-principle-satisfying and positivity-preserving

LWDG schemes for hyperbolic equations of scalar and system cases. The cell averages of the target variables

fall into their physical bounds under appropriate CFL conditions, provided these bounds are satisfied by the

entire solution at the previous time level. To close the cycle of the algorithm, it remains to use appropriate

scaling limiters to achieve the bound-preserving for the entire solution.

We adopt the following maximum-principle-satisfying limiter for scalar conservation laws. Given u ∈ V

with m ≤ ūj ≤M, j = 1, 2, . . . , N , define the modified solution ũ ∈ V as follows:

ũj(x) = θj (uj(x)− ūj) + ūj , θj = min

{
1,
M − ūj
Mj − ūj

,
ūj −m
ūj −mj

}
,

Mj = max
x∈Ij

uj(x), mj = min
x∈Ij

uj(x), j = 1, 2, . . . , N.

It is clear that the modified solution ũj(x) ∈ [m,M ], j = 1, . . . , N and it preserves the cell average. Moreover,

it was proved in [38] that such a limiter does not destroy the order of convergence, i.e. ||u−ũ||∞ = O(∆xk+1),

where k is the order of polynomial space V , which is 2 in this paper. In practice, one usually take the max and

min in the definition of Mj and mj only over the quadrature points, i.e. Mj = max1≤γ≤2Nq−1 uj(x̂γ),mj =

min1≤γ≤2Nq−1 uj(x̂γ), as we only need to control the values at quadrature points. Such a treatment does

not affect the accuracy and cell average of the modified solution, as indicated in [40], and we shall use this

definition in the numerical section.

For the solution u = (ρ,m,E)T ∈ V × V × V of the Euler equations with ūj ∈ G, j = 1, 2, . . . , N , we
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adopt the following limiting process which is introduced in [39] and modified in [34]

First, enforce the positivity of the density function ρ by,

ρ̂j(x) = θρj (ρj(x)− ρ̄j) + ρ̄j , θρj = min

{
1,

ρ̄j
ρ̄j −min1≤γ≤2Nq−1 ρ(x̂γ)

}
, j = 1, 2, . . . , N.

Then let ûj = (ρ̂j ,mj , Ej)
T and define

ũj(x) = θej (ûj(x)− ūj) + ūj , θej = min

{
1,

ρe(ūj)

ρe(ūj)−min1≤γ≤2Nq−1 ρe(ûj(x̂γ))

}
, j = 1, 2, . . . , N.

It follows from the concaveness of the function ρe(u) that ũj(x̂γ) ∈ G, γ = 1, 2, . . . , 2Nq − 1, and also it

does not destroy accuracy of the solution, see the detailed proof in [39] and [34].

The above limiters are demonstrated based on one space dimension but can be directly extended to multi-

dimensions. In implementation, to enhance the stability of algorithms, we can set a threshold ε = 10−10 and

let ũj = ūj if M − ūj < ε or ūj −m < ε for scalar conservation law, and ũj = ūj if ρ̄j < ε or ρe(ūj) < ε for

the Euler equations.

5 Numerical tests

In this section, we demonstrate the accuracy and effectiveness of the third order maximum-principle-satisfying

and positivity-preserving LWDG schemes by ample numerical tests. The tests are presented from scalar to

systems and from one space dimension to two space dimensions with an order of increasing complexity. Most

of them can be found in [40, 39, 38, 34].

We have tried both global Lax-Friedrichs and local Lax-Friedrichs fluxes in simulations. The plots of

their solutions are very close. However, the accuracy and order of convergence of the global one may be not

as good as the local one for some nonlinear problems when the order of DG polynomial space is even, see [5],

which is our case. We demonstrate this phenomenon in the tests for Burgers’ equation. For all other tests,

we only present the results computed using the local Lax-Friedrichs flux to save space. In all the tests, we

take the parameters β0 = 1, β1 = 1
6 in the DDG fluxes.

As mentioned in Remark 3.1, we take the initial guess of CFL numbers in our tests the same as the

bound-preserving Euler forward DG schemes [40, 39], and rewind the computation back to the beginning of

the time step with a halved step-size of time if the cell average of solutions exceed their bounds. We report

the number of times that the rewinding happens, together with the total number of time steps in each test.
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As we will see, the actual CFL conditions of LWDG are almost the same with that of the bound-preserving

Euler forward DG schemes in most cases.

5.1 Scalar conservation laws

Example 5.1. We solve the linear equation ut + ux = 0 in the domain Ω = [−1, 1] with periodic boundary

conditions.

To test the accuracy, we take the smooth initial condition u0(x) = sin(πx) and the terminal time T = 1.

To show the effect of maximum-principle-preserving, we adopt the discontinuous initial condition

u0(x) =


1, −1 ≤ x ≤ 0,

−1, 0 ≤ x ≤ 1,

and take the terminal time T = 100.

The errors and order of convergence of the problem with the smooth initial condition are given in Table

1, from which the third order accuracy can be clearly observed.

The results of the problem with the discontinuous initial condition is shown in Figure 1, where a com-

parison with the exact solution and the result of the unlimited LWDG solution are given. The effect of

maximum-principle-preserving is obvious by comparison.

No rewinding of computation happens in this test.

N L1 error order L∞ error order

20 2.06E-04 – 5.09E-04 –

40 2.48E-05 3.05 6.38E-05 3.00

80 3.08E-06 3.01 7.97E-06 3.00

160 3.85E-07 3.00 9.97E-07 3.00

320 4.81E-08 3.00 1.25E-07 3.00

640 6.01E-09 3.00 1.56E-08 3.00

Table 1: Results of Example 5.1 with smooth initial condition

Example 5.2. We solve the Burgers’ equation ut +
(
u2

2

)
x

= 0 in the domain Ω = [0, 2π] with initial

condition u0(x) = 1
2 + sin(x) and periodic boundary conditions.
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Figure 1: Results of Example 5.1 for discontinuous initial condition. N = 160. Solid line: exact solution;

Squares: numerical solution (cell averages).

The solution is smooth up to t = 1, when shock appears. We list the errors and order of convergence at

T = 0.3 in Table 2 for both the local Lax-Friedrichs flux and global Lax-Friedrichs flux, which shows third

order accuracy, and plot the comparison of the numerical solution based on the local Lax-Friedrichs flux with

the exact solution at T = 2.0 in Figure 2.

No rewinding of computation happens in this test.

Local Lax–Friedrichs Flux Global Lax–Friedrichs Flux

N L1 error order L∞ error order L1 error order L∞ error order

20 9.05E-04 – 1.40E-03 – 1.05E-03 – 1.46E-03 –

40 1.13E-04 3.00 2.35E-04 2.58 1.53E-04 2.77 2.81E-04 2.38

80 1.37E-05 3.05 3.23E-05 2.87 2.24E-05 2.78 4.60E-05 2.61

160 1.66E-06 3.04 4.23E-06 2.93 3.23E-06 2.79 7.20E-06 2.68

320 2.04E-07 3.03 5.38E-07 2.98 4.59E-07 2.82 1.09E-06 2.72

640 2.52E-08 3.02 6.78E-08 2.99 6.43E-08 2.84 1.66E-07 2.72

Table 2: Results of Example 5.2 at T = 0.3
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Figure 2: Results of Example 5.2 at T = 2.0. N = 160. Solid line: exact solution; Squares: numerical

solution (cell averages).

Example 5.3. We solve the two dimensional linear equation ut + ux + uy = 0 in the domain Ω = [−1, 1]×

[−1, 1] with periodic boundary conditions.

To show the accuracy, we take the smooth initial condition u0(x, y) = sin(π(x+y)) and the terminal time

T = 1.

To test the effect of maximum-principle-preserving, we adopt a discontinuous initial condition

u0(x) =


1, (x, y) ∈ [− 1

2 ,
1
2 ]2

−1, elsewhere,

and take the terminal time T = 100.

The errors and order of convergence for the smooth initial condition are given in Table 3, from which the

third order accuracy can be observed.

The results of the problem with the discontinuous initial condition is shown in Figure 3, where a compar-

ison with the exact solution and the result of the unlimited LWDG solution are given, from which we can see

the maximum-principle-preserving limiter works effectively.

No rewinding of computation happens in this test.

Example 5.4. We solve the two dimensional Burgers’ equation ut +
(
u2

2

)
x

+
(
u2

2

)
y

= 0 in the domain

Ω = [0, 2π]× [0, 2π] with the initial condition u0(x, y) = 1
2 + sin(x+ y) and periodic boundary conditions.

The solution is smooth up to t = 0.5, when shock appears. We list the errors and order of convergence

for both the local Lax-Friedrichs flux and global Lax-Friedrichs flux, at T = 0.2 under the L1 and L∞ norms
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Nx ×Ny L1 error order L∞ error order

20× 20 7.49E-04 – 1.11E-03 –

40× 40 7.99E-05 3.23 1.29E-04 3.11

80× 80 9.71E-06 3.04 1.61E-05 3.00

160× 160 1.21E-06 3.01 2.01E-06 3.00

320× 320 1.51E-07 3.00 2.51E-07 3.00

640× 640 1.89E-08 3.00 3.14E-08 3.00

Table 3: Results of Example 5.3 with smooth initial condition
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Figure 3: Results of Example 5.3 with discontinuous initial condition cut along the diagonal (x = y) of Ω.

Nx = 160, Ny = 160. Solid line: exact solution; Squares: numerical solution (cell averages).
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in Table 4, and plot the comparison of the numerical solution based on the local Lax-Friedrichs flux with the

exact solution at T = 1.0 along the diagonal of Ω in Figure 4.

No rewinding of computation happens in this test.

Local Lax–Friedrichs Flux Global Lax–Friedrichs Flux

Nx ×Ny L1 error order L∞ error order L1 error order L∞ error order

20× 20 1.06E-02 – 5.33E-03 – 1.15E-02 – 5.38E-03 –

40× 40 1.33E-03 2.99 7.67E-04 2.80 1.63E-03 2.82 8.54E-04 2.66

80× 80 1.67E-04 3.00 1.12E-04 2.77 2.43E-04 2.75 1.42E-04 2.59

160× 160 2.09E-05 3.00 1.52E-05 2.89 3.61E-05 2.75 2.30E-05 2.62

320× 320 2.59E-06 3.01 1.95E-06 2.97 5.26E-06 2.78 3.47E-06 2.73

640× 640 3.20E-07 3.01 2.45E-07 2.99 7.46E-07 2.82 4.99E-07 2.80

Table 4: Results of Example 5.4 at T = 0.2
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Figure 4: Results of Example 5.4 cut along the diagonal (x = y) of Ω at T = 1.0. Nx = 160, Ny = 160. Solid

line: exact solution; Squares: numerical solution (cell averages).

5.2 The Euler equations

Example 5.5. We solve the one dimensional problem in the domain Ω = [0, 2π] with the initial condition

ρ0(x) = 1 + 0.999 sin(x), u0(x) = 1, p0(x) = 1
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and periodic boundary conditions. The ratio of specific heat is γ = 1.4.

The exact solution of the problem is

ρ(x, t) = 1 + 0.999 sin(x− t), u(x, t) = 1, p(x, t) = 1. (5.1)

This is a low density problem with the minimum density 0.001. The positivity of density is preserved

during simulation and the third order convergence of density at time T = 1 is shown in Table (5).

