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Abstract. In this work, we propose a novel framework for the numerical solution of time-
dependent conservation laws with implicit schemes via primal-dual hybrid gradient meth-
ods. We solve an initial value problem (IVP) for the partial differential equation (PDE) by
casting it as a saddle point of a min-max problem and using iterative optimization methods
to find the saddle point. Our approach is flexible with the choice of both time and spatial
discretization schemes. It benefits from the implicit structure and gains large regions of
stability, and overcomes the restriction on the mesh size in time by explicit schemes from
Courant–Friedrichs–Lewy (CFL) conditions (really via von Neumann stability analysis).
Nevertheless, it is highly parallelizable in principle, and easy-to-implement. In particular,
no nonlinear inversions are required! Specifically, we illustrate our approach using the fi-
nite difference scheme and discontinuous Galerkin method for the spatial scheme; backward
Euler and backward differentiation formulas for implicit discretization in time. Numerical
experiments illustrate the effectiveness and robustness of the approach. In future work,
we will demonstrate that our idea of replacing an initial-value evolution equation with this
primal-dual hybrid gradient approach has great advantages in many other situations.

1. Introduction

High order numerical approximations of hyperbolic systems of conservation laws and their
viscous regularizations have been well studied for decades. High order accurate schemes
in the spatial domain, such as discontinuous Galerkin methods (DG methods)[7], essen-
tially non-oscillatory (ENO)[9] methods, and weighted essentially non-oscillatory (WENO)
schemes [14], have been quite successful in computational fluid dynamics, magnetohydrody-
namics and numerous other fields. In particular, the successful methods suppress spurious
oscillations, which tend to occur when the solution develops discontinuities. As for high
order schemes in the time domain, explicit methods such as the forward Euler method
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and Runge-Kutta method have restrictions on the length of the time step from Courant-
Friedrichs-Lewy (CFL) conditions (von Neumann stability analysis). While explicit meth-
ods sometimes require impractically small time steps for many stiff problems, implicit meth-
ods are used with larger time steps. However, implicit methods typically require extra com-
putations and can be hard to implement. Newton-type solvers take ample storage of the
Jacobian matrix and need a good initial guess for fast convergence.

In this paper, we propose a novel computational framework for solving implicit numerical
PDEs. It is easy to implement and has the flexibility to accommodate different high or-
der numerical schemes. We design a primal-dual approach to solve the implicit schemes of
conservation laws efficiently. The key technique here is introducing a Lagrange multiplier,
transforming the initial value problem into a min-max problem, and applying the first-order
optimization method to find the saddle point. We use the primal-dual hybrid gradient de-
scent method (PDHG) [3, 4] with a particular choice of preconditioner to solve the min-max
problem, of which the saddle point corresponds to the solution of the initial value problem.
The saddle point structure leads to a forward-backward coupled system of equations, where
the original conservation law equation (the primal equation) runs forward in time, and the
dual equation (the Lagrange multiplier) solves an equation with a specified terminal time
condition. As for numerical approximations, we discretize the conservation law with the
implicit scheme (such as the backward Euler method). Then with a summation by parts, we
get a forward Euler scheme for the dual equation. This equation also inherits an implicit
scheme since its terminal time condition is given. We alternatively update the solutions
for the primal and dual equations in the spatial-time domain in parallel by applying the
proximal gradient descent (ascent) method. Moreover, our primal-dual framework can be
generalized to various high order schemes in time. This paper discusses the finite difference
scheme and discontinuous Galerkin method.

In the literature, optimization has a close connection with numerical PDEs and optimal
control problems. The celebrated Benamou-Brenier formulation[1] provides a computational
fluid mechanics perspective of the optimal transport. It casts the problem as a convex min-
imization problem and solves it numerically via an augmented Lagrangian method. The
paper [2] proposes a new computational method by leveraging the underlying variational
structure of the PDEs. Their methods first discretize the problem in time use the Jordan–
Kinderlehrer–Otto (JKO) type scheme and compute discrete time equations using Benamou-
Brenier formula. Recent work [5] introduces a space-time Lagrange multiplier to enforce
the positivity of the solution and construct numerical schemes via predictor-corrector ap-
proach. In[12, 13], a novel control problem is proposed on a modified optimal transport
space based on conservation laws with diffusion regularization. The computations of such
control problems utilize the forward-backward coupled structure of the continuity equations
and the value functions. The paper also discusses calculation of a degenerate case, where
no control is enforced, and gives a solution to an initial value problem. In [11], a control
problem associated with nonlinear reaction diffusion equations is studied and primal-dual
methods are used for the computation. In [16], they propose a weak adversarial networks
approach, in which they study a saddle point problem with nonlinear dependence on the
dual (test) variable. They parameterize both the solution and its dual (test) functions with
deep neural networks for solving PDEs. Compared with the works above, we study a simple
inf-sup saddle point problem which depends linearly on the dual variable. The saddle point
solves conservation laws directly. The PDHG algorithm provides a provable contraction for
solving the proposed saddle point problem when the IVP is a linear PDE. The inherently
parallelizable property (of grid points in space-time) of our method is based on the iterative
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proximal updating of the primal and dual variables. This is different from the parareal
(parallel-in-time) method [8], which focuses on multiple shooting along the time axis. In
addition, the PDHG methods provide a simple to implement algorithm, compared with the
Newton’s method used in parareal method. Our method does not compute the inversion of
Jacobian matrix for the implicit schemes.

The rest of the paper is organized as follows. Section 2 describes how the primal-dual
approach solves an initial value problem at the continuous level. Next, we discuss in Sec-
tion 3 the implicit numerical scheme and the optimization method we use to solve the
min-max problem. In particular, we point out that our approach works as an iterative
solver in general for solving one-timestep forward of an initial value problem. We present
several numerical examples in Section 4 to validate and demonstrate the effectiveness of our
framework. We give some concluding remarks in Section 5.

2. A inf-sup problem formulation

In this section, we derive the inf-sup formulation of PDEs, where the saddle point cor-
responds to the solution of the initial value problem. We review the primal-dual hybrid
gradient descent method and its variations and discuss the application of the algorithm in
our setup.

