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Abstract

In this paper, a new type of inverse Lax-Wendroff boundary treatment is designed

for high order finite difference schemes for solving general convection-diffusion equations

on time-varying domain. This new method can achieve high order accuracy on Dirich-

let boundary conditions with moving boundary. To ensure stability of the boundary

treatment, we give a convex combination of the boundary treatments for the diffusion-

dominated and the convection-dominated cases. A group convex combination of weights

is carefully designed to avoid zero denominator, resulting in a unified algorithm for pure

convection, convection-dominated, convection-diffusion, diffusion-dominated and pure

diffusion cases. In order to match the time levels when constructing values of ghost

points in the two intermediate stages of the third order Runge-Kutta method, we pro-

pose a new approximation to the mixed derivatives at the boundaries to ensure high

order accuracy and to improve computational efficiency. In particular, we extend the

boundary treatment to the compressible Navier-Stokes equations, which satisfies the

isothermal no-slip wall boundary condition at any Reynolds number. We provide nu-

merical tests for one- and two-dimensional problems involving both scalar equations and

systems, demonstrating that our boundary treatment is high order accurate for prob-

lems with smooth solutions and also performs well for problems involving interactions

between viscous shocks and moving rigid bodies.
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1 Introduction

In this paper, we develop a high order accurate numerical boundary treatment based on

finite difference methods for convection-diffusion equations on complex moving domain.

For such complex geometries, there are two main difficulties for numerical boundary

conditions: one is the wide stencil of the high order finite difference operator, which

requires special treatment for a few ghost points near the boundary. The other one is

that the physical boundary may not coincide with grid points in a Cartesian mesh and

may intersect with the mesh in an arbitrary fashion, then the so-called “cut-cell” problem

[2] may arise, which means that extremely small CFL condition may be required when

the first grid point does not coincide with but is very close to the physical boundary. The

body-fitted grid method can be very accurate for the treatment of boundary conditions

in complex geometries. However, dealing with a moving domain, the mesh needs to

be computed and regenerated at each time step, resulting in a heavy workload. For a

non-body fitted Cartesian (Eulerian) mesh, there are many carefully designed methods,

such as the embedded boundary method [9, 10, 8, 17, 21, 1], and the immersed boundary

method [18, 16, 19, 26, 28].

In this paper, we will focus on the so-called inverse Lax-Wendroff (ILW) method.

This method was first proposed by Tan and Shu in [22] to deal with the inflow boundary

conditions when solving time-dependent hyperbolic conservation laws. The key idea of

the ILW method is repeatedly utilizing the partial differential equations (PDEs) to write

the normal spatial derivatives to the inflow boundary in terms of the time and tangential

derivatives of the given boundary condition. At outflow boundaries, a weighted essen-

tially non-oscillatory (WENO) type extrapolation was designed for the case of shock

waves being close to the boundaries. Then, with these normal derivatives, ghost point

values near the physical boundary can be obtained through Taylor expansions. Due to

the heavy algebra of the ILW procedure for high dimensional nonlinear systems, [25]

developed a simplified ILW (SILW) procedure to reduce the computation complexity,

2



in which the ILW process is only used for the first few normal derivatives and the less

expensive high order extrapolation is used for the remaining ones. Stability analysis for

both the ILW and the simplified ILW procedures is given in [27, 11], indicating that the

ILW and the simplified ILW procedure can remove the “cut cell” problem effectively.

Recently, [5] modified the numerical fluxes near boundaries to achieve mass conservation

in non-rectangular domains, and [15] defined the unknown variables and the fluxes on

the ghost points separately such that it can deal with hyperbolic conservation laws with

changing wind direction on the boundary. Besides, this procedure and analysis have

been explored and developed further to other equations, such as the Boltzmann type

equation [6] and convection-diffusion equations [14, 12, 13]. This (S)ILW procedure can

be extended to solve the compressible inviscid Euler equations on the moving geome-

tries [23, 4]. In this paper, we would like to design numerical boundary conditions for

convection-diffusion equations on a time-varying domain.

We will follow the idea in [14], in which a careful convex combination of the bound-

ary treatments for the diffusion-dominated and the convection-dominated cases was pro-

posed to obtain a stable and accurate boundary condition for high order finite difference

schemes when applied to convection-diffusion equations on the static domain, regardless

of the regimes. When extending it to the time-varying domain in this paper, there are

two underlying issues. Firstly, since conditions are defined on the moving boundaries, we

should use material derivatives in the ILW procedure instead of Eulerian time derivatives

as in [14]. Secondly, in coupling with third order Runge-Kutta time discretization, spe-

cial treatment for boundary values in the two intermediate stages is required to ensure

high order accuracy. Moreover, we attempt to give new combination weights to avoid

zero denominator, such that the method can be used to deal with all the cases from and

including pure convection equations to and including pure diffusion equations.

This paper is organized as follows. In Section 2, we first illustrate our idea by devel-

oping our inverse Lax-Wendroff method for one-dimensional scalar convection-diffusion
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equations with Dirichlet boundary conditions on moving boundaries. We then general-

ize it to one-dimensional systems and two-dimensional problems. In Section 3, we will

apply our method to simulate the interactions between shocks and moving rigid bodies

with complex geometries. Numerical results are given in Section 4 to demonstrate the

effectiveness and robustness of our approach. Concluding remarks are given in Section

5.

2 Scheme formulation

We consider a convection-diffusion equation, which can be written in the following form:

Ut = L(U), in Ω(t), (2.1)

where, L is a spatial operator involving convection terms and diffusion terms, and Ω(t)

is the time-varying domain. We use the idea of method of lines with a high-order spatial

discretization operator Lh (in our later computation, we use upwind spatial discretization

such as the finite difference WENO [7] scheme for the convection terms and high-order

central difference for the diffusion terms), which can approximate the original partial

differential equations into the following semi-discrete ODE:

Ut = Lh(U). (2.2)

We use the following third order total variation diminishing (TVD) Runge-Kutta (RK)

method [20] to discretize (2.2):

U(1) = Un + ∆tLh(Un),

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tLh(U(1)),

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
∆tLh(U(2)).

(2.3)

We consider the initial-boundary problems with moving Dirichlet boundary condi-

tions. The remaining issue is only the numerical treatment of boundary conditions.

Because a high order finite difference operator with a wide stencil needs special treat-

ment for some ghost points near the boundary, we will design an algorithm to use the
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information of the partial differential equations and boundary conditions to define the

values of the ghost points.

Notice that, when we update values of the interior points from time level tn to time

level tn+1 with (2.3), there may be some points inside the domain Ω(tn+1) but outside

Ω(tn). We call these points “newly emerging points”. As in [23], there is no need for

any special treatment for these points. We only need to construct one more ghost point

in each direction at time level tn and restrict the time step ∆t to make sure that the

moving domain Ω(t) travels at most one grid from time level tn to tn+1.

In this section, we will begin with the one-dimensional convection-diffusion equations

to illustrate the moving boundary treatment, and then extend the algorithm to two-

dimensional systems.

2.1 One-dimensional scalar convection-diffusion equations with
moving boundaries

We consider the following one-dimensional scalar convection-diffusion equation:

ut + f(u)x = εuxx, x ∈ Ω(t) = (xl(t), xr(t)), t > 0,

u(a(t), t) = gl(t), t > 0,

u(b(t), t) = gr(t), t > 0,

u(x, 0) = u0(x), x ∈ Ω(t),

(2.4)

where (xl(t), xr(t)) = (a(t), b(t)) are given functions varying with time and ε > 0 is a

constant.

Assume the domain is divided by the uniform mesh at time level tn

x−2 < x−1 < a(tn) < x0 < · · · < xN < b(tn) < xN+1 < xN+2, (2.5)

with mesh size ∆x. Notice that the physical boundary x = a(tn) and x = b(tn) may not

coincide with the grid points. We take {x0, x1, · · · , xN} as our interior points. At the

interior grid point xj, we have following semi-discrete approximation of (2.4)

d

dt
uj(t) +

1

∆x

(
f̂j+1/2 − f̂j−1/2

)
= diffj, j = 0, . . . , N. (2.6)
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Here, uj is the numerical approximation to the exact solution u at the grid point (xj, t).

The numerical flux f̂j+1/2 can be obtained by any reasonable finite difference scheme,

such as the third order finite difference WENO reconstruction [7]. This scheme requires

a five-point stencil at each point. The right-hand term diffj is a fourth order center

difference discretization of the diffusion term,

diffj =
ε

12∆x2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2).

Hence, up to two ghost points are needed near the boundaries.

Here, we choose the left moving boundary x = a(tn) as an example and concentrate

on how to define the values at the ghost points {x−2, x−1}. To construct values of the

ghost points at time level tn, we use a third order Taylor expansion

uj = u∗(0) + (xj − a(tn))u∗(1) +
(xj − a(tn))2

2
u∗(2), j = −2,−1, (2.7)

where, u∗(k) is the numerical approximation of the k-th spatial derivative of u at the

left boundary ∂kxu|(x=a(tn),t=tn) with suitable order of accuracy. Given the PDE and the

boundary condition (2.4), it is straightforward to define the point value as

u∗(0) = u(a(tn), tn) = gl(tn). (2.8)

However, the derivative values can not be obtained directly.

To ensure the stability of the boundary scheme, [14] pointed out that, for the convection-

diffusion equation with fixed boundaries, the approximation of the spatial derivatives on

the boundary should be a convex combination of those obtained for the convection-

dominated case and for the diffusion-dominated case.

