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Abstract

This paper presents an online algorithm for identification of partial differential equations (PDEs) based on
the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy). The algorithm is online
in the sense that if performs the identification task by processing solution snapshots that arrive sequentially.
The core of the method combines a weak-form discretization of candidate PDEs with an online proximal
gradient descent approach to the sparse regression problem. In particular, we do not regularize the
£y-pseudo-norm, instead finding that directly applying its proximal operator (which corresponds to a hard
thresholding) leads to efficient online system identification from noisy data. We demonstrate the success
of the method on the Kuramoto-Sivashinsky equation, the nonlinear wave equation with time-varying
wavespeed, and the linear wave equation, in one, two, and three spatial dimensions, respectively. In partic-
ular, our examples show that the method is capable of identifying and tracking systems with coefficients
that vary abruptly in time, and offers a streaming alternative to problems in higher dimensions. Code is
available at https://github.com/MathBioCU/WSINDy PDE_OL.git.

Keywords: Online optimization, sparse regression, system identification, partial differential equations,
weak form.

1. Context and Motivations

System identification (SID) and parameter estimation of dynamical systems are ubiquitous tasks in
scientific research and engineering, and are required steps in many control frameworks. A typical strategy
is to solve a regression problem based on sample trajectories from the underlying system, with few samples
available in practice. Identification of dynamical systems is a classical field of research Ljung (1999);
recently, several works provided new theoretical insights on the efficacy of classical first-order optimization
methods in solving SID problems based on single trajectories (see, e.g., Fattahi et al. (2019); Foster et al.
(2020); Sattar and Oymak (2020); Simchowitz et al. (2018) and references therein). Existing results in
this context are heavily focused on discrete-time, finite-dimensional systems of known functional form,
yet the focus on single-trajectory data paves the way for identification of more complex dynamical systems
in the online setting, which is the subject of the current article.

By suitably discretizing candidate dynamical systems using data and employing sparse regression,
SID and parameter estimation can be accomplished simultaneously. A notable development in this pursuit
is the sparse identification of nonlinear dynamics (SINDy) algorithm (Brunton et al. (2016)), a general
framework for discovering dynamical systems using sparse regression. Since the inception of SINDy in
the context of autonomous ordinary differential equations (ODEs), sparse recovery algorithms have been
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developed for autonomous partial differential equations (PDEs) (Rudy et al. (2017); Schaeffer (2017)),
stochastic differential equations (SDEs) (Boninsegna et al. (2018)), non-autonomous systems (Rudy et al.
(2019)), and coarse-grained equations (Bakarji and Tartakovsky (2021)), to name a few. Outside of sparse
regression approaches, deep learning has also been successful in identifying PDEs from data Long et al.
(2018, 2019); Wu and Xiu (2020); Qin et al. (2019).

A significant challenge in using SINDy to solve real-world problems is the computation of derivatives
from noisy data. This was initially addressed in the context of ODEs in Schaeffer and McCalla (2017), by
simply integrating candidate ODEs. Within the last few years, the consensus has emerged that weak-form
SINDy (WSINDy, see Messenger and Bortz (2021a,b, 2022)), where integration against test functions
replaces numerical differentiation, is a powerful method that is significantly more robust to noisy data,
particularly in the context of PDEs. Furthermore, WSINDy’s efficient convolutional formulation makes
it a viable method for identifying PDEs under the constraints of limited memory capacity and computing
power that exist in the online setting!.

The development of online algorithms is a relatively recent pursuit (Zinkevich (2003); Hazan (2006)),
yet much progress has been made in applications to finance (Hazan and Kale (2009)), data processing
(Dixit et al. (2019)), and predictive control (Koller et al. (2018)) (see Dall’ Anese et al. (2020); Hoi et al.
(2021) for a recent surveys). In the context of sparse regression, several works have addressed online
£1-minimization and other methods of regularizing the ¢y pseudo-norm, although not in the context of
learning dynamical systems (Yang et al. (2020); Zhai et al. (2019); Jialei Wang et al. (2014); Yuantao
Gu et al. (2009); Kopsinis et al. (2011); Yilun Chen et al. (2009); Sun et al. (2018)). To the best of our
knowledge, neither SINDy nor WSINDy have been merged with an online learning algorithm for PDEs?.

A successful approach for identifying PDEs and tracking parameters “on the fly” using multidimen-
sional snapshots of data arriving sequentially over time would greatly benefit many areas of science and
engineering. Possible paradigms in this online setting include identifying time-varying coefficients, SID in
higher dimensions (where memory constraints require data to be streamed even for offline problems), and
detecting changes in the dominant balance physics of the system, as terms become active or inactive dy-
namically. In this way, online sparse equation discovery has the potential to open doors to new application
areas, and even improve performance of existing batch methods.

We confront some of these challenges in this work by considering spatiotemporal dynamical systems
and incoming data snapshots at every timestep. In the spirit of classical online algorithms, we develop
an online WSINDYy framework to this setting of streaming data with memory constraints by replacing
full-data availability and batch optimization capabilities with data bursts and light-weight proximal gradient
descent iterations to approximately solve the sparse regression problem. At each iteration we process only
the incoming snapshot in time, and we do not assume the ability to compute least-squares projections
apart from the initial guess. We focus on three prototypical systems, (1) the Kuramoto-Sivashinsky (KS)
equation, which exhibits spatiotemporal chaos and thus has time-fluctuating Fourier content, (2) the
nonlinear wave equation in a time-variable medium in two spatial dimensions, and (3) the linear wave
equation in three spatial dimensions, a preliminary example of a system in higher dimensions.

1. The method developed here could also be adapted to the standard SINDy algorithm, however we choose to focus on the
weak form for its demonstrated abilities to handle noisy data with low computational overhead.