2.1. From the initial value problem to a saddle point formulation. We consider the
following initial value problem of scalar conservation law defined over the domain Ω× [0, T ]:

∂tu(x, t) + ∂xf(u(x, t))− ∂x (γ(x)∂xu (x, t)) = 0,

u(x, 0) = u0(x).
(2.1)

For simplicity, we assume Ω ⊂ R satisfies periodic boundary conditions. Here f(u) is the
flux term, and γ = 0 for the nonviscous case and γ(x) > 0 for viscous conservation laws.
We seek for a function u : Ω× [0, T ]→ R that satisfies Equation (2.1). It is straightforward
to come up with the following minimization problem:

min
u

1u∈U .(2.2)

U = {u : ∂tu(x, t) + ∂xf(u(x, t))− ∂x (γ(x)∂xu (x, t)) = 0 for all (x, t) ∈ Ω× [0, T ],

u(x, 0) = u0(x)},

where the minimizer is the solution to the initial value problem. Here, we have the
indicator function defined as follows

1a∈A =

{
0 if a ∈ A
∞ if a /∈ A.

The optimization problem (2.2) can also be rewritten as follows:

min
u∈U

0,(2.3)

where the objective function is a constant, while the continuity equation lies in the con-
straint. Solving the constrained optimization problem in (2.3) is equivalent to find the
minimum in problem (2.2).
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The Lagrange multiplier technique is a popular approach to tackle constrained optimiza-
tion problems. By introducing a Lagrange multiplier ϕ : Ω× [0, T ]→ R, we can remove the
constraint from problem (2.3), which leads to a min-max problem:

(2.4) min
u,u(·,0)=u0

max
ϕ
L(u, ϕ),

where

L(u, ϕ) =
∫ T

0

∫
Ω
ϕ(x, t) (∂tu(x, t) + ∂xf(u(x, t))− ∂x (γ(x)∂xu (x, t))) dxdt

= −
∫ T

0

∫
Ω
u(x, t) (∂tϕ(x, t) + ∂x (γ(x)∂xϕ (x, t))) + ∂xϕ(x, t)f(u(x, t))dxdt

+

∫
Ω
u(x, T )ϕ(x, T )− u(x, 0)ϕ(x, 0)dx.

In the above formula, we apply integration by parts in spatial and time domain respectively.
By taking the first-order optimality condition, we obtain the following system of equations

∂tu(x, t) + ∂xf(u(x, t))− ∂x (γ(x)∂xu (x, t)) = 0,

u(x, 0) = u0(x),

∂tϕ(x, t) + ∂xϕ(x, t)f
′(u(x, t)) + ∂x (γ(x)∂xϕ (x, t)) = 0,

ϕ(x, T ) = 0.

(2.5)

For f(u) = αu for some α > 0, the system of dual equations are two linear transport
equations, u (ϕ) runs forward (backward) in time:

ut + αux − ∂x (γ(x)∂xu (x, t)) = 0,

u(x, 0) = u0(x),

ϕt + αϕx + ∂x (γ(x)∂xϕ (x, t)) = 0,

ϕ(x, T ) = 0.

(2.6)

For f(u) = αu2 for some α > 0, the system of dual equations are as follows, where u solves
a quadratic conservation law with initial condition specified, while ϕ satisfies a backward
transport equation that couples u in the transportation term:

ut + α∂x(u
2)− ∂x (γ(x)∂xu (x, t)) = 0,

u(x, 0) = u0(x),

ϕt + (2αu)ϕx + ∂x (γ(x)∂xϕ (x, t)) = 0,

ϕ(x, T ) = 0.

(2.7)

2.2. The primal-dual optimization method. The primal-dual hybrid gradient (PDHG)
method is a first-order method that solves constrained and non-differentiable optimization
problems with a saddle point structure. Given some Hilbert spaces X ,H, convex function
f, g, and a linear map A : X → H, denote g∗(q) = supp⟨p, q⟩ − g(p), the convex conjugate
of function g. The saddle point problem takes the following form

min
p

max
q

h(p) + ⟨Ap, q⟩ − g∗(q),

which is equivalent to the following minimization problem

min
p

h(p) + g(Ap).
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The PDHG methods take proximal gradient descent (ascent) steps on variable p (q) alter-
natively. Set τp, τq > 0 as stepsizes, (p0, q0) as the initial guess. The details of the iterations
at n-step are as follows

pn = argmin h(p) + ⟨p,AT q̃n−1⟩+ 1

2τp
∥p− pn−1∥2L2 ,

qn = argmax ⟨Apn, q⟩+ g(q)− 1

2τq
∥q − qn−1∥2L2 ,

q̃n = 2qn − qn−1.

Here, ∥u∥2L2 = ⟨u, u⟩L2 =
∫ T
0

∫
Ω u2dxdt. The algorithm is not sensitive to the initial guess

and converges globally if the stepsize satisfies the following:

τpτq <
1

∥ATA∥
.

Extensions and generalizations of PDHG methods have been carefully investigated. In
[10], the General-proximal Primal-Dual Hybrid Gradient (G-prox PDHG) is proposed with
a focus on linear constraints induced by differential equations. With proper choices of norms
for the proximal steps, the optimization algorithm enjoys the property that the optimization
stepsizes are free from the grid size. In [15], the operator A is extended to non-linear. The
method adopts the linear approximation of A and guarantees the local convergence when
some technical conditions are satisfied.

We adapt ideas from the General-prox PDHG and discuss the linear transport equation
and quadratic conservation laws about the choice of norms. The latter one also integrates
the linearization method from [15].

Linear transport equation with f(u) = αu. The min-max problem (2.4) has its sad-
dle point satisfying Equation (2.6). We omit the initial-terminal conditions and use the
following notation:

p = u, q = ϕ,

A(u) = (∂t + α∂x)u− ∂x (γ∂xu) ,

AT (ϕ) = − (∂t + α∂x)ϕ− ∂x (γ∂xϕ) ,

h = 0, g(Ap) =

{
0, if Ap = 0

+∞, else.

The PDHG has a convergence rate rate O(1/N) in finite dimensions, where the constant
factor is proportional to 1

τpτq
. In our case, A contains differential operators. Hence it is

easy to see that as we refine the mesh grid, smaller τp, τq are needed, leading to a slower
convergence. We approximate the operator ATA with

K = −∂tt − α2∂xx + γ̂2∂xxxx.(2.8)

Note here γ̂ is a constant approximation of the coefficient function γ(x). Then we introduce
the norm ∥ · ∥H:

∥u∥2H = ∥∂tu∥2L2 + α2∥∂xu∥2L2 + γ̂2∥∂xxu∥2L2

= ⟨u,Ku⟩L2 +

∫
Ω
uutdx|t=0,

where the last equation is obtained via integration by parts with the periodic boundary
condition in space. We modify the algorithm accordingly for problem (2.4) with the norm
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∥ · ∥2H for the G-prox PDHG. The n-th iteration is taken as follows:
un = argmin ⟨u,AT ϕ̃n−1⟩+ 1

2τu
∥u− un−1∥2L2 ,

ϕn = argmax ⟨Aun, ϕ⟩ − 1

2τϕ
∥ϕ− ϕn−1∥2H,

ϕ̃n = 2ϕn − ϕn−1.

