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Abstract. In the numerical simulation of ideal magnetohydrodynamics (MHD), keeping the pressure and density always
positive is essential for both physical considerations and numerical stability. This is however a challenging task, due to the
underlying relation between such positivity-preserving (PP) property and the magnetic divergence-free (DF) constraint as
well as the strong nonlinearity of the MHD equations. In this paper, we present the first rigorous PP analysis of the central
discontinuous Galerkin (CDG) methods and construct arbitrarily high-order provably PP CDG schemes for ideal MHD. By
the recently developed geometric quasilinearization (GQL) approach, our analysis reveals that the PP property of standard
CDG methods is closely related to a discrete magnetic DF condition, whose form was unknown prior to our analysis and
differs from that for the non-central DG and finite volume methods in [K. Wu, SIAM J. Numer. Anal., 56 (2018), pp. 2124–
2147]. The discovery of this relation lays the foundation for the design of our PP CDG schemes. In the 1D case, the discrete
DF condition is naturally satisfied, and we rigorously prove that the standard CDG method is PP under a condition that
can be enforced easily with an existing PP limiter. However, in the multidimensional cases, the corresponding discrete DF
condition is highly nontrivial yet critical, and we analytically prove that the standard CDG method, even with the PP limiter,
is not PP in general, as it generally fails to meet the discrete DF condition. We address this issue by carefully analyzing
the structure of the discrete divergence terms and then constructing new locally DF CDG schemes for Godunov’s modified
MHD equations with an additional source term. The key point is to find out the suitable discretization of the source term
such that it exactly cancels out all the terms in the discovered discrete DF condition. Based on the GQL approach, we prove
in theory the PP property of the new multidimensional CDG schemes under a CFL condition. The robustness and accuracy
of the proposed PP CDG schemes are further validated by several demanding 1D, 2D, and 3D numerical MHD examples,
including the high-speed jets and blast problems with very low plasma beta.
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1. Introduction. This paper is devoted to exploring robust high-order numerical methods for sim-
ulating the compressible ideal magnetohydrodynamics (MHD), which has wide applications in plasma
physics, astrophysics, and space physics. Let ρ, m, and E denote the fluid density, momentum vector, and
total energy, respectively. Denote the magnetic field by B = (B1, B2, B3). The mathematical equations
that govern ideal MHD can be formulated as

∂tU + ∇ · F(U) = 0, (1.1)

where ∇ · F =
∑d

i=1
∂Fi

∂xi
with d being the spatial dimensionality, and the conservative vector and fluxes

are

U =


ρ
m
B
E

 , Fi(U) =


ρvi

vim − BiB + +
(
p + 1

2 |B|2
)

ei

viB − Biv
vi

(
E + p + 1

2 |B|2
)

− Bi(v · B)

 .

Here v = (v1, v2, v3) = m/ρ denotes the fluid velocity, p is the thermal pressure, and ei is the ith column
of the 3 × 3 identity matrix. The total energy consists of the kinetic, magnetic, and internal energies,
namely, E = 1

2 (ρ|v|2 + |B|2) + ρe, where e is the specific internal energy. The equations (1.1) are closed
by an equation of state (EOS), which relates the thermodynamic variables in the following general form

p = p(ρ, e). (1.2)

As in [61, 42, 44, 45], throughout this paper we assume that the given EOS (1.2) satisfies

if ρ > 0, then e > 0 ⇔ p(ρ, e) > 0. (1.3)

This assumption is reasonable and holds for quite general EOSs, including the classical EOS p = (γ −1)ρe
for ideal gases, where γ > 1 is a constant denoting the adiabatic index. The ideal MHD equations (1.1) with
(1.2) are a nonlinear system of hyperbolic conservation laws, whose solutions may contain discontinuities
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such as shocks even if the initial data is smooth. This renders it difficult to simulate ideal compressible
MHD flows accurately and robustly.

The magnetic field B should satisfy an extra divergence-free (DF) constraint:

∇ · B :=
d∑

i=1

∂Bi

∂xi
= 0, (1.4)

which describes the physical principle of non-existence of magnetic monopoles. Although not explicitly
included in the MHD equations (1.1), the DF constraint (1.4) is automatically preserved by the exact
solution of (1.1) for all t > 0 if the initial condition at t = 0 satisfies (1.4). Numerically, it is important to
carefully respect this constraint, because serious violation of (1.4) may cause numerical instability and/or
nonphysical structures in the approximated solutions (cf. [6, 14, 3, 38, 23]). In the 1D case (d = 1), the
constraint (1.4) and the fifth equation of (1.1) become ∂x1B1 = 0 = ∂tB1, namely, B1 is a constant, which
can be easily preserved in the numerical simulation. However, in the multidimensional cases (d ≥ 2),
it is very difficult to exactly preserve (1.4) in the numerical design. To address this need, researchers
have developed various numerical techniques to reduce the divergence errors or explicitly enforce some
approximate DF conditions at the discrete level; see, for example, [6, 14, 35, 36, 3, 13, 23, 25, 24, 55, 54, 15],
the early survey article [38], and references therein. Among those techniques, the eight-wave approach
[35, 36] is based on suitably discretizing the Godunov’s modified form [16] of the ideal MHD system

Ut + ∇ · F(U) = (−∇ · B) S(U) (1.5)

with an additional source term, where S(U) := (0, B, v, v · B)⊤. Notice that the source term in (1.5) is
proportional to ∇ · B and thus vanishes under the condition (1.4). This implies, for DF initial conditions,
the exact solutions of the standard MHD system (1.1) and the modified MHD system (1.5) are the same.
In other words, for DF initial conditions, the two forms (1.1) and (1.5) are equivalent at the continuous
level. However, the modified form (1.5) has the following advantages. As discovered by Godunov [16],
the standard form (1.1) of MHD is not symmetrizable, while the modified form (1.5) is the unique sym-
metrizable form for the ideal MHD system. Since the symmetrizable form (1.5) admits entropy pairs, it
is useful for studying the entropy stability of numerical methods [7, 31]. Moreover, Powell [35] noticed
that the standard form (1.1) of MHD is incompletely hyperbolic and suggested to add the source term in
(1.5) to recover the missing eigenvector. Although this non-conservative source term may lead to some
drawbacks [38], Powell demonstrated that adding a proper discrete version of the source term could make
the numerical schemes more stable to prevent the accumulation of divergence errors [36]. Besides, the
modified form (1.5) has another significant advantage in terms of positivity, which will be discussed later.

In addition to the DF constraint (1.4), the solutions of the MHD equations (1.1) should also satisfy
several algebraic constraints on positivity:

ρ > 0, p > 0, e > 0, (1.6)

because these three quantities are positive in physics. Under assumption (1.3), p > 0 ⇔ e > 0 when
ρ > 0. For both physical considerations and robust computations, it is significant and essential to develop
positivity-preserving (PP) numerical methods for system (1.1), which always keep the numerical solutions
satisfying (1.6). However, most numerical schemes for MHD are generally not PP and may produce
negative density or pressure, when simulating problems involving strong discontinuity, high march number,
low internal energy, low density, low plasma beta, and/or strong magnetic field. As well-known, once
the numerical density and/or pressure become negative, the hyperbolicity of the system is lost, causing
serious numerical instability and the breakdown of the simulation. In fact, this issue also occurs in
the pure hydrodynamic case (i.e. the simulation of the compressible Euler equations), but gets much
worse for MHD, due to the underlying influence of the magnetic divergence errors on the positivity.
Over the past two decades, researchers have made some efforts to reduce such risk; see, for example,
[2, 18, 39, 21, 1, 8, 10, 9, 63, 28] and some recent works on provably PP schemes [42, 44, 45, 46, 57].
For the 1D ideal MHD equations, several PP multi-state approximate Riemann solvers were developed in
[18, 33, 4, 5]. Waagan proposed a positive second-order MUSCL–Hancock scheme [39] based on a PP linear
reconstruction and the relaxation Riemann solvers of [4, 5]; see also [21] for a review. Waagan, Federrath,
and Klingenberg [40] systematically demonstrated the robustness of that scheme by benchmark numerical
tests, and they [39, 40] noticed the importance of a stable discretization of the Powell type source term,
which was added in only the magnetic induction equations and thus different from (1.5). In recent years,
researchers have made remarkable progress in constructing high-order PP or bound-preserving schemes
for conservation laws; see, for example, [59, 60, 61, 53, 48, 52, 58, 41, 49, 51, 43] and references therein.
Christlieb et al. [10, 9] proposed high-order PP finite difference schemes for ideal MHD, based on the
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parametrized flux limiters [53, 52] and the presumed positivity of the Lax–Friedrichs scheme (which was
later rigorously proved in [42]). In high-order finite volume or discontinuous Galerkin (DG) schemes, it
is well-known that the PP property may be lost in two cases: one case is that the reconstructed or DG
solution polynomials fail to be positive, and the other is the cell averages evolved to the next time step
become negative in the updating process; see the framework by Zhang and Shu [59, 60]. The positivity
lost in the first case can be effectively recovered by a simple PP limiter; see, for example, the local scaling
PP limiters [8] for DG and central DG MHD schemes generalized from [59, 60], and the self-adjusting
PP limiter [1]. However, it is very challenging to fully guarantee the positivity of the cell averages in the
updating process, which is also critical to obtain a genuinely PP scheme. In fact, the validity of the PP
limiters [1, 8] relies on the positivity of the cell averages in the updating process, which was, however,
not rigorously proved for the methods in [1, 8]; it was formally shown for only the 1D methods in [8] by
invoking some assumptions on the exact Riemann solutions and also conjectured for the multi-dimensional
methods of [8]. As finite numerical tests might be insufficient to genuinely and fully demonstrate the PP
property under all circumstances, exploring provably PP schemes [42, 44, 45, 46] for MHD and developing
the related mathematical theory become very important and highly desirable.

In a series of recent work [42, 44, 45], high-order provably PP numerical methods were systematically
developed for ideal MHD. Interestingly, it was discovered that the positivity preservation (which is an
algebraic property) and the DF condition (1.4) (which is a differential constraint) are tightly linked, at
both the discrete [42] and continuous levels [44]. More specifically, the theoretical analysis in [42] first
showed, for the regular (non-central) DG and finite volume schemes of the standard MHD system (1.1),
that their PP property is closely connected with a discrete DF condition. Moreover, slightly violating the
discrete DF condition may lose the PP property of cell averages in the updating process [42, Theorem
4.1 and Remark 4.4]. On the other hand, it was shown in [44, Appendix A] that if the continuous DF
constraint (1.4) is slightly violated, even the exact smooth solutions of the standard MHD system (1.1)
may fail to be PP. Fortunately, the modified MHD system (1.5) does not suffer from this issue [45], namely,
its exact smooth solutions are always PP, no matter whether the DF condition (1.4) is satisfied or not;
see [45, Proposition 1]. Inspired by these findings, high-order accurate provably PP schemes were studied
for ideal MHD within the (non-central) DG and finite volume frameworks via the standard form (1.1) [42]
and in the multidimensional cases [44, 45] via the modified form (1.5). See also some recent extensions
and applications in [46, 28, 57].

This paper aims to explore and rigorously analyze high-order provably PP schemes for ideal MHD
in the central DG (CDG) framework. It is a sequel to the previous effort [42, 44, 45] on the non-central
DG methods. The CDG method was originally introduced in [30], as a variant of the DG method [11]
to the central scheme framework [34, 29]. Different from the regular DG method [11], the CDG method
evolves two copies of numerical solutions on two sets of overlapping meshes (namely, the primal mesh and
its dual mesh), thereby possessing the distinct advantage of avoiding the use of any exact or approximate
Riemann solvers, which can be computationally expensive for complicated systems such as MHD. Another
advantage is that the CDG method allows much larger time step-sizes [32, 37]. It is also worth mentioning
that Li et al. [25, 24] systematically proposed a novel CDG method which exactly maintains the globally
DF property of the numerical magnetic field for ideal MHD; see also [56, 15] for more related works.
Recently, bound-preserving CDG schemes were constructed for the scalar conservation laws and the Euler
equations [27], the shallow water equations [26], and the relativistic hydrodynamics [50]. Although the PP
limiter [60, 27] was extended to the CDG methods for ideal MHD in [8], the validity of the PP limiter [8]
is based on the positivity of the cell averages in the updating process, which was, however, not rigorously
proved but was formally shown in only the 1D case [8] by invoking some assumptions on the exact Riemann
solutions. The rigorous PP property of the CDG methods for MHD is still unclear in theory, especially in
the multidimensional cases. It is natural and interesting to ask the following important questions:

Is the PP property of the CDG methods on overlapping meshes for ideal MHD also related to some
discrete DF conditions? If so, what is the corresponding discrete DF conditions in the CDG case?
In theory, how to establish the relation for the CDG schemes?