Following this line and turning to our moving boundary case, to obtain the derivative

values, there are two possible numerical methods. One way to obtain approximations

to these spatial derivatives at the boundary is through the traditional Lagrangian or

WENO extrapolation [22, 25, 15] from interior points with suitable order of accuracy.

We use the subscript “ext” to denote derivatives obtained through the extrapolation
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procedure. The other way is the so-called inverse Lax-Wendroff (ILW) procedure, that

spatial derivatives are obtained from the given boundary condition and the PDE by

converting the spatial derivative into the time derivatives:

g′l(t) =
D

Dt
u(a(t), t) = ut + a′(t)ux = (a′(t)− f ′(u))ux + εuxx. (2.9)

Notice that the function gl(t) is defined on the moving boundary, hence we employ the

material derivative instead of the Eulerian time derivative as in [14]. We use the subscript

“ilw” to denote derivatives obtained through the ILW procedure.

To describe the construction of u∗(1) and u∗(2), we start with two extreme cases:

Case 1. a′(t) − f ′(gl(t)) = 0. For this case, we can only obtain the second order spatial

derivative uxx =
g′l(tn)

ε
, and denote this as the u

∗(2)
ilw . The first order spatial derivative

has to come from the extrapolation u
∗(1)
ext .

Case 2. ε = 0, i.e., pure convection. If a′(t)− f ′(gl(t)) > 0, the left boundary is an outflow

boundary, we can use extrapolation to define u∗(k) from interior points with suitable

order of accuracy. If a′(t)− f ′(gl(t)) ≤ 0, the left boundary is an inflow boundary.

Then the boundary condition u(a(t), t) = gl(t) should be imposed to ensure the

well-posedness. Thus,

u∗(1) =
g′l(tn)

a′(tn)− f ′(gl(tn))
. (2.10)

Again, we can obtain u∗(2) in terms of time derivatives through repeatedly using

the PDE. This is the key idea of the inverse Lax-Wendroff procedure. In particular,

[11] proved that, if only the solution and first order spatial derivative are obtained

via the ILW procedure, and u∗(2) is obtained from extrapolation directly, the third

order scheme is linearly stable. Hence, the algorithm would be simpler and more

efficient. This is the so-called simplified ILW (SILW) method proposed in [24].

In the general case when a′(t)− f ′(gl(t)) 6= 0 and ε 6= 0, the first derivative and the

second derivative are coupled in (2.9). There are two ways to construct the derivatives.
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One is obtaining the second order spatial derivative by extrapolation and then obtaining

the first order spatial derivative through the ILW procedure based on (2.9):

u
∗(1)
ilw =


u
∗(1)
ext , f ′(gl(tn))− a′(tn) ≤ 0,

− g′l(tn)− εu∗(2)
ext

f ′(gl(tn))− a′(tn)
, f ′(gl(tn))− a′(tn) > 0.

(2.11)

This will degenerate to the SILW for the case 2 as ε = 0. Thus it is expected to work

in the convection-dominated regime. Alternately, we may obtain the first order spatial

derivative by extrapolation, then obtain the second order spatial derivative through the

ILW procedure

u
∗(2)
ilw =

g′l(t) + (f ′(gl(t))− a′(t)) · u∗(1)
ext

ε
. (2.12)

This is similar to what we would do for the case 1 and therefore is expected to work in

the diffusion-dominated regime.

Following this line and turning to our moving boundary case, the approximation of

the spatial derivatives u∗(0), u∗(1) and u∗(2) can be respectively defined as

u∗(1) =ω1 · u∗(1)
ilw + ω2 · u∗(1)

ext ,

u∗(2) =ω1 · u∗(2)
ext + ω2 · u∗(2)

ilw ,
(2.13)

with the weights

ω1 =
(f ′(gl(tn))− a′(tn))2∆x2

(f ′(gl(tn))− a′(tn))2∆x2 + 9ε2
,

ω2 =1− ω1 =
9ε2

(f ′(gl(tn))− a′(tn))2∆x2 + 9ε2
.

(2.14)

Notice that, if f ′(gl(t)) − a′(t) or ε is close to 0, which means the velocity of the

moving boundary is close to the slope of the characteristic line (i.e., the speed of wave

propagation of pure advection problem) at the boundary or the diffusion is very weak at

the boundary, the computation of (2.11) or (2.12) may produce large rounding error or

may even blow up. Hence, we replace the term ω
(1)
1 · u

∗(1)
ilw in (2.13) by

ω1 · u∗(1)
ilw = − (f ′(gl(tn))− a′(tn))∆x2

(f ′(gl(tn))− a′(tn))2∆x2 + 9ε2

(
g′l(tn)− εu∗(2)

ext

)
(2.15)
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for the case f ′(gl(tn))− a′(tn) > 0. Also ω
(2)
2 · u

∗(2)
ilw can be replaced by:

ω2 · u∗(2)
ilw =

9ε

(f ′(gl(tn))− a′(tn))2∆x2 + 9ε2

(
g′l(tn) + (f ′(gl(tn))− a′(tn))u

∗(1)
ext

)
. (2.16)

If f ′(gl(tn))− a′(tn) and ε are both close to 0, the computation of the weights (2.14)

may produce large rounding error as well. To avoid zero denominator, we change the

combination and weights as follows:

u∗(1) = ω
(1)
1 · u

∗(1)
ilw + ω

(1)
2 · u

∗(1)
ext ,

u∗(2) = ω
(2)
1 · u

∗(2)
ext + ω

(2)
2 · u

∗(2)
ilw ,

(2.17)

where

ω
(1)
1 =

(f ′(gl(tn))− a′(tn))2∆x2

(f ′(gl(tn))− a′(tn))2∆x2 + (3ε+ µ)2
, ω

(1)
2 = 1− ω(1)

1 ,

ω
(2)
2 =

9ε2

(f ′(gl(tn))− a′(tn) + µ)2∆x2 + 9ε2
, ω

(2)
1 = 1− ω(2)

2 .

(2.18)

Here, µ can be chosen as any small positive number to avoid possible zero in the de-

nominator for extreme cases, in which the velocity of the moving boundary is close to

the slope of the characteristic line at the boundary and the diffusion is very weak at the

boundary. When µ = 0, the weights (2.18) will recover those in (2.14). In this paper,

we set µ = 10−6 in our later computation such that it could be very close to the weights

in (2.14) for general cases. Correspondingly, denominators in (2.15) and (2.16) should

be changed as well. As a consequence, our method can be applied to solve the pure

convection equations and pure diffusion equations, and everything in between. This will

be verified numerically in Section 4.

Notice that the boundary scheme we have described above is just for the time level

tn. For the third-order TVD RK method (2.3), we need to go through two intermediate

stages t(1) and t(2). In particular, boundary conditions at the intermediate stages are

necessary. In [3], the authors pointed out that the boundary conditions should be im-

posed as follows to maintain the third order accuracy for the fixed boundary case, i.e.,
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a(t) = const,
un ∼ u(a, tn),

u(1) ∼ u(a, tn) + ∆tut(a, tn),

u(2) ∼ u(a, tn) +
∆t

2
ut(a, tn) +

∆t2

4
utt(a, tn).

(2.19)

Actually, on the fixed boundary we have that u = gl, ut = g′l and utt = g′′l . For the

moving boundary, we will follow the idea mentioned in [23] to treat the boundary as

“fixed” at x = a(tn) on each stage of the RK method, and use the ILW procedure on this

fixed boundary to obtain the ghost point values. Therefore, we need to construct second

and first order approximations of ut(a(tn), tn) and utt(a(tn), tn), respectively. After that,

we can obtain the point values on x = a(tn) at intermediate stages t(1) and t(2) via the

equations (2.19).

Given the Dirichlet boundary condition and its time derivative (2.9), we can easily

have that

u(a(tn), t) = gl(tn), and ut(a(tn), tn) = g′l(tn)− a′(tn)ux(a(tn), tn). (2.20)

Here, ux(a(tn), tn) can be replaced by u∗(1) obtained via the combination (2.17). To

obtain utt(a(tn), tn), we need to take second order derivative to gl(t) and have ,

utt(a(tn), tn) =g′′l (tn)− a′′(tn) · ux(a(tn), tn)− (a′(tn))2 · uxx(a(tn), tn)

− 2a′(tn) · utx(a(tn), tn),
(2.21)

where uxx(a(tn), tn) can be replaced by u∗(2) obtained via (2.17). However, the mixed

derivative utx(a(tn), tn) is not known yet. Following the idea in [23], we can get utx(a(tn), tn)

through a standard Lax-Wendroff procedure. Using the PDE repeatedly, we can have

that

utx = −f ′(u)uxx − f ′′(u)(ux)
2 + εuxxx,

and all the terms in this equation have been obtained by the ILW procedure or extrap-

olation at time level tn. However, the formula would be very complicated, especially for

high-dimensional systems. Notice that the time derivative (ut)j at time t = tn and at
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every interior point is already known in the first stage of the RK method. Hence, utx

can be obtained by the spatial extrapolation on (ut)j. Because we only require utx to

have first order accuracy, we only need to construct a linear polynomial extrapolation,

which is much easier.

Here we summarize our algorithm. Our goal is to impose values of ghost points

{x−2, x−1} at time level tn and the two intermediate RK stages.

For time level tn:

Step 1. Get the point value on the boundary u∗(0) based on the given boundary condition

(2.8). Make a convex combination of the derivatives to compute u∗(1) and u∗(2) via

(2.17).