(2.9)

Each update can be written explicitly,

un = un−1 − τu

(
(∂t + α∂x) ϕ̃

n−1 + ∂x

(
γ∂xϕ̃

n−1
))

,

ϕn = ϕn−1 − τϕ
(
∂tt + α2∂xx − γ̂2∂xxxx

)−1
((∂t + α∂x)u

n − ∂x(γ∂xu
n)) .

The computation for ϕn can be done by using Fast Fourier Transform (FFT).

Quadratic conservation laws with f(u) = αu2. The problem (2.4) loses the convex-
concave structure, yet we can still modify the G-prox PDHG algorithm to compute the
local saddle point. We omit the initial-terminal condition as well as the Laplacian term for
simplicity. The nonlinear constraint from the conservation law takes the form:

A(u) = ∂tu+ ∂xf(u),

⟨A(u), ϕ⟩ =
∫ T

0

∫
Ω
∂tu+ ∂xf(u) dxdt,

and we use the following linear approximations

⟨A(u), ϕ⟩ ≈ ⟨A(û), ϕ⟩+ ⟨u− û,∇A(û)Tϕ⟩,
∇A(u)Tϕ = ∂tϕ+ f ′(u)∂xϕ.

The last line is obtained by taking the first variation of the functional above. As for the
choice of the norm for the General-proximal PDHG, rather than using the approximation
of nonlinear operator ATA, we only take into consideration the linear differential operators
and denote

Âu = (∂t + c∂x)u,

where the constant c is chosen based on estimations from f ′(·). Now the operator K that

approximates ÂT Â is as follows:

K = −∂tt − c2∂xx.(2.10)

The norm is defined as

∥u∥2Ĥ = ∥∂tu∥2L2 + c2∥∂xu∥2L2

= ⟨u,Ku⟩L2 +

∫
Ω
uutdx|t=0, .

At n-th step, the algorithm takes the following updates:


un = argmin ⟨u,∇A(un−1)T ϕ̃n−1⟩+ 1

2τu
∥u− un−1∥2L2 ,

ϕn = argmax ⟨Aun, ϕ⟩ − 1

2τϕ
∥ϕ− ϕn−1∥2Ĥ,

ϕ̃n = 2ϕn − ϕn−1.

(2.11)
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The explicit updates for (u, ϕ) are as follows:

un = un−1 − τu
(
∂t + f ′(un−1)∂x

)
ϕ̃n−1,

ϕn = ϕn−1 − τϕ
(
∂tt + c2∂xx

)−1
(∂tu

n + ∂xf(u
n)) .

2.3. On the convergence of the algorithm. The PDHG algorithm’s convergence is
based on the convex-concave structure of the min-max problem (2.4). In our setup, we only
have global convergence when the conservation laws are linear (i.e., f(·) is linear, A is a
linear operator). Indeed, we obtain geometric convergence for this case.

Proposition 2.1. For a linear operator A : RN → RN , denote u∗ as the solution for Au =
c. Solve the min-max problem minumaxv⟨Au− c, v⟩ using Algorithm 2.9. K : RN → RN is
the linear operator that induced the norm ∥ · ∥H : ∥v∥ = ⟨v,Kv⟩L2 in the proximal update of
ϕ. If the following inequalities are satisfied: for some k > 0, στ < 1

k , ∥A
TK−1A∥ = k, we

have limn→∞Aun −Au∗ = 0.

Proof. Let L(u, ϕ) = ⟨Au− c, ϕ⟩. At the n-th iteration, we have

ϕn+1 = argmax L(un, ϕ)− 1

2τ
∥ϕ− ϕn∥2H,

un+1 = argmin L(u, ϕ̃n+1) +
1

2σ
∥u− un∥2L2 .

Hence, we have

ϕn+1 = ϕn + τ
(
K−1(Aun − c)

)
,

ϕ̃n+1 = 2ϕn+1 − ϕn = ϕn + 2τ
(
K−1(Aun − c)

)
,

un+1 = un − σATϕn − 2στATK−1(Aun − c),(
un+1

ϕn+1

)
= M

(
un

ϕn

)
+

(
2στATK−1c
−τK−1c

)
,

where M =

(
I − 2στATK−1A −σAT

τK−1A I

)
.

The eigenvalues of M are complex conjugates λ = (1 − στν) ± i(στν − (στν)2)1/2. Here

i = (−1)1/2 and ν is an eigenvalue of ATK−1A. So the eigenvalues of M have

|λ| = (1− στν)1/2.

Since ν > 0 and σ, τ > 0 and their product στν < 1,we have a contraction map and the
result converges geometrically. □

When operator A is a discrete approximation of continuous differential operator and K
is chosen properly, one can apply the above proposition and have constant k independent
of the grid size. We also provide numerical experiments in Section 4.1 to show that the
convergence of the optimization problem for linear case is independent of the grid size. As
for nonlinear conservation laws in general, we no longer have convex problems. Therefore,
we no longer guarantee the convergence to the saddle point. For more details on the
convergence of nonlinearly constrained optimization problems, we refer to [15, 6]. We leave
the convergence study of this algorithm for nonlinear conservation laws in future work.
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During the computation, we check the convergence of the algorithm by checking the
residuals of the system of the primal-dual equations. The residual is defined as the L2 norm
of the continuity equation of the (u, ϕ) as follows:

Res(u, ϕ) =
[
∥A(u)∥L2 , ∥∇A(u)Tϕ∥L2

]
.(2.12)

At the saddle point solution(u∗, ϕ∗) of the min-max problem (2.4), we have Res(u∗, ϕ∗) = 0.

Here Res(û, ϕ̂) measures the distance between the current solution (û, ϕ̂) and the saddle
point solution (u∗, ϕ∗).