All of these questions have no answers yet. This paper will settle these questions by rigorous theoretical
analysis, which further leads to our provably PP CDG schemes for ideal MHD. Specifically, the main efforts
and findings in this work include:

• We present the first rigorous PP analysis of the standard CDG methods for the MHD equations
(1.1). The analysis is based on the geometric quasilinearization (GQL) approach, which was
proposed in [42] with its general framework established in [47]. Our new analysis establishes the
theoretical relation between the PP property of the CDG method and a discrete DF condition,
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which distinctly differs from that of the non-central DG and finite volume methods in [42]. This
finding lays the foundation for the design of our provably PP CDG schemes.

• In the 1D case, the discrete DF condition is naturally satisfied, and we rigorously prove that the
standard CDG method is PP under a condition on the CDG polynomials. This condition can be
simply enforced by an existing PP limiter [8].

• In the 2D case, however, the corresponding discrete DF condition becomes highly nontrivial, and
we prove by an analytical counterexample that the standard CDG method for (1.1), even with
the PP limiter, is not PP in general, as it may fail to meet the discrete DF condition.

• By studying the structure of the 2D discrete DF condition, we further construct a new 2D locally
DF CDG method based on the modified MHD equations (1.5). The key point is to carefully
discretize the extra source term in (1.5) to exactly control the effect of nonzero divergence on the
PP property. Based on the GQL approach, we rigorously prove in theory the positivity of the
new 2D CDG schemes under a CFL condition. The new CDG schemes carry many features of
the standard CDG method, e.g., avoiding the use of any Riemann solvers and being uniformly
high-order accurate and of high resolution.

• We implement the proposed provably PP CDG schemes and demonstrate their robustness and
accuracy by several demanding numerical MHD examples, including the high-speed jets and bast
problems of very low plasma beta.

It is worth noting that the analysis and design of our PP CDG schemes have distinct difficulties different
from the regular DG case [42, 44] or other hyperbolic systems [60, 27]. One key difficulty in our quest is
to analytically establish the intrinsic relation between the PP property and discrete DF condition on 2D
overlapping meshes, whose form remained unknown prior to our analysis and is very different from the
non-central DG case. Due to the relation, the states involved in CDG schemes are intrinsically coupled
by the discrete DF condition, making the PP analysis very nontrivial. Consequently, some standard PP
techniques, which typically rely on reformulating a multidimensional scheme into convex combination
of formal 1D PP schemes [60, 27], are inapplicable in our multidimensional MHD cases. Another new
challenge in this work is to find out the suitable discretization of the source term in (1.5) such that
it exactly offsets the divergence terms in the discovered discrete DF condition. Our novel source term
discretization in the CDG framework is based on the information from the corresponding dual mesh and
distinctly different from the non-central DG case [44].

The paper is organized as follows: We review the GQL approach and some auxiliary theoretical
results in section 2. Sections 3 and 4 present the rigorous PP analysis of the standard CDG schemes in
1D and 2D, respectively. The provably PP, locally DF 2D CDG schemes are constructed and analyzed
in section 5. The 3D extension is straightforward and omitted in this paper. Section 6 gives numerical
examples to verify the PP property, robustness, and effectiveness of our schemes, before concluding the
paper in section 7.

2. Admissible state set and geometric quasilinearization. This section briefly reviews the
GQL approach [42, 47] and a few related results in the MHD case, which will be useful in the PP analysis.

The positivity constraints (1.6) demand that the conservative vector U must belong to the following
physically admissible state set

G =
{

U = (ρ, m, B, E)⊤ : ρ > 0, E(U) > 0
}

, (2.1)

which is a convex set [8], with E(U) := E − |m|2

2ρ − |B|2

2 = ρe.

A numerical scheme for (1.1) is called PP if it always preserves the numerical solutions in the set
G. From (2.1), we can see that it is more difficult to preserve the positivity of E(U), which is a highly
nonlinear function depending on all the conservative quantities {ρ, m, B, E}. In a typical scheme for (1.1),
{ρ, m, B, E} are themselves evolved via their own conservation laws, which are seemingly independent of
each other. As such, it may not always guarantee the positivity of E(U) due to numerical errors, especially
when the kinetic or/and magnetic energies are huge and very close to the total energy. In order to analyze
the PP property of a numerical scheme, one should substitute all the discrete evolution equations of
{ρ, m, B, E} into the highly nonlinear function E(U), and then analytically check whether the resulting E
is positive or not.

To overcome the difficulties arising from the nonlinearity of E(U), we introduce an equivalent linear
representation of G, which skillfully transfers the intractable nonlinear constraint E(U) > 0 into linear
ones.

Lemma 2.1 (GQL representation [42]). The admissible state set G is exactly equivalent to

G∗ =
{

U = (ρ, m, B, E)⊤ : U · n1 > 0, U · n∗ + |B∗|2

2 > 0 ∀ v∗, B∗ ∈ R3
}

, (2.2)
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where n1 := (1, 0, . . . , 0)⊤, the extra variables {v∗, B∗} are called free auxiliary variables, and n∗ is a
function of only the free auxiliary variables:

n∗ :=
(

|v∗|2

2 , − v∗, − B∗, 1
)⊤

. (2.3)

A proof of Lemma 2.1 was first given in [42], and its geometric interpretation was presented in [47]. Notice
that in the equivalent form (2.2), all the constraints become linear with respect to U, yielding a highly
effective way to theoretically study the positive numerical MHD schemes. Such an equivalent linear form
is called GQL representation, and can be derived for general convex sets within the GQL framework [47].
The GQL representation (2.2) will be a crucial tool in our PP analysis and design.

Let us recall the following inequality (2.4), which was constructed in [42] and will be useful for the
PP analysis based on the GQL approach.

Lemma 2.2 ([42]). For any free auxiliary variables v∗, B∗ ∈ R3 and any two admissible states
U, Ũ ∈ G, the following inequality(

U − Fi(U)
α

+ Ũ + Fi(Ũ)
α

)
· n∗ + |B∗|2 + Bi − B̃i

α
(v∗ · B∗) > 0, (2.4)

holds if α > αi(U, Ũ), where i ∈ {1, 2, 3}, and

αi(U, Ũ) = max
{

|vi| + Ci, |ṽi| + C̃i,
|√ρvi +

√
ρ̃ṽi|√

ρ +
√

ρ̃
+ max{Ci, C̃i}

}
+ |B − B̃|

√
ρ +

√
ρ̃

(2.5)

with

Ci = 1√
2

 |B|2

ρ
+ C 2 +

√(
|B|2

ρ
+ C 2

)2
− 4B2

i C 2

ρ

 1
2

, C = p

ρ
√

2e
.

Remark 2.3. Let Ri(U) be the spectral radius of the Jacobian matrix, in the xi-direction, i = 1, 2, 3,
of the MHD equations (1.5). For the ideal EOS p = (γ − 1)ρe, it was well-known (see, e.g., [19]) that

Ri(U) = |vi| + 1√
2

 |B|2

ρ
+ c2

s +

√(
|B|2

ρ
+ c2

s

)2
− 4B2

i c2
s

ρ

 1
2

where cs =
√

γp/ρ is the sound speed. Let αstd
i := max{Ri(U), Ri(Ũ)}. It was shown in [42] that

αi(U, Ũ) ≤ αstd
i + O

(
|U − Ũ|

)
. (2.6)

Remark 2.4. In the PP analysis of many other hyperbolic systems (see, e.g., [60, 61, 48, 41]), one
usually expects the following property for any U ∈ G,

U ± Fi(U)
α

∈ G with α ≥ Ri(U). (2.7)

If true, this property would imply 1
2
(
U − Fi(U)

α + Ũ + Fi(Ũ)
α

)
∈ G for α ≥ αstd

i and then by (2.2) would
lead to (

U − Fi(U)
α

+ Ũ + Fi(Ũ)
α

)
· n∗ + |B∗|2 > 0. (2.8)

Unfortunately for the MHD system, the usually-expected property (2.7) is not true in general, even if the
condition α ≥ Ri is replaced with α ≥ χRi for any given constant χ ≥ 1; see a proof in [42, Proposition
2.5]. Therefore, the PP analysis of numerical MHD schemes has distinct challenges significantly different
from that for other hyperbolic systems such as the Euler equations [60, 27].

Remark 2.5. As (2.7), the resulting inequality (2.8) is also invalid in general [42]. Different from (2.8),
the correct inequality (2.4) in Lemma 2.2 has an extra term Bi−B̃i

α (v∗ ·B∗), which is essential and critical.
Without this term the inequality (2.4) would reduce to (2.8) and become incorrect. This term is not
always positive but helps offset the “possible negativity” of (2.8). More importantly, this technical term
will be canceled out skillfully under a discrete DF condition, and it will be a key to establish the intrinsic
relation of the PP property to the discrete DF condition.
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3. Rigorous PP analysis of 1D standard CDG method. In this section, we apply the GQL
approach to rigorously analyze the positivity of the standard CDG method for the 1D MHD equations. In
the 1D case, the DF constraint (1.4) simply reduces to that B1 is a constant, denoted by Bconst. The 1D
analysis is fairly trivial compared to the multidimensional cases, but it may help us to gain some insights.

For convenience, we employ the symbol x to represent the 1D spatial coordinate variable. The spatial
domain Ω is uniformly divided into {Ij := (xj− 1

2
, xj+ 1

2
)} with constant stepsize ∆x = xj+ 1

2
− xj− 1

2
. We

denote xj = 1
2 (xj− 1

2
+ xj+ 1

2
), then {Ij+ 1

2
:= (xj , xj+1)} forms a dual partition. Define

VC,k
h =

{
w ∈ [L2(Ω)]8 : wℓ|Ij ∈ Pk(Ij) ∀j, ℓ

}
, VD,k

h =
{

u ∈ [L2(Ω)]8 : uℓ|I
j+ 1

2
∈ Pk(Ij+ 1

2
) ∀j, ℓ

}
,

where Pk(I) denote the space of the polynomials with degree less than or equal to k on the cell I. The
standard semi-discrete CDG method seeks the numerical solutions UC

h ∈ VC,k
h and UD

h ∈ VD,k
h such that

for any test functions w ∈ VC,k
h and u ∈ VD,k

h ,∫
Ij

∂UC
h

∂t
· wdx = 1

τmax

∫
Ij

(UD
h − UC

h ) · wdx +
∫

Ij

F1(UD
h ) · ∂xwdx

+ F1(UD
h (xj− 1

2
)) · w(x+

j− 1
2
) − F1(UD

h (xj+ 1
2
)) · w(x−

j+ 1
2
),

(3.1)

∫
I

j+ 1
2

∂UD
h

∂t
· udx = 1

τmax

∫
I

j+ 1
2

(UC
h − UD

h ) · udx +
∫

I
j+ 1

2

F1(UC
h ) · ∂xudx

+ F1(UC
h (xj , t)) · u(x+

j ) − F1(UC
h (xj+1, t)) · u(x−

j+1)
(3.2)

with f(x±) = limϵ→0+ f(x ± ϵ) being the limits at x from the left or the right side. In (3.1)–(3.2), τmax
is the maximum time stepsize allowed for stability, which is determined by certain CFL condition (see
Remark 3.2). More discussions about the role of τmax in CDG methods can be found in [30, 37].

Based on Zhang-Shu’s framework [60], to achieve a PP high-order scheme, the main task is to preserve
the evolved cell averages in the set G during the updating process. Once such a property is guaranteed,
one can then use a simple PP limiter to enforce the PP property of the solution polynomials at any
specified points. Denote UC

j (t) := 1
∆x

∫
Ij

UC
h (x, t)dx and UD

j+ 1
2
(t) := 1

∆x

∫
I

j+ 1
2

UD
h (x, t)dx. Let the unit

vector êℓ be the ℓth column of the 8 × 8 identity matrix. Taking w = êℓ in (3.1) and u = êℓ in (3.2) for
ℓ = 1, 2, . . . , 8, we can derive the semi-discrete scheme satisfied by the cell averages of the CDG solution:

dUC

j

dt
= Lj

(
UC

h , UD
h

)
:=

UD

j − UC

j

τmax
−

F1(UD
h (xj+ 1

2
)) − F1(UD

h (xj− 1
2
))

∆x
, (3.3)

dUD

j+ 1
2

dt
= Lj+ 1

2

(
UD

h , UC
h

)
:=

UC

j+ 1
2

− UD

j+ 1
2

τmax
− F1(UC

h (xj+1)) − F1(UC
h (xj))

∆x
, (3.4)

where and below we omit the t dependence of all quantities for convenience. The scheme (3.3)–(3.4) is
desired to satisfy the following PP property

UC

j + ∆tLj

(
UC

h , UD
h

)
∈ G, UD

j+ 1
2

+ ∆tLj+ 1
2

(
UD

h , UC
h

)
∈ G ∀j, (3.5)

under certain suitable CFL condition on the time stepsize ∆t and some proper conditions on the CDG
solution polynomials which can be accessible by the PP limiter. The property (3.5) guarantees the cell
averages staying in G during the updating process, if one uses a strong-stability-preserving (SSP) method
for time discretization, which is a convex combination of the forward Euler method.