No rewinding of computation happens in this test.

N L1 error order L∞ error order

20 1.13E-03 – 8.60E-04 –

40 1.40E-04 3.01 1.07E-04 3.01

80 1.72E-05 3.02 1.34E-05 3.00

160 2.14E-06 3.01 1.65E-06 3.02

320 2.67E-07 3.00 2.04E-07 3.01

640 3.33E-08 3.00 2.55E-08 3.01

Table 5: Results of Example 5.5 at T = 1

Example 5.6. We solve the one dimensional problem of blast waves in the domain Ω = [0, 1] with initial

condition

(ρ0, u0, p0) =



(1, 0, 103) 0 ≤ x < 0.1,

(1, 0, 10−2) 0.1 ≤ x < 0.9

(1, 0, 102), 0.9 ≤ x < 1

and reflective boundary condition. The ratio of specific heat is γ = 1.4.

We plot the density of numerical solutions at T = 0.38 for N = 200, N = 400, and compare them with

the reference solution, which is computed by the WENO-5 scheme on a very fine mesh with 16, 000 cells, in

Figure 5. Since the positivity-preserving limiter only works when the density or pressure is close to zero and

no other limiters are used to stabilize shocks in this test, we can observe some oscillations in the figures.

In the test for N = 200, there are 8 times of rewinding of computation, among a total number of 6, 535

time steps. In the test for N = 400, there are 15 times of rewinding of computation, among a total number

of 13, 061 time steps.
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Figure 5: Results of Example 5.6 at T = 0.038. Solid line: reference solution; Squares: numerical solution

(cell averages).

Example 5.7. We solve two extreme Riemann problems in one space dimension. The first one is a double

rarefaction problem in the domain Ω = [−1, 1] with initial condition

(ρ0, u0, p0) =


(7,−1, 0.2), x < 0

(7, 1, 0.2), x > 0.

The second one is the Leblanc shock tube problem in the domain Ω = [−10, 10] with initial condition

(ρ0, u0, p0) =


(2, 0, 109), x < 0

(10−3, 0, 1), x > 0.

We take the ratio of specific heat γ = 1.4 for both cases. In the first test example, vacuum (zero density) will

be generated around the origin in the exact solution. For both problems, simulation will blow up without the

positivity-preserving limiter in the tests.

We plot the density of numerical solution of the double rarefaction problem at T = 0.6 on N = 200 and

N = 400 meshes, and compare them with the reference solution, which is obtained from the exact Riemann

solver [33], in Figure 6. The density of the numerical solution of the Leblanc shock tube problem at T = 0.0001

on N = 800 and N = 1, 600 meshes, together with the exact solution from the exact Riemann solver, are

shown in Figure 7, where the y-axis uses log scales. From the figures, we can see that the positivity of density

and pressure in both cases are preserved, and the numerical solutions agree with the exact solution well.
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No rewinding of computation happens in this test.

Example 5.8. We solve the one dimensional Sedov point-blast wave problem [29] in the domain Ω = [−2, 2]

with the initial condition

ρ0 = 1, u0 = 0, E0 =


3200000

∆x , |x| ≤ ∆x
2

10−12, otherwise.

The ratio of specific heat is γ = 1.4.

This example simulates the point-blast in air, which produces very low density after shock. The simulation

will blow up without the positivity-preserving limiter due to the very low density in the exact solution. We

plot the simulation results of density, pressure and velocity on N = 201 and N = 401 meshes at T = 0.001

in Figure 8.

In the test for N = 201, there is only once of rewinding of computation, among a total number of 7, 377

time steps. In the test for N = 401, there is only once of rewinding of computation, among a total number

of 18, 661 time steps.

Example 5.9. We solve the two dimensional problem in the domain [0, 2π]2 with the initial condition

ρ0(x, y) = 1 + 0.999 sin(x+ y), u0 = v0 = p0 = 1.

and periodic boundary conditions. The ratio of specific heat is γ = 1.4.

The exact solution of the problem is

ρ(x, y, t) = 1 + 0.999 sin(x+ y − 2t), u(x, y, t) = v(x, y, t) = p(x, y, t) = 1.

This is a low density problem with the minimum density 0.001. The positivity of density is preserved during

simulation and the third order convergence of density at time T = 0.1 is shown in Table 6.

No rewinding of computation happens in this test.

Example 5.10. We solve the two dimensional Sedov point-blast wave problem [29] in the domain Ω =

[0, 1.1]× [0, 1.1] with the initial condition

ρ0 = 1, u0 = v0 = 0, E0 =


0.244816
∆x∆y , (x, y) ∈ [0,∆x]× [0,∆y]

10−12, otherwise,
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Figure 6: Results of Example 5.7, the double rarefaction problem, at T = 0.6. Solid line: reference solution;

Squares: numerical solution (cell averages). Left: N = 200; Right:N = 400.38
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Figure 7: Results of Example 5.7, Leblanc shock tube problem, at T = 0.0001. Solid line: reference solution;

Squares: numerical solution (cell averages). Left: N = 800; Right: N = 1, 600.39
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Figure 8: Results of Example 5.8 at T = 0.001. Solid line: reference solution; Squares: numerical solution

(cell averages). Left: N = 201; Right: N = 401. 40



Nx ×Ny L1 error order L∞ error order

20× 20 8.64E-03 – 1.23E-03 –

40× 40 1.37E-03 2.65 2.12E-04 2.53

80× 80 1.79E-04 2.94 2.71E-05 2.97

160× 160 2.23E-05 3.00 3.33E-06 3.03

320× 320 2.75E-06 3.02 4.12E-07 3.02

Table 6: Results of Example 5.9 at T = 0.1

and the left and bottom boundary the reflective boundary, and other boundaries the outflow boundary. The

ratio of specific heat is γ = 1.4.

We plot the density on Ω and its profile cut along the diagonal of Ω at T = 1 on the Nx = 160, Ny = 160

mesh, see Figure 9. The simulation blows up if the positivity-preserving limiter is not used in the test.

In this test, there are 605 times of rewinding of computation, among a total number of 344, 226 time

steps.

(a) Density in Ω
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Figure 9: Results of Example 5.10 at T = 1. Solid line: reference solution; Squares: numerical solution (cell

averages).

Example 5.11. Consider the two-dimensional double Mach reflection problem with a Mach 10 shock in the
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domain Ω = [0, 4]× [0, 1], with the initial condition

(ρ0, u0, v0, p0) =


(8, 33

√
3

8 ,− 33
8 , 116.5), y >

√
3(x− 1

6 ) (post-shock)

(1.4, 0, 0, 1), y <
√

3(x− 1
6 ) (pre-shock).

The left boundary is the inflow boundary, the right boundary is the outflow boundary, {0 ≤ x < 1
6 , y = 0}

on the bottom is the boundary with post-shock condition, { 1
6 < x ≤ 4, y = 0} on the bottom is the reflective

boundary, and the condition on top boundary follows the motion of the shock. We show the results at T = 0.2

on the Nx = 960, Ny = 240 mesh in Figure 10. The results are comparable with the results in [38].

No rewinding of computation happens in this test.

Example 5.12. We solve the two dimensional problem of shock passing a backward facing corner in the

domain Ω = [1, 13]× [0, 11] ∪ [0, 1]× [6, 11], with the initial condition

(ρ0, u0, v0, p0) =


(ρ∗, u∗, v∗, p∗), x < 0.5 (post-shock)

(1.4, 0, 0, 1), x > 0.5 (pre-shock)
,

where (ρ∗, u∗, v∗, p∗)= (7.041132906907898, 4.07794695481336, 0, 30.05945) are taken such that the shock is

right-moving with Mach number 5.09. The boundary {x = 0, 6 ≤ y ≤ 11} is the inflow boundary, {0 ≤ x ≤

1, y = 6} and {x = 1, 0 ≤ y ≤ 6} are reflexive boundaries, {x = 13, 0 ≤ y ≤ 11} and {1 ≤ x ≤ 13, y = 0} are

outflow boundaries, and the boundary condition on {0 ≤ x ≤ 13, y = 11} follows the motion of the shock.

The density and pressure at T = 2.3 with ∆x = ∆y = 1
32 are presented in Figure 11. The results are

comparable with the results in [38, 39]

No rewinding of computation happens in this test.

Example 5.13. Consider the two-dimensional astrophysical jets problems with very high Mach number. We

set the domain Ω = [0, 0.5]× [0, 0.25] with initial condition ρ0(x, y) = 0.5, u0(x, y) = v0(x, y) = 0, p0(x, y) =

0.4127. The boundary conditions of the right and top are outflow; the bottom boundary is reflexive; the left

boundary is inflow with (ρ, u, v, p) = (5, 800, 0, 0.4127) if 0 ≤ y ≤ 0.05, which corresponds to a jet flow of

Mach number 2000, while (ρ, u, v, p) = (0.5, 0, 0, 0.4127) otherwise. The ratio of specific heat is γ = 5/3.

A combination of the total variation bounded limiter [8] and the flux limiter [43] are used before applying

the positivity-preserving limiter in each time stage to reduce the spurious oscillations where the density and

pressure are far above zero. We would like to note that, the positivity of density and pressure are preserved
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Figure 10: Results of Example 5.11 at T = 0.2 on Nx = 960, Ny = 240 mesh.
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Figure 11: Results of Example 5.12 at T = 2.3.

44



during simulation if only the positivity-preserving limiter is used, however, the simulation blows up very soon

without the positivity-preserving limiter. We compute the solution on Nx ×Ny = 320 × 160 grid, and show

the density and pressure at T = 5× 10−4 in Figure12.

In this test, there are 1, 968, 558 times of rewinding of computation, resulting in a total number of 356, 643

time steps. The unusually small CFL number is caused by the TV B limiter adopted, without which there

is no rewinding of computation and the CFL number is almost 10 times larger, but the result is oscillatory,

though the positivity is preserved. Since the scope of this paper is on positivity-preserving algorithms, we do

not further study more compatible slope limiters for this example here.

(a) Density with log scale, lower part flipped from the upper

part

(b) Pressure with log scale, lower part flipped from the upper

part

Figure 12: Results of Example 5.13 at T = 5× 10−4.

6 Concluding remarks

In this paper, we have proposed the third order maximum-principle-satisfying and positivity-preserving

discontinuous Galerkin methods for scalar conservation laws and the Euler equations, respectively, based

on the Lax-Wendroff time discretization. The approach here is specified for DG methods with the use of

DDG discretization for the second temporal derivative terms. The main contribution of the paper is to prove

rigorously that, under suitable CFL conditions, the cell average of the unmodulated LWDG scheme at the

next time step is bounded, provided the solution stay in the desired bounds at the current time step. The
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scaling limiters, which were proved not to affect the high order accuracy and mass conservation, can then

be used to enforce the bounds for the whole solution at the next time step, hence closing the loop of the

bound-preserving LWDG algorithm.

