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Abstract

In this paper, a new type of inverse Lax-Wendroff boundary treatment is designed
for high order finite difference schemes for solving general convection-diffusion equations
on time-varying domain. This new method can achieve high order accuracy on Dirich-
let boundary conditions with moving boundary. To ensure stability of the boundary
treatment, we give a convex combination of the boundary treatments for the diffusion-
dominated and the convection-dominated cases. A group convex combination of weights
is carefully designed to avoid zero denominator, resulting in a unified algorithm for pure
convection, convection-dominated, convection-diffusion, diffusion-dominated and pure
diffusion cases. In order to match the time levels when constructing values of ghost
points in the two intermediate stages of the third order Runge-Kutta method, we pro-
pose a new approximation to the mixed derivatives at the boundaries to ensure high
order accuracy and to improve computational efficiency. In particular, we extend the
boundary treatment to the compressible Navier-Stokes equations, which satisfies the
isothermal no-slip wall boundary condition at any Reynolds number. We provide nu-
merical tests for one- and two-dimensional problems involving both scalar equations and
systems, demonstrating that our boundary treatment is high order accurate for prob-
lems with smooth solutions and also performs well for problems involving interactions

between viscous shocks and moving rigid bodies.
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1 Introduction

In this paper, we develop a high order accurate numerical boundary treatment based on
finite difference methods for convection-diffusion equations on complex moving domain.
For such complex geometries, there are two main difficulties for numerical boundary
conditions: one is the wide stencil of the high order finite difference operator, which
requires special treatment for a few ghost points near the boundary. The other one is
that the physical boundary may not coincide with grid points in a Cartesian mesh and
may intersect with the mesh in an arbitrary fashion, then the so-called “cut-cell” problem
[2] may arise, which means that extremely small CFL condition may be required when
the first grid point does not coincide with but is very close to the physical boundary. The
body-fitted grid method can be very accurate for the treatment of boundary conditions
in complex geometries. However, dealing with a moving domain, the mesh needs to
be computed and regenerated at each time step, resulting in a heavy workload. For a
non-body fitted Cartesian (Eulerian) mesh, there are many carefully designed methods,
such as the embedded boundary method [9, 10, 8, 17, 21, 1], and the immersed boundary
method [18, 16, 19, 26, 28].

In this paper, we will focus on the so-called inverse Lax-Wendroff (ILW) method.
This method was first proposed by Tan and Shu in [22] to deal with the inflow boundary
conditions when solving time-dependent hyperbolic conservation laws. The key idea of
the ILW method is repeatedly utilizing the partial differential equations (PDEs) to write
the normal spatial derivatives to the inflow boundary in terms of the time and tangential
derivatives of the given boundary condition. At outflow boundaries, a weighted essen-
tially non-oscillatory (WENO) type extrapolation was designed for the case of shock
waves being close to the boundaries. Then, with these normal derivatives, ghost point
values near the physical boundary can be obtained through Taylor expansions. Due to
the heavy algebra of the ILW procedure for high dimensional nonlinear systems, [25]

developed a simplified ILW (SILW) procedure to reduce the computation complexity,



in which the ILW process is only used for the first few normal derivatives and the less
expensive high order extrapolation is used for the remaining ones. Stability analysis for
both the ILW and the simplified ILW procedures is given in [27, 11], indicating that the
ILW and the simplified ILW procedure can remove the “cut cell” problem effectively.
Recently, [5] modified the numerical fluxes near boundaries to achieve mass conservation
in non-rectangular domains, and [15] defined the unknown variables and the fluxes on
the ghost points separately such that it can deal with hyperbolic conservation laws with
changing wind direction on the boundary. Besides, this procedure and analysis have
been explored and developed further to other equations, such as the Boltzmann type
equation [6] and convection-diffusion equations [14, 12, 13]. This (S)ILW procedure can
be extended to solve the compressible inviscid Euler equations on the moving geome-
tries [23, 4]. In this paper, we would like to design numerical boundary conditions for
convection-diffusion equations on a time-varying domain.