2. There has, however, been work related to leveraging the equation learning ability of SINDy with Model Predictive Control
(Kaiser et al. (2018)).
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1.1. Notation

Vector-valued objects will be bold and lower-case, x € R? for d > 1, while multi-dimensional arrays will
be bold and upper-case, X € R"1**"d for n; € N, 1 < < d. To disambiguate between iteration and
exponentiation, we refer to the gth element in a list of multi-dimensional arrays using superscripts in
parentheses (e.g. x\9 or X(9)), whereas raising to the power g (where applicable) is simply denoted X.
Reference to an element within a multi-dimensional array is given as a subscript (e.g. x; or X;,
a matrix G € C"*", we denote by Gs the restriction of G to the columns in S C {1,...,n}. By some
abuse of notation, GT (GS) . Similary, for a vector w € C", we let wg € RIS be the restriction of w
to the entries in S, Where |S| denotes the number of elements of .S. The complement of .S within {1,...,n}
is denoted S¢. All scalar-valued objects will be in lower-case, with iteration, set membership, etc. denoted
by subscripts (i.e. ug is the gth element in the list {u1,...,ug—1,Uq,Ug+1,.-- })-

2. Problem Formulation

‘We consider PDE:s of the form

D%y sz 1o OD* fi(u(x)x), () €Qx[0,00), @)
i,j=1

where Q C R? is a bounded open set. The operators D for 1 <4< [ represent any linear differential

operator in the variables (x,t) € R4, where o) = (agl), a((i?_l) is a multi-index such that

oot +te >+afiil

(%)
D% v=

O] o' (4) v
OxyL 0% Y

In this work we consider left-hand side operators D © to be either J; or Jy, which are given in two spatial
dimensions (d = 2) by the multi-indices a®) = (0,0,1) and a®) = (0,0,2), respectively. The functions
fj:Rx RY5R, 1< j <J, include all possible nonlinearities present in the model, and together with the
linear operators D*" comprise the feature library © :={ D" f;}1- 71~ The weight vector w*(t) e R"/
is assumed to be sparse in O at each time ¢, and is allowed to vary in ¢.
We assume that at each time ¢t =kAt for k€N and fixed timestep At we are given a solution snapshot
U® e R™ X7 of the form
U® =y (X t)+e 2.2)

where u solves (2.1) for some weight vector w* and X € R™ > *"d ig a fixed known spatial grid of points
in ) having n; points in the ith dimension and equal spacing Ax in each dimension. Here ¢ represents
i.i.d. mean-zero noise with fixed finite variance o2 associated with sampling the underlying solution wu(x,t)
at any point x € Q. We write U= (U, U®)__ UKFEAY ) to denote the entire dataset in time. The
problem is stated as follows.

Problem: Assume that a total of K e, snapshots {U¢—(Enem=1)AY  {7()} can be stored in memory
at each time ¢ and that at time ¢+ At a new snapshot U*+2%) arrives, replacing the oldest snapshot in
memory. Given the sampling model (2.2) for unknown o2, unknown ground truth PDE (2.1), and fixed
library © := {D>" f;} 1/

i j=1- solve for coefficients W such that sup,o||W(® —w*(t)|| is bounded.
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3. Batch WSINDy

In the batch setting, assuming w* is constant in time, the weak-form sparse identification of nonlinear
dynamics algorithm (WSINDy) proposed in Messenger and Bortz (2021a,b) solves this problem efficiently
by first convolving equation (2.1) with a smooth function 1(x,t), compactly supported in £2x [0,77]. After
integrating by parts to put all partial derivatives onto ), this leads to the convolutional weak form:

1, .
Da(O)w*u(Xﬂf) = Z Wz(ifl)JJera(Z)w*fj (u,-)(x,t), (31)
2,7=1

where convolutions are performed over space and time. For efficiency, the test function v is chosen to
be separable,

PY(x,t) =d1(x1) - Pa(Xa) Pa+1(t)- (3.2)

For example, it can be chosen using the Fourier spectrum of the noisy data to mitigate high-frequency
noise (see Messenger and Bortz (2021a)). Once 1) is chosen, we discretize the problem by selecting a finite
set of query points Q := {(X(Q),tq)}qQ:1 C Q2% (0,T) and evaluating (3.1) at Q, replacing v with the full
dataset U. Convolutions can be efficiently computed using the fast Fourier transform (FFT), which, due
to the compact support of v, is equivalent to the trapezoidal rule and is highly accurate in the noise-free
case (o2 =0). This gives us the linear system

b~ Gw",

where the gth entry of b is b, = D"‘(O)z/)*U(x(‘I) ,ty) and gth entry of the ((i—1).J+j)th column of G
is G (i—1)74j = D"‘(”w* i (U,)(x@ ,tq). Using the assumption that w* is sparse, we solve this linear

system for w2 w* by solving the sparse recovery problem

. ANV 2, 1y
wlgﬂlgI}JF(w’)\)_wlgﬁgl}Jiqu_b”Z_{—ﬁ)\ l[w|[o- (3.3)

The sparsity threshold A >0 must be set by the user and is designed to strike a balance between fitting the
data, associated with low residual | Gw —Dbl|,, and finding a parsimonious model, indicated by low ||w/||,
(and its value is typically calibrated via cross-validation) Hastie et al. (2009); Foucart and Rauhut (2013).

With a large enough library ©, a sparse vector w is required in order to interpret and efficiently simulate
the resulting PDE. Replacing the £y-pseudonorm with e.g. an £ penalty (i.e. ridge regression) may shrink
coefficients, but will not result in a sparse w. In addition, the columns of G are typically highly correlated
since they are each constructed from the same dataset U, which leads to many popular algorithms for
solving (3.3) performing poorly, such as convex relaxation using the ¢;-norm Meinshausen and Biihlmann
(2006); Fan and Liao (2014). In the batch setting, the following approach has proved to be successful
under various noise levels and systems of interest. For A >0 define the inner sequential thresholding step

w0 =G'b
¢
MSTLS(G.b:\) TO=(<k<IT : L) <[wi | UV} (3.4)
w1 = argmin |Gw—b]|3.
supp(w)CZ®
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Letting Gy, be the kth column of G, the lower and upper bounds are defined

Lk()\):)\max{l, H‘g)’H }
k
<k<IJ 3.5)
1 b

Uk :A“““{l’ ||Gk||}

The sparsity threshold X is then selected as the smallest minimizer of the cost function

G ) -w(Oll, | W
EV="Gawo)l, T 17

(3.6)

where w()\) :=MSTLS(G,b;\). We find A via grid search and set W =MSTLS(G,b; ) as the output of
the algorithm. In words, this is a modified sequential thresholding algorithm with non-uniform thresholds

(3.5) chosen based on the norms of the underlying library terms G;_1).74; ~ Damw* [j(u) relative to

the response vector b~ Do w+u. The purpose of this is to (a) incorporate relative sizes of library terms

G, wj; along with absolute sizes of coefficients w* in the thresholding step, and (b) choose A automatically.