We now use the GQL approach to derive a theoretical analysis on property (3.5) for the cell-averaged
CDG scheme (3.3)–(3.4). We only focus on the case k ≥ 1, because when k = 0 the scheme (3.3)–
(3.4) reduces to a first-order Lax–Friedrichs-like scheme, whose PP property can be concluded from [42].
Let {x̂

(ν)
j− 1

4
}L

ν=1 and {x̂
(ν)
j+ 1

4
}L

ν=1 be the Gauss–Lobatto quadrature nodes transformed into the intervals

[xj− 1
2
, xj ] and [xj , xj+ 1

2
], respectively. Denote Q̂x

j = {x̂
(ν)
j− 1

4
}L

ν=1 ∪ {x̂
(ν)
j+ 1

4
}L

ν=1. Let {ω̂ν}L
ν=1 be the associ-

ated weights which are normalized such that
∑L

ν=1 ω̂ν = 1 and ω̂1 = ω̂L = 1
L(L−1) , i.e., the weights can

be regarded as being defined for the interval [− 1
2 , 1

2 ]. We take L = ⌈ k+3
2 ⌉, which gives 2L − 3 ≥ k, so that

the L-point Gauss–Lobatto quadrature rule is exact for polynomials of degree up to k. This implies

UD

j = 1
∆x

(∫ xj

x
j− 1

2

UD
h dx +

∫ x
j+ 1

2

xj

UD
h dx

)
=
∑

σ=±1

L∑
ν=1

ω̂ν

2 UD
h (x̂(ν)

j+ σ
4
) = ω̂1

2

(
UD

j− 1
2

+ UD
j+ 1

2

)
+ ΠD

j (3.6)
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with UD
j± 1

2
:= UD

h (xj± 1
2
) and ΠD

j :=
∑L

ν=2
ω̂ν

2 UD
h (x̂(ν)

j− 1
4
) +

∑L−1
ν=1

ω̂ν

2 UD
h (x̂(ν)

j+ 1
4
).

Theorem 3.1 (PP property of 1D standard CDG method). Assume that UC

j , UD

j+ 1
2

∈ G for all j

and the numerical solutions UC
h (x) and UD

h (x) satisfy

UC
h (x) ∈ G , UD

h (x) ∈ G ∀x ∈ ∪
j
Q̂x

j , (3.7)

BD
1,h(xj± 1

2
) = Bconst = BC

1,h(xj±1) ∀j , (3.8)

then the PP property (3.5) holds under the CFL condition

a1
∆t

∆x
<

θω̂1

2 , θ := ∆t

τmax
∈ (0, 1] , (3.9)

where a1 := maxj{α1
(
UC

h (xj+1), UC
h (xj)

)
, α1
(
UD

h (xj+ 1
2
), UD

h (xj− 1
2
)
)
}.

Proof. Denote UC
∆t := UC

j + ∆tLj

(
UC

h , UD
h

)
. Thanks to (3.6), we have

UC
∆t = (1 − θ)UC

j + θΠD
j + θω̂1

2

(
UD

j+ 1
2

+ UD
j− 1

2

)
− ∆t

∆x

(
F1(UD

j+ 1
2
) − F1(UD

j− 1
2
)
)

. (3.10)

The condition (3.7) implies that UD
j± 1

2
∈ G and 1

1−ω̂1
ΠD

j ∈ G. It follows that

UC
∆t · n1 = (1 − θ)UC

j · n1 + θΠD
j · n1 +

(θω̂1

2 − ∆t

∆x
vD

1,j+ 1
2

)
ρD

j+ 1
2

+
(θω̂1

2 + ∆t

∆x
vD

1,j− 1
2

)
ρD

j− 1
2

> 0,

where the condition (3.9) is used in the inequality. Define α := θω̂1
2 · ∆x

∆t . We can rewrite (3.10) as

UC
∆t = (1 − θ)UC

j + θΠD
j + θω̂1

2

(
UD

j+ 1
2

−
F1(UD

j+ 1
2
)

α
+ UD

j− 1
2

+
F1(UD

j− 1
2
)

α

)
. (3.11)

Note that the condition (3.9) yields α > a1 ≥ α1(UD
j+ 1

2
, UD

j− 1
2
). Thanks to Lemma 2.2, we have for any

free auxiliary variables v∗, B∗ ∈ R3 that

UC
∆t · n∗ + |B∗|2

2
(3.11)

= (1 − θ)
(

UC

j · n∗ + |B∗|2

2

)
+ θ(1 − ω̂1)

(
1

1 − ω̂1
ΠD

j · n∗ + |B∗|2

2

)
+ θω̂1

2

[(
UD

j+ 1
2

−
F1(UD

j+ 1
2
)

α
+ UD

j− 1
2

+
F1(UD

j− 1
2
)

α

)
· n∗ + |B∗|2

]
(2.4)

>
θω̂1

2 ·
BD

1,h(xj− 1
2
) − BD

1,h(xj+ 1
2
)

α
(v∗ · B∗)

(3.8)
= 0.

According to the GQL representation (2.2) in Lemma 2.1, we obtain UC
∆t ∈ G∗ = G. Similar arguments

give UD

j+ 1
2

+ ∆tLj+ 1
2
(UD

h , UC
h ) ∈ G. The proof is completed.

Remark 3.2. Although the parameter θ can be chosen arbitrarily from (0, 1], we take θ = 1 in our
tests so that ∆t = τmax for efficient simulations. The theoretically estimated PP CFL condition (3.9) is
similar to the typical one derived in [27, Theorem 3.2] for PP CDG schemes of the Euler equations. It
follows from (3.9) that a1τmax < θ

2 ω̂1∆x, which can be used to determine τmax and ∆t. In general, such a
CFL constraint is stricter than the standard one for L2-stability [32]. An efficient implementation is that
if a preliminary calculation with the standard time step produces negative density or pressure, we then
restart the computation from the last time step with half of ∆t and proceed. Our theory ensures that
we only need to restart for at most a small fixed number of times. We observe that the restart is never
encountered in all our tests reported in section 6.

Remark 3.3. Theorem 3.1 indicates that the PP property of the 1D CDG method is related to a
discrete DF condition (3.8), which is trivial and naturally satisfied. In fact, the 1D CDG method (3.1)–
(3.2) automatically maintain the 1D globally DF property BC

1,h(x) ≡ BD
1,h(x) ≡ Bconst, because the fifth

component of F1(U) is zero. The condition (3.7) can be simply enforced by an existing PP limiter [8]
generalized from [59, 60]. Notice that the 1D globally DF property is not affected by the PP limiter. As
we will see, in the 2D case, the related discrete DF condition is very different and highly nontrivial.
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4. Rigorous PP analysis of 2D standard CDG method. In this section, we apply the GQL
approach to rigorously analyze the positivity of the standard CDG method for the 2D MHD equations.
Our analysis will reveal that the PP property is closely related to a discrete DF condition, which is very
nontrivial and differs from that for the regular DG method in [42]. The extension of our analysis to 3D is
quite straightforward and is presented in the Supplementary Materials of this paper. For convenience, we
will employ the symbols (x, y) to denote the 2D spatial coordinate variables.

Let {Ii,j} and {Ii+ 1
2 ,j+ 1

2
} denote two overlapping uniform meshes for a rectangular domain Ω =

[xmin, xmax] × [ymin, ymax] with Ii,j = (xi− 1
2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
) and Ii+ 1

2 ,j+ 1
2

= (xi, xi+1) × (yj , yj+1).
The spatial stepsizes are constants, denoted by ∆x in the x-direction and ∆y in the y-direction. Define

VC,k
h =

{
w ∈ [L2(Ω)]8 : wℓ|Ii,j ∈ Pk(Ii,j) ∀i, j, ℓ

}
, VD,k

h =
{

u ∈ [L2(Ω)]8 : uℓ|I
i+ 1

2 ,j+ 1
2

∈ Pk(Ii+ 1
2 ,j+ 1

2
) ∀i, j, ℓ

}
with Pk(I) denoting the space of the 2D polynomials in I with the total degree of at most k. The standard
semi-discrete CDG method seeks the numerical solutions UC

h ∈ VC,k
h and UD

h ∈ VD,k
h such that∫

Iij

∂UC
h

∂t
· wdxdy = Gij

(
UC

h , UD
h , w

)
∀w ∈ VC,k

h , (4.1)∫
I

i+ 1
2 ,j+ 1

2

∂UD
h

∂t
· udxdy = Gi+ 1

2 ,j+ 1
2

(
UD

h , UC
h , u

)
∀u ∈ VD,k

h (4.2)

with

Gij

(
UC

h , UD
h , w

)
:= 1

τmax

∫
Iij

(UD
h − UC

h ) · wdxdy +
∫

Iij

F(UD
h ) · ∇wdxdy

−
∫ y

j+ 1
2

y
j− 1

2

(
F1(UD

h (xi+ 1
2
, y, t)) · w(x−

i+ 1
2
, y) − F1(UD

h (xi− 1
2
, y, t)) · w(x+

i− 1
2
, y)
)

dy

−
∫ x

i+ 1
2

x
i− 1

2

(
F2(UD

h (x, yj+ 1
2
, t)) · w(x, y−

j+ 1
2
) − F2(UD

h (x, yj− 1
2
, t)) · w(x, y+

j− 1
2
)
)

dx, (4.3)

Gi+ 1
2 ,j+ 1

2

(
UD

h , UC
h , u

)
:= 1

τmax

∫
I

i+ 1
2 ,j+ 1

2

(UC
h − UD

h ) · udxdy +
∫

I
i+ 1

2 ,j+ 1
2

F(UC
h ) · ∇udxdy

−
∫ yj+1

yj

(
F1(UC

h (xi+1, y, t)) · u(x−
i+1, y) − F1(UC

h (xi, y, t)) · u(x+
i , y)

)
dy

−
∫ xi+1

xi

(
F2(UC

h (x, yj+1, t)) · u(x, y−
j+1) − F2(UC

h (x, yj , t)) · u(x, y+
j )
)

dx. (4.4)

Let {x
(µ)
j− 1

4
}N

µ=1 and {x
(µ)
j+ 1

4
}N

µ=1 denote the N -point Gauss quadrature nodes transformed into the interval[
xj− 1

2
, xj

]
and

[
xj , xj+ 1

2

]
, respectively. Denote Qx

j := {x
(µ)
j− 1

4
}N

µ=1 ∪ {x
(µ)
j+ 1

4
}N

µ=1. Let {ωµ}N
µ=1 be the

associated weights which are normalized such that
∑N

µ=1 ωµ = 1, as defined on the interval [− 1
2 , 1

2 ].
Similarly, use Qy

j = {y
(µ)
j− 1

4
}N

µ=1 ∪ {y
(µ)
j+ 1

4
}N

µ=1 to denote the Gauss quadrature nodes in the y-direction. For
the accuracy requirement, we take N = k + 1 for a Pk-based CDG method. With these quadrature rules
approximating the cell interface integrals, the semi-discrete equations for the cell averages in the CDG
method (4.1)–(4.2) can be written as

dUC

ij

dt
= Lij

(
UC

h , UD
h

)
,

dUD

i+ 1
2 ,j+ 1

2

dt
= Li+ 1

2 ,j+ 1
2

(
UD

h , UC
h

)
(4.5)

with

Lij

(
UC

h , UD
h

)
=

UD
ij − UC

ij

τmax
− 1

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
F1(UD

h (xi+ 1
2

, y
(µ)
j+ σ

4
)) − F1(UD

h (xi− 1
2

, y
(µ)
j+ σ

4
))
)

− 1
∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
F2(UD

h (x(µ)
i+ σ

4
, yj+ 1

2
)) − F2(UD

h (x(µ)
i+ σ

4
, yj− 1

2
))
)

, (4.6)

Li+ 1
2 ,j+ 1

2

(
UD

h , UC
h

)
=

UC
i+ 1

2 ,j+ 1
2

− UD
i+ 1

2 ,j+ 1
2

τmax
− 1

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
F1(UC

h (xi+1, y
(µ)
j+ 2+σ

4
)) − F1(UC

h (xi, y
(µ)
j+ 2+σ

4
))
)
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− 1
∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
F2(UC

h (x(µ)
i+ 2+σ

4
, yj+1)) − F2(UC

h (x(µ)
i+ 2+σ

4
, yj))

)
, (4.7)

where and below we omit the t dependence of all quantities for convenience.
As we have discussed in the 1D case, to achieve a PP CDG scheme, the main task is to preserve the

evolved cell averages in the set G during the updating process. More specifically, we wish the cell-averaged
CDG scheme (4.5) satisfies the following PP property

UC

ij + ∆tLij

(
UC

h , UD
h

)
∈ G, UD

i+ 1
2 ,j+ 1

2
+ ∆tLi+ 1

2 ,j+ 1
2

(
UD

h , UC
h

)
∈ G ∀i, j, (4.8)

under certain suitable CFL condition on the time stepsize ∆t and some proper conditions on the CDG
solution polynomials. The property (4.8) guarantees the cell averages staying in G during the updating
process, if one uses a strong-stability-preserving (SSP) method for time discretization, which is a convex
combination of the forward Euler scheme.