We will follow the idea in [14], in which a careful convex combination of the bound-
ary treatments for the diffusion-dominated and the convection-dominated cases was pro-
posed to obtain a stable and accurate boundary condition for high order finite difference
schemes when applied to convection-diffusion equations on the static domain, regardless
of the regimes. When extending it to the time-varying domain in this paper, there are
two underlying issues. Firstly, since conditions are defined on the moving boundaries, we
should use material derivatives in the ILW procedure instead of Eulerian time derivatives
as in [14]. Secondly, in coupling with third order Runge-Kutta time discretization, spe-
cial treatment for boundary values in the two intermediate stages is required to ensure
high order accuracy. Moreover, we attempt to give new combination weights to avoid
zero denominator, such that the method can be used to deal with all the cases from and
including pure convection equations to and including pure diffusion equations.

This paper is organized as follows. In Section 2, we first illustrate our idea by devel-

oping our inverse Lax-Wendroff method for one-dimensional scalar convection-diffusion



equations with Dirichlet boundary conditions on moving boundaries. We then general-
ize it to one-dimensional systems and two-dimensional problems. In Section 3, we will
apply our method to simulate the interactions between shocks and moving rigid bodies
with complex geometries. Numerical results are given in Section 4 to demonstrate the

effectiveness and robustness of our approach. Concluding remarks are given in Section

D.

2 Scheme formulation

We consider a convection-diffusion equation, which can be written in the following form:
U, = L(U), in Q(1), (2.1)

where, £ is a spatial operator involving convection terms and diffusion terms, and €2(¢)
is the time-varying domain. We use the idea of method of lines with a high-order spatial
discretization operator £, (in our later computation, we use upwind spatial discretization
such as the finite difference WENO [7] scheme for the convection terms and high-order
central difference for the diffusion terms), which can approximate the original partial

differential equations into the following semi-discrete ODE:
U, = L,(U). (2.2)

We use the following third order total variation diminishing (TVD) Runge-Kutta (RK)
method [20] to discretize (2.2):
UW =U" + AtL,(UM),

3 1 1

U® — Uty ZU<1> + ZAmh(U“)), (2.3)
1 2 2

UM = SU" 4 S0 4 DAL, (UP),

We consider the initial-boundary problems with moving Dirichlet boundary condi-
tions. The remaining issue is only the numerical treatment of boundary conditions.
Because a high order finite difference operator with a wide stencil needs special treat-

ment for some ghost points near the boundary, we will design an algorithm to use the

4



information of the partial differential equations and boundary conditions to define the
values of the ghost points.

Notice that, when we update values of the interior points from time level ¢,, to time
level t,+1 with (2.3), there may be some points inside the domain (1) but outside
Q(t,). We call these points “newly emerging points”. As in [23], there is no need for
any special treatment for these points. We only need to construct one more ghost point
in each direction at time level ¢, and restrict the time step At to make sure that the
moving domain Q(t) travels at most one grid from time level t,, to ¢,1.

In this section, we will begin with the one-dimensional convection-diffusion equations
to illustrate the moving boundary treatment, and then extend the algorithm to two-

dimensional systems.

2.1 One-dimensional scalar convection-diffusion equations with
moving boundaries

We consider the following one-dimensional scalar convection-diffusion equation:

(s + f(u)e = €Uge, x € Q1) = (2(t),2.(t)), t >0,

u(a(t),t) = q(t), t>0, -
u(b(t),t) = go(t), t>0, '

u(z,0) = uo(x), =€ Q(t),
where (z;(t),z,(t)) = (a(t),b(t)) are given functions varying with time and € > 0 is a
constant.