4. Online WSINDy

The online setting is defined by data snapshots U® arriving sequentially over time. An estimate w(®) of the
true parameters w*(¢) must be computed before the arrival of the next snapshot yt+an using only a fixed
number K., of previous snapshots. Without access to the full time series U, combined effects of the
sample rate At, the number of snapshots Kyem, and the intrinsic timescales of the data determine the identi-
fiability of the system: At must be small enough to accurately compute time integrals, but large enough that
the data U is sufficiently dynamic over the time window K emAt. Corruptions from noise have a greater
impact because variance is not reduced by considering many samples in time, as was the case in the batch
setting. Moreover, in realistic settings, solving for w(*) before arrival of the next snapshot Ut+2%) fun-
damentally limits the size of (G,b) and the number of iterations one may perform using any sparse solver.

The online setting is inherently restrictive, yet it appears well-suited for an important set of problems
that are challenging offline and for settings where W) must be obtained without revisiting past data. In the
batch setting, when the coefficient vector w* varies over time, the library © must include time-dependent
terms and may grow too large to successfully solve for an accurate sparse solution. Another issue arises
with high-dimensional datasets (as in cosmology, turbulence, molecular dynamics, etc.), which cannot
easily be processed in a single batch. In these cases an online approach is natural and advantageous even
if solutions W(*) are not themselves required “online”.

For the online approach, at each time ¢ we seek to minimize the online cost function

1 2 1
: A= min 2 lla®w_1® 232
ngﬂl@I}JE(W,)\t)—Wrgﬂlg}JQHG w—b H2+2/\t||w||0’ 4.1

where (G®) b®) is the linear system created from the K ey slices { U (Emem=DAY 1311 at time
t. Notice also that we allow \; to change, as the initial guess Ag may not be optimal. In this online setting,
we assume that we do not have the luxury of computing least-squares solutions (other than the initial
guess), so we cannot use the approach outlined in (3.4)-(3.6), where (3.4) requires multiple least-squares
solves, and performing a grid search over A values requires multiple solves of (3.4). Hence, we consider
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the following online algorithm, which is simply the online proximal gradient descent combined with a
decision tree update for ); at each step:

20 =% ® _q,(GO)T (G(t)@(w 7b(t>)
w0 (z(t)> (42)

)\t—i-At = T()‘t7vf‘\7(t+At) aA)‘a)\max)
The hard thresholding operator H(w) is the proximal operator of $\?||w/||, and is defined as

(H(W))e= { 4.3)

0, otherwise.
The map 7 updates \; according to

T O, WA AN Aoy ) =
(1—ANA, E (WA X)) > F_a(WW N & Sppni €5
F (WA A > Fy (W N) & S C Sia (4.4)
E(wWMHAY \) < F (W9 N) & Sp=Spy ar-

At, otherwise.

(1= AN A+ Amax AN, {

In words, there are two possible updates to A;: a convex combination between ); and 0 and a convex com-
bination between \; and A\,ax. The former decreases A\; and occurs when library terms are thresholded to
zero and the objective function F; increases. The latter increase \; and occurs when either (a) library terms
are added and F; increases or (b) the support set .S; := supp (vAv(t) ) doesn’t change and F; does not increase’.

At each step we set ay = 1/|| (G(t))TGgB ||2, the optimal stepsize for pure gradient descent given the
support S;. As an initial guess we set w(0) = (G(O)) Tb(o), which is the only least squares solve performed.

Remark 4.1. It is well-known in the batch case that picking A is problem specific and prone to errors
particularly in the presence of noise (see Messenger and Bortz (2021a) for a discussion). Commonly some
form of cross-validation is used to select A offline. This is carried out in Maddu et al. (2022) for offline
PDE identification using several sparse regression algorithms including proximal gradient descent applied
to (3.3). It is less common to update A over the course of the algorithm, although several strategies for
this are presented in Donoho et al. (2012). We stress that for variable-coefficient PDEs, as considered here,
a time-varying ) is necessary, and offline cross validation can at best provide a good initial guess. The
update policy given by 7 encodes simple objectives of any algorithm for (4.1) and works in all examples
presented, however we leave optimizing the update rule as a topic for future work.

Remark 4.2. Similar to the batch case, we find that non-uniform thresholding greatly improves results.
For brevity, we include in Appendix 7.1 a description of how non-uniform thresholds such as (3.5) are
incorporated into the online framework. We also note that the theoretical results in the next section carry
over analogously in the non-uniform thresholding case.

3. The value for \; (and similarly for c;) can easily be replaced by a constant when additional knowledge is available (e.g.
when w* is known to satisfy certain bounds).
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4.1. Regret and Fixed Point Analysis

The behavior of the online algorithm is in large part dictated by the behavior of the batch proximal gradient
descent method. The proximal gradient descent algorithm applied to the £y norm is referred to as iterative
hard thresholding (IHT) and was first studied rigorously in Blumensath and Davies (2008). The lemmas
below review some useful properties that can be found in that work relating solutions of (3.3) and stationary
points of the proximal gradient descent algorithm (4.2) in the offline case and for fixed A. We then use
these results to bound the dynamic online regret, which we define as

T
Regp(T):="Y_ Fy(W":\)—Fy(w*(t):\), 4.5)
AL
where w*(t) is a global minimizer of F;(w,);). In particular, we first have the following:
Lemma 4.1. Consider w such that one of the following holds:
(i) w is a local minimizer of (3.3)
(i) w=H)(w—G"(Gw—Db))
(iti) With S =supp(w), we have that wg € argmin,, HGSZ—ng and

max
1€5°¢

GZT(GW—b)‘ <)\§miél|wi|.
1€

Then it holds that (ii) <> (iii) => (i). Moreover; if w a global minimizer, then (i) = (ii1).