We now employ the GQL approach to carry out a theoretical analysis on the property (4.8) for
the cell-averaged CDG scheme (4.5). As the 1D case, denote by {x̂

(ν)
j− 1

4
}L

ν=1 and {x̂
(ν)
j+ 1

4
}L

ν=1 the Gauss–

Lobatto points in [xj− 1
2
, xj ] and [xj , xj+ 1

2
], respectively. Denote Q̂x

j := {x̂
(ν)
j− 1

4
}L

ν=1 ∪ {x̂
(ν)
j+ 1

4
}L

ν=1. The

Gauss–Lobatto points in the y-direction are similarly denoted as Q̂y
j := {ŷ

(ν)
j− 1

4
}L

ν=1 ∪ {ŷ
(ν)
j+ 1

4
}L

ν=1. We take
L = ⌈ k+3

2 ⌉, which gives 2L − 3 ≥ k, so that the L-point Gauss–Lobatto quadrature rule is exact for
polynomials of degree up to k. The exactness of the quadrature rules implies that

UD

ij =
L∑

ν=1

ω̂ν

2 Πν,−
ij +

L∑
ν=1

ω̂ν

2 Πν,+
ij , UC

i+ 1
2 ,j+ 1

2
=

L∑
ν=1

ω̂ν

2 Πν,−
i+ 1

2 ,j+ 1
2

+
L∑

ν=1

ω̂ν

2 Πν,+
i+ 1

2 ,j+ 1
2

(4.9)

with

Πν,±
ij := λ1

λ

∑
σ=±1

N∑
µ=1

ωµ

2 UD
h (x̂(ν)

i± 1
4
, y

(µ)
j+ σ

4
) + λ2

λ

∑
σ=±1

N∑
µ=1

ωµ

2 UD
h (x(µ)

i+ σ
4
, ŷ

(ν)
j± 1

4
),

Πν,±
i+ 1

2 ,j+ 1
2

:= λ1

λ

∑
σ=±1

N∑
µ=1

ωµ

2 UC
h (x̂(ν)

i+ 1
2 ± 1

4
, y

(µ)
j+ 1

2 + σ
4
) + λ2

λ

∑
σ=±1

N∑
µ=1

ωµ

2 UC
h (x(µ)

i+ 1
2 + σ

4
, ŷ

(ν)
j+ 1

2 ± 1
4
).

Here λ1 = a1∆t
∆x , λ2 = a2∆t

∆y , λ = λ1 + λ2, with

a1 ≥ max
i,j

max
y∈Qy

j

{
α1
(
UC

h (xi+1, y), UC
h (xi, y)

)
, α1
(
UD

h (xi+ 1
2
, y), UD

h (xi− 1
2
, y)
)}

=: â1, (4.10)

a2 ≥ max
i,j

max
x∈Qx

i

{
α2
(
UC

h (x, yj+1), UC
h (x, yj)

)
, α2
(
UD

h (x, yj+ 1
2
), UD

h (x, yj− 1
2
)
)}

=: â2. (4.11)

We introduce the discrete divergence operators for the numerical magnetic fields BD
h (x, y) and BC

h (x, y):

divijBD
h : = 1

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
BD

1,h(xi+ 1
2
, y

(µ)
j+ σ

4
) − BD

1,h(xi− 1
2
, y

(µ)
j+ σ

4
)
)

+ 1
∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
BD

2,h(x(µ)
i+ σ

4
, yj+ 1

2
) − BD

2,h(x(µ)
i+ σ

4
, yj− 1

2
)
)

,

(4.12)

divi+ 1
2 ,j+ 1

2
BC

h : = 1
∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
BC

1,h(xi+1, y
(µ)
j+ 2+σ

4
) − BC

1,h(xi, y
(µ)
j+ 2+σ

4
)
)

+ 1
∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
BC

2,h(x(µ)
i+ 2+σ

4
, yj+1) − BC

2,h(x(µ)
i+ 2+σ

4
, yj)

)
,

(4.13)

which are numerical approximations to the weak divergence 1
∆x∆y

∫
∂I

B ·n∂Ids = 1
∆x∆y

∫∫
I

∇ · Bdxdy on
the cells Ii,j and Ii+ 1

2 ,j+ 1
2
, respectively, where n∂I is the outward pointing unit normal of ∂I.

Theorem 4.1 (Bridge PP and DF properties for 2D standard CDG method). Assume UC

ij ∈ G,
UD

i+ 1
2 ,j+ 1

2
∈ G and that the numerical solutions UC

h (x, y), UD
h (x, y) satisfy

UC
h (x, y) ∈ G , UD

h (x, y) ∈ G ∀(x, y) ∈ ∪
i,j

Qij , (4.14)
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where Qij := (Qx
i ⊗Q̂y

j )∪(Q̂x
i ⊗Qy

j ). For all i and j, the updated cell averages UC
∆t := UC

ij+∆tLij(UC
h , UD

h )
and UD

∆t := UD

i+ 1
2 ,j+ 1

2
+ ∆tLi+ 1

2 ,j+ 1
2
(UD

h , UC
h ) satisfy for any free auxiliary variables v∗, B∗ ∈ R3 that

UC
∆t · n1 > 0, UD

∆t · n1 > 0, (4.15)

UC
∆t · n∗ + |B∗|2

2 >
θω̂1

2

(
(ΠL,−

ij + Π1,+
ij ) · n∗ + |B∗|2

)
− ∆t(v∗ · B∗)(divijBD

h ) , (4.16)

UD
∆t · n∗ + |B∗|2

2 >
θω̂1

2

(
(ΠL,−

i+ 1
2 ,j+ 1

2
+ Π1,+

i+ 1
2 ,j+ 1

2
) · n∗ + |B∗|2

)
− ∆t(v∗ · B∗)(divi+ 1

2 ,j+ 1
2
BC

h ) , (4.17)

under the CFL condition

λ = a1∆t

∆x
+ a2∆t

∆y
<

θω̂1

2 , θ = ∆t

τmax
∈ (0, 1] . (4.18)

Furthermore, if UC
h (x, y) and UD

h (x, y) satisfy the following discrete DF condition

divijBD
h = 0 , divi+ 1

2 ,j+ 1
2
BC

h = 0 ∀i, j , (4.19)

then (4.15)–(4.17) imply UC
∆t, UD

∆t ∈ G, namely, the desired PP property (4.8).

Proof. For ℓ ∈ {1, 2} and any two admissible states U, Ũ ∈ G, we observe that

−(Fℓ(U) − Fℓ(Ũ)) · n1 = ρ̃ṽℓ − ρvℓ > −(ρ̃ + ρ)αℓ(U, Ũ) = −αℓ(U, Ũ)(U + Ũ) · n1, (4.20)
−(Fℓ(U) − Fℓ(Ũ)) · n∗ ≥ −αℓ(U, Ũ)

(
(U + Ũ) · n∗ + |B∗|2

)
− (Bℓ − B̃ℓ)(v∗ · B∗), (4.21)

where the second inequality (4.21) follows from Lemma 2.2 for any free auxiliary variables v∗, B∗ ∈ R3.
We reformulate the updated cell average UC

∆t as

UC
∆t = (1 − θ)UC

ij + θUD

ij + ΠF , (4.22)

where

ΠF := − ∆t

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
F1(UD

h (xi+ 1
2
, y

(µ)
j+ σ

4
)) − F1(UD

h (xi− 1
2
, y

(µ)
j+ σ

4
))
)

− ∆t

∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
F2(UD

h (x(µ)
i+ σ

4
, yj+ 1

2
)) − F2(UD

h (x(µ)
i+ σ

4
, yj− 1

2
))
)

with UD
h (xi± 1

2
, y

(µ)
j+ σ

4
) ∈ G and UD

h (x(µ)
i+ σ

4
, yj± 1

2
) ∈ G according to the hypothesis (4.14). By applying

(4.20), one can estimate the lower bound of ΠF · n1 as

ΠF · n1
(4.20)

> − a1
∆t

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
UD

h (xi+ 1
2
, y

(µ)
j+ σ

4
) + UD

h (xi− 1
2
, y

(µ)
j+ σ

4
)
)

· n1

− a2
∆t

∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
UD

h (x(µ)
i+ σ

4
, yj+ 1

2
) + UD

h (x(µ)
i+ σ

4
, yj− 1

2
)
)

· n1

= − λ1
∑

σ=±1

N∑
µ=1

ωµ

2

(
UD

h (x̂(L)
i+ 1

4
, y

(µ)
j+ σ

4
) + UD

h (x̂(1)
i− 1

4
, y

(µ)
j+ σ

4
)
)

· n1

− λ2
∑

σ=±1

N∑
µ=1

ωµ

2

(
UD

h (x(µ)
i+ σ

4
, ŷ

(L)
j+ 1

4
) + UD

h (x(µ)
i+ σ

4
, ŷ

(1)
j− 1

4
)
)

· n1

= − λ
(

ΠL,+
ij + Π1,−

ij

)
· n1,

where x̂
(L)
i+ 1

4
= xi+ 1

2
, x̂

(1)
i− 1

4
= xi− 1

2
, ŷ

(L)
j+ 1

4
= yj+ 1

2
, and ŷ

(1)
j− 1

4
= yj− 1

2
are used. It then follows from (4.22)
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that

UC
∆t · n1 = (1 − θ)UC

ij · n1 + θUD

ij · n1 + ΠF · n1

> θUD

ij · n1 − λ
(

ΠL,+
ij + Π1,−

ij

)
· n1

(4.9)
= θ

(
L∑

ν=1

ω̂ν

2 Πν,−
ij +

L∑
ν=1

ω̂ν

2 Πν,+
ij

)
· n1 − λ

(
ΠL,+

ij + Π1,−
ij

)
· n1

≥
(

θω̂1

2 − λ

)(
ΠL,+

ij + Π1,−
ij

)
· n1

(4.18)
> 0,

where we have used the identity (4.9), the CFL condition (4.18), and Πν,±
ij ∈ G which follows from the

convexity of G and the hypothesis (4.14). Next, we apply (4.21) to estimate the lower bound of ΠF · n∗

for free auxiliary variables v∗, B∗ ∈ R3 as follows:

ΠF · n∗
(4.21)

≥ − λ1
∑

σ=±1

N∑
µ=1

ωµ

2

(
UD

h (xi+ 1
2
, y

(µ)
j+ σ

4
) + UD

h (xi− 1
2
, y

(µ)
j+ σ

4
)
)

· n∗ − λ1|B∗|2

− ∆t

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
BD

1,h(xi+ 1
2
, y

(µ)
j+ σ

4
) − BD

1,h(xi− 1
2
, y

(µ)
j+ σ

4
)
)

(v∗ · B∗)

− λ2
∑

σ=±1

N∑
µ=1

ωµ

2

(
UD

h (x(µ)
i+ σ

4
, yj+ 1

2
) + UD

h (x(µ)
i+ σ

4
, yj− 1

2
)
)

· n∗ − λ2|B∗|2

− ∆t

∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
BD

2,h(x(µ)
i+ σ

4
, yj+ 1

2
) − BD

2,h(x(µ)
i+ σ

4
, yj− 1

2
)
)

(v∗ · B∗)

= − λ
(

(ΠL,+
ij + Π1,−

ij ) · n∗ + |B∗|2
)

− ∆t(divijBD
h )(v∗ · B∗) . (4.23)

Combining this estimate with (4.22) leads to

UC
∆t · n∗ + |B∗|2

2
(4.22)

= (1 − θ)
(

UC

ij · n∗ + |B∗|2

2

)
+ θ

(
UD

ij · n∗ + |B∗|2

2

)
+ ΠF · n∗

(4.18)
≥ θ

(
UD

ij · n∗ + |B∗|2

2

)
+ ΠF · n∗

(4.23)
≥ θ

(
UD

ij · n∗ + |B∗|2

2

)
− λ

(
(ΠL,+

ij + Π1,−
ij ) · n∗ + |B∗|2

)
− ∆t(divijBD

h )(v∗ · B∗)

(4.9)
= θ

L∑
ν=1

ω̂ν

2

(
Πν,−

ij · n∗ + |B∗|2

2

)
+ θ

L∑
ν=1

ω̂ν

2

(
Πν,+

ij · n∗ + |B∗|2

2

)
− λ

(
(ΠL,+

ij + Π1,−
ij ) · n∗ + |B∗|2

)
− ∆t(divijBD

h )(v∗ · B∗)

≥ θω̂1

2

(
(ΠL,−

ij + Π1,+
ij ) · n∗ + |B∗|2

)
+
(

θω̂1

2 − λ

)(
(ΠL,+

ij + Π1,−
ij ) · n∗ + |B∗|2

)
− ∆t(divijBD

h )(v∗ · B∗)

(4.18)
>

θω̂1

2

(
(ΠL,−

ij + Π1,+
ij ) · n∗ + |B∗|2

)
− ∆t(divijBD

h )(v∗ · B∗),

which gives (4.16) and further implies that

UC
∆t · n∗ + |B∗|2

2 + ∆t(divijBD
h )(v∗ · B∗) > 0.