3. A primal-dual approach for the discretization system

In this section, we discuss in detail on using the primal-dual approach to solve implicit
numerical PDE. We start with time and spatial discretizations. Next, we discuss the im-
plementation of the primal-dual algorithm. At the end of this section, we discuss two
extensions of the standard approach: mesh refinement and one-timestep updates.

3.1. Time discretization. For the initial value problem on the time interval [0, T ], we use
uniform mesh with length ht =

T
Nt

, and denote tl = lht, u
l(x) = u(tl, x) for l = 0, ..., Nt. By

using the backward Euler scheme for the conservation laws, we obtain
ul+1(x)− ul(x)

ht
+ ∂x

(
f
(
ul+1(x)

))
− ∂x(γ∂xu

l+1(x)) = 0, l = 0, ..., Nt − 1,

u0(x) = u0(x).

The min-max problem (2.4) with discretization in time is as follows:

min
u∈{ul(x)}

max
ϕ∈{ϕl(x)}

Lt(u, ϕ),(3.1)

where

Lt(u, ϕ) = ht
∑

0≤l≤Nt−1

∫
Ω
ϕl(x)

(
ul+1(x)− ul(x)

ht
+ ∂x

(
f
(
ul+1(x)

))
− ∂x

(
γ∂xu

l+1(x)
))

dx

+

∫
Ω
ϕNt(x)uNt(x)− ϕ0(x)u0(x)dx

= −ht
∑

1≤l≤Nt

∫
Ω
ul(x)

(
ϕl(x)− ϕl−1(x)

ht
+ ∂x

(
γ∂xϕ

l−1(x)
))

+ ∂xϕ
l−1(x)f

(
ul(x)

)
dx

+

∫
Ω
ϕNt(x)uNt(x)− ϕ0(x)u0(x)dx.

The last equality is obtained via summation by parts and integration by parts in the
spatial domain with periodic boundary condition on Ω. By taking the first order variational
derivative with respect to ul(x) for the last two lines, we obtain a forward Euler scheme for
the dual equation of ϕ

ϕl(x)− ϕl−1(x)

ht
+ ∂xϕ

l−1(x)f ′(ul(x)) + ∂x
(
γ∂xϕ

l−1(x)
)
= 0, l = 1, ..., Nt,

ϕNt(x) = 0.

This is also an implicit scheme since we have ϕ with given terminal time condition. It is
also straightforward to use other higher order implicit schemes, for instance, the backward
differentiation formulas (BDFs). Specifically, one can first discretize the Equation (2.1)
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using BDF2. By summation by parts over the time index, integration by parts in the
spatial domain, and taking first order variational derivative, we automatically obtain the
BDF2 for the dual equation ϕ.

3.2. Spatial discretization. For the primal-dual framework, the choice of spatial dis-
cretization is quite flexible. Here we present both the finite difference scheme and the dis-
continuous Galerkin methods. For simplicity, we consider Ω = [0, b] with periodic boundary
condition. We use a uniform mesh with hx = b

Nx
, for Nx > 0 and xj = jhx, j = 0, ..., Nx−1.

We also apply the backward Euler formulation from the Section 3.1.

3.2.1. Finite difference scheme for the heat equation. Consider a heat equation{
ut − ∂x (γ∂xu) = 0,

u(x, 0) = u0(x),
(3.2)

with γ(x) > 0. We use standard central difference scheme and denote Lap(v)j ≈ ∂x (γ∂xv)
as its approximations, which is defined as follows:

Lap(v)j :=
γj+ 1

2
(vj+1 − vj)− γj− 1

2
(vj − vj−1)

hx
2 .

Therefore, the discretized min-max problem (2.4) takes the following finite difference scheme
formulation:

min
u∈{ul

j}
max
ϕ∈{ϕl

j}
L(u, ϕ),(3.3)

where

L(u, ϕ) = hthx
∑

0≤l≤Nt−1
1≤j≤Nx

ϕl
j

(
ul+1
j − ulj
ht

− Lap(ul+1)j

)

= −hthx
∑

1≤l≤Nt
1≤j≤Nx

ulj

(
ϕl
j − ϕl−1

j

ht
+ Lap(ϕl−1)j

)
+ hx

∑
1≤j≤Nx

(
ϕNt
j uNt

j − ϕ0
ju

0
j

)
.

The saddle point of the min-max problem (3.3) is:

ul+1
j − ulj
ht

− Lap(ul+1)j = 0, 0 ≤ l ≤ Nt − 1, 1 ≤ j ≤ Nx,

u0j = u0(xj), 1 ≤ j ≤ Nx,

ϕl
j − ϕl−1

j

ht
+ Lap(ϕl−1)j = 0, 1 ≤ l ≤ Nt, 1 ≤ j ≤ Nx,

ϕNt
j = 0, 1 ≤ j ≤ Nx.

(3.4)

3.2.2. Discontinuous Galerkin methods for linear transport equations. We first take parti-
tion of the interval (0, b) into N cells, then we have

0 = x 1
2
< x 3

2
< ... < xN+ 1

2
= b,

h = hj = xj+ 1
2
− xj− 1

2
, Ij =

(
xj− 1

2
, xj+ 1

2

)
.
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Then we define the finite element space V k
h in the follows:

V k
h :=

{
v ∈ L2([0, b]) : v|jj ∈ P k(Ij), i = 1, ..., N

}
.

For discontinuous Galerkin method, we seek for uh(·, t) ∈ Vh, such that for any v ∈ Vh we
have

d

dt

∫
jj

uh(x, t)v(x)dx−
∫
jj

f(uh(x, t))v
′(x)dx+ f̂j+1/2v(x

−
j+1/2)− f̂j−1/2v(x

+
j−1/2) = 0,

where the numerical flux f̂j+1/2 can be any monotone flux:

f̂j+1/2 = f̂(uh(x
−
j+1/2, t), uh(x

+
j+1/2, t))

with f̂ being monotonically increasing (non-decreasing) for the first argument and mono-
tonically decreasing (non-increasing) for the second argument. For the simple case f ′(u) ≥ 0

for the initial condition, we can use the upwinding flux f̂(u−, u+) = f(u−). For each cell,
we take two points xj,1 = xj− 1

4
, xj,2 = xj+ 1

4
. Then we take the basis for Vh to consist of the

following 2N piecewise linear functions {φj,ℓ(x) : ℓ = 1, 2; i = 1, ..., N}, which satisfy

φj,1(xj,1) = 1, φj,1(xj,2) = 0, φj,1(x) = 0 if x /∈ Ij ,

φj,2(xj,1) = 0, φj,2(xj,2) = 1, φj,2(x) = 0 if x /∈ Ij .