For completeness, a proof of Lemma 4.1 can be found in Appendix 7.3. For convergence of the algorithm,
we also have the following from Blumensath and Davies (2008).

Lemma 4.2. Assume that |G|, < 1. Then the iterates w1 = H,(w™ — GT(Gw™ —b)) converge
to a fixed point of (3.3).

Lemma 4.1 implies that fixed points of the batch proximal gradient descent algorithm are local mini-
mizers of F'(w;\), and moreover that fixed points satisfy a necessary condition for global optimality given
by (ii). Lemma 4.2 then guarantees” that iterates w(™) do indeed converge to a local minimizer w, and
further that supp (w(”)) =supp(w) for all n> N, for some finite N. However, we are not aware of results
that guarantee recovery of the true support supp(w”*), where it is assumed that b= Gw* +e for noise
e. In Blumensath and Davies (2009), support recovery is proved for a related algorithm where H)(w)
is replaced by H,(w), which selects the largest s elements of w, but this relies on several assumptions
including a restricted isometry property, small noise e, and knowledge of the sparsity level s. In the current
setting of PDE identification from noisy data, none of these assumptions are realistic, although a similar
support recovery result for algorithm (4.2) in the batch case would fill a gap in the literature.

If a fixed point W with supp(w) =S satisfies that G Gg is full rank, then wg = ng is the unique
least squares solution over the columns in S. In Nikolova (2013) it is shown that this is sufficient for w to
be a strict local minimizer, and moreover the only local minimizer with support S. Also in Nikolova (2013)
is an extensive treatment of global minimizers of F'(w;\), where it is shown that apart from a measure-zero
set of linear systems (G,b), the global minimizer is unique. We use this to bound the dynamic regret below.

4. The condition || G||, < 1 in Lemma 4.2 can be replaced by stepsize a > 1 satisfying a < 1/||G|[3.
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Theorem 4.1. Let 01 and 0,1 denote the first and last singular values of the matrix G{®) ¢ gmxn,
Assume the following: max;\; < \ < 00, miny Onyt = Omin > 0, maxyoq ¢ < Omax, and sup;oy < a;éx,
infyoy > 0. In addition, assume that the global minimizer w*(t) of F;(w;\;) is unique for every t and
satisfies | S| >35> 0 where S* = supp(w*(t)). Finally, assume that the tracking gap is globally bounded:

[w*(t) —w*(t+At) |y :=d; <d. Then the dynamic regret (4.5) grows at-worst linearly:
Regp(T)<C1+CT
Sor some Cy >0 and Cy > 0. In particular, %RegD (T') remains bounded.
The constants C'; and C5 are specified in the proof, which is presented in Appendix 7.4.

Remark 4.3. The above result establishes that Regp(7T") increases at-worst linearly in 7', but this is only
qualitative (the constants C; and C are not meant to be sharp). Asymptotically, this is the same rate as
online gradient descent applied to the time-varying ordinary least squares problem (Zinkevich (2003)),
and is a well-known fundamental limit for cases where the tracking gap d; does not go to zero (see e.g.
Besbes et al. (2015)).

Remark 4.4. Lines (7.5)-(7.6) of the proof establish error bounds on the coefficients, which lead to the

asymptotic bound
~ 1 .
limsupr(t) —w*(t) H < ——Ilimsup (dt—l—at)\ﬂ / ]SHA,:ASt*\) ,
27 1-P t500

t—00

where p:=sup,~ ‘ ‘ I—-oy (G(t) )TG(t) ‘ }2 and Sy A AS} is the set difference between Sy A = supp (VAV(HM))

and S} :=supp(w*(¢)). This implies that if the tracking error and support difference go to zero (d; — 0,
St At AST — 1) then we recover the true coefficients in the limit.

Remark 4.5. The assumptions of Theorem 4.1 are standard for overdetermined G*) and data that is not
pathological. In particular, upper bounds on o ¢ and d; merely imply that the data does not blow up, while
lower bounds on o, ; and |\S;| imply that the data does not reach an equilibrium state. While both of
these cases, blow up and equilibration, are interesting, the former rarely occurs in practice, and the latter
is sufficiently challenging as to require new developments in a future work. Upper bounds on \; and
oy are cosmetic and required for the algorithm to produce nonzero solutions that are bounded. A lower
bound on ay is crucial to ensure p < 1, which is necessary for convergence once the correct support has
been recovered. We leave the case of underdetermined G®) to future work, but note that in practice the
algorithm generally reaches an overdetermined subset after finitely many iterations.

Below we only examine cases where S} = 5™ is fixed, and find that over a wide range of parameters
the correct support is found in finitely many iterations. This leads to scenarios where the dynamic regret
depends only on d; asymptotically (see Figure 3 for a visualization of this case for the time-varying wave
equation). We leave online discovery of PDEs with time-varying support to future work.

5. Numerical Experiments

Our primary focuses are the performance of the algorithm as a function of the number of snapshots K mem
allowed in memory and the sensitivity of the algorithm to noise. We examine the following three examples
which display a range of dynamics over one to three spatial dimensions: the Kuramoto-Sivashinsky equation
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in 1D, a time-varying nonlinear wave equation in 2D, and the linear wave equation in 3D. We abbreviate
each by KS, W2D, and W3D. For each experiment we simulate a noise-free solution U, to the given
PDE over a long time horizon. We then add i.i.d. Gaussian noise with mean zero and standard deviation
o=ong|U*,,,, to each data point for a range of noise ratios’ oy . After an offline phase where a
least squares solution is found from the first K., snapshots, we feed in one new snapshot at each time
t and apply the online algorithm (4.2). Code is available at https://github.com/MathBioCU/
WSINDy_PDE_OL.git including the KS dataset, with W2D and W3D datasets available on request.