Step 2. Use the third order Taylor expansion (2.7) at the left boundary to get the values

at the ghost points {x−1, x−2}.

For the first and second intermediate RK stages:

Step 3. Use (2.20) to get u(a(tn, tn)) and ut(a(tn, tn)). Use a linear polynomial extrap-

olation to get utx(a(tn, tn)), and utt(a(tn, tn)) can be obtained via (2.21). Then,

modify the boundary conditions at the intermediate stages t(1) and t(2) through

equations (2.19)

Step 4. Do Steps 1 and 2 at the intermediate stages t(1) and t(2).

2.2 One-dimensional convection-diffusion system with moving
boundaries

We consider the one-dimensional system:

Ut + A(U)Ux = B(U)Uxx + S(U), x ∈ Ω(t) = (a(t), b(t)), t > 0,

U(a(t), t) = Gl(t), t > 0,

U(b(t), t) = Gr(t), t > 0,

U(x, 0) = U0(x), x ∈ Ω(t) = (a(t), b(t)),

(2.22)
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where, U = (U1, U2, ..., Um)T , S = S(U) is the source term, A(U) and B(U) are diago-

nalizable matrices satisfying

A(U) = L−1(U)Λ(U)L(U), B(U) = C(U)−1D(U)C(U).

Here, Λ(U) = diag{λi(U)}mi=1, D(U) = diag{εi(U)}mi=1 with εi(U) ≥ 0, and

L(U) =


l1(U)
l2(U)
· · ·

lm(U)

 , C(U) =


c1(U)
c2(U)
· · ·

cm(U)

 . (2.23)

As before, we take the left boundary x = a(t) as an example to describe our boundary

treatment. Similar as in the scalar case, to get a third order boundary scheme, we can

use a third order Taylor expansion to define the values at ghost points near the left

boundary x = a(tn) as follows:

Uj = U∗(0) + (xj − a(tn))U∗(1) +
(xj − a(tn))2

2
U∗(2), j = −2,−1, (2.24)

and the spatial derivatives U∗(k) approximate ∂kxU|x=a(tn),t=tn with (3 − k)-th order ac-

curacy, respectively. Here, we describe the construction of U∗(0),U∗(1) and U∗(2) at time

level tn sequentially.

For U∗(0), we can directly obtain its value from the boundary condition

U∗(0) = Gl(tn).

For U∗(1), we will treat the system as convection-dominated to construct the first

derivative via the ILW procedure. At first, we perform a characteristic decomposition on

the boundary x = a(tn), and look at the characteristic variables V = L(U∗(0))U. Then

the equation (2.22) becomes

Vt + Λ(U∗(0))Vx = RHSV = L(U∗(0))
(
B(U∗(0))Uxx + S(U∗(0))

)
. (2.25)

Taking the time derivative on the boundary condition, we have

Vt|x=a(tn),t=tn = L(U∗(0))G′l(tn)− a′(tn)Vx.
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Combining these two equations, we can obtain that

L(U∗(0))G′l(tn) + (Λ(U∗(0))− a′(tn)I)Vx = RHSV , (2.26)

where I is the identity matrix. We will look at each component of V,

li(U
∗(0)) ·G′l(tn) + (λi(U

∗(0))− a′(tn))(Vi)x = RHSVi i = 1, ...,m. (2.27)

Then, we apply the scalar boundary treatment to construct the corresponding point

value and spatial derivatives at x = a(tn). As before, a convex combination of the terms

(Vi)
∗(1)
ilw and (Vi)

∗(1)
ext is designed to ensure the stability of our boundary treatment:

(Vi)
∗(1) = (ωi)

(1)
ilw · (Vi)

∗(1)
ilw + (ωi)

(1)
ext · (Vi)

∗(1)
ext , i = 1, ...,m. (2.28)

In order to offset the possible zero in the denominator, in which case the velocity of the

moving boundary is close to the velocity of the characteristic variable near the boundary

and the diffusion is very weak at the boundary, we set the weights of the combination

as

(ωi)
(1)
ilw =

(
λi(U

∗(0))− a′(tn)
)2

∆x2

(λi(U∗(0))− a′(t))2
∆x2 + (3ε+ µ)2

,

(ωi)
(1)
ext = 1− (ωi)

(1)
ilw =

(3ε+ µ)2

(λi(U∗(0))− a′(t))2
∆x2 + (3ε+ µ)2

,

(2.29)

where ε = maxi{εi(U∗(0))} and µ = 10−6. To construct (Vi)
∗(1)
ilw , as before, for the

incoming variable, we use equation (2.27) to get its first derivative, and for outgoing

variable, an extrapolation is used. More specifically, we set

(ωi)
(1)
ilw · (Vi)

∗(1)
ilw = (ωi)

(1)
ilw · (Vi)

∗(1)
ext (2.30a)

for λi(U
∗(0))− a′(tn) ≤ 0, and

(ωi)
(1)
ilw · (Vi)

∗(1)
ilw =

(
λi(U

∗(0))− a′(tn)
)

∆x2

(λi(U∗(0))− a′(tn))
2

∆x2 + (3ε+ µ)2

(
−li(U

∗(0)) ·G′l(tn) + RHSVi
)
,

(2.30b)

for λi(U
∗(0))− a′(tn) > 0. Once we get V∗(1), we transform back into physical space by

U∗(1) = L−1(U∗(0))V∗(1).
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As for U∗(2), let W = C(U∗(0))U and construct the second derivative via the ILW

procedure. The original system (2.22) can be rewritten as

Wt −D(U∗(0))Wxx = RHSW = C(U∗(0))[S(U∗(0))−A(U∗(0))Ux] (2.31)

near the boundary. Taking the time derivative on the boundary condition, we have

Wt = C(U∗(0))G′l(tn)− a′(tn)Wx (2.32)

Combining (2.31) and (2.32), we can obtain that

D(U∗(0))Wxx = C(U∗(0))G′l(tn)− a′(tn)Wx −RHSW , (2.33)

which will help us to construct (Wi)
∗(2)
ilw , i = 1, . . . ,m. Again, we give a convex combi-

nation of (Wi)
∗(2)
ilw and (Wi)

∗(2)
ext ,

(Wi)
∗(2) = (ωi)

(2)
ilw · (Wi)

∗(2)
ilw + (ωi)

(2)
ext · (Wi)

∗(2)
ext , i = 1, . . . ,m, (2.34)

with the weights

(ωi)
(2)
ilw =

9ε2i (U
∗(0))

(α + µ)2∆x2 + 9ε2i (U
∗(0))

,

(ωi)
(2)
ext = 1− (ωi)

(2)
ilw =

(α + µ)2∆x2

(α + µ)2∆x2 + 9ε2i (U
∗(0))

.

(2.35)

Here, α = maxi{|λi(U∗(0))−a′(tn)|}. The previous technique is applied when we compute

(ωi)
(2)
ilw · (Wi)

∗(2)
ilw , which can be written as:

(ωi)
(2)
ilw·(Wi)

∗(2)
ilw =

9εi(U
∗(0))

(α + µ)2∆x2 + 9εi(U∗(0))2

(
ci(U

∗(0)) ·G′l(tn)− a′(tn)(Wi)
∗(1)
ext −RHSWi

)
.

(2.36)

Finally, we transform back and obtain

U∗(2) = C−1(U∗(0))W∗(2). (2.37)
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2.3 Two-dimensional convection-diffusion system with moving
boundaries

We now consider the two-dimensional convection-diffusion system
Ut + A1Ux + A2Uy = B1Uxx + B2Uxy + B3Uyy + S, (x, y) ∈ Ω(t), t > 0

U(x, y, t) = G(x, y, t), (x, y) ∈ ∂Ω(t), t > 0,

U(x, y, 0) = U0(x, y), (x, y) ∈ Ω(t),

(2.38)

where, U = (U1, U2, ..., Um)T , S = S(U) is the source term, A1 = A1(U),A2 =

A2(U),B1 = B1(U),B2 = B2(U) and B3 = B3(U) are matrices related to U. In partic-

ular, when m = 1, it is a scalar equation. We assume the convection term A1Ux+A2Uy

makes the system Ut + A1Ux + A2Uy = 0 to be strongly hyperbolic and the diffusion

term B1Uxx + B2Uxy + B3Uyy makes the system Ut = B1Uxx + B2Uxy + B3Uyy to be

parabolic.

Figure 1: The local coordinate rotation diagram.

As before, we use a high order finite difference method to discrete spatial derivatives

of (2.38) on a fixed Cartesian mesh (xi, yj) with uniform mesh sizes ∆x and ∆y in each

direction for all time. Ghost points may be needed near the boundary ∂Ω(t). Hence, we

need to design a method to define their values.

At time level tn, assume Pij = (xi, yj) is a ghost point near the boundary. At first,

we find its pedal Pa ∈ ∂Ω(tn), so that the normal n at Pa goes through Pij, as shown

in Figure 1. Assume the normal vector n = (cosα, sinα)T . In order to simplify the
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algorithm, we perform the following local coordinate rotation transformation at Pa by(
x̂
ŷ

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
. (2.39)

In this new coordinate system, the system (2.38) can be rewritten as follows:

Ut + Â1(U)Ux̂ + Â2(U)Uŷ = B̂1(U)Ux̂x̂ + B̂2(U)Ux̂ŷ + B̂3(U)Uŷŷ + S (2.40)

where

Â1 = cosαA1 + sinαA2,

Â2 = − sinαA1 + cosαA2,

B̂1 = cos2 αB1 + cosα sinαB2 + sin2 αB3,

B̂2 = −2 cosα sinαB1 + (cos2 α− sin2 α) B2 + 2 cosα sinαB3,

B̂3 = sin2 αB1 − cosα sinαB2 + cos2 αB3.