If we denote uj =

(
uj,1
uj,2

)
for the linear transport equation with f(u) = αu, α > 0, γ =

0, we obtain the following

(3.5)
d

dt
uj(t) = A1uj +A2uj−1,

where

A1 =
α

hx

(
−7

4 −3
4

11
4 −9

4

)
, A2 =

α

hx

(
−5

4
15
4

1
4 −3

4

)
.

Combining Equation (3.5) with time discretization (3.1), we obtained the discretized min-
max problem (2.4) :

min
u∈{ul

j}
max
ϕ∈{ϕl

j}
L(u, ϕ),(3.6)

where

L(u, ϕ) = hthx
∑

0≤l≤Nt−1
1≤j≤Nx

⟨ϕl
j ,
ul+1
j − ulj
ht

−A1u
l+1
j −A2u

l+1
j−1⟩,

= −hthx
∑

1≤l≤Nt
1≤j≤Nx

⟨ulj ,
ϕl
j − ϕl−1

j

ht
+AT

1 ϕ
l−1
j +AT

2 ϕ
l−1
j+1⟩+ hx

∑
1≤j≤Nx

(
⟨ϕNt

j uNt
j ⟩ − ⟨ϕ

0
ju

0
j ⟩
)
.
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By taking the first-order optimality condition, we obtain the saddle point of the min-max
problem (3.6) as follows:



ul+1
j − ulj
ht

−A1u
l+1
j −A2u

l+1
j−1 =

(
0

0

)
, 0 ≤ l ≤ Nt − 1, 1 ≤ j ≤ Nx,

u0j =

(
u0(xj− 1

4
)

u0(xj+ 1
4
)

)
, 1 ≤ j ≤ Nx,

ϕl
j − ϕl−1

j

ht
+AT

1 ϕ
l−1
j +AT

2 ϕ
l−1
j+1 =

(
0

0

)
, 1 ≤ l ≤ Nt, 1 ≤ j ≤ Nx,

ϕNt
j =

(
0

0

)
, 1 ≤ j ≤ Nx.

(3.7)

3.2.3. Discontinuous Galerkin methods for quadratic conservation laws. In this part, we
discuss on numerical approximations of DG methods for quadratic conservation laws where
f(u) = αu2 + βu, α > 0, β > 0. We follow the same setup as in Section 3.2.2 and use linear
basis functions and upwind flux. The DG scheme can be written in the following form:
(3.8)
d

dt
uj(t) =

(
uTj−1C1uj−1

uTj−1C2uj−1

)
+

(
uTj C3uj
uTj C4uj

)
+

(
uTj+1C5uj+1

uTj+1C6uj+1

)
+C7uj−1 +C8uj +C9uj+1.

The details of the matrices Ci, i = 1, ..., 9 can be find in Equation (A.1) in the Appendix. For
solving the quadratic conservation law (2.7), we solve the corresponding min-max problem
(2.4) with the following discretized system:

min
u∈{ul

j}
max
ϕ∈{ϕl

j}
L(u, ϕ),(3.9)

where the definition of L can be found in the appendix Equation (A.2). The corresponding
saddle point of the discrete min-max problem (3.9) is presented in Equation (A.3).

3.3. Primal-dual algorithm. In section 2, we have discussed how the generalized primal-
dual algorithm solves the saddle point problem from an initial value problem. In this part,
we solve the finite dimensional saddle point problem based on the numerical approximations
of the PDEs. We use IVP (3.2.2) as an example and present details of the algorithm.

In the min-max problem (2.4), we omit the initial-terminal condition when discussing the
algorithm. In practice, there is no harm to introduce an extra dual variable λj , j = 1, ..., N,
to impose the conditions. The discretized min-max system can be written as follows:

min
u

max
ϕ,λ

L(u, ϕ, λ),(3.10)
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where

L(u, ϕ, λ) = hthx
∑

0≤l≤Nt−1
1≤j≤Nx

⟨ϕl
j ,
ul+1
j − ulj
ht

−A1u
l+1
j −A2u

l+1
j−1⟩+ hx

∑
1≤j≤Nx

⟨λj , u
0
j − u0(xj)⟩

= −hthx
∑

1≤l≤Nt
1≤j≤Nx

⟨ulj ,
ϕl
j − ϕl−1

j

ht
+AT

1 ϕ
l−1
j +AT

2 ϕ
l−1
j+1⟩

+ hx
∑

1≤j≤Nx

(
⟨ϕNt

j , uNt
j ⟩ − ⟨λj − ϕ0

j , u
0
j ⟩ − ⟨λj , u0(xj)⟩

)
.

The primal-dual approach for solving the linear transport equation is summarized in the
following Algorithm 1.

Algorithm 1 Solve linear transport equation via primal-dual approach.

Input: Nt, N > 0, initial guess (ulj)
0, (ϕl

j)
0, (λj)

0, l = 0, ..., Nt, j = 1, ..., N ; stepsizes

τz, z ∈ {u, ϕ, λ}; residual tolerance ϵ.
Output: (ulj)

n, (ϕl
j)

n, (λj)
n for n = n∗.

while iteration n < Nmax and Res(un, ϕn) > ϵ do
1. Primal updates for l = 1, ..., Nt, j = 1, ..., N :

(ulj)
n = (ulj)

n−1 − τu

(
(ϕ̃l

j)
n−1 − (ϕ̃l−1

j )n−1

ht
+AT

1 (ϕ̃
l−1
j )n−1 +AT

2 (ϕ̃
l−1
j+1)

n−1

)
,

(u0j )
n = (u0j )

n−1 − τu0((ϕ̃
0
j )

n−1 − (λ̃j)
n−1).