ALGORITHM HYPERPARAMETERS

We fix as many hyperparameters across examples as possible, and differences are summarized in Table
1. In all examples we fix the sparsity threshold update to A\ = 0.1, the initial sparsity threshold to
Ao =0.0001, and the maximum sparsity threshold to \,.x =0.1. For the library we use

O={0k ()}, 1<i<d,0<k<4,0<;j<4

in other words all spatial derivatives up to degree 4 of monomials up to degree 4 of the data (excluding
mixed derivatives). For direct comparison of the effects of Ky, and oy across examples, we fix the
test function v in the representation 3.2 so that®

) 2 11
<z>z~<xz~)=(1—(2fzx)> o 1<i<d 5.1)
+
5.2)

and

o\ 9
Par1(t) = (1— <W> >+, (5.3)

where (2)4 :=max{z,0}. In this way 1) is supported on 2 x 21+1=43 points in each spatial dimension
and Kpem points in time, although note that (Az,At) change across examples. Since ¢441(t) is supported
on K points, there is only one integration in time at each iteration, so that the query points are given by
Q={(x@ 7tq)}22:1 = Qx X {t— (Kmem— 1)At/2} where for each example Qx is fixed across all values
of Kiem and oy . We take Oy C X to be equally-spaced and such that the linear system (G(t) ,b(t))
contains less than 10,000 rows (see Table 1 for exact dimensions). Online iteration times are reported
below for computations performed on a laptop with 1.7GHz base clockspeed AMD Ryzen 7 pro 4750u
processor and 38.4 GB of RAM.

Remark 5.1. By defining the temporal test function ¢4 1(t) to depend on Kiper, according to (5.3), the
implied strategy is that increasing Kpnem (keeping more snapshots in memory) leads to more accurate

5. Note that oy r is approximately equal to the ratio [|e(:)||, /|| Uezact ()]|, of the noise to the true data, where “Uecgact (:)”
denotes Uegzpqct stretched into a column vector.

6. Test functions (5.2) and (5.3) can be made general by replacing powers p, = 11, p = 9 and spacings m, = 21,
my = (Kmem—1)/2 with general values p,,p; and m,m; as in Messenger and Bortz (2021a, 2022). The resulting general
form for 1) has been shown to be successful across a wide range of systems. However, optimal test function selection is
an active area of research.
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dims(X) T | dims(G®) (Az,At)
KS 256 1 3946 | 214x21 | (0.939,0.586)

W2D | 129x403 | 1639 | 7964x37 | (0.0156,0.0122)

W3D | 128x128x128 | 960 | 8192x53 | (0.0491,0.0122)

Table 1: Resolution and dimensions of datasets used in examples.

integration in the time domain. One could instead fix the test function

Pa+1(t)= (1— <mtAt> 2) 9
n

for some m < (Kyem — 1)/2 for all Kpe, considered, leading to a fixed integration window of length
2m+1 in time. Increasing Ky, would then allow for more integrations in time (i.e. a larger set of query
points Q), adding rows to the linear system (G(t),b(t)). Our chosen strategy fixes the dimensions of
(G(t) b ), leading to a more direct comparison across examples. We leave this trade-off between the
number of time integrations and the accuracy of time integrations to future work.

PERFORMANCE ANALYSIS

We are concerned with the ability of the algorithm to recover the support of the true model coefficients
S* :=supp(w*) as well as the accuracy of W(*) over time, depending primarily on the number Ken, of
solution snapshots allowed in memory and the noise level oy corrupting the data. To assess support
recovery, we measure the true positivity ratio (TPR)

"[‘P(v"}(t))

G0y .—
PRV = @) + FP(w ) - N )

where TP(w(")) := |S; N S*| is the number of correctly identified nonzero coefficients, FP(w(®) :=
|S; N (5*)¢| is the number of falsely identified nonzero coefficients, and EN(w®)) := |S¢ N S*| is the
number of falsely identified zero coefficients. A TPR of 1 indicates successful support recovery, while
TPR =0.75 indicates 3/4 terms were correctly identified, and so on. We measure the accuracy of w(® in
the relative 5-norm:

By(&0) = [ &0 —w* )| /I (1)
We report the results of TPR(w(*)) and Ey(w(®) averaged over 100 instantiations of noise.

5.1. Kuramoto-Sivashinsky (KS)
Ou=—0, (u2) — O — Ozl (5.4)

The Kuramoto-Sivashinsky (KS) equation is challenging because the solution exhibits spatiotemporal
chaos and so has a Fourier spectrum that varies in time. This leads to potentially different dynamics at
each timestep in the online learning perspective. The PDE also has a 4th-order derivative in space which is
difficult to compute accurately and to identify via sparse regression, especially when noise is present. We

10
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simulate the solution using a high-order method (accurate to 6-7 digits) and use a dataset of 256 x 3496
points in space and time at resolution (Az,At) = (0.393,0.586). Online iterations take less than 0.01
seconds, which includes building the linear system (G(t) b® ), which is the most costly step.

In Figure 1 the average evolution of Ey(W(*)) and TPR(w(®)) is depicted for various noise levels oy g
and memory capacities Kem. The system is correctly identified for all trials when Kyem € {13,17,21,25}
and o g € {0,0.001,0.01}, with relative errors E less than 10~2 once the system is identified. For larger
noise o yr =0.1, results stagnate at sub-optimal values, indicating that more data is needed to identify the
system (note that G®) only has 214 rows). With K nem =5 we recover the correct system only in the noise-
less case (oy g =0), indicating that 5 points in time does not result in accurate resolution of the dynamics.

5.2. Variable-medium nonlinear wave equation in 2D (W2D)
Opu=c(t)(Opgu+0Oyyu) —u? (5.5

We examine a variable-medium nonlinear wave equation in 2D, given by equation (5.5), where the
variable medium is modeled by the time-varying wavespeed

c(t)=1+4+(0.2) %arctan(ZLOcos(Zw(O. 1)),
The wavespeed is a smoothed square wave and represents a system with abrupt speed modulation (see
Figure 3 for depictions). We simulate the solution using a Fourier ® Legendre spectral method in space
with leap-frog timestepping. The exact data Ueyqe; has dimensions 129 x 403 x 1639 in (z,y,t) with
resolution (Az,At) = (0.0156,0.0122). Each snapshot U(®) is 0.42 megabytes (Mb) and online iterations
take approximately 0.08 seconds.