Therefore, if UD
h (x, y) further satisfies the discrete DF condition divijBD

h = 0, then we obtain

UC
∆t · n∗ + |B∗|2

2 > 0 ∀v∗, B∗ ∈ R3,

which along with UC
∆t ·n1 > 0 implies UC

∆t ∈ G∗ = G, according to the GQL representation in Lemma 2.1.
Similarly, one can derive UD

∆t ·n1 > 0 and the estimate (4.17) for UD
∆t, which further lead to UD

∆t ∈ G∗ = G
under the discrete DF condition (4.19). The proof is completed.
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Remark 4.2. Theorem 4.1 shows that the PP property of 2D standard CDG method is closely related
to a discrete DF condition (4.19), which is significantly different from both the trivial 1D version (3.8)
and the non-central DG version found in [42]. As seen from (4.16) and (4.19), the discrete DF condition
on the primal mesh is defined by the numerical solution on the dual mesh; see Figure 2.

Remark 4.3. As the free auxiliary variables {v∗, B∗} are necessary in (4.16)–(4.17), the GQL approach
is essential for bridging the PP and discrete DF properties. It seems very challenging (if not impossible) to
draw the connection between the PP and discrete DF properties without using the GQL approach. Since
the states at all the quadrature points in the CDG schemes are coupled by the discrete DF condition, the
PP analysis is very nontrivial, and some standard PP techniques, which typically rely on reformulating a
2D scheme into convex combination of formal 1D PP schemes [60, 27], are inapplicable in our analysis.

Theorem 4.4 (Necessity of discrete DF condition for standard CDG method). For any given CFL
number C > 0 and any θ ∈ (0, 1], the 2D standard CDG method, even under the condition (4.14), is not
always PP in general, if the proposed discrete DF condition (4.19) is violated.

Proof. It is proved by contradiction. Suppose there exists a CFL number C = τmax(â1/∆x+ â2/∆y) >
0, such that the PP property (4.8) always holds under the condition (4.14). Define the constant δ :=
min

{ C
8 , 1
}

∈ (0, 1]. Consider the ideal EOS, the P0-based CDG method with ∆x = ∆y and piecewise
constant data

UC
h (x, y) ≡ U0 ∀(x, y) ∈ Ω, UD

h (x, y) =


U1, (x, y) ∈ Ii− 1

2 ,j− 1
2

∪ Ii− 1
2 ,j+ 1

2
,

U2, (x, y) ∈ Ii+ 1
2 ,j− 1

2
∪ Ii+ 1

2 ,j+ 1
2
,

U0, otherwise,

(4.24)

where the three constant admissible states are defined by

U0 =
(

1, 1 + δϵ, 0, 0, 1 + ϵ

2 , 0, 0,
(1 + δϵ)2

2 + (2 + ϵ)2

8 + p
γ − 1

)⊤

,

U1 =
(

1, 1, 0, 0, 1, 0, 0, 1 + p
γ − 1

)⊤

, U2 =
(

1, 1, 0, 0, 1 + ϵ, 0, 0,
1 + (1 + ϵ)2

2 + p
γ − 1

)⊤

with p ∈
(
0, 1

γ

)
and ϵ ∈ (0, δ). Notice that U0, U1, U2 ∈ G, so that the solutions (4.24) automati-

cally satisfy the condition (4.14). However, they do not meet the discrete DF condition (4.19), because
divi,jBD

h = ϵ/∆x ̸= 0. Substituting (4.24) into UC
∆t := UC

ij + ∆tLij(UC
h , UD

h ) gives

UC
∆t = (1 − θ)U0 + θ

2(U1 + U2) + θC
â1 + â2

(F1(U1) − F1(U2)).

According to the PP assumption, we have UC
∆t ∈ G, for any p ∈

(
0, 1

γ

)
and any ϵ ∈ (0, δ). For any

U, Ũ ∈ {U0, U1, U2}, we observe from (2.5) that

α1(U, Ũ) ≤ ∥v1∥∞ + ∥C1∥∞ + max
0≤ℓ,s≤2

|Bℓ − Bs|
√

ρℓ + √
ρs

= 1 + δϵ + (1 + ϵ) + ϵ

2 < 5 =: ã1,

α2(U, Ũ) ≤ ∥v2∥∞ + ∥C2∥∞ + max
0≤ℓ,s≤2

|Bℓ − Bs|
√

ρℓ + √
ρs

=
√

1
2(γ − 1)p + (1 + ϵ)2 + ϵ

2 <
√

γp + 4 + 1 =: ã2,

which implies w := â1+â2
ã1+ã2

∈ (0, 1). Define

U(p, ϵ) := (1 − θ)U0 + θ

2(U1 + U2) + θC
ã1 + ã2

(F1(U1) − F1(U2))

= wUC
∆t + (1 − w)

(
(1 − θ)U0 + θ

2(U1 + U2)
)

.

By the convexity of G, we have U(p, ϵ) ∈ G, which implies E(U(p, ϵ)) > 0, for any p ∈
(
0, 1

γ

)
and any

ϵ ∈ (0, δ). Define δ̂ := C/8 ≥ δ > ϵ and δ̃ := δ̂ − δ ≥ 0. Observing that E(U) is continuous with respect to
U on R+ × R7, we obtain by a direct calculation that

lim
p→0+

E(U(p, ϵ)) = E
(

lim
p→0+

U(p, ϵ)
)

=
(

−1
8θϵ

)[
(8δ̂ − ϵ) + θϵ(2δ̃ + δ̂ϵ)2 + 4ϵ

(
δ̂ + δδ̃ + δδ̂(1 + ϵ)

) ]
< 0.
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Due to the sign-preserving property of continuous functions, there always exists a p0 ∈
(
0, 1

γ

)
such that

E(U(p, ϵ)) < 0 for all p ∈ (0, p0], which contradicts the PP assumption of the CDG method.
In summary, for any given CFL number C > 0 and θ ∈ (0, 1], there always exists a positive p0 such

that the 2D standard CDG method produces negative internal energy E(UC
∆t) when p ≤ p0 and thus is

not PP. (Note that such p0 may depend on the given C and θ; see Figure 1.) The proof is completed.

Remark 4.5. For the counterexample (4.24) in the above proof, we essentially only require a small
pressure p in the cell Iij and its adjacent cells, not necessarily everywhere in all the cells nor the entire
domain Ω, due to the local feature of the CDG method. The above analysis actually infers that the
2D standard CDG method may easily produce negative internal energy in the (local) region where the
numerical pressure is low and simultaneously the discrete DF condition (4.19) is violated (even slightly).
This finding was also found for the 2D non-central finite volume and DG methods in [42, Theorem 4.1
and Remark 4.4].
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(a) E < 0 when p ≤ 10−2 for CFL
number C = 0.8.
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(b) E < 0 when p ≤ 10−4 for CFL
number C = 0.1.
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(c) E < 0 when p ≤ 10−5 for CFL
number C = 0.04.

Fig. 1: 2D standard CDG method with different CFL number C produces E(U) < 0 for the counterexample
(4.24) with γ = 1.4 and p ≤ p0. (a) θ = 1 and ϵ = 0.1; (b) θ = 1 and ϵ = 0.01; (c) θ = 0.5 and ϵ = 0.005.
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Fig. 2: xxx.

21

Fig. 2: Illustration of the 2D discrete divergence operator (4.12) on a primal cell (solid lines) with N = 2 and
its relation to the dual mesh (the shadow cells). The red points are involved in (4.12), while the blue points are
involved in another discrete divergence operator (5.13). These two operators are equivalent when BD

h is locally
DF, as shown in the proof of Theorem 5.2.

Remark 4.6. The condition (4.14) is a basic standard condition in PP DG type schemes and can be
enforced by a local scaling limiter; see [8, 27] and [59, 60]. However, unlike many other systems [59, 60, 27],
only condition (4.14) is insufficient for PP property in the MHD case. Theorem 4.4 indicates that the
2D standard CDG method, even with the PP limiter to enforce condition (4.14), is not PP in general, as
it fails to meet the discrete DF condition (4.19). This implies the necessity of the discrete DF condition
(4.19), which is, unfortunately, not automatically satisfied by the standard CDG method (4.1)–(4.2). In
fact, it is difficult to meet condition (4.19), because it depends on coupling the numerical magnetic fields
from the four neighboring cells on the dual mesh; see Figure 2. If BD

h (x, y) and BC
h (x, y) are globally DF
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(see [25, 24] for a globally DF CDG method), then the condition (4.19) is met naturally. Unfortunately,
using the local scaling PP limiter to enforce condition (4.14) will destroy the globally DF property. Due to
such incompatibility, it is difficult to meet conditions (4.14) and (4.19) simultaneously. We will overcome
this obstacle in the next section by constructing new locally DF CDG schemes based on the modified
MHD equations (1.5).

5. New CDG schemes: provably PP and locally DF. Our analysis in the last section shows
that in order to achieve the provably PP property in the standard 2D CDG framework, we require the cor-
responding discrete divergence terms divijBD

h , divi+ 1
2 ,j+ 1

2
BC

h vanish. However, as discussed in Remark 4.6,
it is difficult to meet the discrete DF condition (4.14) and the basic condition (4.19) simultaneously. In this
section, we further propose and analyze a new locally DF CDG method based on suitable discretization of
the modified MHD equations (1.5) with the extra source term. We discover that if the numerical magnetic
fields BD

h and BC
h are locally DF within each cell, then a suitable discretization of the source term in

(1.5) can bring some new discrete divergence terms which exactly offset divijBD
h , divi+ 1

2 ,j+ 1
2
BC

h under the
locally DF constraint. Moreover, the locally DF property is compatible with condition (4.19) and thus
is not destroyed by the local scaling PP limiter. Notice that all our discussions in sections 4 and 5 are
directly extensible to the 3D case; see the Supplementary Materials of this paper.

In order to introduce our new CDG schemes for the modified MHD system (1.5), we first define two
locally DF spaces [23, 55] associated with the overlapping meshes

WC,k
h =

{
w = (w1, . . . , w8)⊤ ∈ VC,k

h :
(

∂w5

∂x
+ ∂w6

∂y

)∣∣∣∣
Iij

= 0 ∀i, j

}
,

WD,k
h =

{
u = (u1, . . . , u8)⊤ ∈ VD,k

h :
(

∂u5

∂x
+ ∂u6

∂y

)∣∣∣∣
I

i+ 1
2 ,j+ 1

2

= 0 ∀i, j

}
.

Different from [23, 55], our new locally DF CDG method seeks the numerical solutions UC
h ∈ WC,k

h and
UD

h ∈ WD,k
h for the modified MHD system (1.5) such that∫

Iij

∂UC
h

∂t
· wdxdy = Gij

(
UC

h , UD
h , w

)
+ Hij

(
BD

h , S(UD
h ) · w

)
∀w ∈ VC,k

h , (5.1)∫
I

i+ 1
2 ,j+ 1

2

∂UD
h

∂t
· udxdy = Gi+ 1

2 ,j+ 1
2

(
UD

h , UC
h , u

)
+ Hi+ 1

2 ,j+ 1
2

(
BC

h , S(UC
h ) · u

)
∀u ∈ VD,k

h , (5.2)

where Gij

(
UC

h , UD
h , w

)
and Gi+ 1

2 ,j+ 1
2

(
UD

h , UC
h , u

)
are defined in (4.3)–(4.4), and Hij(BD

h , S(UD
h ) ·w) and

Hi+ 1
2 ,j+ 1

2
(BC

h , S(UC
h ) · u) are suitable numerical approximations (discussed below) to the source terms∫

Iij

(
−∇ · BD

h

)
S(UD

h ) · wdxdy and
∫

I
i+ 1

2 ,j+ 1
2

(
−∇ · BC

h

)
S(UC

h ) · udxdy,

respectively. Since UD
h ∈ WD,k

h , the numerical magnetic field BD
h is locally DF within every dual mesh cell.