Several possible extensions could be made in future works. For instance, it is of great importance to

extend the algorithm to schemes with accuracy higher than third order. It is also meaningful to extend

the algorithm from structured grids to unstructured meshes for geometry flexibility. The 3D case of the

algorithm will also be studied in the future.
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Appendices

A Skipped details of CFL conditions and proofs of bound-preserving

for the scalar conservation law and Euler equations

A.1 Constants in the CFL condition (2.25)

Denote

Mf
1 = maxm≤u≤M |f ′(u)|,

Mf
2 = maxm≤u≤M |f ′′(u)|,

Mg
1 = maxm≤u≤M |g′(u)|,

Mg
2 = maxm≤u≤M |g′′(u)|,

then the constants Q1 and Q2 in the CFL condition (2.25) are defined as:

Q1 = min{q1
1 , q

1
2 , . . . , q

1
6}, where

q1
1 = 1

8Mf
1

minγ ω̂γ ,
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,
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,
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3M
f
1

,

q1
5 = 1

4
ω̂

1/2
1

Mf
1 (β0−1+4β1)1/2

,

q1
6 = 1

4

ω̂
1/2
Nq

Mf
1 (6−24β1)1/2

,

Q2 = min{q2
1 , q

2
2 , . . . , q

2
6}, where

q2
1 = 1

8Mg
1

minγ ω̂γ ,

q2
2 = 1

4

4β1− 1
2

5(M−m)Mg
2 + 4

3M
g
1
,

q2
3 = 1

4
2−8β1

20(M−m)Mg
2 + 8

3M
g
1
,

q2
4 = 1

4

β0− 3
2 +4β1

15(M−m)Mg
2 + 4

3M
g
1
,

q2
5 = 1

4
ω̂

1/2
1

Mg
1 (β0−1+4β1)1/2 ,

q2
6 = 1

4

ω̂
1/2
Nq

Mg
1 (6−24β1)1/2 ,

Define

c1 = Mf
1 M

g
1 +Q2(10(M −m)Mf

1 M
g
1M

g
2 + 5(M −m)Mg

1
2
Mf

2 + 2Mf
1 M

g
1

2
),

c2 = Mf
1 M

g
1 +Q1(10(M −m)Mf

1 M
g
1M

f
2 + 5(M −m)Mf

1

2
Mg

2 + 2Mg
1M

f
1

2
),

51



then Q3 and Q4 in (2.25) are defined as:

Q3 = min{q3
1 , q

3
2 , q

3
3 , q

3
4}, where

q3
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ω̂2
1

2ω̂1α1
x+4Q2c1

,
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4
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2c1
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A.2 Coefficients in the expansion (2.26)

For convenience, we introduce the constants

dγ1 = 2L′−1(r̂γ), dγ2 = 2L′0(r̂γ), dγ3 = 2L′1(r̂γ), γ = 1, 2, . . . , 2Nq − 1,

where L−1, L0, L1 are the Lagrange basis in (2.11) and {r̂γ , γ = 1, . . . , 2Nq−1} are the Gauss-Lobatto points

on [−1, 1]. It is clear that |dγi | ≤ 4, for i = 1, 2, 3, γ = 1, 2, . . . , 2Nq − 1.

The coefficients z1, . . . , z14,β in the expansion (2.26) are defined as follows.
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, ŷβ)

z7 =
1

4
ω̂1ω̂2Nq−1−

1

2
λxω̂1α

1
x+λxλy

2Nq−1∑
β=1

ω̂β

(
1

4
f ′g′dβ1 −

∆t

12
(6f ′g′g′′uy + 3g′2f ′′uy)dβ1 − λyf ′g′2

)
(x−
i+ 1

2

, ŷβ)
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Moreover, we have the following lower bound estimates for z1, . . . , z14,β under the CFL condition (2.25).
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and z13,β , z14,β ≥ 0, ∀β.

A.3 Coefficients in the expansion (3.11)

The coefficients of the expansion (3.11) are
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z16 = λ2

(
γ̂

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
γ̂γ (uxx)

+
j+ 1

2
+

∆t

4
γ̂(3 + γ) (ux)

+
j+ 1

2
− λγ̂u+

j+ 1
2

)
e+
j+ 1

2

z17 = λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ) (ux)

+
j+ 1

2
+ 2λγ̂u+

j+ 1
2

)
ej+1

z18 = λ2

(
γ̂

2
(4β1 −

1

2
) +

∆t

12
γ̂(3 + γ) (ux)

+
j+ 1

2
− λγ̂u+

j+ 1
2

)
e−
j+ 3

2

Under the condition λ ≤ min{q7, q8, q9, q10, q11}, we have the estimates as follows

z10 ≥ λ2

(
γ̂

2
(4β1 −

1

2
)− ∆t

12
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e+
j− 3

2

≥ 0,
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z11 ≥ λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ)||ux||∞ − 2λγ̂||u||∞

)
ej−1 ≥ 0,

z12 ≥ λ2

(
γ̂

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
γ̂γ||uxx||∞ −

∆t

4
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e−
j− 1

2

≥ 0,

z13 ≥
1

4
ω1 − λ2

(
γ̂

2
(β0 − 2 + 8β1) +

∆t2

12λ
γ̂γ||uxx||∞ +

∆t

3
γ̂(3 + γ)||ux||∞ + 2λγ̂||u||∞

)
||e||∞ ≥ 0,

z14 ≥
1

4
ωNq − λ2

(
γ̂(2− 8β1) +

2∆t

3
γ̂(3 + γ)||ux||∞ + 4λγ̂||u||∞

)
||e||∞ ≥ 0,

z15 ≥
1

4
ω2Nq−1 − λ2

(
γ̂

2
(β0 − 2 + 8β1) +

∆t2

12λ
γ̂γ||uxx||∞ +

∆t

3
γ̂(3 + γ)||ux||∞ + 2λγ̂||u||∞

)
||e||∞ ≥ 0,

z16 ≥ λ2

(
γ̂

2
(β0 −

3

2
+ 4β1)− ∆t2

12λ
γ̂γ||uxx||∞ −

∆t

4
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e+
j+ 1

2

≥ 0,

z17 ≥ λ2

(
γ̂

2
(2− 8β1)− ∆t

3
γ̂(3 + γ)||ux||∞ − 2λγ̂||u||∞

)
ej+1 ≥ 0,

z18 ≥ λ2

(
γ̂

2
(4β1 −

1

2
)− ∆t

12
γ̂(3 + γ)||ux||∞ − λγ̂||u||∞

)
e−
j+ 3

2

≥ 0,

A.4 Constants in the CFL condition (3.25)

Q1 = min{q1
1 , q

1
2 , . . . , q

1
11}, where

q1
1 = ω̂1

8||(|u|+c)||∞ ,

q1
2 = 1

4

6(β0− 3
2 +4β1)

∆x2||uxx||∞+6∆x||ux||∞+4||u||∞ ,

q1
3 = 1

4
3(2−8β1)

4(∆x||ux||∞+||u||∞) ,

q1
4 = 1

4

3(4β1− 1
2 )

∆x||ux||∞+2||u||∞ ,

q1
5 = 1

8||u||∞

(
ω1

β0−2+8β1

) 1
2

,

q1
6 = 1

8||u||∞

(
ωNq

2(2−8β1)

) 1
2

,

q1
7 = 1

4

6(4β1− 1
2 )

(3+γ)∆x||ux||∞+γ̂∆x||vy||∞+12||u||∞ ,

q1
8 = 1

4
3(2−8β1)

2(3+γ)∆x||ux||∞+2γ̂∆x||vy||∞+12||u||∞ ,

q1
9 = 1

4

6(β0− 3
2 +4β1)

γ∆x2||uxx||∞+3(3+γ)∆x||ux||∞+3γ̂∆x||vy||∞+12||u||∞ ,

q1
10 = 1

4

(
ω1

4γ̂(β0−2+8β1)||e||∞

) 1
2

,

q1
11 = 1

4

(
ωNq

8γ̂(2−8β1)||e||∞

) 1
2

,

Q2 = min{q2
1 , q

2
2 , . . . , q

2
11}, where

q2
1 = ω̂1

8||(|v|+c)||∞ ,

q2
2 = 1

4

6(β0− 3
2 +4β1)

∆y2||vyy||∞+6∆y||vy||∞+4||v||∞ ,

q2
3 = 1

4
3(2−8β1)

4(∆y||vy||∞+||v||∞) ,
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q2
4 = 1

4

3(4β1− 1
2 )

∆y||vy||∞+2||v||∞ ,

q2
5 = 1

8||v||∞

(
ω1

β0−2+8β1

) 1
2

,

q2
6 = 1

8||v||∞

(
ωNq

2(2−8β1)

) 1
2

,

q2
7 = 1

4

6(4β1− 1
2 )

(3+γ)∆y||vy||∞+γ̂∆y||ux||∞+12||v||∞ ,

q2
8 = 1

4
3(2−8β1)

2(3+γ)∆y||vy||∞+2γ̂∆y||ux||∞+12||v||∞ ,

q2
9 = 1

4

6(β0− 3
2 +4β1)

γ∆y2||vyy||∞+3(3+γ)∆y||vy||∞+3γ̂∆y||ux||∞+12||v||∞ ,

q2
10 = 1

4

(
ω1

4γ̂(β0−2+8β1)||e||∞

) 1
2

,

q2
11 = 1

4

(
ωNq

8γ̂(2−8β1)||e||∞

) 1
2

,

Let

c1 = 3ω̂1∆x||(vxu+ vux)||∞ + ω̂1Q1∆x2||A4||∞ + 12
(
||uv||∞ + Q1

3 ∆x||A5||∞ + Q1

3 ||A6||∞
)

c′1 = 3ω̂1∆y||(uyv + uvy)||∞ + ω̂1Q2∆y2||A1||∞ + 12
(
||uv||∞ + Q2

3 ∆y||A2||∞ + Q2

3 ||A3||∞
)

c2 = 3ω̂Nq∆x||(vxu+ vux)||∞ + ω̂NqQ1∆x2||A4||∞ + 12
(
||uv||∞ + Q1

3 ∆x||A5||∞ + 2Q1

3 ||A6||∞
)

c′2 = 3ω̂Nq∆y||(uyv + uvy)||∞ + ω̂NqQ2∆y2||A1||∞ + 12
(
||uv||∞ + Q2

3 ∆y||A2||∞ + 2Q2

3 ||A3||∞
)

c3 = 6ω̂1α
1
x + 3ω̂1Q2∆y||(uyv + uvy)||∞ + ω̂1Q

2
2∆y2||A1||∞ + 12Q2

(
||uv||∞ + Q2

3 ∆y||A2||∞ + Q2

3 ||A3||∞
)

c′3 = 6ω̂1α
1
y + 3ω̂1Q1∆x||(vxu+ vux)||∞ + ω̂1Q

2
1∆x2||A4||∞ + 12Q1

(
||uv||∞ + Q1

3 ∆y||A5||∞ + Q1

3 ||A6||∞
)

c4 = 6ω̂Nqα
1
x+3ω̂NqQ2∆y||(uyv+uvy)||∞+ω̂NqQ

2
2∆y2||A1||∞+12Q2

(
||uv||∞ + Q2

3 ∆y||A2||∞ + 2Q2

3 ||A3||∞
)

c′4 = 6ω̂Nqα
1
y+3ω̂NqQ1∆x||(vxu+vux)||∞+ω̂NqQ

2
1∆x2||A4||∞+12Q1

(
||uv||∞ + Q1

3 ∆x||A5||∞ + 2Q1

3 ||A6||∞
)

then

Q3 = min{q3
1 , q

3
2 , q

3
3 , q

3
4}, where

q3
1 =

6ω̂1α
1
y

c1
,

q3
2 =

6ω̂Nqα
1
y

c2
,

q3
3 =

3ω̂2
1

c3
,

q3
4 =

3ω̂1ω̂Nq
c4

,

Q4 = min{q4
1 , q

4
2 , q

4
3 , q

4
4}, where

q4
1 =

6ω̂1α
1
x

c′1
,

q4
2 =

6ω̂Nqα
1
x

c′2
,

q4
3 =

3ω̂2
1

c′3
,

q4
4 =

3ω̂1ω̂Nq
c′4

.
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A.5 Coefficients in the expansion (3.27)