Figure 2 shows robust recovery for Kmem € {13,17,21,25} up to oy =0.1, with rapid identification
for small noise. This is despite abrupt changes in the wavespeed c. For Kyem =9 we see recovery up
to oyg =0.001, indicating that for larger noise 9 points in time is insufficient to discretize the integrals
O +u accurately, analogous to the case Kpem =5 for KS.

The left panel of Figure 2 shows that once the system is identified, abrupt changes in the wavespeed
temporarily increase the coefficient error Fs, but the correct support S* remains identified and the errors
swiftly decay. In Figure 3 we plot the average learned wavespeed ¢(t) as well as the maximum and
minimum values of ¢(t) attained over all 100 trials, revealing that increasing Kperm from 17 to 25 leads
to a significant decrease in the variance of ¢ after the system has been identified. This is purely an affect
of using the weak form to discretize the time derivatives, and demonstrates that even under large noise
and abruptly changing coefficients, the algorithm is able to maintain support recovery and accuracy.

5.3. Wave equation in 3D
Ot = Oprpu~+Oyyu+0,.u (5.6)

For our last example we treat the linear wave equation in 3D. Exact data U, has dimensions
128 x 128 x 128 x 960 in (,,t) with resolution (Axz,At) = (0.0491,0.0122). Each snapshot U® is 16.8
Mb and online iterations take approximately 1.3 seconds.

Results are depicted in Figure 4. We again find robust recovery for Kmem € {13,17,21,25} up to
onr = 0.1, although in 5% of trials at oy g = 0.1 the Kem = 13 case finds a spurious term =~ —0.8u.
Even at o yr =0.1 the coefficients are accurate to more than 2 digits once recovered for Kem > 17. For
Kmem =9 we see poor performance for the same reason as above with W2D, but now manifesting as

11
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Figure 1: Online identification of the Kuramoto-Sivashinsky equation (5.4) for Kyem €{5,9,13,17,21,25}
and (top to bottom) oy € {0,0.001,0.01,0.1}. Left: average coefficient error Ey(w®). Right: average

total positivity ratio TPR(w(®).
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Figure 2: Online identification of the variable medium nonlinear wave equation (5.5) for
Kpem € {9,13,17,21,25} and (top to bottom) onpr € {0,0.001,0.01,0.1}. Left: average coeffi-
cient error F»(w(®)). Right: average total positivity ratio TPR(w(®).
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Figure 3: Online estimation of the wavespeed ¢(t) (shown in black) for PDE (5.5). The average learned
wavespeed ¢(t) is shown in red while the blue shaded region shows the maximum and minimum values
attained over all 100 trials. Notice the accuracy for later iterations when oy g =0.01, and the reduction
in variance moving from Kpem =17 to Kpem =25 when oy =0.1.

recovery of the spurious term ~~ —0.8u, indicating that the inaccurate computation of J1)*u produces
spurious damping. This is not an altogether unreasonable affect if computing ;1) *u numerically is viewed
as an attenuated second derivative calculation, although it does imply that higher-order time derivatives
require more snapshots to be saved in memory.

6. Conclusions

We have demonstrated on several protoypical examples, and over a wide range of noise and memory
scenarios, the viability of an online algorithm for PDE identification based on the weak-form sparse
identification of nonlinear dynamics algorithm (WSINDy). The core of the method combines a weak-form
discretization of candidate PDEs with the online proximal gradient descent algorithm applied directly to the
least squares cost function with £y-pseudo-norm regularization (4.2). Compared with the more common
approach of regularizing the ¢y-pseudo-norm (e.g. with ||-||, or weighted variants Candes et al. (2008)),
we find that directly applying prox |, leading to hard thresholding, and adaptively selecting A¢, exhibits
good performance in efficiently identifying systems, handling noise, and tracking time-varying coefficients.

14



ONLINE WSINDY

onp =0 1 ong =0
[——]
s K pem = 13
— Ko = 17
e Koy = 21 0.8
10(] e Kpem = 25 1
0.6
3 £
= H
N 0.4
A T e — EKuew =9
-5 e Ko = 13
1 P/‘_“N\—'\/WW 02 — K = 17|
= Kpem = 21
W\,__—_/\N\/\N\’\/\ —— Konew = 25
. . . . 0 . . . A
0 200 400 600 800 200 400 600 800
iterations iterations
ong = 0.001
oxr = 0.001 1 A
10?
10°
— Kuen =9
s K ey, = 13 ~
g — K = 17 &
5 e Ko = 21
10 —— Kunew = 25
—Kpem =9
e Kpem = 13
10 02 — Fpen = 17
— Kpyem = 21
= Kyem = 25
. . . . 0 . . .
0 200 400 600 800 0 200 400 600 800
iterations iterations
oyr = 0.01
oxp = 0.01 1 NE
10%
1000
— Kuem =9
e Ko = 13 &
q — K = 17
= o |= Kupen =21 =
107 | K =25
— Kipemn = 9
e Koo = 13
10741 — K = 17
= Kpem = 21
= Kem = 25
0 200 400 600 800 0 200 400 600 800
iterations iterations
onp =0.1 1 oy =0.1
10°
0.8}
100}
0.6 |-
& £
1072 &
0.4+
K, 9 — Ko =9
— Ken = = K = 13
L — 02 —
e Ko = 21 — Kpem = 21
e K = 25 s K e = 25
0
0 200 400 600 800 0 200 400 600 800
iterations iterations

Figure 4: Online identification of the

wave equation in

three spatial dimensions (5.6) for

Kpem € {9,13,17,21,25} and (top to bottom) onpr € {0,0.001,0.01,0.1}. Left: average coeffi-
cient error F»(w(®)). Right: average total positivity ratio TPR(w(®).
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Numerical experiments with an abruptly changing wavespeed indicate that our method is a lightweight
counterpart to existing methods for variable coefficients (e.g. Rudy et al. (2019)), which may be of
independent interest in the control of wave equations in variable-media (Fante (1971); Felsen and Whitman
(1970); Ning and Yan (2010); Seymour and Varley (1987); Chen (1979); Vila et al. (2017)). Examination
of the wave equation in 3D also offers a different perspective on PDE identification in higher dimensions:
problems with large datasets can be implemented in an online data-streaming fashion (not necessarily along
the time axis as implemented here). It may therefore be advantageous from the standpoint of memory
usage to solve certain batch problems in the online manner we have presented.