Define

Res = −Â2(U)Uŷ + B̂2(U)Ux̂ŷ + B̂3(U)Uŷŷ + S.

Then, we can write (2.40) as

Ut + A(U)Ux̂ = B(U)Ux̂x̂ + Res, (2.41)

where A = Â1, B = B̂1 are diagonalizable matrices satisfying

A(U) = L(U)−1Λ(U)L(U), B(U) = C(U)−1D(U)C(U). (2.42)

Here, Λ(U) = diag{λi(U)}, D(U) = diag{εi(U)} with εi(U) ≥ 0, and

L(U) =


l1(U)
l2(U)
· · ·

lm(U)

 , C(U) =


c1(U)
c2(U)
· · ·

cm(U)

 . (2.43)

For a third order boundary treatment, the value of the ghost point Pi,j is imposed

by the Taylor expansion in the x̂-direction

Ui,j = U∗(0) + |Pi,j − Pa|U∗(1) +
1

2
|Pi,j − Pa|2U∗(2), (2.44)
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where U∗(k) is an approximation of the normal derivative ∂kx̂U|(x,y)=Pa,t=tn with (3−k)-th

order of accuracy, k = 0, 1, 2.

To describe the boundary conditions, let Xb = Xb(s, t) present the position vector

(in Eulerian coordinates) of a point on the moving boundary ∂Ω(t), where s is the

Lagrangian coordinate of the boundary, and t is the current moment. The velocity of

the boundary can be written as Vb = ∂Xb

∂t
= (ub, vb)

T . Assuming that Pa = Xb(sa, tn).

The boundary condition at Pa can be written as G̃(t) = G(Xb(sd, t), t).

Now, we describe the construction of U∗(0),U∗(1),U∗(2) at time level tn sequentially,

following the idea of the one-dimensional case.

For U∗(0), we can directly obtain its value from the boundary conditions

U∗(0) = G̃(tn).

For U∗(1), we perform a characteristic decomposition firstly, i.e., let V = L(U∗(0))U,

where V is the characteristic variable. Then, we have the equation

Vt + Λ(U∗(0))Vx̂ = RHSV = L(U∗(0))(BUx̂x̂ + Res). (2.45)

At the boundary Pa, we have

L(U∗(0))G̃′(tn) =
D

Dt
V = Vt + Vx̂ûb + Vŷv̂b,

with (
ûb
v̂b

)
=

(
cosα sinα
− sinα cosα

)(
ub
vb

)
.

Therefore, we have

(Λ(U∗(0))− ûbI)Vx = −L(U∗(0))G̃′(tn) + RHSV + Vŷv̂b. (2.46)

Similar to the one-dimensional case, we set:

(Vi)
∗(1) = (ωi)

(1)
ilw · (Vi)

∗(1)
ilw + (ωi)

(1)
ext · (Vi)

∗(1)
ext , i = 1, . . . ,m, (2.47)
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where

(ωi)
(1)
ilw =

(λi(U
∗(0))− ûb)2h2

(λi(U∗(0))− ûb)2h2 + (3ε+ µ)2
,

(ωi)
(1)
ext = 1− (ωi)

(1)
ilw =

(3ε+ µ)2

(λi(U∗(0))− ûb)2h2 + (3ε+ µ)2
,

(2.48)

with εi = max{|εi(U∗(0))|}, µ = 10−6 and h =
√

∆x2 + ∆y2. In particular, we set

(ωi)
(1)
ilw · (Vi)

∗(1)
ilw = (ωi)

(1)
ilw · (Vi)

∗(1)
ext (2.49a)

for λi(U
∗(0))− ûb ≥ 0, and

(ωi)
(1)
ilw · (Vi)

∗(1)
ilw =

(λi(U
∗(0))− ûb)h2

(λi(U∗(0))− ûb)2h2 + (3ε+ µ)2

(
−li(U

∗(0)) · G̃′(tn) + RHSVi + (Vi)ŷv̂b

)
,

(2.49b)

for λi(U
∗(0)) − ûb < 0. All the derivatives in RHSVi and (Vi)ŷ are constructed by

extrapolation. Finally,

U∗(1) = L−1(U∗(0))V∗(1).

As for U∗(2), let W = CU, then we have

Wt −D(U∗(0))Wx̂x̂ = RHSW = C(U∗(0))[Res−A(U∗(0))Ux̂]. (2.50)

Since

Wt = C(U∗(0))G′(tn)−Wx̂ûb −Wŷv̂b,

we have

D(U∗(0))Wxx = C(U∗(0))G′(tn)−Wx̂ûb −Wŷv̂b −RHSW . (2.51)

Therefore, we give the convex combination

(Wi)
∗(2) = (ωi)

(2)
ilw · (Wi)

∗(2)
ilw + (ωi)

(2)
ext · (Wi)

∗(2)
ext , (2.52)

where

(ωi)
(2)
ilw·(Wi)

∗(2)
ilw =

9ε2i (U
∗(0))

(α + µ)2h2 + 9εi(U∗(0))2

(
ci(U

∗(0)) ·G′(tn)− (Wi)x̂ûb − (Wi)ŷv̂b −RHSWi
)
,

(2.53)

18



and

(ωi)
(2)
ext =

(α + µ)2h2

(α + µ)2h2 + 9ε2i (U
∗(0))

. (2.54)

Here, α = maxi{|λi(U∗(0))− ûb|}, µ = 10−6 and h =
√

∆x2 + ∆y2. Finally,

U∗(2) = C−1(U∗(0))W∗(2).

As before, when we use the third order TVD Runge-Kutta to update our solution,

in order to maintain the third order accuracy, we should modify the boundary condition

at the two intermediate stages t(1) and t(2) via (2.19). So we should obtain the values of

Ut|t=tn , Utt|t=tn at the boundary Pa.

As we know

G̃′(tn) = (Ut + Ux̂ûb + Uŷv̂b)|(x,y)=Pa,t=tn . (2.55)

Replace Ux̂ by U∗(1), then we have an approximation of Ut|(x,y)=Pa,t=tn as

Ut|(x,y)=Pa,t=tn = G′(tn)−U∗(1)ûb −Uŷ|(x,y)=Pa,t=tn v̂b. (2.56)

Also,

G̃′′(tn) =
∂ûb
∂t

Ux̂ +
∂v̂b
∂t

Uŷ + û2
bUx̂x̂ + 2ûbv̂bUx̂ŷ + v̂2

bUŷŷ+

2(ûbUtx̂ + v̂bUtŷ) + Utt,

(2.57)

where (∂ûb
∂t
, ∂v̂b
∂t

) is the acceleration of the moving boundary. So, we have

Utt|(x,y)=Pa,t=tn = G̃′′(tn)−
(
∂ûb
∂t

Ux̂ +
∂v̂b
∂t

Uŷ + û2
bUx̂x̂ + 2ûbv̂bUx̂ŷ + v̂2

bUŷŷ+

2(ûbUtx̂ + v̂bUtŷ)) ,

(2.58)

where Ux̂, Uŷ, Ux̂x̂, Ux̂ŷ, and Uŷŷ have been obtained at time level tn. Therefore, we

only need to deal with two mixed derivative terms Utx̂ and Utŷ. Note that the value of

(Ut)i,j is already known at every grid point inside the computational domain in the first

stage of RK, so Utx̂ and Utŷ can be obtained by linear extrapolation, because we only

require first-order accuracy of Utt|(x,y)=Pa,t=tn to obtain the overall third-order accuracy

for the scheme.
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3 Application to moving rigid body in viscous flows

3.1 Problem description

We consider the two-dimensional Navier-Stokes (NS) equation,

Wt + F(W)x + G(W)y =
1

Re
(S1(W)x + S2(W)y) , x = (x, y) ∈ Ω(t), (3.1)

where

W =


ρ
ρu
ρv
E

 , F(W) =


ρu

ρu2 + p
ρuv

u(E + p)

 , G(W) =


ρv
ρuv

ρv2 + p
v(E + p)

 . (3.2)

Here, ρ, u = (u, v)T , p and E represent the density, velocity, pressure and total energy

per volume, respectively. An equation of state relates the pressure and the other variables

is given

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
. (3.3)

Here, γ is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.

The terms on the right hand side of (3.1) are in the form of

S1(W) =


0
τ11

τ21

σ1

 , S2(W) =


0
τ12

τ22

σ2

 ,

with the components of the viscous stress tensor given by

τ11 =
4

3
ux −

2

3
vy,

τ22 =
4

3
vy −

2

3
ux,

τ12 = τ21 = vx + uy,

(3.4)

and

σ1 = u τ11 + v τ12 +
(c2)x

(γ − 1)Pr
,

σ2 = u τ21 + v τ22 +
(c2)y

(γ − 1)Pr
.

(3.5)

Here, Pr is the Prandtl number, Re is the Reynolds number, T = p/ρ is the temperature,

and c =
√
γp/ρ is the sound speed.
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We consider a moving rigid body in viscous flows, with the isothermal no-slip wall

boundary condition on the boundary of the rigid body Γ(t) ⊂ ∂Ω(t), which can be written

as: u = Vb,

T = Tb,
(3.6)

where, Vb = (ub, vb)
T is the boundary velocity, Tb is the temperature of the boundary,

and n is normal vector point to the rigid body from the fluid.