The coefficients z1, . . . , z16,β in the expansion (3.27) are defined as follows.

z1 = λx

(
1

2
ω̂1α

1
x − ω̂1

λy
4

∆y(uyv + uvy)(x−
i− 1

2

, y+
j− 1

2

) + ω̂1

λ2
y

12
∆y2A1(x−

i− 1
2

, y+
j− 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ1uv +

λy
12
dγ1∆yA2 +

λy
3
A3

)
(x−
i− 1

2

, ŷγ)


z2 = λx

(
1

2
ω̂Nqα

1
x − ω̂Nq

λy
4

∆y(uyv + uvy)(x−
i− 1

2

, yj) + ω̂Nq
λ2
y

12
∆y2A1(x−

i− 1
2

, yj)

+λy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ2uv +

λy
12
dγ2∆yA2 −

2λy
3
A3

)
(x−
i− 1

2

, ŷγ)


z3 = λx

(
1

2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λy
4

∆y(uyv + uvy)(x−
i− 1

2

, y−
j+ 1

2

) + ω̂2Nq−1

λ2
y

12
∆y2A1(x−

i− 1
2

, y−
j+ 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ3uv +

λy
12
dγ3∆yA2 +

λy
3
A3

)
(x−
i− 1

2

, ŷγ)


z4 =

1

4
ω̂2

1 −
λx
2
ω̂1α

1
x − ω̂1

λxλy
4

∆y(uyv + uvy)(x+
i− 1

2

, y+
j− 1

2

) + ω̂1

λxλ
2
y

12
∆y2A1(x+

i− 1
2

, y+
j− 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ1uv +

λy
12
dγ1∆yA2 +

λy
3
A3

)
(x+
i− 1

2

, ŷγ)

z5 =
1

4
ω̂1ω̂Nq −

λx
2
ω̂Nqα

1
x − ω̂Nq

λxλy
4

∆y(uyv + uvy)(x+
i− 1

2

, yj) + ω̂Nq
λxλ

2
y

12
∆y2A1(x+

i− 1
2

, yj)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ2uv +

λy
12
dγ2∆yA2 −

2λy
3
A3

)
(x+
i− 1

2

, ŷγ)

z6 =
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λxλy
4

∆y(uyv + uvy)(x+
i− 1

2

, y−
j+ 1

2

) + ω̂2Nq−1

λxλ
2
y

12
∆y2A1(x+

i− 1
2

, y−
j+ 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
−1

4
dγ3uv +

λy
12
dγ3∆yA2 +

λy
3
A3

)
(x+
i− 1

2

, ŷγ)

z7 =
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂1α

1
x + ω̂1

λxλy
4

∆y(uyv + uvy)(x−
i+ 1

2

, y+
j− 1

2

)− ω̂1

λxλ
2
y

12
∆y2A1(x−

i+ 1
2

, y+
j− 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ1uv −

λy
12
dγ1∆yA2 −

λy
3
A3

)
(x−
i+ 1

2

, ŷγ)

z8 =
1

4
ω̂Nq ω̂2Nq−1 −

λx
2
ω̂Nqα

1
x + ω̂Nq

λxλy
4

∆y(uyv + uvy)(x−
i+ 1

2

, yj)− ω̂Nq
λxλ

2
y

12
∆y2A1(x−

i+ 1
2

, yj)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ2uv −

λy
12
dγ2∆yA2 +

2λy
3
A3

)
(x−
i+ 1

2

, ŷγ)
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z9 =
1

4
ω̂2Nq−1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x + ω̂2Nq−1

λxλy
4

∆y(uyv + uvy)(x−
i+ 1

2

, y−
j+ 1

2

)− ω̂2Nq−1

λxλ
2
y

12
∆y2A1(x−

i+ 1
2

, y−
j+ 1

2

)

+ λxλy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ3uv −

λy
12
dγ3∆yA2 −

λy
3
A3

)
(x−
i+ 1

2

, ŷγ)

z10 = λx

(
1

2
ω̂1α

1
x + ω̂1

λy
4

∆y(uyv + uvy)(x+
i+ 1

2

, y+
j− 1

2

)− ω̂1

λ2
y

12
∆y2A1(x+

i+ 1
2

, y+
j− 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ1uv −

λy
12
dγ1∆yA2 −

λy
3
A3

)
(x+
i+ 1

2

, ŷγ)


z11 = λx

(
1

2
ω̂Nqα

1
x + ω̂Nq

λy
4

∆y(uyv + uvy)(x+
i+ 1

2

, yj)− ω̂Nq
λ2
y

12
∆y2A1(x+

i+ 1
2

, yj)

+λy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ2uv −

λy
12
dγ2∆yA2 +

2λy
3
A3

)
(x+
i+ 1

2

, ŷγ)


z12 = λx

(
1

2
ω̂2Nq−1α

1
x + ω̂2Nq−1

λy
4

∆y(uyv + uvy)(x+
i+ 1

2

, y−
j+ 1

2

)− ω̂2Nq−1

λ2
y

12
∆y2A1(x+

i+ 1
2

, y−
j+ 1

2

)

+λy

2Nq−1∑
γ=1

ω̂γ

(
1

4
dγ3uv −

λy
12
dγ3∆yA2 −

λy
3
A3

)
(x+
i+ 1

2

, ŷγ)


z13,β = λx

(
1

2
α1
x −

λy
4

∆y(uyv + uvy)(x−
i− 1

2

, ŷβ) +
λ2
y

12
∆y2A1(x−

i− 1
2

, ŷβ)

)

z14,β = λx

(
1

2
α1
x +

λy
4

∆y(uyv + uvy)(x+
i+ 1

2

, ŷβ)−
λ2
y

12
∆y2A1(x+

i+ 1
2

, ŷβ)

)

z15,β =
1

4
ω̂2Nq−1 −

λx
2
α1
x +

λxλy
4

∆y(uyv + uvy)(x−
i+ 1

2

, ŷβ)−
λxλ

2
y

12
∆y2A1(x−

i+ 1
2

, ŷβ)

z16,β =
1

4
ω̂1 −

λx
2
α1
x −

λxλy
4

∆y(uyv + uvy)(x+
i− 1

2

, ŷβ) +
λxλ

2
y

12
∆y2A1(x+

i− 1
2

, ŷβ)

Under the CFL condition (3.25), we have the following estimates.

z1 ≥ λx
(

1

2
ω̂1α

1
x − ω̂1

λy
4

∆y||(uyv + uvy)||∞ − ω̂1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z2 ≥ λx
(

1

2
ω̂Nqα

1
x − ω̂Nq

λy
4

∆y||(uyv + uvy)||∞ − ω̂Nq
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

))
≥ 0

z3 ≥ λx
(

1

2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λy
4

∆y||(uyv + uvy)||∞ − ω̂2Nq−1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0
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z4 ≥
1

4
ω̂2

1 −
λx
2
ω̂1α

1
x − ω̂1

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂1

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z5 ≥
1

4
ω̂1ω̂Nq −

λx
2
ω̂Nqα

1
x − ω̂Nq

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂Nq

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

)
≥ 0

z6 ≥
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂2Nq−1

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z7 ≥
1

4
ω̂1ω̂2Nq−1 −

λx
2
ω̂1α

1
x − ω̂1

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂1

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z8 ≥
1

4
ω̂Nq ω̂2Nq−1 −

λx
2
ω̂Nqα

1
x − ω̂Nq

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂Nq

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

)
≥ 0

z9 ≥
1

4
ω̂2Nq−1ω̂2Nq−1 −

λx
2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λx
4
Q2∆y||(uyv + uvy)||∞ − ω̂2Nq−1

λx
12
Q2

2∆y2||A1||∞

− λxQ2

(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

)
≥ 0

z10 ≥ λx
(

1

2
ω̂1α

1
x − ω̂1

λy
4

∆y||(uyv + uvy)||∞ − ω̂1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z11 ≥ λx
(

1

2
ω̂Nqα

1
x − ω̂Nq

λy
4

∆y||(uyv + uvy)||∞ − ω̂Nq
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

2Q2

3
||A3||∞

))
≥ 0

z12 ≥ λx
(

1

2
ω̂2Nq−1α

1
x − ω̂2Nq−1

λy
4

∆y||(uyv + uvy)||∞ − ω̂2Nq−1
λy
12
Q2∆y2||A1||∞

−λy
(
||uv||∞ +

Q2

3
∆y||A2||∞ +

Q2

3
||A3||∞

))
≥ 0

z13,β ≥ λx
(

1

2
α1
x −

λy
4

∆y||(uyv + uvy)||∞ −
λy
12
Q2∆y2||A1||∞

)
≥ 0, ∀β

z14,β ≥ λx
(

1

2
α1
x −

λy
4

∆y||(uyv + uvy)||∞ −
λy
12
Q2∆y2||A1||∞

)
≥ 0, ∀β

z15,β ≥
1

4
ω̂2Nq−1 −

λx
2
α1
x −

λx
4
Q2∆y||(uyv + uvy)||∞ −

λx
12
Q2

2∆y2||A1||∞ ≥ 0, ∀β

z16,β ≥
1

4
ω̂1 −

λx
2
α1
x −

λx
4
Q2∆y||(uyv + uvy)||∞ −

λx
12
Q2

2∆y2||A1||∞ ≥ 0, ∀β
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A.6 Constants in the CFL condition (3.28)

The constants appearing in the CFL condition (3.28) are defined as follows.