The algorithm’s successes warrant further investigation in a number of areas. While we have charac-
terized stationary points of the batch algorithm and proved boundedness of the average dynamic regret, we
leave a more complete analysis to future work. In particular, one could analyze the error Hw(t) —w*(t) H
as a function of library ©, test function v, data sampling rates (Az,At), memory size Kpem, Noise ratio
ONR, etc. It may also advantageous to design adaptive schemes which update © and v throughout the
course of the algorithm, depending on the dynamics of the data and previously learned equations. We also
note that an obvious next direction is to identify switching systems where the true support .S; changes
with time. Nevertheless, the current framework is well-suited for a large variety of problems and opens the
door to online PDE identification as well as the possibility of solving batch problems in an online manner.
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7. Appendix
7.1. Column scaling and non-uniform thresholds

For stability, we normalize the columns of G(®) at each step, defining G® = GOM® with

M —aing (6], @], ).

In particular, this allows for a larger stepsize c; =1/ H TG H and leads to a reasonable estimate

ar=1/4/|S¢|1J for a stepsize that does not require computation of the matrix 2-norm.
For more flexibility, we allow for non-uniform thresholding. For a set of thresholds A € R, we define
the non-uniform thresholding operator Hy by

Xy [xi[ >N
0, otherwise.

(H,\(X))F{

This happens to be the proximal operator of the non-uniform ¢p-norm

I1J
xllgp = N Tpygop(xi), (7.1)

i=1
where [[x[|, = M?|x||, when A= (,...,A). The resulting online cost function being minimized after
incorporation of both non-uniform thresholding and column rescaling is
2 1
F(wid®) =2 [ GOw 10|12 sl gy 10 (72)
whose fixed points w**) coincide with those of the desired cost function

Fy(wA®) = HG b<f>H§+%Hw||OM (1.3)

after a diagonal transformation w* () = M®)w*(®)_ With these two pieces, the online algorithm for (7.2)

becomes
w® = (M(t))—lv?,(t)

(A _ o (M( ) ( ) _ &t(é(t))T (é(t)v’{,(t) —b(t)>>>,

however this can equivalently be written in terms of the desired coefficients w(*) as
WA ZF ) ( O _ g, 2G0T (G(tm(t) _b<t>>> . (74)

In direct analogy to the batch WSINDy thresholding scheme (3.4)-(3.5), we use thresholds A*) =
max(l,“b(t) Hdiag(M(t))))\t, which eliminate small coefficient values min;cg, |v/\v§t)\ >\ as well as small
terms in the sense of dominant balance with respect to b(®):

arar

)2 >\,

o,

The update rule (4.4) for \; is unchanged after replacing F;(w;\;) with B(W;A(t)) defined in (7.3).
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7.2. Implementation and Computational Complexity

The offline phase has four components:

1. Initialize hyperparameters 1)(x,t) = ¢(x)0(t), © = {Da(z fj}Z 0.j=10 DA, Amax, Ao, where the
test function 1) is either prescribed manually or selected using the changepoint algorithm from
Messenger and Bortz (2021a) using the initial e, slices {U©),... U((Kmen—1)AH1

2. Compute and store the Fourier transforms {Da(“w}fzo to reuse at each step when computing
convolutions (recall v is separable so this storage cost is negligible).

3. Compute initial library of spatially integrated terms

U {\I/(t Kmem—l)At . {{Dﬁmqb*fj(U(t))(Qx,t)}

I7J (Kmem—l)At

where 8 (ag ), g)) is the spatial part of the multi-index ) operating on the spatial part ¢ of
the test function v (recall that Qy is the set of spatial points over which convolutions are evaluated,
also equal to the number of rows in G ().

4. Compute initial weights W) = (G()b(®) where b(®) and G?) are obtained by integrating the

o . . . @
elements of W in time against the corresponding temporal test functions D%d-+16).

For each ¢ in the online phase we compute ¥® using only the incoming slice U®), which replaces
P (= KmenAt) jy memory. (G(t) b(t)) are then computed by integrating the elements of ¥ in time against

the corresponding temporal test functions Dail+1 6, which amounts to a series of dot products between
length- Kpem vectors. Computation of G(*) at each time ¢ thus requires .J| X | function evaluations f;(U®))
(each counted as 1 floating point operation (flop)) followed by I.J convolutions against D? @ ¢, and finally
integration in time. The total flop count at each step is at most

JX| (1 + CTogN + 21 Kpem %3’)
where C'is such that xxy costs C'NlogN using FFTs for length-V vectors x and y, minus the cost of
one FFT (since we have precomputed these for D? © ¢)and N ~ \X|1/ @ is the one-dimensional length
scale of the data. In other words, only

|Ox|

F=J(1+ClogN +IKpem——- X|
flops are performed per incoming data point in U® (and a more careful analysis leads to a lower cost
in the factor C'IlogN by incorporating the subsampling X — Q). Note that F' does not depend on the
spatial dimension d of the data set (except through library term I, which might increase with d as more

differential operators become added). The total working memory W to store ¥ and (G®), b(®)) as outlined
above is given by W =1J|Qx|Kmem+ (I +1)J| Qx| double-precision floating point numbers (DPs).

Remark 7.1. There are several natural choices to consider to either decrease storage restrictions or increase
computational speed. However, it is not clear that the anticipated savings will manifest. For instance, we
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could instead store the spatial Fourier transforms of the nonlinearities { f; (U(t))}jﬁtf;z‘flmt, resulting

in a working memory of J- Knem-|X| instead of 1.J|Ox | Kmem to store ¥. This would require that we
compute spatial convolutions over all Ky, time slices at each time point, instead of spatial convolutions
over just the incoming time slice U®), hence resulting in a Kpem-fold increase in computation time, as
this is the leading-order cost. In addition, the storage “savings” may actually be worse, specifically if
I1Qx| < |X|. We believe that the method outlined above provides a near-optimal balance of computational
complexity and storage requirements, with a heavier emphasis on reducing computational complexity.