Suppose the motion of a rigid body is induced by the viscous flow. Both translation

and rotation of the body should be taken into account. For each point Xb = (xb, yb) ∈

Γ(t), the velocity is given as

Vb = Vtr + ω × r,

where, Vtr is the translational velocity, ω is the rotation velocity, and r is the vector

from the boundary point to the centroid of the rigid body. Since the motion of a rigid

body is induced by the fluid, Vtr and ω satisfy the equations

dXb

dt
= Vb,

dVtr

dt
= atr,

dω

dt
= aθ, (3.7)

with the translational acceleration atr and rotational acceleration aθ determined by New-

ton’s second law and rotational law respectively.

Matr =

∮
Γ(t)

(pn− τ · n) dS,

Iaθ =

∮
Γ(t)

r× (pn− τ · n) dS.

(3.8)

Here, M is the rigid body mass and I is the moment. The matrix τ is defined as

τ = 1
Re

[τi,j]2×2.

3.2 Numerical schemes

Again, we assume the domain Ω(t) is covered by a fixed Cartesian mesh with uniform

mesh sizes ∆x and ∆y in each direction. The semi-discrete scheme of the NS equations

(3.1) is given as

dWi,j(t)

dt
+

F̂i+1/2,j − F̂i−1/2,j

∆x
+

Ĝi,j+1/2 − Ĝi,j−1/2

∆y
= Si,j. (3.9)
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where F̂i+1/2,j and Ĝi,j+1/2 are numerical fluxes obtained by the third order finite dif-

ference WENO scheme. For the right hand term Si,j, we use fourth order central finite

difference scheme. Specifically, the three different types of derivatives are given below as

examples:

∂f

∂x
|i,j =

1

12∆x
(fi−2,j − 8fi−1,j + 8fi+1,j − fi+2,j),

∂2f

∂x2
|i,j =

1

12∆x2
(−fi−2,j + 16fi−1,j − 30fi,j + 16fi+1,j − fi+2,j),

∂2f

∂x∂y
|i,j =

1

144∆x∆y
((fi−2,j−2 − 8fi−1,j−2 + 8fi+1,j−2 − fi+2,j−2)

− 8(fi−2,j−1 − 8fi−1,j−1 + 8fi+1,j−1 − fi+2,j−1)

+ 8(fi−2,j+1 − 8fi−1,j+1 + 8fi+1,j+1 − fi+2,j+1)

− (fi−2,j+2 − 8fi−1,j+2 + 8fi+1,j+2 − fi+2,j+2)).

(3.10)

Again, we use the TVD Runge-Kutta method (2.3) for the time discretization.

At time level tn, to make the interior finite difference scheme work, we need to define

values of ghost points near the boundary. As before, assume Pij is a ghost point near

the boundary and Pa is its pedal on the boundary. With the same rotation as in (2.39),

let (
x̂
ŷ

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
, û =

(
û
v̂

)
=

(
cosα sinα
− sinα cosα

)(
u
v

)
.

The Dirichlet boundary conditions are given for the velocity û and the temperature

T , so we rewrite the equation (3.1) with respect to the new variables:

Û = (ρ, û, v̂, T )T ,

and then we get following system

Ût + A(Û)Ûx̂ = B(Û)Ûx̂x̂ + Res, (3.11)

where

A(Û) =


û ρ 0 0
T
ρ

û 0 1

0 0 û 0
0 (γ − 1)T 0 û

 , B(Û) =


0 0 0 0
0 4

3Re·ρ 0 0

0 0 1
Re·ρ 0

0 0 0 γ
Pr·Re·ρ

 , (3.12)
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and

Res =


Res1

Res2

Res3

Res4

 =


−ρv̂ŷ − v̂ρŷ

1
Re·ρ(ûŷŷ + 1

3
v̂x̂ŷ − v̂ûŷ)

1
Re·ρ(4

3
v̂ŷŷ + 1

3
ûx̂ŷ − 1

ρ
Pŷ − v̂v̂ŷ)

γ
Re·ρ·PrTŷŷ +NLT

 , (3.13)

with

NLT =
γ − 1

Re · ρ

(
−2

3
(ûx̂ + v̂ŷ + 2(û2

x̂ + v̂2
ŷ) + 2(v̂x̂ + ûŷ)

2)

)
.

Here, the matrix A(Û) is diagonalizable,

A(Û) = L−1(Û)Λ(Û)L(Û),

with Λ(Û) = diag{û− c, û, û, û+ c}.

From the previous analysis, we know that the material derivative operator D
Dt

=

∂
∂t

+ û ∂
∂x̂

+ v̂ ∂
∂ŷ

plays an important role in our moving boundary treatment. Applying

the material derivative operator to the boundary condition, we have

DTb
Dt

= 0, and
Du

Dt
=
DVb

Dt
.

Here, DVb

Dt
is the acceleration of the rigid body. On the other hand, with the material

derivative operator, the original NS equations can be written in the following form:

Dρ

Dt
+ ρ(ûx̂ + v̂ŷ) = 0,

Dû

Dt
+

1

ρ
px̂ =

1

Reρ
(
4

3
ûx̂x̂ + ûŷŷ +

1

3
v̂x̂ŷ),

Dv̂

Dt
+

1

ρ
pŷ =

1

Reρ
(v̂x̂x̂ +

4

3
v̂ŷŷ +

1

3
ûx̂ŷ),

DT

Dt
+ (γ − 1)T (ûx̂ + v̂ŷ) =

γ

ρRePr
(Tx̂x̂ + Tŷŷ) +NLT.

(3.14)

These would be used in our boundary treatment later.

Since the point value at the ghost point Pi,j is obtained through a third order Taylor

expansion in the x̂-direction, approximations of the normal derivatives with suitable

orders of accuracy are needed

Û∗(m) ≈ ∂mx̂ Û|Pa , m = 0, 1, 2.
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As before, we use the notations (·)ilw and (·)ext to denote derivatives obtained through

the ILW procedure and the extrapolation respectively.

Firstly, we perform a local characteristic decomposition at Pa. However, different

from the discussion in Section 2, we do not have the value of all components of Û on

the boundary Γ(t). Hence, we will use the extrapolation approximation Û
∗(0)
ext in the

characteristic decomposition. Let V = L(Û
∗(0)
ext )Û. We can see that the components

V2, · · · , V4 are the outflow variables, and V1 is the inflow variable.

To construct Û∗(0), notice that we already know the value of û and T at the boundary

Γ(t) given the boundary conditions, so we set

(Û2)∗(0) = ûb, (Û3)∗(0) = v̂b, (Û4)∗(0) = Tb. (3.15)

Also, we can build the following relation since V4 is outgoing,

l4(Û
∗(0)
ext ) · Û∗(0) = V4 = l4(Û

∗(0)
ext ) · Û∗(0)

ext .

Solving this linear system, we can obtain (Û1)∗(0) as following,

(Û1)∗(0) = (Û1)
∗(0)
ext

2 (Û4)
∗(0)
ext − (Û4)∗(0) +

√
γ · (Û4)

(0)
ext

(
(Û2)

∗(0)
ext − (Û2)∗(0)

)
(Û4)

∗(0)
ext

. (3.16)

Next, we try to find Û∗(1). Using the second equation in (3.14), we have

(Û4)∗(0)(Û1)
∗(1)
ilw + (Û1)∗(0)(Û4)

∗(1)
ilw = −(Û1)∗(0)Dûb

Dt
+

1

Re

(
4

3
ûx̂x̂ + ûŷŷ +

1

3
v̂x̂ŷ

)
.

For the outflow variables V2, . . . , V4, we have relations

lj · Û∗(1)
ilw = (Vj)

∗(1)
ext , j = 2, 3, 4.

Hence, we can get Û
∗(1)
ilw by solving the above system. We apply combination (2.47) to

get Û∗(1), which can be written as

(V̂1)∗(1) =
c2h2

c2h2 + 9ε2
(V̂1)

∗(1)
ilw +

9ε2

c2h2 + 9ε2
(V̂1)

∗(1)
ext ,

(V̂j)
∗(1) = (V̂j)

∗(1)
ext j = 2, 3, 4,
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with ε = max{ 1
Reρ

, 4
3Reρ

, γ
PrReρ

} and h =
√

∆x2 + ∆y2.

Notice that (V̂j)
∗(1)
ilw = (V̂j)

∗(1)
ext , j = 2, 3, 4 for the outflow characteristic variables. The

second equation can be written as

(V̂j)
∗(1) = (V̂j)

∗(1)
ext =

c2h2

c2h2 + 9ε2
(V̂j)

∗(1)
ilw +

9ε2

c2h2 + 9ε2
(V̂j)

∗(1)
ext j = 2, 3, 4.