Assume the domain is divided by the uniform mesh at time level ¢,
T o<x_g<alty,) <xog<-<ay<btp) <Tni1 < Tyiz, (2.5)

with mesh size Az. Notice that the physical boundary x = a(t,) and « = b(t,,) may not
coincide with the grid points. We take {xg, 21, ,zx} as our interior points. At the

interior grid point z;, we have following semi-discrete approximation of (2.4)
d 1 /7 p . :
E“j(t)JFE (fj+1/2_fj—1/2> =diff;, j=0,...,N. (2.6)
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Here, u; is the numerical approximation to the exact solution u at the grid point (z;,1).
The numerical flux fjH /2 can be obtained by any reasonable finite difference scheme,
such as the third order finite difference WENO reconstruction [7]. This scheme requires
a five-point stencil at each point. The right-hand term dif f; is a fourth order center

difference discretization of the diffusion term,

dif fj =

€
W(—UJ;Q + 16Uj,1 — ?)OUJ + 16'LL]'+1 — 'Lbj+2).

Hence, up to two ghost points are needed near the boundaries.
Here, we choose the left moving boundary = = a(t,) as an example and concentrate
on how to define the values at the ghost points {x_o,2_1}. To construct values of the

ghost points at time level t,,, we use a third order Taylor expansion

C—a(ty))?
uj = w4 (z; — a(t,))u® + Wu*(z), Jj=-2,-1, (2.7)

*(k) is the numerical approximation of the k-th spatial derivative of u at the

where, u
left boundary 8§u|($:a(tn)7t:tn) with suitable order of accuracy. Given the PDE and the

boundary condition (2.4), it is straightforward to define the point value as

u® = u(a(tn),tn) = gi(tn)- (2.8)

However, the derivative values can not be obtained directly.

To ensure the stability of the boundary scheme, [14] pointed out that, for the convection-
diffusion equation with fixed boundaries, the approximation of the spatial derivatives on
the boundary should be a convex combination of those obtained for the convection-
dominated case and for the diffusion-dominated case.

Following this line and turning to our moving boundary case, to obtain the derivative
values, there are two possible numerical methods. One way to obtain approximations
to these spatial derivatives at the boundary is through the traditional Lagrangian or
WENO extrapolation [22, 25, 15] from interior points with suitable order of accuracy.

We use the subscript “ext” to denote derivatives obtained through the extrapolation
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procedure. The other way is the so-called inverse Lax-Wendroff (ILW) procedure, that
spatial derivatives are obtained from the given boundary condition and the PDE by

converting the spatial derivative into the time derivatives:

D

9i(t) = Dr

tu(a(t), t) =uy + a'(t)u, = (a'(t) — f'(w))us + €Uyy. (2.9)

Notice that the function g;(t) is defined on the moving boundary, hence we employ the
material derivative instead of the Eulerian time derivative as in [14]. We use the subscript

“ilw” to denote derivatives obtained through the ILW procedure.

To describe the construction of w*) and u*®), we start with two extreme cases:

Case 1. d'(t) — f'(g:(t)) = 0. For this case, we can only obtain the second order spatial

derivative u,, = M, and denote this as the u:l(j). The first order spatial derivative

*(1)

has to come from the extrapolation u,,, .

Case 2. € = 0, i.e., pure convection. If a’(¢) — f'(g;(t)) > 0, the left boundary is an outflow
boundary, we can use extrapolation to define v**) from interior points with suitable
order of accuracy. If a/(t) — f'(¢g,(t)) < 0, the left boundary is an inflow boundary.
Then the boundary condition u(a(t),t) = g;(t) should be imposed to ensure the

well-posedness. Thus,
a(tn) — f(qi(tn))

Again, we can obtain ©*® in terms of time derivatives through repeatedly using

(2.10)

the PDE. This is the key idea of the inverse Lax-Wendroff procedure. In particular,
[11] proved that, if only the solution and first order spatial derivative are obtained

(2

via the ILW procedure, and u*() is obtained from extrapolation directly, the third

order scheme is linearly stable. Hence, the algorithm would be simpler and more

efficient. This is the so-called simplified ILW (SILW) method proposed in [24].

In the general case when a'(t) — f'(¢:(t)) # 0 and € # 0, the first derivative and the

second derivative are coupled in (2.9). There are two ways to construct the derivatives.