7.3. Proof of Lemma 4.1

Consider w such that one of the following holds:
(1) w is a local minimizer of (3.3)
(i) w=H)(w—G'(Gw—Db))

Gsz—bl3 and

all

(iii) With S'=supp(w), we have that wg € argmin

max
1€5°¢

GZT(GW—b)‘ < A<min|w;|.
€S
Then it holds that (i) <= (iti) = (i). Moreover, if w a global minimizer, then (i) —
(iit).
Proof (iii) = (4i) is immediate. To show (i7) = (43), let S =supp(w). Then we have
ws=ws—GL(Gw—b),

which implies that min;eg|w;| > A so that GgG5WS = ng, so that wg € argmin,, Hng—ng. On S¢
we have

H)(G§(Gw—b)) =0 = max

G/ (Gw—Db)| <.

To show that (i) and (77) imply (7), we note that under usual assumptions of two closed, convex and
proper functions f and g, we have

w € prox,(w—0f(w)) <= 0€9f(w)+0g(w) = w €argmin(f +g),
however ||-||, is clearly not convex’. Instead we can directly show that for a perturbed vector w=w+1,

for suitably small |||| the objective is non-decreasing. Using that wg € argmin,||Gsz— b3, let P< be
the projection onto {span(Gg)}*. The difference in objective I is then given by

#(w2) - Fw) = 3[R n— [p8b] )+ 5 15, -l

1 PE
— S lGn1+(Psb.Gm)+ 5 (1] [wlly).

7. In fact the subdifferential 9||-||,(w) =0 unless w =0, upon which 9||-||,(w)={0}.

19



MESSENGER DALL’ ANESE BORTZ

If supp(n) C supp(w) and ||| ., <A, then || W[, = [|w||, and (Pgb,Gn) =0, hence F(W;\) — F(w;\) >
0, with equality only if Gn=0, which in particular is not possible when Gg is full rank unless n=0. If
supp(n) & S and ||| ., <A, then P&b=0 implies a strict increase in ', while if P$b=£0 then

U
2 [Pgb|,[Gsell,’

Inselly<e:
implies a strict increase in F'. To see this, note that <P§,Gn> = <P§,G Sen Sc> implies the bound

~ 22
FWA) =~ F(wid) 2 ~||Pgb|| Gy mse o+ >0.

Note that e is not tight. Combining these conditions gives a ball around w over which F’ is non-decreasing,
hence w is a local min. Finally, that w a global minimizer implies (z7i) can be found in Zhang and
Schaeffer (2019).

7.4. Proof of Theorem 4.1
For convenience, we restate the theorem here. Without loss of generality in the following we set At=1.

Theorem 7.1. Let 01 and oy, denote the first and last singular values of the matrix G® e R,
Assume the following: max;\y <\ <00, MiNyTp ¢ > Tmin > 0, Max; 01 ¢ < Tmax, and sup,oy < ops.
inf,ay > 0. In addition, assume that the global minimizer w*(t) of Fy(w;\;) is unique for every t and
satisfies | Sy’| >3 >0 where S* = supp(w*(t)). Finally, assume that the tracking gap is globally bounded:
|w*(t)—w*(t+1)||,:=di <d. Then the dynamic regret (4.5) grows at-worst linearly:

RegD(T) <C1+CsT
Sor some Cy >0 and Cy > 0. In particular, %RegD (T') remains bounded.

Proof First we decompose Fy(w;\;) = gi (W) +hy(w) = ||GOw—b® H;%—V [w]|,. We can bound the
difference in g; as follows:

o) )= w0 20,00 (0 0)
:HG(t)(W(t)—w*(t))Hz—2<G(t)(w(t)—w*(t)),G(t)w*(t)—b(t)>

taking |-| of both sides and noting from the Lemma that || (G®)T(G®w*(t)—b®))||__ <\, implies that

w—w () +20 /(57

Gt (W(t) ) — Gt (W* (t)) < E?nax

wo-w),

For h; we have simply
~2 —
[ (W) =y (1)) | = X211 |71 <X ().
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For any vectors x,y € R™, it holds that
() = HA(Y)llo < X =yl + A /192 A8y

where S;AS, = (S, NS;)U(S,NSy) is the symmetric difference of the sets .S, = supp(H(x)) and
Sy =supp(H(y)). This implies, together with stationarity of w*(t),

i —wr,
- H Hop, (W(t> — oy (GOYT (G(t)w(t) _b(t>>> ~He, (W*(t)—ozt(G(t))T (G(t)w*(t)—b(t))> H

< H (I—at(G(t))TG(t)) (w(t)—w*(t))HZﬂL@t)‘t\/m

gmax(u—atait\,u_at(;g,ty)Hw@)_w*(t)HthAt 1541087

::ptHW(t) —wH(t) H2+atxﬂ /1Si41A82].

Using that ||w) —w*(t+1) ||, <[|w+D —w*(t)||,+d:, we have the recurrence relation

HW(H_l) —W*(t—l-l)Hz SptHW(t) —W*(t) H2+dt+at)‘ﬂ / |St+1ASZ(|, (75)

where, by assumptions on 1 ¢,0, + and o, it holds that max;p; <) for some p < 1, hence we get the bound

2

d+ay/n

=5 (7.6)

w0 w0, <7 w0+ @rrv Y < WO w0+
s=0

We note in passing that this implies a uniform error bound on Hw(t) —w*(t) ||2 which asymptotically
depends only on the tracking gap d; and the support difference |S;AS;|. Finally, using this bound and
previous calculations for g and h, we get

T
RegD(T) < élzﬁt-i-CQT <C1+CT
t=0

where

~ =2 = 2| w0 —w* _ d+a /)52
Cl = 7017 = Lma‘ip HW(O) _W*(O) H2+ HW ‘iV (0) H2 )\m_’_ (d+a)‘\/7§)o-max (77)
1-p 1-p 2 (1-p)? 1-p

d—i—a/\\/ﬁ) 2+ <d+a/\\/?z 3 n_8)2

(7.8)

Cy= E?nax_l ( —
>=( ) 15 =5

This completes the proof.
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