2. Dual updates for l = 0, ..., Nt − 1, j = 1, ..., N,:

(ϕl
j)

n = (ϕl
j)

n−1 − τϕK
−1
d

(
(ul+1

j )n − (ulj)
n

ht
−A1(u

l+1
j )n −A2(u

l+1
j−1)

n

)
,

(λj)
n = (λj)

n−1 + τλ((u
0
j )

n − u0(xj)).
3. Extrapolation step for dual variables for all l, j:
(ϕ̃l

j)
n = 2(ϕl

j)
n − (ϕl

j)
n−1,

(λ̃j)
n = 2(λj)

n − (λj)
n−1.

n← n+ 1
end while

The operator Kd denotes the discrete operator of K defined in Equation 2.8. This
step requires solving a Laplacian equation, which can be done efficiently via FFT. As
for the initial guess of the optimization problem, without prior knowledge, we can use
[(ulj)

0, (ϕl
j)

0, (λj)
0] = [u0(xj), 0, 0], l = 0, ..., Nt, j = 1, ..., N . The updates for [ulj , ϕ

l
j , λj

from the Algorithm 1 are independent of each other in terms of index (j, l). Hence, we
can update variables simultaneously for all space-time, which means the updates are highly
parallelizable in principle. The stopping criteria needs to be understood as each entry of
Res(un, ϕn) satisfies ≤ ϵ. The choice of ϵ varies, depending on the usage of the solution.

When the PDE is nonlinear, for instance, f(u) = αu2 + βu, we choose Kd as the dis-
crete operator of (−∂tt + c2∂xx) as discussed in Equation 2.10, where c is an estimation of
f ′(u) based on the initial condition. In practice, we can set c = 1. The stepsizes of the
optimization algorithm then need to be adjusted accordingly.
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3.4. Mesh refinement in time approach. We have observed that due to the lack of
convexity, the primal-dual algorithm is not very robust and sometimes sensitive to the
optimization stepsizes and initial data. We discuss one stabilizing technique here. The
idea is to do mesh refinement in time. Since large ht brings in more numerical viscosity,
it is expected that solving the problem on a coarse-mesh grid is easier and gives a smooth
numerical approximation of the solution. We can do some simple interpolation with the
solution on coarse-mesh and use it as an initial guess for fine-mesh case. This extension is
summarized in Algorithm 2, using vanilla version Algorithm 1 repeatedly while refining the
mesh in time.

Algorithm 2 Generalize the primal-dual approach with mesh refinement.

Input: Nt = 2m0 , N > 0, initial guess (ulj)
0, (ϕl

j)
0, (λj)

0, l = 0, 1, j = 1, ..., N ; stepsizes

τz, z ∈ {u, ϕ, λ}; residual tolerance ϵ, Nt0 = 1.
Output: (ulj)

n, (ϕl
j)

n, (λj)
n for n = n∗ , l = 0, ..., Nt, j = 1, ..., N .

while Nt0 ≤ 2m0 do
Solve the IVP on mesh N ×Nt0 in the space-time domain using Algorithm 1, obtain

solution (u, ϕ, λ)∗N×Nt0
.

Interpolate the solution on a finer mesh (u, ϕ, λ)N×2Nt0
.

Use the above solution as an initial guess for discrete problem on mesh N × 2Nt0 .
Nt0 ← 2Nt0 .

end while

3.5. An iterative approach for solving implicit scheme for one-timestep. In pre-
vious sections, we use the primal-dual framework to solve the initial value problem (IVP)
defined on the interval [0, T ]. It is natural to see that this framework could also be ap-
plied to solve the IVP on a smaller time interval [0, ht]. Therefore, we can adapt the
primal-dual approach as an iterative solver for solving one-timestep, i.e., [t, t + ht], of the
implicit discrete system. Unlike the vanilla primal-dual approach where the solutions are
updated simultaneously over all space-time, the one-timestep approach only have iterations
for solutions at time t = tl when solving over [tl − ht, tl]. When the numerical solution is
found at t = tl (the stopping criteria for the residuals is satisfied), the algorithm proceeds
to [tl, tl + ht], solving solutions at t = tl+1. For consistency, the residual is defined as
Res(u, ϕ) =

[
∥A(u)∥L2(Ω×{t}), ∥∇A(u)Tϕ∥L2(Ω×{t})

]
.

Algorithm 3 Use the primal-dual approach as an iterative solver.

Input: Nt, N > 0; stepsizes τz, z ∈ {u, ϕ, λ}; residual tolerance ϵ, l = 0
Output: (ulj)

∗ for l = 0, ..., Nt, j = 1, ..., N .

(u0j )
∗ = u0(xj)

while l < Nt do
Set initial guess as (ukj )

0 = (ulj)
∗ for k = l, l + 1.

Apply Algorithm 1 to solve IVP on [lht, (l+1)ht] with initial data given as u(lht, xj) =

(ulj)
∗. The mesh is discretized as N × 2 in space-time domain.

Obtain solution (ukj )
n∗
, k = l, l + 1.

(ulj)
∗ = (ulj)

n∗
.

l← l + 1.
end while
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4. Numerical Examples

In this section, we present numerical experiments on three types of equations: the heat
equation, the linear transport equation, and the quadratic conservation laws. We use the
conservation law example to show that our framework not only works for linear equations,
but also can be generalized to accommodate nonlinear conservation laws. Besides, we test
on various initial data: smooth or with discontinuities.

4.1. Variable coefficient type heat equation. In this example, we apply the primal-
dual approach to solve the second order parabolic equation{

∂tu = ∂x (γ∂xu) , (x, t) ∈ [0, 1]× [0, 0.1],

u(x, 0) = exp (−64(x− 0.5)2), for x ∈ [0, 1],

where the coefficient function satisfies γ(x) = 0.5 + 0.1 sin (2πx).

We solve the initial value problem on different meshes using the backward Euler scheme
in time and the finite difference scheme in space, and record the number of iterations needed
to guarantee the residuals satisfies the error tolerance for two values of ϵ in Table 1. The
norm used in the proximal update for the dual variable ϕ is chosen as

∥v∥2H = ∥∂tv∥2L2 + 0.62∥∂xxv∥2L2 .

Note here we use the stepsizes (τu, τϕ, τλ) = (0.8, 0.8, 0.99) in the primal-dual approach for
above problems on different meshes. Since we are using implicit schemes, the discretized
timestep is no longer restricted by the CFL condition. Typically, for an explicit scheme
we need to satisfy a restrictive condition, i.e., ht

(hx)2
< 1

2maxx γ(x) . However, in the above

examples we have ht
(hx)2

= 128
5 , 2565 , ..., 20485 . We can see from Table 1 that the convergence

of the algorithm for this linear equation is independent of the grid size.

Table 1. Number of iterations needed to achieve certain errors for the
primal-dual approach for different mesh.