One is obtaining the second order spatial derivative by extrapolation and then obtaining

the first order spatial derivative through the ILW procedure based on (2.9):

uisy, Fgu(tn)) = d(tn) <0,
#(1
il(w) = g(tn) — eus? (2.11)

Tt —awy @) - dt) >0

This will degenerate to the SILW for the case 2 as e = 0. Thus it is expected to work

u

in the convection-dominated regime. Alternately, we may obtain the first order spatial
derivative by extrapolation, then obtain the second order spatial derivative through the

ILW procedure
/ ! !/ *(1)
«2) _ 9i) + (f'(@(t) = d'(t)) - vear (2.12)

ilw €

This is similar to what we would do for the case 1 and therefore is expected to work in
the diffusion-dominated regime.
Following this line and turning to our moving boundary case, the approximation of

the spatial derivatives ©*(@ u*™) and u*® can be respectively defined as

w W =y - u:l(l) Ty ut

., - (2.13)
w® =, - u;ﬁ) + wy - U;kl(j),
with the weights
o =L ) Z LD
9i(tn)) — a'(tn))*Ax? + e o)

9¢?
(F(qu(tn)) — @' (tn))2A2% + 9e2

Notice that, if f'(g;(t)) — a/(t) or € is close to 0, which means the velocity of the

w9 :1—w1:

moving boundary is close to the slope of the characteristic line (i.e., the speed of wave
propagation of pure advection problem) at the boundary or the diffusion is very weak at
the boundary, the computation of (2.11) or (2.12) may produce large rounding error or

may even blow up. Hence, we replace the term w%l) . u:lg) in (2.13) by

#(1 (f'(9:(tn)) — @' (t,)) Az / “(2
w1 - uil(w) - - (f’(gl(tn)) _ a’(tn))2A:v2 + 0¢2 (gl(tn) - eueit)) (2.15)




for the case f'(gi(t,)) —d'(t,) > 0. Also w§2) -ut? can be replaced by:

ilw

wnU)) = a?(;))Q g (9t + (Flalt) = d(B)u?) . (216)

If f'(gi(tn)) — d'(t,) and € are both close to 0, the computation of the weights (2.14)

may produce large rounding error as well. To avoid zero denominator, we change the

combination and weights as follows:

) = ng) ' u:lw

ORI

2 ext

(2.17)
0 = i f? i)
where . , o n o
M (f'(gu(tn)) — a'(tn))* Az (1 _ (1)
Wit =T / 2N 72 3 wr =1l-wp,
9¢? '
w§2) = ‘ w£2) =1~ w§2).

(F(qu(tn) — @' (tn) + p)2AZ% + 9€2’

Here, i1 can be chosen as any small positive number to avoid possible zero in the de-
nominator for extreme cases, in which the velocity of the moving boundary is close to
the slope of the characteristic line at the boundary and the diffusion is very weak at the
boundary. When p = 0, the weights (2.18) will recover those in (2.14). In this paper,
we set = 107% in our later computation such that it could be very close to the weights
in (2.14) for general cases. Correspondingly, denominators in (2.15) and (2.16) should
be changed as well. As a consequence, our method can be applied to solve the pure
convection equations and pure diffusion equations, and everything in between. This will

be verified numerically in Section 4.

Notice that the boundary scheme we have described above is just for the time level
tn. For the third-order TVD RK method (2.3), we need to go through two intermediate
stages ) and t®). In particular, boundary conditions at the intermediate stages are
necessary. In [3], the authors pointed out that the boundary conditions should be im-

posed as follows to maintain the third order accuracy for the fixed boundary case, i.e.,



a(t) = const,
u" ~u(a,t,),

uM ~ ua,t,) + Atuy(a,t,), (2.19)
u? ~ u(a, tn) + %ut(a, tn) + ATtQutt(a, tn).
Actually, on the fixed boundary we have that u = ¢;, w; = g, and uy = g/. For the
moving boundary, we will follow the idea mentioned in [23] to treat the boundary as
“fixed” at = a(t,) on each stage of the RK method, and use the ILW procedure on this
fixed boundary to obtain the ghost point values. Therefore, we need to construct second
and first order approximations of w(a(t,),t,) and uy(a(t,),t,), respectively. After that,
we can obtain the point values on = = a(t,,) at intermediate stages tM and t® via the
equations (2.19).
Given the Dirichlet boundary condition and its time derivative (2.9), we can easily

have that

u(a(ty),t) = gi(t,), and wua(t,),t,) = g(t,) — a' (tp)uz(a(t,), tn)- (2.20)