C(x−
i+ 1

2

, ŷβ) =
∆x

αx

(
(2E(x−

i+ 1
2

, ŷβ) + p(x−
i+ 1

2

, ŷβ))
(
|f̃1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌1(xi+ 1

2
, ŷβ)|

)
+2ρ(x−

i+ 1
2

, ŷβ)
(
|f̃4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌4(xi+ 1

2
, ŷβ)|

)
+Q1

∆x

αx

(
|f̃1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌1(xi+ 1

2
, ŷβ)|

)(
|f̃4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌4(xi+ 1

2
, ŷβ)|

)
+

1

2
Q1

∆x

αx

(
|f̃2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌2(xi+ 1

2
, ŷβ)|

)2

+
1

2
Q1

∆x

αx

(
|f̃3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌3(xi+ 1

2
, ŷβ)|

)2

+(2|m(x−
i+ 1

2

, ŷβ)|+
p(x−

i+ 1
2

, ŷβ)

αx
)
(
|f̃2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌2(xi+ 1

2
, ŷβ)|

)
+2|n(x−

i+ 1
2

, ŷβ)|
(
|f̃3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌3(xi+ 1

2
, ŷβ)|

))
C(x+

i+ 1
2

, ŷβ) =
∆x

αx

(
(2E(x+

i+ 1
2

, ŷβ) + p(x+
i+ 1

2

, ŷβ))
(
|f̃1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌1(xi+ 1

2
, ŷβ)|

)
+2ρ(x+

i+ 1
2

, ŷβ)
(
|f̃4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌4(xi+ 1

2
, ŷβ)|

)
+Q1

∆x

αx

(
|f̃1(xi+ 1

2
, ŷβ)|+Q1∆x|f̌1(xi+ 1

2
, ŷβ)|

)(
|f̃4(xi+ 1

2
, ŷβ)|+Q1∆x|f̌4(xi+ 1

2
, ŷβ)|

)
+

1

2
Q1

∆x

αx

(
|f̃2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌2(xi+ 1

2
, ŷβ)|

)2

+
1

2
Q1

∆x

αx

(
|f̃3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌3(xi+ 1

2
, ŷβ)|

)2

+(2|m(x+
i+ 1

2

, ŷβ)|+
p(x+

i+ 1
2

, ŷβ)

αx
)
(
|f̃2(xi+ 1

2
, ŷβ)|+Q1∆x|f̌2(xi+ 1

2
, ŷβ)|

)
+2|n(x+

i+ 1
2

, ŷβ)|
(
|f̃3(xi+ 1

2
, ŷβ)|+Q1∆x|f̌3(xi+ 1

2
, ŷβ)|

))
D(x̂α, y

−
j+ 1

2

) =
∆x

αy

(
(2E(x̂α, y

−
j+ 1

2

) + p(x̂α, y
−
j+ 1

2

))
(
|f̃1(x̂α, yj+ 1

2
)|+Q2∆y|f̌1(x̂α, yj+ 1

2
)|
)

+2ρ(x̂α, y
−
j+ 1

2

)
(
|f̃4(x̂α, yj+ 1

2
)|+Q2∆y|f̌4(x̂α, yj+ 1

2
)|
)

+Q2
∆y

αy

(
|f̃1(x̂α, yj+ 1

2
)|+Q2∆y|f̌1(x̂α, yj+ 1

2
)|
)(
|f̃4(x̂α, yj+ 1

2
)|+Q2∆y|f̌4(x̂α, yj+ 1

2
)|
)

+
1

2
Q2

∆y

αy

(
|f̃2(x̂α, yj+ 1

2
)|+Q2∆y|f̌2(x̂α, yj+ 1

2
)|
)2

+
1

2
Q2

∆y

αy

(
|f̃3(x̂α, yj+ 1

2
)|+Q2∆y|f̌3(x̂α, yj+ 1

2
)|
)2

+2|m(x̂α, y
−
j+ 1

2

)|
(
|f̃2(x̂α, yj+ 1

2
)|+Q2∆y|f̌2(x̂α, yj+ 1

2
)|
)

+(2|n(x̂α, y
−
j+ 1

2

)|+
p(x̂α, y

−
j+ 1

2

)

αy
)
(
|f̃3(x̂α, yj+ 1

2
)|+Q2∆y|f̌3(x̂α, yj+ 1

2
)|
))
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D(x̂α, y
+
j+ 1

2

) =
∆x

αy

(
(2E(x̂α, y

+
j+ 1

2

) + p(x̂α, y
+
j+ 1

2

))
(
|f̃1(x̂α, yj+ 1

2
)|+Q2∆y|f̌1(x̂α, yj+ 1

2
)|
)

+2ρ(x̂α, y
+
j+ 1

2

)
(
|f̃4(x̂α, yj+ 1

2
)|+Q2∆y|f̌4(x̂α, yj+ 1

2
)|
)

+Q2
∆y

αy

(
|f̃1(x̂α, yj+ 1

2
)|+Q2∆y|f̌1(x̂α, yj+ 1

2
)|
)(
|f̃4(x̂α, yj+ 1

2
)|+Q2∆y|f̌4(x̂α, yj+ 1

2
)|
)

+
1

2
Q2

∆y

αy

(
|f̃2(x̂α, yj+ 1

2
)|+Q2∆y|f̌2(x̂α, yj+ 1

2
)|
)2

+
1

2
Q2

∆y

αy

(
|f̃3(x̂α, yj+ 1

2
)|+Q2∆y|f̌3(x̂α, yj+ 1

2
)|
)2

+2|m(x̂α, y
+
j+ 1

2

)|
(
|f̃2(x̂α, yj+ 1

2
)|+Q2∆y|f̌2(x̂α, yj+ 1

2
)|
)

+2(|n(x̂α, y
+
j+ 1

2

)|+
p(x̂α, y

+
j+ 1

2

)

αy
)
(
|f̃3(x̂α, yj+ 1

2
)|+Q2∆y|f̌3(x̂α, yj+ 1

2
)|
))

B Derivatives in the Euler equations

To simplify the derivation and coding, we need to compute a lot of intermediate variables before finally

obtaining mt,mtt,mttt, (and nt, ntt, nttt in 2D), and Et, Ett, Ettt to be used in the Lax-Wendroff procedure.

The expressions of the intermediate and target variables are given as follows.

B.1 One dimensional space

u = m
ρ ,

ux = mx
ρ −

uρx
ρ ,

uxx = − 2mxρx
ρ2 + mxx

ρ +m(
2ρ2
x

ρ3 − ρxx
ρ2 ),

ρt = −mx,

mt = −
(
γ̂Ex + 3−γ

2 mxu+ 3−γ
2 mux

)
,

Et = −
(
γExu+ γEux − γ̂

2mxu
2 − γ̂muux

)
,

ut = mt
ρ −

uρt
ρ ,

ρtx = −mxx,

mtx = −
(
γ̂Exx + 3−γ

2 mxxu+ (3− γ)mxux + 3−γ
2 muxx

)
,

Etx = −
(
γExxu+ 2γExux + γEuxx − γ̂

2mxxu
2 − 2γ̂mxuux − γ̂mu2

x − γ̂muuxx
)
,

utx = mtx
ρ −

mxρt
ρ2 − mtρx+mρtx

ρ2 + 2uρxρt
ρ2 ,

ρtt = −mtx,

mtt = −
(
γ̂Etx + 3−γ

2 mtxu+ 3−γ
2 mxut + 3−γ

2 mtux + 3−γ
2 mutx

)
,

Ett = −
(
γEtxu+ γExut + γEtux + γEutx − γ̂

2mtxu
2 − γ̂mxuut − γ̂mtuux − γ̂mutux − γ̂muutx

)
,
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utt = − 2mtρt
ρ2 + mtt

ρ + u(
2ρ2
t

ρ2 − ρtt
ρ ),

ρttt = −(mtt)x,

mttt = −
(
γ̂Ett + 3−γ

2 mttu+ 3−γ
2 mutt + (3− γ)mtut

)
x
,

Ettt = −
(
γEttu+ γEutt + 2γEtut − γ̂

2mttu
2 − γ̂m(u2

t + uutt)− 2γ̂mtuut

)
x
.

B.2 Two dimensional space

u = m
ρ ,

v = n
ρ ,

ux = mx
ρ −

uρx
ρ ,

uy =
my
ρ −

uρy
ρ ,

vx = nx
ρ −

vρx
ρ ,

vy =
ny
ρ −

vρy
ρ ,

uxx = − 2mxρx
ρ2 + mxx

ρ +m(
2ρ2
x

ρ3 − ρxx
ρ2 ),

uyy = − 2myρy
ρ2 +

myy
ρ +m(

2ρ2
y

ρ3 − ρyy
ρ2 ),

uxy = −ρymxρ2 − myρx
ρ2 +

2mρyρx
ρ3 +

mxy
ρ −

mρxy
ρ2 ,

vxx = − 2nxρx
ρ2 + nxx

ρ + n(
2ρ2
x

ρ3 − ρxx
ρ2 ),

vyy = − 2nyρy
ρ2 +

nyy
ρ + n(

2ρ2
y

ρ3 − ρyy
ρ2 ),

vxy = −ρynxρ2 − nyρx
ρ2 +

2nρyρx
ρ3 +

nxy
ρ −

nρxy
ρ2 ,

ρt = −mx − ny,

mt = −
(
γ̂Ex + 3−γ

2 mxu+ 3−γ
2 mux − γ̂

2nxv −
γ̂
2nvx +myv +mvy

)
,

nt = −
(
nxu+ nux + γ̂Ey − γ̂

2myu− γ̂
2muy + 3−γ

2 nyv + 3−γ
2 nvy

)
,

Et = −
(
γExu+ γEux − γ̂

2mxu
2 − γ̂muux − γ̂

2mxv
2 − γ̂mvvx

)
−
(
γEyv + γEvy − γ̂

2nyu
2 − γ̂nuuy − γ̂

2nyv
2 − γ̂nvvy

)
ut = mt

ρ −
uρt
ρ ,

vt = nt
ρ −

vρt
ρ ,

ρtx = −mxx − nxy,

ρty = −mxy − nyy,

mtx = −
(
γ̂Exx + 3−γ

2 mxxu+ (3− γ)mxux + 3−γ
2 muxx

− γ̂2nxxv − γ̂nxvx −
γ̂
2nvxx +mxyv +myvx +mxvy +mvxy

)
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mty = −
(
γ̂Exy + 3−γ

2 mxyu+ 3−γ
2 mxuy + 3−γ

2 myux + 3−γ
2 muxy

− γ̂2nxyv −
γ̂
2nxvy −

γ̂
2nyvx −

γ̂
2nvxy +myyv + 2myvy +mvyy

)
ntx = −

(
nxxu+ 2nxux + nuxx + γ̂Exy − γ̂

2mxyu− γ̂
2myux

− γ̂2mxuy − γ̂
2muxy + 3−γ

2 nxyv + 3−γ
2 nyvx + 3−γ

2 nxvy + 3−γ
2 nvxy

)
nty = −

(
nxyu+ nxuy + nyux + nuxy + γ̂Eyy − γ̂

2myyu− γ̂myuy − γ̂
2muyy

+ 3−γ
2 nyyv + (3− γ)nyvy + 3−γ

2 nvyy
)

Etx = −
(
γExxu+ 2γExux + γEuxx − γ̂

2mxxu
2 − 2γ̂mxuux − γ̂mu2

x − γ̂muuxx −
γ̂
2mxxv

2 − 2γ̂mxvvx

−γ̂mv2
x − γ̂mvvxx + γExyv + γEyvx + γExvy + γEvxy − γ̂

2nxyu
2 − γ̂nyuux − γ̂nxuuy

−γ̂nuxuy − γ̂nuuxy − γ̂
2nxyv

2 − γ̂nyvvx − γ̂nxvvy − γ̂nvxvy − γ̂nvvxy
)