Nt ×N 64× 16 128× 32 256× 64 512× 128 1028× 256
ϵ = 10−6 90 91 92 94 102
ϵ = 10−10 144 146 147 149 163

4.2. Linear transport equation. In this example, we use piecewise linear discontinuous
Galerkin method in the spatial domain and BDF2 in time to solve the following linear
transport equation with α = 2:

{
∂tu+ α∂xu = 0, for (x, t) ∈ [0, 1]× [0, 0.5],

u(x, 0) = sin(2πx).

Thanks to the implicit scheme, we can choose use a time step much larger than the CFL-
allowed time step for explicit schemes. In this example, we have αht

hx
= 2, while for piecewise

linear DG method, the CFL number for explicit scheme is around 1
3 (see [7]). We plot the

numerical results in the Figure 1. On the right, we see the residuals Res(un, ϕn) decrease,
while the distance between the approximated solution un and the analytical solution u∗

reaches some positive value. This difference comes from the numerical approximation part,
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as the numerical scheme we are using are second order in space time. We also numerically
verify that the solutions we obtained from the primal-dual approach are indeed of second
order accuracy. This is presented in Table 2, where we refine the mesh both in space and
in time and record the L2 error eh = ∥uh − ug∥L2(Ω×[0,T ]). Here uh denotes the numerical
approximation over mesh ht, hx.

Figure 1. Left: numerical solution of the linear transport equation with
smooth initial data, N×Nt = 64×32. Right: change of residual Res(un, ϕn)
and ∥u − ug∥L2 with respect to the primal-dual iteration, where ug is the
analytical solution to the IVP. The optimization stepsizes are (τu, τϕ, τλ) = (3, 0.1, 0.99).

Since the numerical scheme we are using is second order in space and time, we verify it
numerically. We record the error of the solution below in Table 2. From the table, we see
that the solution is indeed of second order accuracy.

Table 2. Errors of approximated solutions

h = hx(ht) 2−5 2−6 2−7

L2 error eh 0.1296 0.0372 0.0096
log2(eh/eh

2
) 1.8007 1.9542 -

As for initial data with discontinuity, we apply the primal-dual approach to solve the
following IVP: 

∂tu+ α∂xu = 0, for (x, t) ∈ [0, 1]× [0, 0.25],

u(x, 0) =

{
1, if 0.25 ≤ x ≤ 0.75,

0 else.

We use BDF2 for time discretization, and linear DG for space discretization. Here, α =
2, αht

hx
= 1. The numerical results are shown in Figure 2. We can see that our primal-dual

approach solves IVP with discontinuous initial data successfully, where the solution have
oscillations locally.
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Figure 2. Left: numerical solution of the linear transport equation with
discontinuous initial data, N × Nt = 64 × 32. Right: change of resid-
ual Res(un, ϕn) and ∥u − ug∥L2 with respect to the primal-dual iteration,
where ug is the analytical solution to the IVP. The optimization stepsizes
are (τu, τϕ, τλ) = (3, 0.1, 0.99).

4.3. Quadratic conservation law. Consider a quadratic conservation law of the following
form:

∂tu+ ∂x(αu
2 + βu) = 0, for (x, t) ∈ [0, 2]× [0, 1],(4.1)

u(x, 0) =

{
0.1, if 1 ≤ x ≤ 2,

0.25 else.
(4.2)

Here α = −1, β = 1, we have the traffic equation. Since the initial data of this given
problem satisfies f ′(u) ≥ 0, we can use upwinding flux to approximate the term ∂xf(u). If
the inequality does not hold, we can always introduce s > 0 such that f ′(u)+s ≥ 0 for u0(x),
and solve equation ∂tv+ ∂x(f(v) + sv) = 0 for v(x, t) = u(x− st, t) via change of variables.
We can use upwinding flux for the later equation, and recover u(x, t) correspondingly. We
use optimization stepsizes (τu, τϕ, τλ) = (0.4, 0.4, 0.99) on the mesh 256× 32 with backward
Euler in time. The error tolerance ϵ = 10−3. It takes n = 4573 iterations to have the
residual satisfies the stopping criteria. The numerical results are presented in Figure 3,
where we see the shock propagation (left) and development of rarefaction wave (right).

4.3.1. A comparison of different variations of the primal-dual approach. For the nonlinear
case, the choice of optimization stepsizes are quite sensitive for solving the non-convex saddle
point problem. A good initial guess of the saddle point can always stabilize and boost the
convergence of the primal-dual approach. Indeed, the variants of primal-dual approach we
discussed in Sections 3.4 and 3.5 can be understood as an improvement in the initial guess.
For the mesh refinement approach (Algorithm 2), we take the solution from coarse grid as
an estimation of the solution and use it the initial guess for the optimization. As for the
one-timestep approach (Algorithm 3), since we are only considering the evolution of the
initial data within a short period of time, a constant extension of function uest(x, t) = u0(x)
can be treated as a reasonable estimate of the solution.

In this subsection, we compare the vanilla primal-dual approach (i.e. Algorithm 1 adapted
to updates in Equation (2.11)) , the coarse-to-fine mesh variants (Algorithm 2), and the one-
timestep method (Algorithm 3) by computing the IVP (4.1). We use BDF2 and backward
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Figure 3. Left: numerical solution of the traffic equation with discontinu-
ous initial data, N ×Nt = 256× 32. Right: numerical solution at time t = 0, 0.5, 1.

Euler and set ϵ = 10−3. We record the computation cost for each approach to achieve the
residual tolerance. Specifically, for the mesh refinement approach (Algorithm 2), we solve
the IVP while refining the mesh with N × Nt = 256 × 2k, for k = 3, 4, 5, in order. For
k = 3, 4, we apply fixed number of iteration n = 1000. As for the one-timestep method
(Algorithm 3), each ht time propagation we apply the primal-dual approach with error
tolerance ϵ = 10−3. We record the computation time and cost needed for these three
methods to meet the same error tolerance in the following Table 3.

Table 3. Comparison of different variants of the primal-dual approach

method number of PDHG
iteration

world time (if
everything parallel)

number of operation
(computation cost)

vanilla primal-dual
(Algorithm 1)

4573 4573 150909N

mesh-refinement
(Algorithm 2)

- 5601 144833N

one-timestep
(Algorithm 3)

8627 8627 17254N

The number of PDHG iterations in the second column refers to how many iterations each
algorithm takes to achieve the error tolerance. The primal and dual variables are updated
on grid point (j, l) over the mesh in each iteration. Specifically, for the mesh-refinement
approach (Algorithm 2), the numbers of iterations for optimization over different meshes
are [103, 103, 3601], N × Nt = 256 × 2k, for k = 3, 4, 5. As for the one-timestep method
(Algorithm 3), the total number of iterations is the summation

∑
l n

∗
l , where n∗

l is the
iterations to solve the forward problem over the time interval [lht, (l + 1)ht].