Here, wu,(a(t,),t,) can be replaced by u*(!) obtained via the combination (2.17). To

obtain uy(a(t,),t,), we need to take second order derivative to ¢;(t) and have ,

utt(a(tn)vtn) :ggl(tn) - a”(tn) 'uﬂc(a(tn)vtn) - (a/(tn))z ) um(a(tn)vtn)
(2.21)

—2d/(ty) - ww(altn), tn),
where . (a(t,),t,) can be replaced by u*® obtained via (2.17). However, the mixed
derivative us, (a(t,), t,) is not known yet. Following the idea in [23], we can get us,(a(t,), )
through a standard Lax-Wendroff procedure. Using the PDE repeatedly, we can have
that

Uy = — [ (W) tge — (1) (Uz)? + €Upan,

and all the terms in this equation have been obtained by the ILW procedure or extrap-
olation at time level ¢,,. However, the formula would be very complicated, especially for

high-dimensional systems. Notice that the time derivative (u;); at time t = ¢,, and at
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every interior point is already known in the first stage of the RK method. Hence, u;,
can be obtained by the spatial extrapolation on (u;);. Because we only require wuy, to
have first order accuracy, we only need to construct a linear polynomial extrapolation,

which is much easier.

Here we summarize our algorithm. Our goal is to impose values of ghost points
{z_9,x_1} at time level ¢,, and the two intermediate RK stages.

For time level ¢,,:

Step 1. Get the point value on the boundary u*® based on the given boundary condition
(2.8). Make a convex combination of the derivatives to compute u*) and u*®? via

(2.17).

Step 2. Use the third order Taylor expansion (2.7) at the left boundary to get the values

at the ghost points {z_1,z_5}.
For the first and second intermediate RK stages:

Step 3. Use (2.20) to get u(a(tn,t,)) and ui(a(t,,t,)). Use a linear polynomial extrap-
olation to get w(a(t,,t,)), and wy(a(t,,t,)) can be obtained via (2.21). Then,
modify the boundary conditions at the intermediate stages ¢t and ¢ through

equations (2.19)
Step 4. Do Steps 1 and 2 at the intermediate stages ¢ and ¢(2).

2.2 One-dimensional convection-diffusion system with moving
boundaries

We consider the one-dimensional system:
(U; + A(U)U, = B(U)U,, +S(U), z€Q(t) = (a(t),b(t)), t >0,

Ua(t),t) = Gy(t),  t>0,
(2.22)




where, U = (Uy, Uy, ..., U,,)T, S = S(U) is the source term, A(U) and B(U) are diago-

nalizable matrices satisfying
A(U) =L ' (U)A(U)L(U), B(U)=C(U)'D(U)C(U).

Here, A(U) = diag{\;(U)},, D(U) = diag{e;(U)}; with ¢(U) > 0, and

1,(U) c:1(U)
Lo = |2V cuy=| =V (2.23)
1.(U) cm(U)

As before, we take the left boundary = = a(t) as an example to describe our boundary
treatment. Similar as in the scalar case, to get a third order boundary scheme, we can
use a third order Taylor expansion to define the values at ghost points near the left

boundary = = a(t,) as follows:

—alt, 2
U; = U O 4 (z; — a(t,)UW 4 WU*@), j=-2 -1, (2.24)

and the spatial derivatives U**) approximate 8§U]x:a(tn),t:tn with (3 — k)-th order ac-
curacy, respectively. Here, we describe the construction of U*© U*(M) and U*® at time
level t,, sequentially.

For U*®_ we can directly obtain its value from the boundary condition
U = Gy(tn).