Therefore, we set

Û∗(1) =
c2h2

c2h2 + 9ε2
Û
∗(1)
ilw +

9ε2

c2h2 + 9ε2
Û
∗(1)
ext . (3.17)

Finally, we will construct Û∗(2). According to the boundary conditions and (3.14),

the second derivative (Û2)
∗(2)
ilw , . . . , (Û4)

∗(2)
ilw can be set as:

(Û2)
∗(2)
ilw =

3Re · ρ
4

(
Dûb
Dt

+
1

ρ
px̂ −

1

Re · ρ
(ûŷŷ +

1

3
v̂x̂ŷ)

)
,

(Û3)
∗(2)
ilw = Re · ρ

(
Dv̂b
Dt

+
1

ρ
pŷ −

1

Re · ρ
(
4

3
v̂ŷŷ +

1

3
ûx̂ŷ)

)
,

(Û4)
∗(2)
ilw =

Re · ρ · Pr
γ

(
DTb
Dt

(γ − 1)T (ûx̂ + v̂ŷ)−
γ

Re · ρ · Pr
Tŷŷ −NLT

)
.

All the derivatives on the right hand side can be obtained by extrapolation. Note that,

there is no diffusion term in the first equation of (3.14), so we just take

(Û1)
∗(2)
ilw = (Û1)

∗(2)
ext .

Finally, we combine (·)ilw and (·)ext as

(Ûj)
∗(2) =

c2h2

c2h2 + 9ε2j
(Ûj)

∗(2)
ext +

9ε2j
c2h2 + 9ε2j

(Ûj)
∗(2)
ilw , (3.18)

where {ε1, ε2, ε3, ε4} = {0, 4
3Reρ

, 1
Reρ

, γ
PrReρ

}.

4 Numerical examples

In this section, we show some numerical examples to demonstrate that our method is

stable and high order accurate if the solution is smooth. Our method also performs well
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for problems involving interactions between shocks and moving rigid bodies. We test

all examples with the third order boundary treatment. The third order finite difference

WENO approximation and fourth order central approximation are employed to discretize

the convection terms and diffusion terms, respectively.

4.1 Accuracy tests

Example 1. We now consider the one-dimensional linear convection-diffusion equation

ut + cux = εuxx, x ∈ (xl(t), xr(t)), t > 0,

u(xl(t), t) = gl(t), t > 0,

u(xr(t), t) = gr(t), t > 0,

u(x, 0) = sin x, x ∈ (xl(t), xr(t)).

We take the left boundary as a continuous piecewise polynomial

xl(t) =


t4 − 2t3 +

3t2

2
− 1

2
, 0 ≤ t ≤ 1

2
1

2
t− 9

16
, t >

1

2
,

and the right moving boundary xr(t) = 0.5 + 0.5 sin2(t). The functions gl(t) and gr(t)

are given such that we have the exact solution u(x, t) = e−εt sin(x− ct).

We take different pairs of (c, ε) to test the accuracy and stability of our algorithm for

pure convection, convection-dominated, diffusion-dominated, and pure diffusion cases.

In all situations, the time step is taken as

∆t = min

(
0.6

|c|/∆x+ 6ε/∆x2
,

∆x

max(|x′l(t)|, |x′r(t)|)

)
.

The numerical results at the final time tend = 1.0 are listed in Table 1. Especially, for

the cases of pure convection and convection-dominated, we set c = 0.5, such that the

situation f ′(u(gl(t))) − x′l(t) = 0 will occur during our computation when t > 1
2
. It can

be seen from the table that the algorithm we have constructed is stable under different

convection-diffusion coefficients and can achieve the expected third order accuracy, which

demonstrates that our method performs well in all situations.
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Table 1: Example 1: errors and convergence orders at tend = 1.0.

Pure convection: (c, ε) = (0.5, 0)

h L1 error order L∞ error order

1/20 6.911E-006 – 4.879E-005 –

1/40 9.476E-007 2.866 1.042E-005 2.226

1/80 1.251E-007 2.920 2.141E-006 2.284

1/160 1.419E-008 3.139 3.633E-007 2.559

1/320 1.372E-009 3.370 5.401E-008 2.749

1/640 9.554E-011 3.844 5.828E-009 3.212

1/1280 4.676E-012 4.352 4.238E-010 3.781

Convection-dominated: (c, ε) = (0.5, 0.01)

h L1 error order L∞ error order

1/20 3.474E-006 – 1.604E-005 –

1/40 6.553E-007 2.406 5.049E-006 1.667

1/80 8.728E-008 2.908 4.939E-007 3.353

1/160 1.122E-008 2.958 7.195E-008 2.779

1/320 1.213E-009 3.209 9.803E-009 2.875

1/640 1.093E-010 3.472 1.310E-009 2.902

1/1280 1.013E-011 3.431 1.687E-010 2.957

Diffusion-dominated: (c, ε) = (0.01, 0.5)

h L1 error order L∞ error order

1/20 6.536E-006 – 3.540E-005 –

1/40 9.689E-007 2.753 4.172E-006 3.085

1/80 1.104E-007 3.132 4.769E-007 3.128

1/160 1.449E-008 2.930 9.401E-008 2.342

1/320 1.809E-009 3.001 8.270E-009 3.506

1/640 2.262E-010 2.999 1.454E-009 2.507

1/1280 2.903E-011 2.961 1.426E-010 3.349

Pure diffusion: (c, ε) = (0, 0.5)

h L1 error order L∞ error order

1/20 6.642E-006 – 3.542E-005 –

1/40 9.678E-007 2.778 4.168E-006 3.086

1/80 1.109E-007 3.124 4.787E-007 3.122

1/160 1.453E-008 2.932 9.411E-008 2.346

1/320 1.817E-009 2.999 8.285E-009 3.505

1/640 2.273E-010 2.998 1.456E-009 2.507

1/1280 2.850E-011 2.995 1.425E-010 3.353
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Example 2. Next, we consider the following viscous Burgers’ equation:

ut + uux = ε uxx, x ∈ (xl(t), xr(t)), t > 0,

u(xl(t), t) = gl(t), t > 0,

u(xr(t), t) = gr(t), t > 0,

u(x, 0) = 0.5− 0.5 tanh((x− 0.5)/4ε), x ∈ (xl(t), xr(t)).

Boundary conditions gl(t) and gr(t) are given such that the exact solution is u(x, t) =

0.5− 0.5 tanh((x− 0.5− 0.5t)/4ε). The exact solution contains a sharp interface located

at xr(t) = 0.5 + 0.5t for small ε. The time step is taken as

∆t = min(
0.6

max |uj|/∆x+ 6ε/∆x2
,

∆x

max(|x′l(t)|, |x′r(t)|)
)

We simulate cases with different ε and moving boundary

xl(t) = −0.5 + 0.5t, xr(t) = 0.5 + 0.5t,

or

xl(t) = −0.5 + 0.5 sin2(t), xr(t) = 0.5 + 0.5 sin2(t).

The numerical results of ε = 1.0 and 0.01 at the final time tend = 1.0 are listed in Table

2. We can observe that the scheme achieves third order accuracy eventually with mesh

refinements. Moreover, in Figure 2, we plot the numerical results of four different ε with

xl(t) = −0.5 + 0.5t, xr(t) = 0.5 + 0.5t and h = 1/160. We can see that a very sharp

interface appears near boundary as ε goes to zero without obvious spurious oscillation,

demonstrating the non-oscillatory property of our boundary treatment.

Example 3. Now, we test the 1D linear system

Ut + AUx = BUxx + S, x ∈ (xl(t), xr(t)), t > 0,

U(xl(t), t) = Gl(t), t > 0,

U(xr(t), t) = Gr(t), t > 0,

U(x, 0) = U0(x), x ∈ (xl(t), xr(t)).
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Figure 2: Example 2: Numerical solutions for different ε with xl(t) = −0.5 + 0.5t,
xr(t) = 0.5 + 0.5t and h = 1/160 at tend = 1.0.

We consider the moving boundaries as xl(t) = −0.5+0.5t and xr(t) = 0.5+0.5t. Here, A

is a diagonalizable matrix and B is a diagonal matrix with positive elements. Specifically,

we take

A = A1 =

(
3 0.5

0.5 2

)
or A = A2 =

(
1 0.5

0.5 10−6

)
, and B =

(
b11 0
0 b22

)
,

with (b11, b22) = (0.8, 1), (10−5, 10−6) and (0, 0), corresponding to the convection-diffusion

case, convection-dominant case and pure convection case, respectively. Proper source

term S is given such that exact solution is

U =

(
e−b11t sin(x− a11t)
e−b22t cos(x− a22t)

)
.

For this example, the time step is taken as

∆t = min

(
0.6

σ(A)/∆x+ 6σ(B)/∆x2
,

∆x

max(|x′l(t)|, |x′r(t)|)

)
.

where the notation σ(·) means the spectral radius of the matrix. The numerical results
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Table 2: Example 2: errors and convergence orders at tend = 1.0

xl(t) = −0.5 + 0.5t, xr(t) = 0.5 + 0.5t.

ε = 0.01 ε = 1.0

h L1 error order L∞ error order L1 error order L∞ error order

1/20 6.126E-003 – 0.111 – 1.510E-007 – 7.403E-007 –

1/40 1.889E-003 1.697 4.938E-002 1.169 1.792E-008 3.075 9.495E-008 2.962

1/80 4.431E-004 2.091 1.226E-002 2.009 2.191E-009 3.031 1.201E-008 2.982

1/160 7.377E-005 2.586 2.030E-003 2.595 2.696E-010 3.023 1.510E-009 2.991

1/320 9.893E-006 2.898 2.757E-004 2.880 3.328E-011 3.018 1.894E-010 2.995

1/640 1.195E-006 3.049 3.392E-005 3.023 4.154E-012 3.001 2.372E-011 2.997

xl(t) = −0.5 + 0.5 sin2(t), xr(t) = 0.5 + 0.5 sin2(t).