Since the primal-dual algorithm is parallelizable in principle, we consider the situation
when the updates of primal and dual variables can be done simultaneously over all indices
(j, l) at each iteration, with primarily simple scalar calculations at each grid point. Hence
in the third column, we measure the world time, where its unit is the time to complete a
pair of primal-dual updates. We can see that with sufficient computation power, the vanilla
primal-dual approach takes the least world time.
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In the last column of Table 3, we consider the total computation cost, where we treat
updating a pair of primal-dual variables at index (j, l) as one unit of operations. By taking
into account of the mesh parameter N,Nt, the number of computational operations can
be calculated accordingly. For presentation purpose, we keep the notation of N , and plug
in the value Nt = 32. One can see that the actual one-timestep approach (Algorithm 3)
requires the least number of operations. Comparing with the vanilla primal-dual approach,
the one-timestep approach avoids inaccurate information propagating over time. It only
propagates the solution forward in time until it has calculated the solution precisely at the
current time point.

5. Summary

In this paper, we propose a novel primal-dual approach for implicitly solving conser-
vation laws. The proposed saddle problem depends on the dual variable linearly. This
approach connects the first-order optimization with scalar conservation laws, which inte-
grates the idea of primal-dual hybrid gradient algorithm and accommodate precondition
naturally. Despite drawbacks from potential non-convexity, this approach is stable and
converges in the practice. This framework is easy for implementation and highly paral-
lelizable in principle. Moreover, the structure of primal-dual approach has the flexibility
that can be adapted to various high order scheme in the spatial domain, including finite
difference schemes and DG. In future work, we shall study on the primal-dual hybrid gra-
dient methods for computing high dimensional regularized conservation laws implicitly in
time with TVD (Total variation diminishing), ENO (essentially non-oscillatory), WENO
(weighted essentially non-oscillatory), and neural network discretizations.

Acknowledgement: The authors would like to thank Richard Tsai for the insightful
discussion.

Appendix A. Details on discontinuous Galerkin methods for quadratic
conservation laws

The coefficient matrices in Equation 3.8 are defined as follows:

(A.1)

C1 =
5α

8hx

(
1 −3
−3 9

)
, C2 =

−α
8hx

(
1 −3
−3 9

)
,

C3 =
−α
8hx

(
13 1
1 5

)
, C4 =

α

8hx

(
9 13
13 −31

)
,

C7 =
β

4hx

(
−5 15
1 −3

)
, C8 =

β

4hx

(
−7 −3
11 −9

)
,

C5 = C6 = C9 =

(
0 0
0 0

)
.

(A.2)

L(u, ϕ) = hthx
∑

0≤l≤Nt−1
1≤j≤Nx

⟨ϕl
j ,
ul+1
j − ulj
ht

−

(
(ul+1

j−1)
TC1u

l+1
j−1

(ul+1
j−1)

TC2u
l+1
j−1

)
−

(
(ul+1

j )TC3u
l+1
j

(ul+1
j )TC4u

l+1
j

)
−

(
(ul+1

j+1)
TC5u

l+1
j+1

(ul+1
j+1)

TC6u
l+1
j+1

)

− C7u
l+1
j−1 − C8u

l+1
j − C9u

l+1
j+1⟩.
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Again by the first-order optimality condition, we arrive at the saddle point of the min-max
problem (3.9) is as follows:
(A.3)

ul+1
j − ulj
ht

−

(
(ul+1

j−1)
TC1u

l+1
j−1

(ul+1
j−1)

TC2u
l+1
j−1

)
−

(
(ul+1

j )TC3u
l+1
j

(ul+1
j )TC4u

l+1
j

)
−

(
(ul+1

j+1)
TC5u

l+1
j+1

(ul+1
j+1)

TC6u
l+1
j+1

)

−C7u
l+1
j−1 − C8u

l+1
j − C9u

l+1
j+1 =

(
0

0

)
, 0 ≤ l ≤ Nt − 1, 1 ≤ j ≤ Nx,

u0j =

(
u0(xj− 1

4
)

u0(xj+ 1
4
)

)
, 1 ≤ j ≤ Nx,

ϕl
j − ϕl−1

j

ht
+
([

C1u
l
j+1, C2u

l
j+1

]
+
[
C3u

l
j , C4u

l
j

]
+
[
C5u

l
j−1, C6u

l
j−1

])
ϕl−1
j +AT

2 ϕ
l−1
j+1

+C7ϕ
l−1
j+1 + C8ϕ

l−1
j + C9ϕ

l−1
j−1 =

(
0

0

)
, 1 ≤ l ≤ Nt, 1 ≤ j ≤ Nx,

ϕNt
j =

(
0

0

)
, 1 ≤ j ≤ Nx.
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[2] José A Carrillo, Katy Craig, Li Wang, and Chaozhen Wei. Primal dual methods for wasserstein gradient
flows. Foundations of Computational Mathematics, 22(2):389–443, 2022.

[3] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vision, 40(1):120–145, 2011.

[4] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal-dual
algorithm. Math. Program., 159(1-2, Ser. A):253–287, 2016.

[5] Qing Cheng and Jie Shen. A new lagrange multiplier approach for constructing structure preserving
schemes, i. positivity preserving. Computer Methods in Applied Mechanics and Engineering, 391:114585,
2022.

[6] Christian Clason and Tuomo Valkonen. Primal-dual extragradient methods for nonlinear nonsmooth
pde-constrained optimization. SIAM Journal on Optimization, 27(3):1314–1339, 2017.

[7] Bernardo Cockburn and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin methods for convection-
dominated problems. Journal of Scientific Computing, 16(3):173–261, 2001.

[8] Martin J Gander and Stefan Vandewalle. Analysis of the parareal time-parallel time-integration method.
SIAM Journal on Scientific Computing, 29(2):556–578, 2007.

[9] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uniformly high order
accurate essentially non-oscillatory schemes, iii. Journal of Computational Physics, 71(1):231–303, 1987.
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