For UM we will treat the system as convection-dominated to construct the first
derivative via the ILW procedure. At first, we perform a characteristic decomposition on
the boundary x = a(t,), and look at the characteristic variables V = L(U*®))U. Then

the equation (2.22) becomes
V. + AU )V, = RHSY = L(U*") (B(U*")U,, + S(U*™)). (2.25)
Taking the time derivative on the boundary condition, we have

Vt|z=a(tn),t=tn = L(U*(O))G;(tn) - a/(tn)vx
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Combining these two equations, we can obtain that
L(U*G)(t,) + (AU —d'(t,)TI)V, = RHSY, (2.26)
where I is the identity matrix. We will look at each component of V,
LU ). Gi(t,) + (MU O) —d'(t,)) (V). = RHS) i=1,..,m. (2.27)

Then, we apply the scalar boundary treatment to construct the corresponding point
value and spatial derivatives at = a(t,). As before, a convex combination of the terms

(%)*(1) and (%)*(1) is designed to ensure the stability of our boundary treatment:

lw ext
(Vi) @ = (@) - (Vi) + (i)l - (Vi) i =1,.m. (2.28)

In order to offset the possible zero in the denominator, in which case the velocity of the
moving boundary is close to the velocity of the characteristic variable near the boundary

and the diffusion is very weak at the boundary, we set the weights of the combination

(wy) ) = (A(U*0) — a’(tn))Z Az?
()\1;<U*(0)) —a'(t)” Az? + ((?;Zil;)f 20

(wi)est = 1= (@il =

ext —

T (UHO) — /(1)) Az + (3¢ + p)?
where ¢ = max;{e;(U*)} and p = 1075, To construct (V;);\)), as before, for the

incoming variable, we use equation (2.27) to get its first derivative, and for outgoing

variable, an extrapolation is used. More specifically, we set

(W) - (Vi) = (wi)) - (Vi) (2.30a)

ilw ilw ilw
for \;(U*©®)) —a/(t,) <0, and

(wi)(l) ) (Vi)*(l) _ (M (U*@) —a'(t,,)) A

( \ —L(U*O) . Gi(t,) + RHSY),
lw ilw ()\1<U*(0)) . a,(tn))Q AZL’2 + (36+M>2 ( ( ) l( ) )

(2.30b)

for \;(U*®) —a/(t,) > 0. Once we get V*() we transform back into physical space by
U*(l) — L—l(U*(O))V*(l)

13



As for U let W = C(U*®)U and construct the second derivative via the ILW

procedure. The original system (2.22) can be rewritten as
W, - D(UNYW,, = RHS" = C(U*©)[S(U"?) — A(U* U] (2.31)
near the boundary. Taking the time derivative on the boundary condition, we have
W, = C(U*NG)(t,) — d (t,) W, (2.32)

Combining (2.31) and (2.32), we can obtain that

D(U*OYW,, = C(U*O)G/(t,) — d'(t,)W, — RHS" (2.33)
which will help us to construct (Wi):l(j), i =1,...,m. Again, we give a convex combi-
nation of (VVZ)ZS?]) and (W@)Zg),

(Wi ® = ()i - Wit + @il - Wil i=1,..om, (2.34)
with the weights
9¢e2(U*()

(wiliin =
Vile T (o 4 p)2 Az 4 9e2(U0)

D) @ (a0 + p)?Az?
(Wi) et (Wi) it (a0 + p)2Az? + 92 (U*O)

(2.35)

Here, a = max; {|\;(U*@)—a/(t,)|}. The previous technique is applied when we compute

(w2 - (W) which can be written as:

ilw ilw

2 *(2 9€i (U*(O)) * *(1
(i Wi = (e Toeoos (U™ Giltn) — /() (W) = RHSY).
(2.36)
Finally, we transform back and obtain
U = cH{(UrO)yw*®, (2.37)