ε = 0.01 ε = 1.0

h L1 error order L∞ error order L1 error order L∞ error order

1/20 2.593E-006 — 4.729E-005 – 1.521E-007 – 6.727E-007 –

1/40 7.065E-007 1.876 1.773E-005 1.414 1.801E-008 3.077 7.508E-008 3.163

1/80 2.219E-007 1.670 9.502E-006 0.900 2.076E-009 3.117 9.274E-009 3.017

1/160 5.637E-008 1.976 2.634E-006 1.850 2.366E-010 3.132 1.606E-009 2.528

1/320 9.503E-009 2.568 5.490E-007 2.262 3.206E-011 2.884 1.460E-010 3.460

1/640 1.355E-009 2.809 1.037E-007 2.403 3.811E-012 3.072 2.470E-011 2.563

1/1280 1.845E-010 2.877 1.236E-008 3.069 – – – –

at tend = 1.0 are listed in Table 3 and Table 4. We can observe the designed third order

accuracy for all cases.

Example 4. Now we consider the Navier-Stokes equations with additional source terms

so that we have an explicit exact solution to test accuracy. The modified system is

ρt + (ρu)x = f1(x, t),

(ρu)t + (ρu2 + p)x =
1

Re

(
4

3
u

)
xx

+ f2(x, t),

Et + (u(E + p))x =
1

Re

(
2

3
(u2)xx +

c2

(γ − 1)Pr

)
+ f3(x, t),

(4.1)

with xl(t) = −0.5− 0.5t and xr(t) = 0.5− 0.5t. The exact solution is

ρ(x, t) =
esin t

1 + 3x2
, u(x, t) = 1 + 3x2, p(x, t) = pre.

We consider the cases that Re = 100, 106 and pre = 0.5, 10 to demonstrate the ef-

fectiveness of our algorithm. We investigate the error of the numerical solutions with
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Table 3: Example 3: errors and convergence orders at tend = 1.0, for A = A1.

Convection-diffusion case

N L1 error order L∞ error order

20 3.405E-005 – 1.374E-004 –

40 4.868E-006 2.806 1.911E-005 2.847

80 6.533E-007 2.898 2.536E-006 2.913

160 8.477E-008 2.946 3.283E-007 2.950

320 1.078E-008 2.975 4.187E-008 2.971

640 1.357E-009 2.990 5.298E-009 2.983

1280 1.675E-010 3.018 6.672E-010 2.989

Convection-dominated case

N L1 error order L∞ error order

20 8.887E-005 – 2.762E-004 –

40 1.092E-005 3.025 3.525E-005 2.970

80 1.374E-006 2.991 4.578E-006 2.945

160 1.708E-007 3.008 5.898E-007 2.957

320 2.130E-008 3.003 7.335E-008 3.007

640 2.656E-009 3.003 9.301E-009 2.979

1280 3.315E-010 3.002 1.157E-009 3.007

Pure convection case

N L1 error order L∞ error order

20 8.887E-005 – 2.762E-004 –

40 1.092E-005 3.025 3.523E-005 2.971

80 1.371E-006 2.993 4.572E-006 2.946

160 1.705E-007 3.007 5.850E-007 2.966

320 2.135E-008 2.998 7.300E-008 3.002

640 2.671E-009 2.999 9.342E-009 2.966

1280 3.337E-010 3.000 1.156E-009 3.014

respect to the density ρ. The numerical results at tend = 1.0 are listed in Table 5. We

can observe third order accuracy for all the choices of Reynolds numbers and pressure.

The time step is taken as

∆t = min

(
0.6

λc/∆x+ λd/∆x2
,

∆x

max(|x′l(t)|, |x′r(t)|)

)
,

with λc = max
j
|uj|+ c and λd = max( 1

Reρ
, 4

3Reρ
, γ
Pr Re ρ

).
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Table 4: Example 3: errors and convergence orders at tend = 1.0, for A = A2.

Convection-diffusion case

N L1 error order L∞ error order

20 3.375E-005 – 1.627E-004 –

40 3.822E-006 3.142 2.132E-005 2.931

80 4.559E-007 3.067 2.731E-006 2.964

160 5.579E-008 3.030 3.455E-007 2.982

320 6.862E-009 3.023 4.345E-008 2.991

640 8.472E-010 3.017 5.448E-009 2.995

1280 1.053E-010 3.007 6.822E-010 2.997

Convection-dominated case

N L1 error order L∞ error order

20 9.830E-005 – 2.892E-004 –

40 1.200E-005 3.033 3.962E-005 2.867

80 1.520E-006 2.981 5.218E-006 2.924

160 1.917E-007 2.987 6.681E-007 2.965

320 2.408E-008 2.992 8.368E-008 2.997

640 2.972E-009 3.018 1.029E-008 3.023

1280 3.336E-010 3.154 1.167E-009 3.140

Pure convection case

N L1 error order L∞ error order

20 9.841E-005 – 2.896E-004 –

40 1.202E-005 3.032 3.972E-005 2.865

80 1.526E-006 2.978 5.248E-006 2.920

160 1.933E-007 2.981 6.726E-007 2.963

320 2.453E-008 2.978 8.589E-008 2.969

640 3.110E-009 2.979 1.082E-008 2.987

1280 3.930E-010 2.984 1.363E-009 2.989

Example 5. Now we consider the 2D linear convection-diffusion equation
ut + ux + uy = ε(uxx + uyy), (x, y) ∈ Ωi(t), t > 0,

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ωi(t), t > 0,

u(x, y, 0) = sin x sin y, (x, y) ∈ Ωi(t),
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Table 5: Example 4: errors and convergence orders at tend = 1.0.

Re = 100

pre = 0.5 pre = 10

h L1 error order L∞ error order L1 error order L∞ error order

1/10 3.154E-003 – 1.972E-002 – 2.478E-003 – 9.677E-003 –

1/20 6.053E-004 2.381 2.578E-003 2.935 1.837E-004 3.753 1.139E-003 3.086

1/40 1.024E-004 2.562 4.245E-004 2.602 2.078E-005 3.144 1.213E-004 3.230

1/80 1.554E-005 2.721 5.607E-005 2.920 5.331E-006 1.963 2.918E-005 2.056

1/160 2.169E-006 2.840 7.163E-006 2.968 9.853E-007 2.435 5.185E-006 2.492

1/320 2.887E-007 2.909 9.518E-007 2.911 1.479E-007 2.735 7.300E-007 2.828

1/640 3.746E-008 2.946 1.256E-007 2.921 2.064E-008 2.840 9.317E-008 2.969

Re = 106

pre = 0.5 pre = 10

h L1 error order L∞ error order L1 error order L∞ error order

1/10 3.564E-003 – 1.922E-002 – 3.220E-003 – 1.172E-002 –

1/20 4.996E-004 2.834 2.777E-003 2.791 2.782E-004 3.532 1.263E-003 3.214

1/40 7.676E-005 2.702 7.178E-004 1.951 2.533E-005 3.457 1.185E-004 3.413

1/80 1.235E-005 2.635 1.128E-004 2.669 2.698E-006 3.230 1.222E-005 3.277

1/160 1.682E-006 2.875 2.052E-005 2.459 3.153E-007 3.097 1.472E-006 3.053

1/320 2.083E-007 3.013 3.078E-006 2.736 3.847E-008 3.034 1.854E-007 2.989

1/640 2.487E-008 3.066 3.003E-007 3.357 4.749E-009 3.018 2.330E-008 2.992

with the following three moving boundaries

Ω1(t) = {(x, y)T : (x− 0.5t)2 + (y − 0.5t)2 < 0.5},

Ω2(t) = {(x, y)T : (x)2 + (y)2 < 0.5− 0.2t},

Ω3(t) = {(x, y)T : (x)2 + (y)2 < 0.5 + 0.2t}.

Also, different diffusion coefficients ε = 0.1 and 10−3 are considered. We give specific

boundary conditions g(x, y, t) so that the exact solution is u(x, y, t) = e−2εt sin(x −

t) sin(y− t). The numerical results at tend = 1.0 are listed in Table 6, with the time step

∆t = min

(
0.6

1/∆x+ 1/∆y + ε(1/∆x2 + 1/∆y2)
,

∆x

max
∂Ω

(|ub|)
,

∆y

max
∂Ω

(|vb|)

)
.