Ety = −
(
γEyyv + 2γEyvy + γEvyy − γ̂

2nyyv
2 − 2γ̂nyvvy − γ̂nv2

y − γ̂nvvyy −
γ̂
2nyyu

2 − 2γ̂nyuuy

−γ̂nu2
y − γ̂nuuyy + γExyu+ γExuy + γEyux + γEuxy − γ̂

2mxyv
2 − γ̂mxvvy − γ̂myvvx

−γ̂mvyvx − γ̂mvvxy − γ̂
2mxyu

2 − γ̂mxuuy − γ̂myuux − γ̂muyux − γ̂muuxy
)

utx = mtx
ρ −

mxρt
ρ2 − mtρx+mρtx

ρ2 + 2uρxρt
ρ2 ,

uty =
mty
ρ −

myρt
ρ2 − mtρy+mρty

ρ2 +
2uρyρt
ρ2 ,

vtx = ntx
ρ −

nxρt
ρ2 − ntρx+nρtx

ρ2 + 2vρxρt
ρ2 ,

vty =
nty
ρ −

nyρt
ρ2 − ntρy+nρty

ρ2 +
2vρyρt
ρ2 ,

ρtt = −mtx − nty,

mtt = −
(
γ̂Etx + 3−γ

2 mtxu+ 3−γ
2 mxut + 3−γ

2 mtux + 3−γ
2 mutx

− γ̂2ntxv −
γ̂
2nxvt −

γ̂
2ntvx −

γ̂
2nvtx +mtyv +myvt +mtvy +mvty

)
ntt = −

(
ntxu+ nxut + ntux + nutx + γ̂Ety − γ̂

2mtyu− γ̂
2myut − γ̂

2mtuy − γ̂
2muty

+ 3−γ
2 ntyv + 3−γ

2 nyvt + 3−γ
2 ntvy + 3−γ

2 nvty
)

Ett = −
(
γEtxu+ γExut + γEtux + γEutx − γ̂

2mtxu
2 − γ̂mxuut − γ̂mtuux − γ̂mutux

−γ̂muutx − γ̂
2mtxv

2 − γ̂mxvvt − γ̂mtvvx − γ̂mvtvx − γ̂mvvtx + γEtyv + γEyvt

+γEtvy + γEvty − γ̂
2ntyu

2 − γ̂nyuut − γ̂ntuuy − γ̂nutuy − γ̂nuuty − γ̂
2ntyv

2

−γ̂nyvvt − γ̂ntvvy − γ̂nvtvy − γ̂nvvty)

utt = − 2mtρt
ρ2 + mtt

ρ + u(
2ρ2
t

ρ2 − ρtt
ρ ),

vtt = − 2ntρt
ρ2 + ntt

ρ + v(
2ρ2
t

ρ2 − ρtt
ρ ),

ρttt = −(mtt)x − (ntt)y,

mttt = −
(
γ̂Ett + 3−γ

2 mttu+ 3−γ
2 mutt + (3− γ)mtut − γ̂

2nttv −
γ̂
2nvtt − γ̂ntvt

)
x

− (mttv +mvtt + 2mtvt)y
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nttt = − (nutt + nttu+ 2ntut)x

−
(
γ̂Ett − γ̂

2mttu− γ̂
2mutt − γ̂mtut + 3−γ

2 nttv + 3−γ
2 nvtt + (3− γ)ntvt

)
y

Ettt = −
(
γEttu+ γEutt + 2γEtut − γ̂

2mttu
2 − γ̂m(u2

t + uutt)− 2γ̂mtuut

− γ̂2mttv
2 − γ̂m(v2

t + vvtt)− 2γ̂mtvvt

)
x

−
(
γEttv + γEvtt + 2γEtvt − γ̂

2nttu
2 − γ̂n(u2

t + uutt)− 2γ̂ntuut

− γ̂
2nttv

2 − γ̂n(v2
t + vvtt)− 2γ̂ntvvt

)
y

C Maximum-principle-satisfying LWDG schemes for scalar conser-

vation laws in one dimension on nonuniform meshes

We have discussed the bound-preserving LWDG schemes on uniform meshes in Sections 2 and 3. In this

appendix, we show how to extend the technique to nonuniform meshes. For simplicity, we only consider

the scalar conservation law in one space dimension, but the same methodology can be adopted to construct

bound-preserving schemes for the Euler equations and multi-dimensional spaces.

We first introduce a direct extension of the maximum-principle-satisfying LWDG from uniform meshes,

which is simple and efficient but has constraints on mesh sizes, i.e. 1
2 <

∆xj+1

∆xj
< 2, ∀j. Another way of

extension is based on the composite Gauss-Lobatto rule, as used in [2], which removes the constraints on

meshes but is less efficient. In practice, we recommend to combine both in the way that the composite

Gauss-Lobatto rule is only used on the cells where it is necessary, i.e. the cells that violate 1
2 <

∆xj+1

∆xj
< 2.

C.1 A direct extension of the maximum-principle-satisfying LWDG scheme

from uniform meshes

We define the DDG flux on nonuniform meshes as

ûx
DDG
j+ 1

2
= β0,j+ 1

2

[u]j+ 1
2

∆xj+ 1
2

+ {ux}j+ 1
2

+ β1,j+ 1
2
∆xj+ 1

2
[uxx]j+ 1

2
(C.1)
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where ∆xj+ 1
2

= min{∆xj ,∆xj+1} and β0,j+ 1
2
, β1,j+ 1

2
, j = 1, 2, . . . , N are penalty parameters satisfying (C.2)

for the purpose of maximum-principle-preserving.

1

8
max{ ∆xj

∆xj+ 1
2

,
∆xj+1

∆xj+ 1
2

} < β1,j+ 1
2
<

1

4
min{ ∆xj

∆xj+ 1
2

,
∆xj+1

∆xj+ 1
2

}, ∀j,

β0,j+ 1
2
> max{3

2

∆xj+ 1
2

∆xj
− 4β1,j+ 1

2

∆x2
j+ 1

2

∆x2
j

,
3

2

∆xj+ 1
2

∆xj+1
− 4β1,j+ 1

2

∆x2
j+ 1

2

∆x2
j+1

}, ∀j
(C.2)

Note that to make sense of (C.2), the nonuniform meshes must have a mild change in mesh size, i.e.

1
2 <

∆xj+1

∆xj
< 2, ∀j.

Similar to (2.9), we have the expansion of the DDG flux on nonuniform meshes.

Lemma C.1. For u ∈ V , the DDG flux ûx
DDG
j+ 1

2
defined in (C.1) can be expanded on nonuniform meshes as

ûx
DDG
j+ 1

2
=(

1

2∆xj
−

4β1,j+ 1
2
∆xj+ 1

2

∆x2
j

)u+
j− 1

2

+ (− 2

∆xj
+

8β1,j+ 1
2
∆xj+ 1

2

∆x2
j

)uj

+ (−
β0,j+ 1

2

∆xj+ 1
2

+
3

2∆xj
−

4β1,j+ 1
2
∆xj+ 1

2

∆x2
j

)u−
j+ 1

2

+ (
β0,j+ 1

2

∆xj+ 1
2

− 3

2∆xj+1
+

4β1,j+ 1
2
∆xj+ 1

2

∆x2
j+1

)u+
j+ 1

2

+ (
2

∆xj+1
−

8β1,j+ 1
2
∆xj+ 1

2

∆x2
j+1

)uj+1 + (− 1

2∆xj+1
+

4β1,j+ 1
2
∆xj+ 1

2

∆x2
j+1

)u−
j+ 3

2

(C.3)

The proof follows from direct computation and the fact that u is piecewise quadratic.

We now state the main result.

Theorem C.2. Given m ≤ un ≤ M and the DDG flux (C.1) with parameters (C.2), the cell averages

ūn+1
j , j = 1, 2, . . . , N of the solution of scheme (2.4) are bounded between m and M under the CFL condition

(C.4):

∆t ≤ min{q1, q2, . . . , q10}, (C.4)

where q1 = ω̂1

2M1
minj ∆xj , q2 = minj{

4β
1,j+ 1

2
∆x

j+ 1
2
− 1

2 ∆xj

5(M−m)M2+ 4
3M1

}, q3 = minj{
4β

1,j+ 1
2

∆x
j+ 1

2
− 1

2 ∆xj+1

5(M−m)M2+ 4
3M1

}, q4 = minj{
2∆xj−8β

1,j+ 1
2

∆x
j+ 1

2

20(M−m)M2+ 8
3M1

},

q5 = minj{
2∆xj+1−8β

1,j+ 1
2

∆x
j+ 1

2

20(M−m)M2+ 8
3M1

}, q6 = minj{
β

0,j+ 1
2

∆xj
∆x

j+ 1
2

− 3
2 +4β

1,j+ 1
2

∆x
j+ 1

2
∆xj

15(M−m)M2+ 4
3M1

∆xj},

q7 = minj{
β

0,j+ 1
2

∆xj+1
∆x

j+ 1
2

− 3
2 +4β

1,j+ 1
2

∆x
j+ 1

2
∆xj+1

15(M−m)M2+ 4
3M1

∆xj+1},

q8 = 1
M1

minj

 2ω1∆x2
j

3(β
0,j− 1

2

∆xj
∆x

j− 1
2

− 3
2 +4β

1,j− 1
2

∆x
j− 1

2
∆xj

)+3(4β
1,j+ 1

2

∆x
j+ 1

2
∆xj

− 1
2 )


1
2

,
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q9 = 1
M1

minj

 2ωNq∆x2
j

3(2−8β
1,j− 1

2

∆x
j− 1

2
∆xj

)+3(2−8β
1,j+ 1

2

∆x
j+ 1

2
∆xj

)

 1
2

,

q10 = 1
M1

minj

 2ω2Nq−1∆x2
j

3(β
0,j+ 1

2

∆xj
∆x

j+ 1
2

− 3
2 +4β

1,j+ 1
2

∆x
j+ 1

2
∆xj

)+3(4β
1,j− 1

2

∆x
j− 1

2
∆xj

− 1
2 )


1
2

.