14



2.3 Two-dimensional convection-diffusion system with moving
boundaries

We now consider the two-dimensional convection-diffusion system
U, +A,U, +A,U, =B,U,, +B,U,, +BsU,, +S, (z,y) € Qt),t>0
U(z,y,t) = G(z,y,t), (x,y) € INt),t>0, (2.38)
U(z,y,0) = Ug(z,y), (x,y) € Q1)
where, U = (Uy,Us,...,U,)T, S = S(U) is the source term, A; = A;(U),As =
A, (U),B; = B1(U),Bs = B3(U) and B3 = B3(U) are matrices related to U. In partic-
ular, when m = 1, it is a scalar equation. We assume the convection term A; U, +A,U,
makes the system U, + AU, + AU, = 0 to be strongly hyperbolic and the diffusion
term B,U,, + B,U,, + B3U,, makes the system U, = B,U,, + B,U,, + B3U,, to be

parabolic.

P = (zi, y;)

Exterior

P
s e ..
: Interior

Figure 1: The local coordinate rotation diagram.

As before, we use a high order finite difference method to discrete spatial derivatives
of (2.38) on a fixed Cartesian mesh (z;,y;) with uniform mesh sizes Az and Ay in each
direction for all time. Ghost points may be needed near the boundary 9€2(t). Hence, we
need to design a method to define their values.

At time level t,,, assume P;; = (z;,7;) is a ghost point near the boundary. At first,
we find its pedal P, € 0€Q(t,), so that the normal n at P, goes through P,;, as shown

in Figure 1. Assume the normal vector n = (cosa,sina)?. In order to simplify the
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algorithm, we perform the following local coordinate rotation transformation at P, by

(?) _ ( cos a sin a) (x) ‘ (2.39)
Y —sina cosa ) \y
In this new coordinate system, the system (2.38) can be rewritten as follows:

A

U, + A (U)U; + Ay(U)Uy = B, (U)U;; + By(U)Uyy + B3(U)Uy; +S - (2.40)

where
A =cosaA; +sinaAsy,
Ay, = —sina Ay + cosa Ay,
B, = cos’ a By + cos a sin a By + sin? a Bs,
By, = —2cosa sina By + (0082a — sin? a) By + 2 cos « sin a B,
B; = sin? a By — cos a sin a By + cos® a Bs.
Define

Res = —AQ(U)UQ + Bz(U)Ui@ + B3(U)U7J@ +8.

Then, we can write (2.40) as
U, + A(U)U; = B(U)U;; + Res, (2.41)
where A = Al, B = B, are diagonalizable matrices satisfying

A(U) = L(U)'A(U)L(U), B(U)=C(U)'D(U)C(U). (2.42)

11 (U) Cl(U)
L(U) = 12‘@) . C(U)= C?(_?) . (2.43)
1,(U) ¢, (U)

For a third order boundary treatment, the value of the ghost point P ; is imposed

by the Taylor expansion in the Z-direction
1
U, =00 4 |p,; - PJUW 4 5P = P,*U*®, (2.44)
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where U*®) is an approximation of the normal derivative 8§U](m7y): P, t=t, With (3—Fk)-th
order of accuracy, k = 0,1, 2.

To describe the boundary conditions, let X, = X,(s,t) present the position vector
(in Eulerian coordinates) of a point on the moving boundary 0€Q(t), where s is the
Lagrangian coordinate of the boundary, and ¢ is the current moment. The velocity of
the boundary can be written as V;, = % = (up,vp)T. Assuming that P, = X(s4,t).
The boundary condition at P, can be written as G(t) = G(Xy(sq, 1), t).

Now, we describe the construction of U*© U*M U*? at time level t,, sequentially,

following the idea of the one-dimensional case.