As shown in Figure 2, a primal mesh cell Iij consists of four quarters of dual mesh cells Iij = ∪1≤ℓ≤4 Iℓ
ij ,

while BD
h is locally DF within each of {Iℓ

ij}4
ℓ=1. Therefore, to measure ∇ · BD

h on the primal mesh cell
Iij , we only need to consider the jump of normal magnetic component across the dual mesh interfaces
{(xi, y) : yj− 1

2
≤ y ≤ yj+ 1

2
} and {(x, yj) : xi− 1

2
≤ x ≤ xi+ 1

2
} within the primal mesh cell Iij ; see Figure 2.

Hereafter we employ the standard notations J·K and {{·}} to respectively denote the jump and the average
of the limiting values at a cell interface, for example,

JBD
1,h(xi, y)K := BD

1,h(x+
i , y) − BD

1,h(x−
i , y), JBD

2,h(x, yj)K := BD
2,h(x, y+

j ) − BD
2,h(x, y−

j ),

{{UD
h (xi, y)}} := 1

2
(
UD

h (x−
i , y) + UD

h (x+
i , y)

)
, {{UD

h (x, yj)}} := 1
2
(
UD

h (x, y−
j ) + UD

h (x, y+
j )
)
.

Then we carefully approximate the source term integral as follows:∫
Iij

(
−∇ · BD

h

)
S(UD

h ) · wdxdy ≈
∫ y

j+ 1
2

y
j− 1

2

(
−JBD

1,h(xi, y)K
)

S
(
{{UD

h (xi, y)}}
)

· w(xi, y)dy

+
∫ x

i+ 1
2

x
i− 1

2

(
−JBD

2,h(x, yj)K
)

S
(
{{UD

h (x, yj)}}
)

· w(x, yj)dx =: Hij(BD
h , S(UD

h ) · w). (5.3)
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Such a suitable discretization has carefully taken the PP property into account, as it will become clear in
the proof of Theorem 5.2. Similarly, we design

Hi+ 1
2 ,j+ 1

2
(BC

h , S(UC
h ) · u) =

∫ yj+1

yj

(
−JBC

1,h(xi+ 1
2
, y)K

)
S
(

{{UC
h (xi+ 1

2
, y)}}

)
· u(xi+ 1

2
, y)dy

+
∫ xi+1

xi

(
−JBC

2,h(x, yj+ 1
2
)K
)

S
(

{{UC
h (x, yj+ 1

2
)}}
)

· u(x, yj+ 1
2
)dx. (5.4)

Our new semi-discrete locally DF CDG method is defined by the weak formulation (5.1)–(5.2) with the
approximate source terms (5.3)–(5.4). It is worth noting that the locally DF property and the above source
term discretizations (5.3)–(5.4) are essential for achieving PP property (see the proof of Theorem 5.2 and
Remark 5.3), which are discovered through careful investigation via the GQL approach.

Remark 5.1 (Uniform high-order accuracy). Note that our new CDG method (5.1)–(5.2) remains
uniformly high-order, not affected by the inclusion of the approximate source terms (5.3)–(5.4). Recall that,
for the exact solution of ideal MHD, the DF constraint (1.4) implies the normal component of magnetic
field is always continuous across every cell interface. That is, the jumps of the normal magnetic component,
JB1(xi, y)K and JB2(x, yj)K, are zero for the exact solution. Hence, in smooth region, the numerical jumps
JBD

1,h(xi, y)K and JBD
2,h(x, yj)K are at the level of truncation error. Therefore, the approximate source

terms (5.3)–(5.4) are also at the order of truncation error and thus do not affect the spatial accuracy of
the CDG method. This will be further confirmed by the numerical tests in subsection 6.2.

Next, we will present a rigorous PP analysis for our new locally DF CDG method (5.1)–(5.2) with
(5.3)–(5.4). With the N -point Gauss quadrature rule approximating all the cell interface integrals, the
semi-discrete equations for the cell averages in our new CDG method (5.1)–(5.2) can be written as

dUC

ij

dt
= Lnew

ij

(
UC

h , UD
h

)
,

dUD

i+ 1
2 ,j+ 1

2

dt
= Lnew

i+ 1
2 ,j+ 1

2

(
UD

h , UC
h

)
, (5.5)

where Lnew
ij (UC

h , UD
h ) = Lij(UC

h , UD
h ) + SD

ij and Lnew
i+ 1

2 ,j+ 1
2
(UD

h , UC
h ) = Li+ 1

2 ,j+ 1
2
(UD

h , UC
h ) + SC

i+ 1
2 ,j+ 1

2
,

with Lij(UC
h , UD

h ) and Li+ 1
2 ,j+ 1

2
(UD

h , UC
h ) defined in (4.6)–(4.7), and

SD
ij =

∑
σ=±1

N∑
µ=1

ωµ

2

(
−

JBD
1,h(xi, y

(µ)
j+ σ

4
)K

∆x
S
(

{{UD
h (xi, y

(µ)
j+ σ

4
)}}
))

+
∑

σ=±1

N∑
µ=1

ωµ

2

(
−

JBD
2,h(x(µ)

i+ σ
4
, yj)K

∆y
S
(

{{UD
h (x(µ)

i+ σ
4
, yj)}}

))
,

SC
i+ 1

2 ,j+ 1
2

=
∑

σ=±1

N∑
µ=1

ωµ

2

(
−

JBC
1,h(xi+ 1

2
, y

(µ)
j+ 1

2 + σ
4
)K

∆x
S
(

{{UC
h (xi+ 1

2
, y

(µ)
j+ 1

2 + σ
4
)}}
))

+
∑

σ=±1

N∑
µ=1

ωµ

2

(
−

JBC
2,h(x(µ)

i+ 1
2 + σ

4
, yj+ 1

2
)K

∆y
S
(

{{UC
h (x(µ)

i+ 1
2 + σ

4
, yj+ 1

2
)}}
))

.

Theorem 5.2 (PP property of new locally DF CDG method). Assume UC

ij , UD

i+ 1
2 ,j+ 1

2
∈ G and that

the numerical solutions UC
h (x, y), UD

h (x, y) satisfy the condition (4.14). Then our new locally DF CDG
method (5.1)–(5.2) with (5.3)–(5.4) is PP, namely, for all i and j the updated cell averages satisfy

UC

ij + ∆tLnew
ij

(
UC

h , UD
h

)
∈ G, UD

i+ 1
2 ,j+ 1

2
+ ∆tLnew

i+ 1
2 ,j+ 1

2

(
UD

h , UC
h

)
∈ G ∀i, j, (5.6)

under the CFL condition
a1∆t

∆x
+ a2∆t

∆y
<

θω̂1

2 , θ = ∆t

τmax
∈ (0, 1] , (5.7)

where aℓ = max{âℓ, βℓ}, ℓ = 1, 2, with {âℓ} defined in (4.10)–(4.11) and

β1 := max
i,j,µ,σ


∣∣∣JBD

1,h(xi, y
(µ)
j+ σ

4
)K
∣∣∣

2
√

{{ρD
h (xi, y

(µ)
j+ σ

4
)}}

,

∣∣∣JBC
1,h(xi+ 1

2
, y

(µ)
j+ 1

2 + σ
4
)K
∣∣∣

2
√

{{ρC
h (xi+ 1

2
, y

(µ)
j+ 1

2 + σ
4
)}}

 ,

β2 := max
i,j,µ,σ


∣∣∣JBD

2,h(x(µ)
i+ σ

4
, yj)K

∣∣∣
2
√

{{ρD
h (x(µ)

i+ σ
4
, yj)}}

,

∣∣∣JBC
2,h(x(µ)

i+ 1
2 + σ

4
, yj+ 1

2
)K
∣∣∣

2
√

{{ρC
h (x(µ)

i+ 1
2 + σ

4
, yj+ 1

2
)}}

 .
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Proof. Define UC,new
∆t := UC

ij +∆tLnew
ij (UC

h , UD
h ) = UC

∆t+∆tSD
ij , where UC

∆t = UC

ij +∆tLij(UC
h , UD

h )
is the updated cell average of the 2D standard CDG method defined in Theorem 4.1. Because the first
component of S(U) in (1.5) is zero, we have SD

ij · n1 = 0. From (4.15) in Theorem 4.1, one obtains
UC,new

∆t · n1 = UC
∆t · n1 + ∆tSD

ij · n1 = UC
∆t · n1 > 0.

Next, we will prove UC,new
∆t · n∗ + |B∗|2

2 > 0 for auxiliary variables v∗, B∗ ∈ R3. Notice that

UC,new
∆t · n∗ + |B∗|2

2 =
(

UC
∆t · n∗ + |B∗|2

2

)
+ ∆tSD

ij · n∗, (5.8)

and a tight lower bound of UC
∆t · n∗ + |B∗|2

2 has been derived in (4.16) of Theorem 4.1, i.e.,

UC
∆t · n∗ + |B∗|2

2 > θω̂1

(ΠL,−
ij + Π1,+

ij

2 · n∗ + |B∗|2

2

)
− ∆t(v∗ · B∗)(divijBD

h ) (5.9)

with
ΠL,−

ij + Π1,+
ij

2 = λ1

λ

∑
σ=±1

N∑
µ=1

ωµ

2 {{UD
h (xi, y

(µ)
j+ σ

4
)}} + λ2

λ

∑
σ=±1

N∑
µ=1

ωµ

2 {{UD
h (x(µ)

i+ σ
4
, yj)}}. (5.10)

In the following, we will derive a suitable lower bound for ∆tSD
ij · n∗, which exactly offsets the discrete

divergence terms in (5.9). Thanks to [45, Lemma 7], for any U ∈ G and any ξ ∈ R, it holds that

− ξS(U) · n∗ ≥ ξ(v∗ · B∗) − |ξ|
√

ρ

(
U · n∗ + |B∗|2

2

)
. (5.11)

The condition (4.14) ensures UD
h (x±

i , y
(µ)
j+ σ

4
) ∈ G, which implies the average {{UD

h (xi, y
(µ)
j+ σ

4
)}} ∈ G accord-

ing to the convexity of G. Applying inequality (5.11) to {{UD
h (xi, y

(µ)
j+ σ

4
)}} and JBD

1,h(xi, y
(µ)
j+ σ

4
)K gives

− JBD
1,h(xi, y

(µ)
j+ σ

4
)KS

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}}
)

· n∗

≥ JBD
1,h(xi, y

(µ)
j+ σ

4
)K(v∗ · B∗) −

∣∣∣JBD
1,h(xi, y

(µ)
j+ σ

4
)K
∣∣∣√

{{ρD
h (xi, y

(µ)
j+ σ

4
)}}

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}} · n∗ + |B∗|2

2

)

≥ JBD
1,h(xi, y

(µ)
j+ σ

4
)K(v∗ · B∗) − 2β1

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}} · n∗ + |B∗|2

2

)
.

Similarly, one has

− JBD
2,h(x(µ)

i+ σ
4
, yj)KS

(
{{UD

h (x(µ)
i+ σ

4
, yj)}}

)
· n∗

≥ JBD
2,h(x(µ)

i+ σ
4
, yj)K(v∗ · B∗) − 2β2

(
{{UD

h (x(µ)
i+ σ

4
, yj)}} · n∗ + |B∗|2

2

)
.