Again, our scheme is stable and can achieve the designed third order accuracy for all

cases.
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Table 6: Example 5: errors and convergence orders at tend = 1.0.

moving boundary Ω1(t)

ε = 0.1 ε = 10−3

N L1 error order L∞ error order L1 error order L∞ error order

20 2.344E-005 – 1.224E-004 – 1.209E-004 – 2.134E-003 –

40 3.891E-006 2.591 2.242E-005 2.448 8.540E-006 3.823 1.305E-004 4.031

80 5.856E-007 2.732 3.625E-006 2.629 7.341E-007 3.540 4.435E-006 4.878

160 7.536E-008 2.958 4.770E-007 2.925 7.063E-008 3.377 8.651E-007 2.358

320 9.711E-009 2.956 6.481E-008 2.879 4.112E-009 4.102 5.356E-008 4.013

moving boundary Ω2(t)

ε = 0.1 ε = 10−3

N L1 error order L∞ error order L1 error order L∞ error order

20 3.081E-005 – 2.613E-004 – 6.234E-005 – 1.124E-003 –

40 3.428E-006 3.168 2.841E-005 3.200 3.331E-006 4.226 9.606E-005 3.549

80 1.757E-007 4.285 3.064E-006 3.212 3.199E-007 3.380 3.916E-006 4.616

160 2.564E-008 2.777 4.033E-007 2.925 3.580E-008 3.159 6.672E-007 2.553

320 3.097E-009 3.049 5.502E-008 2.873 3.809E-009 3.232 6.652E-008 3.326

moving boundary Ω3(t)

ε = 0.1 ε = 10−3

N L1 error order L∞ error order L1 error order L∞ error order

20 2.233E-004 – 7.493E-004 – 3.124E-004 – 1.956E-003 –

40 8.014E-005 1.478 2.343E-004 1.677 4.029E-005 2.954 3.794E-004 2.366

80 1.907E-005 2.070 6.339E-005 1.886 6.524E-006 2.626 5.687E-005 2.737

160 4.968E-007 5.262 2.538E-006 4.642 2.170E-007 4.909 1.244E-006 5.513

320 3.821E-008 3.700 1.774E-007 3.838 1.519E-008 3.836 1.008E-007 3.624

4.2 Interaction between shocks and moving rigid bodies

In the following three examples, the time step ∆t is taken as

∆t = min

(
0.6

λx/∆x+ λy/∆y + λd(1/∆x2 + 1/∆y2)
,

∆x

max(|ub|)
,

∆y

max(|vb|)

)
,

with λx = max
ij
|ui,j|+ c, λy = max

ij
|vi,j|+ c, and λd = max( 1

Reρ
, 4

3Reρ
, γ
Pr Re ρ

).

Example 6. This example is the viscous flow version of Example 5 in [23] and Example

2 in [4]. We consider the interaction of shock wave and cylinder in a two-dimensional

viscous fluid. The computational domain is [0, 1]×[0, 0.2]. The horizontally moving shock
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wave is initially placed at the position of x = 0.08. A cylinder with radius Rb = 0.05

and surface density σ = 10.77 is immersed in the fluid, and the initial center position is

(0.15, 0.05). The initial state is shown in Figure 3, where, ρR = 1.4, uR = vR = 0 and

Figure 3: The initial state of Example 6.

pR = 1.0. For the left side of the initial shock wave, we set

ρL =
Ma2

sγ

1.+ (Ma2
s − 1)γ−1

γ+1

,

uL =
2(Mas − 1

Mas
)

γ + 1
,

vL = 0,

pL = 1 +
2γ(Ma2

s − 1)

γ + 1
,

where Mas is the Mach number of the shock wave.

The governing equation is a dimensionless compressible Navier-Stokes equation. The

left boundary and the right boundary of the computational domain are the inflow bound-

ary and the outflow boundary, respectively. The upper and lower boundaries are reflec-

tive boundaries. The classical boundary treatments are applied on these outer lines.

On the cylindrical wall Γ(t), the isothermal no-slip wall boundary condition (3.6) is em-

ployed with the cylinder wall temperature Tb = 5
7

(which is the temperature of the flow

field at the right side of the initial shock). In our computation, Pr = 0.7 and γ = 1.4.

We test the problem with different Re and Mach number Mas under ∆x = ∆y = 1
640

.

Pressure p and velocity magnitude ‖u‖ at different times are shown in Figure 4 - Figure

7. It is observed that our scheme is stable for all cases.
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(a) Re=107, t=0.16410 (b) Re=107, t=0.30085

(c) Re=1000, t=0.16410 (d) Re=1000, t=0.30085

(e) Re=500, t=0.16410 (f) Re=500, t=0.30085

Figure 4: Example 6: Pressure contours (53 contours from 2 to 28), Mas = 3

(a) Re=107, t=0.07293 (b) Re=107, t=0.16410

(c) Re=1000, t=0.07293 (d) Re=1000, t=0.16410

(e) Re=500, t=0.07293 (f) Re=500, t=0.16410

Figure 5: Example 6: Pressure contours (53 contours from 2 to 108), Mas = 6

For Re = 1000 and Mas = 3, the trajectory of the center under grids of different

scales is shown in Figure 8. We can see that as the mesh is refined, the position of the

center converges.

Example 7. Next, we replace the cylinder in Example 6 with a two-dimensional airfoil.

Again, the computational domain is [0, 1] × [0, 0.2], and the grid width is ∆x = ∆y =

1/1280. The chord of the airfoil is c0 = 0.1, and the area density is σ=10.77. The

initial centroid position of the airfoil at the initial time is (0.15, 0.05), and the parameter
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(a) Re=107, t=0.07293 (b) Re=107, t=0.16410

(c) Re=1000, t=0.07293 (d) Re=1000, t=0.16410

(e) Re=500, t=0.07293 (f) Re=500, t=0.16410

Figure 6: Example 6: Velocity magnitude contours (53 contours from 0.2 to 3.2), Mas =
3

(a) Re=107, t=0.07293 (b) Re=107, t=0.16410

(c) Re=1000, t=0.07293 (d) Re=1000, t=0.16410

(e) Re=500, t=0.07293 (f) Re=500, t=0.16410

Figure 7: Example 6: Velocity magnitude contours (53 contours from 0.2 to 7.4), Mas =
6

equation of the airfoil is:  x = s+ 0.15

y = f±(s) + 0.05

where s ∈ [−a0c0, c0 − a0c0] and

f±(s) = ±0.6c0(0.2969
√
s0 − 0.126s0 − 0.3516s2

0 + 0.28433s3
0 − 0.1015s4

0)

with s0 = s+a0c0
c0

.

The same as in Example 6, the initial position of the shock wave is x = 0.08. The
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Figure 8: Example 6: The trajectory of the circle center calculated under the grid of
∆x = ∆y = 1/160, 1/320, 1/640, 1/1280.

numerical results at different times, different Re and Mas under the grid of ∆x = ∆y =

1
640

are shown in Figure 9 - Figure 10, and the zoom view around the airfoil are shown in

Figure 11 - Figure 12. No spurious oscillation appears around the surface of the airfoil.

These indicate that our scheme can deal with the non-circle boundary well.

(a) Re=107, t=0.16410. (b) Re=107, t=0.30085.

(c) Re=1000, t=0.16410. (d) Re=1000, t=0.30085.

(e) Re=500, t=0.16410. (f) Re=500, t=0.30085.

Figure 9: Example 7: Pressure contours (53 contours from 2 to 14),Mas = 3

Example 8. Finally, we would like to simulate the Kármán vortex street. Consider

the interaction between the shock wave and the cylinder. The computational domain
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(a) Re=107, t=0.07293. (b) Re=107, t=0.16410.

(c) Re=1000, t=0.07293. (d) Re=1000, t=0.16410.

(e) Re=500, t=0.07293. (f) Re=500, t=0.16410.

Figure 10: Example 7: Pressure contours (53 contours from 2 to 63),Mas = 6

is [0, 4.0] × [0, 1.0], and the mesh is divided into ∆x = ∆y = 1/160. The initial shock

wave position is x = 0.08, with Mach number Mas = 2.0. We set the Reynolds number

as Re = 500. The initial position of the center of the cylinder is (0.2, 0.4), with radius

Rb = 0.05, and the surface density is σ = 5000. The main difference from Example 7 is

that we set upper and lower boundaries as adiabatic no-slip boundary. The numerical

results at different moments are shown in Figure 13 and 14. We can see that our scheme

can simulate the structures well.

5 Conclusion

In this paper we consider the numerical boundary conditions for high order finite differ-

ence schemes on Cartesian meshes to solve convection-diffusion equations in time-varying

complex domains. Our method is an extension of the so-called inverse Lax-Wendroff

procedure proposed in [14] for convection-diffusion equations in static geometries, in

which a convex combination of boundary treatments for the diffusion-dominated and

the convection-dominated cases was developed to obtain a stable and accurate boundary

condition for general convection-diffusion equations. For moving boundaries, we convert

material derivatives to spatial derivatives in the ILW procedure instead of using the Eu-
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lerian time derivatives in the ILW procedure in [14]. Moreover, our methodology gives

a new definition of the weights to avoid zero denominator, such that the algorithm can

be applied to solving pure convection and pure diffusion cases as well. To maintain high

order accuracy in time, we employ the special time matching technique at the two in-

termediate Runge-Kutta stages. New treatment for the mixed derivatives at boundaries

is designed to maintain high order accuracy and to reduce the computational cost. We

also consider interactions between compressible viscous flows and moving rigid bodies.

Numerical results show the high order accuracy and efficiency of our schemes. Our future

work is to extend this method to convection-diffusion equations with Neumann boundary

conditions.
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(a) Re=107, t=0.07293. (b) Re=107, t=0.16410.

(c) Re=1000, t=0.07293. (d) Re=1000, t=0.16410.

(e) Re=500, t=0.07293. (f) Re=500, t=0.16410.

Figure 11: Example 7: Pressure contours around the airfoil (53 contours from 2 to
14),Mas = 3
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(a) Re=107, t=0.07293. (b) Re=107, t=0.16410.

(c) Re=1000, t=0.07293. (d) Re=1000, t=0.16410.

(e) Re=500, t=0.07293. (f) Re=500, t=0.16410.

Figure 12: Example 7: Pressure contours around the airfoil (53 contours from 2 to
63),Mas = 6
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(a) t=1.012 (b) t=7.988

(c) t=15.5077

Figure 13: Example 8: Streamline at different moments
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(a) t=1.012

(b) t=7.988

(c) t=15.5077

Figure 14: Example 8: The contour of vorticity
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