Proof. We have exactly the same results as in (2.13), (2.14), and (2.15), except that the coefficients in (2.15)

are now

z1 =
λ2
j

4
f ′2
−
j− 1

2

(
(4β1,j− 1

2

∆xj− 1
2
∆xj

∆x2
j−1

− 1

2

∆xj
∆xj−1

) + ∆tf ′′
−
j− 1

2
ux
−
j− 1

2

∆xj
∆xj−1

+
4λj
3
f ′
−
j− 1

2

∆x2
j

∆x2
j−1

)

+
λ2
j

4
f ′2

+
j− 1

2
(4β1,j− 1

2

∆xj− 1
2
∆xj

∆x2
j−1

− 1

2

∆xj
∆xj−1

),

z2 =
λ2
j

4
f ′2
−
j− 1

2

(
(2

∆xj
∆xj−1

− 8β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)− 4∆tf ′′
−
j− 1

2
ux
−
j− 1

2

∆xj
∆xj−1

− 8λj
3
f ′
−
j− 1

2

∆x2
j

∆x2
j−1

)

+
λ2
j

4
f ′2

+
j− 1

2
(2

∆xj
∆xj−1

− 8β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)

z3 =
λ2
j

4
f ′2
−
j− 1

2

(
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2

∆xj
∆xj−1

+ 4β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

) + 3∆tf ′′
−
j− 1

2
ux
−
j− 1

2

∆xj
∆xj−1

+
4λj
3
f ′
−
j− 1

2

∆x2
j

∆x2
j−1

)

+
λ2
j

4
f ′2

+
j− 1

2
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2

∆xj
∆xj−1

+ 4β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)

z4 =
1

2
ω1 −

λ2
j

4
f ′2
−
j− 1

2
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2
+ 4β1,j− 1

2

∆xj− 1
2

∆xj
)

−
λ2
j

4
f ′2

+
j− 1

2

(
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2
+ 4β1,j− 1

2

∆xj− 1
2

∆xj
) + 3∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λj
3
f ′

+
j− 1

2

)

−
λ2
j

4
f ′2
−
j+ 1

2

(
(4β1,j+ 1

2

∆xj+ 1
2

∆xj
− 1

2
) + ∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λj
3
f ′
−
j+ 1

2

)
−
λ2
j

4
f ′2

+
j+ 1

2
(4β1,j+ 1

2

∆xj+ 1
2

∆xj
− 1

2
)

z5 =
1

2
ωN −

λ2
j

4
f ′2
−
j− 1

2
(2− 8β1,j− 1

2

∆xj− 1
2

∆xj
)−

λ2
j

4
f ′2

+
j− 1

2

(
(2− 8β1,j− 1

2

∆xj− 1
2

∆xj
)− 4∆tf ′′

+
j− 1

2
ux

+
j− 1

2

+
8λj
3
f ′

+
j− 1

2

)
−
λ2
j

4
f ′2
−
j+ 1

2

(
(2− 8β1,j+ 1

2

∆xj+ 1
2

∆xj
)− 4∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

− 8λj
3
f ′
−
j+ 1

2

)
−
λ2
j

4
f ′2

+
j+ 1

2
(2− 8β1,j+ 1

2

∆xj+ 1
2

∆xj
)

z6 =
1

2
ω2Nq−1 −

λ2
j

4
f ′2
−
j− 1

2
(4β1,j− 1

2

∆xj− 1
2

∆xj
− 1

2
)−

λ2
j

4
f ′2

+
j− 1

2

(
(4β1,j− 1

2

∆xj− 1
2

∆xj
− 1

2
) + ∆tf ′′

+
j− 1

2
ux

+
j− 1

2

− 4λj
3
f ′

+
j− 1

2

)
−
λ2
j

4
f ′2
−
j+ 1

2

(
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2
+ 4β1,j+ 1

2

∆xj+ 1
2

∆xj
) + 3∆tf ′′

−
j+ 1

2
ux
−
j+ 1

2

+
4λj
3
f ′
−
j+ 1

2

)

−
λ2
j

4
f ′2

+
j+ 1

2
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2
+ 4β1,j+ 1

2

∆xj+ 1
2

∆xj
)
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z7 =
λ2
j

4
f ′2
−
j+ 1

2
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2

∆xj
∆xj+1

+ 4β1,j+ 1
2

∆xj∆xj+ 1
2

∆x2
j+1

)

+
λ2
j

4
f ′2

+
j+ 1

2

(
(β0,j+ 1

2

∆xj
∆xj+ 1

2

− 3

2

∆xj
∆xj+1

+ 4β1,j+ 1
2

∆xj∆xj+ 1
2

∆x2
j+1

) + 3∆tf ′′
+
j+ 1

2
ux

+
j+ 1

2

∆xj
∆xj+1

− 4λj
3
f ′

+
j+ 1

2

∆x2
j

∆x2
j+1

)

z8 =
λ2
j

4
f ′2
−
j+ 1

2
(2

∆xj
∆xj+1

− 8β1,j+ 1
2

∆xj∆xj+ 1
2

∆x2
j+1

)

+
λ2
j

4
f ′2

+
j+ 1

2

(
(2

∆xj
∆xj+1

− 8β1,j+ 1
2

∆xj∆xj+ 1
2

∆x2
j+1

)− 4∆tf ′′
+
j+ 1

2
ux

+
j+ 1

2

∆xj
∆xj+1

+
8λj
3
f ′

+
j+ 1

2

∆x2
j

∆x2
j+1

)

z9 =
λ2
j

4
f ′2
−
j+ 1

2
(4β1,j+ 1

2

∆xj∆xj+ 1
2

∆x2
j+1

− 1

2

∆xj
∆xj+1

)

+
λ2
j

4
f ′2

+
j+ 1

2

(
(4β1,j+ 1

2

∆xj∆xj+ 1
2

∆x2
j+1

− 1

2

∆xj
∆xj+1

) + ∆tf ′′
+
j+ 1

2
ux

+
j+ 1

2

∆xj
∆xj+1

− 4λj
3
f ′

+
j+ 1

2

∆x2
j

∆x2
j+1

)
It can be verified that

1

2

Nq−1∑
γ=2

ω̂γ +
1

2

2Nq−2∑
γ=Nq+1

ω̂γ + z1 + z2 + . . .+ z9 =
1

2

and

z1 ≥
λ2
j

4
f ′2
−
j− 1

2

(
(4β1,j− 1

2

∆xj− 1
2
∆xj

∆x2
j−1

− 1

2

∆xj
∆xj−1

)− 5(M −m)M2
∆t

∆xj−1

∆xj
∆xj−1

− 4λj
3
M1

∆x2
j

∆x2
j−1

)

+
λ2
j

4
f ′2

+
j− 1

2
(4β1,j− 1

2

∆xj− 1
2
∆xj

∆x2
j−1

− 1

2

∆xj
∆xj−1

) ≥ 0,

z2 ≥
λ2
j

4
f ′2
−
j− 1

2

(
(2

∆xj
∆xj−1

− 8β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)− 20(M −m)M2
∆t

∆xj−1

∆xj
∆xj−1

− 8λj
3
M1

∆x2
j

∆x2
j−1

)

+
λ2
j

4
f ′2

+
j− 1

2
(2

∆xj
∆xj−1

− 8β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

) ≥ 0,

z3 ≥
λ2
j

4
f ′2
−
j− 1

2

(
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2

∆xj
∆xj−1

+ 4β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

)− 15(M −m)M2
∆t

∆xj−1

∆xj
∆xj−1

− 4λj
3
M1

∆x2
j

∆x2
j−1

)

+
λ2
j

4
f ′2

+
j− 1

2
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2

∆xj
∆xj−1

+ 4β1,j− 1
2

∆xj− 1
2
∆xj

∆x2
j−1

) ≥ 0,

z4 ≥
1

2
ω1 −

λ2
j

4
M2

1 (β0,j− 1
2

∆xj
∆xj− 1

2

− 3

2
+ 4β1,j− 1

2

∆xj− 1
2

∆xj
)

−
λ2
j

4
M2

1

(
(β0,j− 1

2

∆xj
∆xj− 1

2

− 3

2
+ 4β1,j− 1

2

∆xj− 1
2

∆xj
) + 15(M −m)M2λj +

4λj
3
M1

)

−
λ2
j

4
M2

1

(
(4β1,j+ 1

2

∆xj+ 1
2

∆xj
− 1

2
) + 5(M −m)M2λj +

4λj
3
M1

)
−
λ2
j

4
M2

1 (4β1,j+ 1
2

∆xj+ 1
2

∆xj
− 1

2
) ≥ 0,

z5 ≥
1

2
ωN −

λ2
j

4
M2

1 (2− 8β1,j− 1
2

∆xj− 1
2

∆xj
)−

λ2
j

4
M2

1

(
(2− 8β1,j− 1

2

∆xj− 1
2

∆xj
) + 20(M −m)M2λj +

8λj
3
M1

)
−
λ2
j

4
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1

(
(2− 8β1,j+ 1

2

∆xj+ 1
2

∆xj
) + 20(M −m)M2λj +

8λj
3
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)
−
λ2
j

4
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1 (2− 8β1,j+ 1
2

∆xj+ 1
2

∆xj
) ≥ 0,
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z6 ≥
1

2
ω2Nq−1 −

λ2
j

4
M2

1 (4β1,j− 1
2

∆xj− 1
2

∆xj
− 1

2
)−

λ2
j

4
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1

(
(4β1,j− 1

2

∆xj− 1
2

∆xj
− 1

2
) + 5(M −m)M2λj +

4λj
3
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−
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j

4
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1

(
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2

∆xj
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2
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2
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2
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2

∆xj
) + 15(M −m)M2λj +
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3
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)
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j

4
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2
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2
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2
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2
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2

∆xj
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z7 ≥
λ2
j

4
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−
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2
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2
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)
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j

4
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+
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2

(
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2
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2
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2
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2
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2

∆x2
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∆xj
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− 4λj
3
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∆x2
j

∆x2
j+1

)
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z8 ≥
λ2
j

4
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−
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2
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2
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2
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)

+
λ2
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+
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2
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− 8β1,j+ 1
2
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2
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)− 20(M −m)M2
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− 8λj
3
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j
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j+1

)
≥ 0,

z9 ≥
λ2
j

4
f ′2
−
j+ 1

2
(4β1,j+ 1

2

∆xj∆xj+ 1
2

∆x2
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2
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∆xj+1

)

+
λ2
j

4
f ′2

+
j+ 1

2

(
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2

∆xj∆xj+ 1
2

∆x2
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− 1

2

∆xj
∆xj+1

)− 5(M −m)M2
∆t

∆xj+1

∆xj
∆xj+1

− 4λj
3
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∆x2
j

∆x2
j+1

)
≥ 0,

under the CFL condition (C.4).

Since II can be written as a half of a convex combination of point values of un, we still have 1
2m ≤ II ≤ 1

2M

as before, which implies m ≤ ūn+1
j ≤M, j = 1, 2, . . . , N

C.2 A maximum-principle-satisfying scheme on arbitrary nonuniform meshes

To construct the maximum-principle-satisfying scheme on arbitrary nonuniform meshes, we shall first in-

troduce the composite quadrature rule to be used. Define ∆xj+ 1
2

= 1
3 min{∆xj ,∆xj+1} and denote by

ũ1
j = u(xj− 1

2
− ∆xj− 1

2
), ũ2

j = u(xj− 1
2
− 1

2∆xj− 1
2
), ũ3

j = u(xj− 1
2

+ 1
2∆xj− 1

2
), ũ4

j = u(xj− 1
2

+ ∆xj− 1
2
), ũ5

j =

u(xj+ 1
2
−∆xj+ 1

2
), ũ6

j = u(xj+ 1
2
− 1

2∆xj+ 1
2
), ũ7

j = u(xj+ 1
2

+ 1
2∆xj+ 1

2
), ũ8

j = u(xj+ 1
2

+ ∆xj+ 1
2
), for the cell Ij .