Therefore,

∆tSD
ij · n∗ = ∆t

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
− JBD

1,h(xi, y
(µ)
j+ σ

4
)KS

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}}
)

· n∗
)

+ ∆t

∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
− JBD

2,h(x(µ)
i+ σ

4
, yj)KS

(
{{UD

h (x(µ)
i+ σ

4
, yj)}}

)
· n∗

)

≥ ∆t

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

[
JBD

1,h(xi, y
(µ)
j+ σ

4
)K(v∗ · B∗) − 2β1

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}} · n∗ + |B∗|2

2

)]

+ ∆t

∆y

∑
σ=±1

N∑
µ=1

ωµ

2

[
JBD

2,h(x(µ)
i+ σ

4
, yj)K(v∗ · B∗) − 2β2

(
{{UD

h (x(µ)
i+ σ

4
, yj)}} · n∗ + |B∗|2

2

)]

= ∆t(v∗ · B∗)
(

d̃ivijBD
h

)
− 2β1∆t

∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}} · n∗ + |B∗|2

2

)

− 2β2∆t

∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
{{UD

h (x(µ)
i+ σ

4
, yj)}} · n∗ + |B∗|2

2

)
(5.12)
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with

d̃ivijBD
h :=

∑
σ=±1

N∑
µ=1

ωµ

2

JBD
1,h(xi, y

(µ)
j+ σ

4
)K

∆x
+

JBD
2,h(x(µ)

i+ σ
4
, yj)K

∆y

 . (5.13)

Substituting the estimates (5.12) and (5.9) with (5.10) into (5.8), we obtain

UC,new
∆t · n∗ + |B∗|2

2 > Φ + ∆t(v∗ · B∗)
(

d̃ivijBD
h − divijBD

h

)
(5.14)

with

Φ :=
(

θω̂1
λ1

λ
− 2β1∆t

∆x

) ∑
σ=±1

N∑
µ=1

ωµ

2

(
{{UD

h (xi, y
(µ)
j+ σ

4
)}} · n∗ + |B∗|2

2

)

+
(

θω̂1
λ2

λ
− 2β2∆t

∆y

) ∑
σ=±1

N∑
µ=1

ωµ

2

(
{{UD

h (x(µ)
i+ σ

4
, yj)}} · n∗ + |B∗|2

2

)
.

Under the CFL condition (5.7), we have θω̂1
λ1
λ ≥ 2λ1 = 2a1∆t

∆x ≥ 2β1∆t
∆x , and similarly, θω̂1

λ2
λ ≥ 2β2∆t

∆y .
Hence Φ ≥ 0, and then the estimate (5.14) yields

UC,new
∆t · n∗ + |B∗|2

2 > ∆t(v∗ · B∗)
(

d̃ivijBD
h − divijBD

h

)
. (5.15)

Combining (5.13) with (4.12) gives

divijBD
h − d̃ivijBD

h = 1
∆x

∑
σ=±1

N∑
µ=1

ωµ

2

(
BD

1,h(xi+ 1
2
, y

(µ)
j+ σ

4
) − BD

1,h(xi− 1
2
, y

(µ)
j+ σ

4
)
)

+ 1
∆y

∑
σ=±1

N∑
µ=1

ωµ

2

(
BD

2,h(x(µ)
i+ σ

4
, yj+ 1

2
) − BD

2,h(x(µ)
i+ σ

4
, yj− 1

2
)
)

−
∑

σ=±1

N∑
µ=1

ωµ

2

(
JBD

1,h(xi, y
(µ)
j+ σ

4
)K

∆x
+

JBD
2,h(x(µ)

i+ σ
4
, yj)K

∆y

)
,

where for clarity we have colored the points which correspond to the red and blue points illustrated in
Figure 2 for N = 2. A key observation is that thanks to the locally DF property of BD

h , the
two discrete divergence operators d̃ivij and divij are exactly equivalent for BD

h . In fact, using
the exactness of N -point Gauss quadrature (N = k + 1) for polynomials of degree k, we have

divijBD
h − d̃ivijBD

h = 1
∆x∆y

(∫ y
j+ 1

2

y
j− 1

2

(
BD

1,h(xi+ 1
2
, y) − BD

1,h(xi− 1
2
, y)
)

dy

+
∫ x

i+ 1
2

x
i− 1

2

(
BD

2,h(x, yj+ 1
2
) − BD

2,h(x, yj− 1
2
)
)

dx

−
∫ y

j+ 1
2

y
j− 1

2

JBD
1,h(xi, y)Kdy −

∫ x
i+ 1

2

x
i− 1

2

JBD
2,h(x, yj)Kdx

)

= 1
∆x∆y

( 4∑
ℓ=1

∫
∂Iℓ

ij

BD
h · n∂Iℓ

ij
ds

)
= 1

∆x∆y

4∑
ℓ=1

∫∫
Iℓ

ij

∇ · BD
h dxdy,

where we have utilized the divergence theorem within the four subcells Iℓ
ij shown Figure 2, namely, I1

ij =
[xi, xi+ 1

2
] × [yj , yj+ 1

2
], I2

ij = [xi− 1
2
, xi] × [yj , yj+ 1

2
], I3

ij = [xi− 1
2
, xi] × [yj− 1

2
, yj ] and I4

ij = [xi, xi+ 1
2
] ×

[yj− 1
2
, yj ]. Since BD

h is locally DF, we have ∇·BD
h = 0 within each of these four subcells. Thus divijBD

h −
d̃ivijBD

h = 0. It then follows from (5.15) that UC,new
∆t ·n∗+ |B∗|2

2 > 0 for any auxiliary variables v∗, B∗ ∈ R3.
This together with UC,new

∆t · n1 > 0 implies UC,new
∆t ∈ G∗ = G, according to the GQL representation in

Lemma 2.1. Similarly, one can show UD

i+ 1
2 ,j+ 1

2
+ ∆tLnew

i+ 1
2 ,j+ 1

2
(UD

h , UC
h ) ∈ G. The proof is completed.

Remark 5.3. As seen from the proof of Theorem 5.2, the locally DF property and the suitable source
term discretizations (5.3)–(5.4) are essential for achieving the PP property. Our carefully discretized source
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terms (5.3)–(5.4) provide the discrete divergence terms ∆t(v∗ · B∗)d̃ivijBD
h , which, under the locally DF

constraint, exactly cancel out the “superfluous” discrete divergence terms −∆t(v∗ · B∗)divijBD
h arising

from the standard CDG method. The GQL approach with auxiliary variables has played a critical role in
the above PP analysis and numerical design.

Remark 5.4. The estimate wave speed aℓ = max{âℓ, βℓ} in Theorem 5.2 is comparable to the standard
one astd

ℓ := max{∥Rℓ(UC
h )∥∞, ∥Rℓ(UD

h )∥∞}. In fact, for smooth solutions, one has âℓ ≤ astd
ℓ + O(h) from

(4.10)–(4.11) and (2.6), where h = max{∆x, ∆y}, and βℓ = O(hk+1) is much smaller than âℓ, so that
aℓ ≤ astd

ℓ + O(h). Even in the discontinuous cases, βℓ does not cause strict restriction on ∆t, as justified
theoretically by Proposition 5.5 and verified numerically. Moreover, our numerical results in section 6
show that our CDG schemes with a standard CFL number are still PP in most cases, which indicates the
theoretical CFL condition (5.7) is sufficient rather than necessary.

Proposition 5.5. For any U, Ũ ∈ G, define {{ρ}} := 1
2 (ρ + ρ̃) and JBℓK := B̃ℓ − Bℓ, then it holds that

|JBℓK|
2
√

{{ρ}}
≤ 1

2αℓ(U, Ũ), ℓ ∈ {1, 2, 3}.

Proof. Using Jensen’s inequality for the concave function
√

x gives
√

{{ρ}} ≥ 1
2 (√ρ +

√
ρ̃). Thus

|JBℓK|
2
√

{{ρ}}
≤ |JBℓK|√

ρ +
√

ρ̃
≤ |B − B̃|

√
ρ +

√
ρ̃

. (5.16)

On the other hand, the first inequality in (5.16) also implies that

|JBℓK|
2
√

{{ρ}}
≤ |JBℓK|√

ρ +
√

ρ̃
≤ |Bℓ| + |B̃ℓ|√

ρ +
√

ρ̃
≤ max

{
|Bℓ|√

ρ
,

|B̃ℓ|√
ρ̃

}
≤ max

{
Cℓ, C̃ℓ

}
, (5.17)

where the last step follows from

|Bℓ|√
ρ

≤

√
max

{
|B|2

ρ
, C

}
=
[

1
2

(
|B|2

ρ
+ C 2 +

∣∣∣∣ |B|2

ρ
− C 2

∣∣∣∣)] 1
2

= 1√
2

 |B|2

ρ
+ C 2 +

√(
|B|2

ρ
+ C 2

)2
− 4 |B|2C 2

ρ

 1
2

≤ Cℓ.

Combining (5.16) with (5.17) gives |JBℓK|
2
√

{{ρ}}
≤ 1

2

(
max

{
Cℓ, C̃ℓ

}
+ |B−B̃|√

ρ+
√

ρ̃

)
≤ 1

2 αℓ(U, Ũ).

6. Numerical experiments. This section carries out several benchmark or demanding numerical
tests on 1D, 2D, and 3D MHD problems to verify the accuracy, robustness, and effectiveness of the
proposed (locally) DF and PP CDG methods. We focus on the proposed third-order accurate PP CDG
schemes (k = 2) coupled with the explicit third-order accurate SSP Runge–Kutta time discretization [17].
Unless mentioned otherwise, we use the ideal EOS p = (γ − 1)ρe with γ = 5/3, the CFL number of 0.25,
and θ = ∆t/τmax = 1.

6.1. 1D near-vacuum Riemann problem. Consider a Riemann problem from [10]. Its initial
conditions, which involve very low density and low pressure, are given by

(ρ, p, v, B)(x, 0) =
{

(10−12, 10−12, 0, 0, 0, 0, 0, 0) , x < 0 ,

(1, 0.5, 0, 0, 0, 0, 1, 0) , x > 0 .

The computational domain is [−0.5, 0.5] with outflow boundary conditions. Figure 3 displays the density
and thermal pressure at t = 0.1 simulated by our PP CDG method with 100 cells, along with a reference
solution with 1000 cells. One can observe that the near-vacuum wave structures well captured by our
scheme and agree with the results reported in [10, 45]. Our numerical scheme maintains the positivity of
density and pressure and is very robust in the whole simulation.

6.2. Vortex problem with low pressure. This example simulates a smooth MHD vortex problem
[10, 44] with very low pressure in the domain [−10, 10]2 with periodic boundary conditions. The initial
conditions are (ρ, v, p, B)(x, y, 0) = (1, 1 + δv1, 1 + δv2, 0, 1 + δp, δB1, δB2, 0) with vortex perturbations

(δv1, δv2) = µ√
2π

e0.5(1−r2)(−y, x), δp = −µ2(1 + r2)
8π2 e1−r2 , and (δB1, δB2) = µ

2π
e0.5(1−r2)(−y, x), where
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Fig. 3: Near-vacuum Riemann problem: density (left) and pressure (right) computed by the third-order
PP CDG scheme with 100 cells (circles) and 1000 cells (solid lines), respectively.

r =
√

x2 + y2, and the vortex strength is set as µ = 5.389489439. The lowest thermal pressure is very
small (about 5.3 × 10−12) in the vortex center. As such, the CDG method would fail due to negative
pressure, if we do not enforce the condition (4.14) with the PP limiter. To assess the accuracy, we list in
Table 1 the errors in the momentum and the magnetic field at t = 0.05 for our third-order locally DF PP
scheme. The results confirm that the third order of convergence is achieved in l1 norm, demonstrating
that both the PP limiter and the inclusion of the approximate source terms (5.3)–(5.4) do not affect the
high-order accuracy of our new CDG method (5.1)–(5.2).

Table 1: Vortex problem: l1 errors at t = 0.05 and the approximate rates of convergence for the third-order
locally DF PP CDG scheme.

Mesh m1 m2 B1 B2
N × N l1-error rate l1-error rate l1-error rate l1-error rate
10 × 10 4.65e-3 – 4.66e-3 – 3.34e-3 – 3.34e-3 –
20 × 20 8.39e-4 2.47 8.36e-4 2.48 5.89e-4 2.50 5.89e-4 2.50
40 × 40 1.16e-4 2.85 1.16e-4 2.85 8.14e-5 2.86 8.14e-5 2.86
80 × 80 1.21e-5 3.27 1.20e-5 3.27 8.55e-6 3.25 8.55e-6 3.25

160 × 160 1.28e-6 3.24 1.27e-6 3.24 9.04e-7 3.24 9.04e-7 3.24
320 × 320 1.49e-7 3.10 1.49e-7 3.10 1.06e-7 3.10 1.06e-7 3.10
640 × 640 1.85e-8 3.01 1.85e-8 3.01 1.30e-8 3.02 1.30e-8 3.02

We also quantitatively investigate the numerical divergence error in the magnetic field. As in [46], we
measure the global relative divergence error in BC

h on the primal mesh T C
h by

εdiv = ∥∇ · BC
h ∥/∥BC

h ∥ , (6.1)

with

∥∇ · BC
h ∥ :=

∑
EC

h
∈T C

h

∫
EC

h

∣∣∣J⟨n, BC
h ⟩K
∣∣∣ ds +

∑
i,j

∫
Iij

|∇ · BC
h |dxdy ,

∥BC
h ∥ :=

∑
EC

h
∈T C

h

∫
EC

h

{{|BC
h |}}ds +

∑
i,j

∫
Iij

∣∣BC
h

∣∣ dxdy .

where J⟨n, BC
h ⟩K denotes the jump of the normal component of BC

h across the cell interfaces EC
h of the

primal mesh T C
h . Table 2 lists the global divergence errors εdiv computed at different grid resolutions. It

is seen that the errors εdiv decreases, as the mesh refines, at an approximately third-order rate.

Table 2: Vortex problem: global divergence errors εdiv at t = 0.05 and the approximate rates of convergence
for the third-order locally DF PP CDG scheme with increasing grid resolution.

Mesh 10 × 10 20 × 20 40 × 40 80 × 80 160 × 160 320 × 320 640 × 640
εdiv 1.04e-1 2.13e-2 3.48e-3 4.56e-4 5.92e-5 7.58e-6 9.58e-7
rate – 2.28 2.62 2.93 2.94 2.96 2.98

As the following tests involve (strong) discontinuities, some nonlinear limiters should be applied to
suppress the undesirable oscillations in the high-order CDG solutions. We use the locally DF WENO
limiter [62] within some troubled cells identified adaptively by the KXRCF shock detector [22].

19



6.3. Orszag-Tang problem. This problem [20] is a benchmark test for MHD codes. Although it
does not involve low pressure or density, we take it to verify the effectiveness and correct resolution of our
scheme. The initial solution is given by ρ = γ2, v = (− sin y, sin x, 0), B = (− sin y, sin 2x, 0), and p = γ.
The computational domain Ω = [0, 2π]2 is divided into 400 × 400 cells with periodic boundary conditions
on ∂Ω. Figure 4 plots the contours of ρ at t = 0.5, t = 2, and t = 3 computed by our third-order locally DF
CDG method. As time evolves, the initial smooth flow develops into the complicated structures involving
multiple shocks. Our results are in good agreement with those in [20, 23, 44] by the non-central DG
schemes, and the wave structures are correctly captured with high resolution by our new locally DF CDG
method. Figure 5 shows the pressure distributions along y = 0.625π at time t = 3, computed by using
our new locally DF CDG method and the standard conservative locally DF CDG method (without extra
source terms), respectively. We see that both methods provide very similar results, which are comparable
with those computed in [20, Figure 15] using a fifth-order finite difference WENO scheme with a correction
procedure for enforcing the DF condition. These results demonstrate that the extra source terms (5.3)–
(5.4), which are essential for guaranteeing the PP property, do not affect the resolution of CDG methods.
Figure 6a displays the time evolution of the global divergence error εdiv. We find that the magnitude of
εdiv is kept below 3 × 10−4 during the whole simulation.
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Fig. 4: Orszag–Tang problem: contour plots of density at t = 0.5, 2, and 3 (from left to right).
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Fig. 5: Orszag–Tang problem: The pressure distributions along y = 0.625π at t = 3.

6.4. Rotor problem. This is also a benchmark test [3], which describes a dense disk of fluid rotating
in a ambient fluid, with the initial conditions given by

(p, v3, B1, B2, B3) = (0.5, 0, 2.5/
√

4π, 0, 0),

and

(ρ, v1, v2) =


(10, − (y − 0.5)/r0, (x − 0.5)/r0) if r < r0 ,

(1 + 9λ, − λ(y − 0.5)/r, λ(x − 0.5)/r) if r0 < r < r1 ,

(1, 0, 0) if r > r1 ,
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(b) Rotor problem

0 0.01 0.02 0.03 0.04 0.05 0.06

0

0.5

1

1.5

2

2.5

3
10

-4

(c) Shock-cloud interaction

Fig. 6: Time evolution of the global divergence error εdiv.

with r =
√

(x − 0.5)2 + (y − 0.5)2, r0 = 0.1, r1 = 0.115, λ = (r1 −r)/(r1 −r0). The computational domain
Ω = [0, 1]2 is divided into 200×200 uniform cells with outflow boundary conditions on ∂Ω. Figure 7 shows
the contour plots of the thermal pressure p and the Mach number |v|/cs at t = 0.295. Our results are
consistent with those reported in [3, 44]. Figure 6b plots the global divergence error εdiv, which remains
small and at order O(10−4).
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Fig. 7: Rotor problem: Contour plots of the thermal pressure (left) and Mach number (right) at t = 0.295.

6.5. Shock cloud interaction. This test simulates the interaction of a high density cloud and
a strong shock wave. It was originally introduced in [12] and has become a benchmark for examining
MHD schemes [38, 44, 45]. Initially, there is a strong shock at x = 0.6, which is parallel to the y-axis.
The left and right states of the shock are specified as ρL = 3.86859, pL = 167.345, vL = 0, BL =
(0, 2.1826182, −2.1826182), ρR = 1, pR = 1, vR = (−11.2536, 0, 0), and BR = (0, 0.56418958, 0.56418958),
with a rotational discontinuity in the magnetic field. In front of the shock, a stationary circular cloud
of radius 0.15 is centered at (0.8, 0.5). The cloud has a higher density of 10 and the same pressure and
magnetic field as the surrounding plasma. The computational domain Ω = [0, 1]2 is divided into 400 × 400
uniform rectangular cells, with the inflow condition on the right boundary and the outflow conditions on
the others. Figure 8 presents the numerical thermal pressure and the magnitude of the magnetic pressure
at t = 0.06 simulated by our locally DF PP CDG method. It is observed that the complicated flow
structures and the discontinuities are resolved and agree with the results computed in [38, 44, 45]. Figure
6c shows the evolution of the global divergence error εdiv, which remains small and at order O(10−4). We
also notice that if we do not enforce condition (4.14) by using the PP limiter, the CDG solution will go
outside the set G and break down at time t ≈ 0.0366.

6.6. 2D blast problems. The classical 2D MHD blast wave problem, originally proposed in [3],
represents a quite demanding test widely adopted to examine the positivity of numerical MHD schemes;
see [3, 10, 42, 44, 45, 46]. The adiabatic index is taken as γ = 1.4. The computational domain is
Ω = [−0.5, 0.5]2 with outflow boundary conditions on ∂Ω. Initially, Ω is filled with stationary fluid with
v = 0, ρ = 1, and B = (B0, 0, 0). The initial pressure p is piecewise constant and has a circular jump
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Fig. 8: Shock cloud interaction: the thermal pressure (left) and the magnitude of magnetic field (right).

on x2 + y2 = 0.12, with p = pe inside the circle and p = 0.1 outside. We consider two blast problems:
the classical version [3] with {pe = 103, B0 = 100/

√
4π}, and a much more extreme version [44] with

{pe = 104, B0 = 1000/
√

4π} (larger discontinuity in p and stronger magnetic field). The plasma-beta β
is very small for both cases (β ≈ 2.51 × 10−4 for the classical blast problem and β = 2.51 × 10−6 for the
extreme blast problem), rendering their simulations highly challenging. Our locally DF PP CDG method
works very robustly for both blast problems. The numerical results computed on the mesh of 200 × 200
cells are given in Figure 9. One can see that, for the classical blast problem, our simulation results are in
good agreement with those reported in [3, 10, 25, 42, 44, 45], and our density profile does not have the
numerical oscillations that were observed in [3, 10]. Our flow patterns of the extreme blast problem are
consistent with those in [44] simulated by a PP non-central DG method. It is noticed that without the
proposed PP techniques, the CDG code would break down quickly within a few time steps.

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.2 0 0.2 0.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 9: Contour plots of density (left), thermal pressure (middle), and magnetic pressure (right). Top: the
classical 2D blast problem at t = 0.01. Bottom: the extreme 2D blast problem at t = 0.001.
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6.7. Astrophysical jets. This test simulates three very challenging jet problems involving very
high Mach number and strong magnetic fields. The setup is the same as in [44] and similar to the gas
dynamical case in [1] with γ = 1.4. The domain [−0.5, 0.5] × [0, 1.5] is initially filled with the ambient
plasma with v = 0, p = 1, and ρ = 0.14. On the bottom boundary, the inflow jet condition (ρ = 1.4,
p = 1, v = (0, 800, 0)) is fixed for x ∈ [−0.05, 0.05] and y = 0. All the other boundaries are set as outflow.
The magnetic field is initialized as (0, B0, 0) in the entire domain. We consider three configurations based
on different strengths of B0: Case 1: B0 =

√
200, and the plasma-beta β = 10−2; Case 2: B0 =

√
2000,

and the plasma-beta β = 10−3; Case 3: B0 =
√

20000, and the plasma-beta β = 10−4. Since the jet Mach
number is as high as 800 and the magnetic field is very strong (especially in Case 3), so that the internal
energy is much smaller than the kinetic/magnetic energy and negative numerical pressure can be easily
produced. Without the proposed PP techniques the CDG code would break down within a few time steps.
In the computation, we take the computational domain as [0, 0.5] × [0, 1.5], divide it into 200 × 600 cells,
use reflecting boundary condition on x = 0. The numerical results computed by our third-order locally
DF PP CDG method are displayed in Figures 10 within the domain [−0.5, 0.5] × [0, 1.5]. We clearly see
that the flow patterns are different for different strengths of B0. The cocoons, bow shock, shear flows,
and jet head location are well captured and agree with those in [44], demonstrating the high resolution
and excellent robustness of our locally DF PP CDG scheme. It is worth mentioning that if we either
remove our proposed discretization of the extra source term or neglect condition (4.14) without using the
PP limiter, then the simulation would fail due to the appearance of negative pressure.

Fig. 10: Astrophysical jets: the density logarithm (top) and the magnetic pressure (bottom) at t = 0.002
for Cases 1 to 3 (from left to right).

6.8. 3D blast problem. In the last example, we simulate a fully 3D blast problem [10, 9]. The
computational domain is Ω = [−0.5, 0.5]3 with outflow boundary conditions on ∂Ω. Initially, Ω is filled
with stationary fluid with v = 0, ρ = 1, and B = (100/

√
8π, 100/

√
8π, 0). The initial pressure p is

piecewise constant and has a spherical jump on x2 + y2 + z2 = 0.12, with p = 1000 inside the sphere and
p = 0.1 outside. Figure 11 shows the plots of density and thermal pressure at t = 0.01 computed by our
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Fig. 11: 3D Blast problem: The pseudocolor plots of density (left) and thermal pressure (middle) at
t = 0.01.

-0.5 0 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 0 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 0 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 12: 3D Blast problem: Contour plots of density (left), thermal pressure (middle), and the norm of
magnetic field (right) cut at z = 0 and t = 0.01.

third-order locally DF PP CDG method on the uniform cuboid mesh of 160 ×160×160 cells. The contour
plots of the numerical solution slice at z = 0 are also presented in Figure 12. The results agree with those
reported in [10, 9]. We also notice that the CDG code would produce negative pressure and break down
quickly within a few time steps if our PP techniques are not applied.

7. Conclusions. This paper has presented the first rigorous analysis on the positivity-preserving
(PP) property of the central discontinuous Galerkin (CDG) approach for ideal magnetohydrodynamics
(MHD). The analysis has further led to our design of arbitrarily high-order provably PP, locally divergence-
free (DF) CDG schemes for 1D and 2D MHD systems. We have found that the PP property of the standard
CDG methods is closely related to a discrete DF condition, which differs from the non-central DG case.
This finding laid the foundation for the design of our PP CDG schemes. In the 1D case, the discrete
DF condition is naturally satisfied, and we have rigorously proved that the standard CDG method is PP
under a condition satisfied easily using an existing PP limiter [8]. However, in the multidimensional cases,
the corresponding discrete DF condition is highly nontrivial yet critical, and we have analytically proved
that the standard CDG method, even with the PP limiter, is not PP in general, as it generally fails to
meet the discrete DF condition. We have addressed this issue by carefully analyzing the structure of the
discrete divergence terms and then constructing new locally DF CDG schemes for Godunov’s modified
MHD equations (1.5). A challenge we have settled is to find out the suitable discretization of the source
term in (1.5) such that it exactly offsets the divergence terms in the discovered discrete DF condition.
Based on the geometric quasilinearization approach, we have proved in theory the PP property of the new
multidimensional CDG schemes under a CFL condition. Extensive benchmark and demanding numerical
tests have been conducted to validate the performance of the proposed PP CDG schemes.

In the future, we hope to further explore high-order numerical schemes preserving both the positivity
and the globally DF property simultaneously. We hope our findings and newly developed analysis tech-
niques may motivate future developments in this direction as well as the exploration of other PP central
type schemes for MHD and related equations.

Acknowledgment. The authors would like to thank Dr. Shengrong Ding at SUSTech for her assist-
ance in the numerical test of the 3D Blast problem.
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