We adopt the composite Gauss-Lobatto rule as follows: The interval Ij is divided into three subintervals,

i.e. Ij = [xj− 1
2
, xj− 1

2
+ ∆xj− 1

2
] ∪ [xj− 1

2
+ ∆xj− 1

2
, xj+ 1

2
−∆xj+ 1

2
] ∪ [xj+ 1

2
−∆xj+ 1

2
, xj+ 1

2
], and each subin-

terval is assigned with the 2Nq − 1 Gauss-Lobatto quadrature rule, which results in the quadrature points
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{x̃j1, x̃
j
2, . . . , x̃

j
6Nq−5} and quadrature weights {ω̃j1, ω

j
2, . . . , ω̃

j
6Nq−5} on the interval Ij as follows,

x̃jα =



xj− 1
2

+
(
x̂α+1

2

)
∆xj− 1

2
α = 1, 2, . . . , 2Nq − 1,

xj− 1
2

+ ∆xj− 1
2

+
(
x̂α−2Nq+2+1

2

)(
∆xj −∆xj− 1

2
−∆xj+ 1

2

)
α = 2Nq, . . . , 4Nq − 3,

xj+ 1
2
−∆xj+ 1

2
+
(
x̂α−4Nq+4+1

2

)
∆xj+ 1

2
α = 4Nq − 2, . . . , 6Nq − 5,

and

ω̃jα =



∆x
j− 1

2

∆xj
ω̂α α = 1, 2, . . . , 2Nq − 2

∆x
j− 1

2

∆xj
ω̂2Nq−1 +

(
1−

∆x
j− 1

2

∆xj
−

∆x
j+ 1

2

∆xj

)
ω̂1 α = 2Nq − 1,(

1−
∆x

j− 1
2

∆xj
−

∆x
j+ 1

2

∆xj

)
ω̂α−2Nq+2 α = 2Nq, . . . , 4Nq − 4,(

1−
∆x

j− 1
2

∆xj
−

∆x
j+ 1

2

∆xj

)
ω̂2Nq−1 +

∆x
j+ 1

2

∆xj
ω̂1 α = 4Nq − 3,

∆x
j+ 1

2

∆xj
ω̂α−4Nq+4 α = 4Nq − 2, . . . , 6Nq − 5,

respectively, where {x̂α, α = 1, 2, . . . , 2Nq − 1} and {ω̂α, α = 1, 2, . . . , 2Nq − 1} are the Gauss-Lobatto points

on [−1, 1] and weights satisfying
∑2Nq−1
α=1 ω̂α = 1.

We redefine the DDG flux on nonuniform meshes:

ûx
DDG
j+ 1

2
= β0

[u]j+ 1
2

∆xj+ 1
2

+ {ux}j+ 1
2

+ β1∆xj+ 1
2
[uxx]j+ 1

2
, (C.5)

where β0, β1 are penalty parameters satisfying 1
8 < β1 <

1
4 , β0 >

3
2 − 4β1, j = 1, 2, . . . , N as in the uniform

meshes.

Similarly, we have the expansion of DDG fluxes for u ∈ V.

ûx
DDG
j+ 1

2
=

1

∆xj+ 1
2

(
(
1

2
− 4β1)ũ5 + (8β1 − 2)ũ6 + (−β0 +

3

2
− 4β1)u−

j+ 1
2

+(β0 −
3

2
+ 4β1)u+

j+ 1
2

+ (2− 8β1)ũ7 + (4β1 −
1

2
)ũ8

)
and

ûx
DDG
j− 1

2
=

1

∆xj− 1
2

(
(
1

2
− 4β1)ũ1 + (8β1 − 2)ũ2 + (−β0 +

3

2
− 4β1)u−

j− 1
2

+(β0 −
3

2
+ 4β1)u+

j− 1
2

+ (2− 8β1)ũ3 + (4β1 −
1

2
)ũ4

)
The main result is as follows,

Theorem C.3. Given m ≤ un ≤M and the DDG flux (C.5), the cell averages ūn+1
j , j = 1, 2, . . . , N of the

solution of scheme (2.4) are bounded between m and M under the CFL condition (C.6).
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∆t ≤ min{q1, q2, . . . , q7}, (C.6)

where q1 = ω̂1

2M1
minj ∆xj , q2 =

4β1− 1
2

5(M−m)M2+ 4
3M1

minj ∆xj+ 1
2
, q3 = 2−8β1
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2
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β0− 3
2 +4β1
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(
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3M2
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1 (2−8β1)
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3M2
1 (4β1− 1

2 )
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Proof. We have exactly the same results as in (2.13) and (2.14), but now II is expanded differently:

II =
1
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7 + z12ũ
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One can verify that

1

2

Nq−1∑
γ=2

ωjγ +
1

2

2Nq−2∑
γ=Nq+1

ωjγ +
1

2

4Nq−4∑
γ=2Nq

ωjγ +
1

2

5Nq−5∑
γ=4Nq−2

ωjγ +
1

2

6Nq−5∑
γ=5Nq−3

ωjγ

+z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 =
1

2
,

and

z1 ≥
λj
4

∆t

∆xj− 1
2

f ′2
−
j− 1

2

(
(4β1 −

1

2
)− 5(M −m)M2

∆t

∆xj− 1
2

− 4

3

∆t

∆xj− 1
2

M1

)
+
λj
4

∆t

∆xj− 1
2

f ′2
+
j− 1

2
(4β1−

1

2
) ≥ 0,

z2 ≥
λj
4

∆t

∆xj− 1
2

f ′2
−
j− 1

2

(
(2− 8β1)− 20(M −m)M2

∆t

∆xj− 1
2

− 8

3

∆t

∆xj− 1
2

M1

)
+
λj
4

∆t

∆xj− 1
2

f ′2
+
j− 1

2
(2−8β1) ≥ 0,

z3 ≥
λj
4

∆t

∆xj− 1
2

f ′2
−
j− 1

2

(
(β0 −

3

2
+ 4β1)− 15(M −m)M2

∆t

∆xj− 1
2

− 4

3

∆t

∆xj− 1
2

M1

)
+
λj
4

∆t

∆xj− 1
2

f ′2
+
j− 1

2
(β0 −

3

2
+ 4β1) ≥ 0,

z4 ≥
1

2
ωj1 −

λj
4

∆t

∆xj− 1
2

M2
1 (β0 −

3

2
+ 4β1)− λj

4

∆t

∆xj− 1
2

M2
1

(
(β0 −

3

2
+ 4β1) + 15(M −m)M2

∆t

∆xj− 1
2

+
4

3

∆t

∆xj− 1
2

M1

)
≥ 0,

z5 ≥
1

2
ωjNq −

λj
4

∆t

∆xj− 1
2

M2
1 (2− 8β1)− λj

4

∆t

∆xj− 1
2

M2
1

(
(2− 8β1) + 20(M −m)M2

∆t

∆xj− 1
2

+
8

3

∆t

∆xj− 1
2

M1

)
≥ 0,

z6 ≥
1

2
ωj2Nq−1 −

λj
4

∆t

∆xj− 1
2

M2
1 (4β1 −

1

2
)− λj

4

∆t

∆xj− 1
2

M2
1

(
(4β1 −

1

2
) + 5(M −m)M2

∆t

∆xj− 1
2

+
4

3

∆t

∆xj− 1
2

M1

)
≥ 0,

z7 ≥
1

2
ωj4Nq−3 −

λj
4

∆t

∆xj+ 1
2

M2
1

(
(4β1 −

1

2
) + 5(M −m)M2

∆t

∆xj+ 1
2

+
4

3

∆t

∆xj+ 1
2

M1

)
− λj

4

∆t

∆xj+ 1
2

M2
1 (4β1 −

1

2
) ≥ 0,

z8 ≥
1

2
ωj5Nq−4 −

λj
4

∆t

∆xj+ 1
2

M2
1

(
(2− 8β1) + 20(M −m)M2

∆t

∆xj+ 1
2

+
8

3

∆t

∆xj+ 1
2

M1

)
− λj

4

∆t

∆xj+ 1
2

M2
1 (2− 8β1) ≥ 0,

z9 ≥
1

2
ωj6Nq−5 −

λj
4

∆t

∆xj+ 1
2

M2
1

(
(β0 −

3

2
+ 4β1) + 15(M −m)M2

∆t

∆xj+ 1
2

+
4

3

∆t

∆xj+ 1
2

M1

)
− λj

4

∆t

∆xj+ 1
2

M2
1 (β0 −

3

2
+ 4β1) ≥ 0,

z10 ≥
λj
4

∆t

∆xj+ 1
2

f ′2
−
j+ 1

2
(β0 −

3

2
+ 4β1) +

λj
4

∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(β0 −

3

2
+ 4β1)− 15(M −m)M2

∆t

∆xj+ 1
2

− 4

3

∆t

∆xj+ 1
2

M1

)
≥ 0,

z11 ≥
λj
4

∆t

∆xj+ 1
2

f ′2
−
j+ 1

2
(2−8β1)+

λj
4

∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(2− 8β1)− 20(M −m)M2

∆t

∆xj+ 1
2

− 8

3

∆t

∆xj+ 1
2

M1

)
≥ 0,

71



z12 ≥
λj
4

∆t

∆xj+ 1
2

f ′2
−
j+ 1

2
(4β1−

1

2
)+
λj
4

∆t

∆xj+ 1
2

f ′2
+
j+ 1

2

(
(4β1 −

1

2
)− 5(M −m)M2

∆t

∆xj+ 1
2

− 4

3

∆t

∆xj+ 1
2

M1

)
≥ 0,

under the CFL condition (C.6).

Therefore, we have m ≤ ūn+1
j ≤M, j = 1, 2, . . . , N following the same arguments as before.

C.3 Numerical tests on nonuniform meshes

We demonstrate the accuracy and effectiveness of the maximum-principle-satisfying algorithm established

in Section C.1 and Section C.2 on nonuniform meshes.

Example C.1. We solve the linear equation ut + ux = 0 in the domain Ω = [−1, 1] with periodic boundary

conditions and discontinuous initial condition

u0(x) =


1, −1 ≤ x ≤ 0,

−1, 0 ≤ x ≤ 1.

and take the terminal time T = 100 to show the effect of the maximum-principle-preserving.

We solve the Burgers’ equation ut +
(
u2

2

)
x

= 0 in the domain Ω = [0, 2π] with initial condition u0(x) =

1
2 + sin(x) and periodic boundary conditions, and take the terminal time T = 0.3 to show the accuracy.

For the algorithm established in Section C.1, we generate the nonuniform meshes by adding uniformly

distributed perturbation within [−0.1∆x, 0.1∆x] on the inner nodes of the uniform mesh. For the algorithm

established in Section C.2, we generate the nonuniform meshes by adding uniformly distributed perturbation

within [−0.3∆x, 0.3∆x] on the inner nodes of the uniform mesh.

The results are given in Table 7 and Figure 13, from which we can observe the third order accuracy and

maximum-principle-preserving effect.
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(a) Algorithm C.1 with limiter
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(b) Algorithm C.1 without limiter

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

(c) Algorithm C.2 with limiter
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(d) Algorithm C.2 without limiter

Figure 13: Results of Example C.1 with discontinuous initial condition at T = 100. N = 160. Solid line:

exact solution; Squares: numerical solution (cell averages).
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Algorithm C.1 Algorithm C.2

N L1 error order L∞ error order L1 error order L∞ error order

20 9.33E-04 – 1.50E-03 – 1.19E-03 – 2.37E-03 –

40 1.15E-04 3.02 2.38E-04 2.65 1.44E-04 3.05 3.61E-04 2.72

80 1.41E-05 3.03 4.09E-05 2.54 1.90E-05 2.92 8.56E-05 2.08

160 1.73E-06 3.03 5.56E-06 2.88 2.01E-06 3.24 9.33E-06 3.20

320 2.11E-07 3.03 8.14E-07 2.77 2.72E-07 2.89 1.69E-06 2.46

640 2.59E-08 3.03 1.04E-07 2.96 3.23E-08 3.07 1.93E-07 3.13

Table 7: Results of Example C.1, Burgers’ equation at T = 0.3
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