For U*® we can directly obtain its value from the boundary conditions

For U*M | we perform a characteristic decomposition firstly, i.e., let V = L(U*®)U,

where V is the characteristic variable. Then, we have the equation
V,+ A(U*®)V; = RHS" = L(U*")(BU;; + Res). (2.45)
At the boundary P,, we have

~ D
LU NG/ (t,) = =V =V, + Vi, + Vi,

Dt
with
U\ [ cosa sina Up
) \—sina cosa) \v, )~
Therefore, we have
(AU — 4,1)V, = —L(U*G'(t,) + RHS" + Vb, (2.46)

Similar to the one-dimensional case, we set:

(Vi) © = ()l - (VR + @) - (i)Y, i=1,...,m, (2.47)

ilw ilw
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where

() = WU = )*h”

T O G 2.18)
(w,)(l) =1 (w )( ) _ (3e + N)Q

t)ext — ilw ()\ (U*(O)) _ ﬂb)2h2 + (36 + ’u)gv

with €; = max{|e;(U*®)|}, u = 1076 and h = \/Az2 + Ay2. In particular, we set

(W) - (Vi) = (@), - (Vi)ely (2.49a)

ilw ilw ilw
for \;(U*©)) — @, > 0, and

W)V 0 = U) — )2
v/ qlw v ilw (/\Z(U*(O)) _ ﬂb)QhQ + (36 + /1')2

(—1,-(U*<0>) -G/(t,) + RHSY + (Vz-)@@b> :
(2.49D)

for A;(U*®) — 4, < 0. All the derivatives in RHS) and (V;); are constructed by
extrapolation. Finally,

U*(l) — L—l (U*(O))V*(l) ]

As for U*® | let W = CU, then we have
W, - D(U*NYW,; = RHS" = C(U*?)[Res — A(U*D\U,]. (2.50)

Since

W, = C(UO)G'(t,) — Wiy, — Wy,

we have

Therefore, we give the convex combination

(W) @ = (W) - (W2 4+ (wi) D) - (Wi, (2.52)
where
. 2(u*)
()@@ = 96U g0y @ (1,) — (W)t — (Wi)gis — RHSY)

o (o )22 4 96, (U*(0))2
(2.53)
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and

(wi)?), = (o +p)"h” .
Vet T (o4 p)2h2 + 9¢2(U*0)

Here, o = max;{|X;(U*®) — 4|}, p = 107% and h = \/Az? + Ay?. Finally,

(2.54)

U*(Z) — Cfl (U*(O))W*(Q) )

As before, when we use the third order TVD Runge-Kutta to update our solution,
in order to maintain the third order accuracy, we should modify the boundary condition
at the two intermediate stages ) and ¢ via (2.19). So we should obtain the values of
Uili=t,,» Usli=s, at the boundary P,.

As we know

G/(tn) = (Ut + Uaﬂlb + Uz}@b)|(x,y):Pa,t:tn- (255)

Replace U; by U, then we have an approximation of Ui|(z,y)=Py t=t, 8S

Uil gy=rut=tn = G'(ta) = U Wiy — Uyl y)=py 11, 0. (2.56)
Also,
~ Oy, Oty . . "
G//(tn) = EU@ + EUQ + ungi« -+ 2ub1}ijg + ’UgUgQ—f‘ (257)
2(p Uz + 0,Uyy) + Uy,
where (%, %) is the acceleration of the moving boundary. So, we have
Uttl(:c )713 t=t, — é”(tn> - %Uiﬂ + %U” + '&%Ujj + 2"abﬁbU@A + 'lAJgUM_F
yY)=La,t=1ln at at ) Y vy (258)
2(p Uz +0,Uyy)) ,

where U, Uy, Us;, Usy, and Uy, have been obtained at time level ¢,. Therefore, we
only need to deal with two mixed derivative terms Uy; and U;. Note that the value of
(Uy);; is already known at every grid point inside the computational domain in the first
stage of RK, so Uy; and Uy, can be obtained by linear extrapolation, because we only
require first-order accuracy of Utt|(x,y):Pa,t:tn to obtain the overall third-order accuracy

for the scheme.
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3 Application to moving rigid body in viscous flows

3.1 Problem description

We consider the two-dimensional Navier-Stokes (NS) equation,

W, + F(W), + G(W), = —— (Sy(W), + S2(W),), x—=(.p) € ),  (3.1)

Re
where
p gu pU
| pu . pu”+p . pUv
W[ Bw) = | M aw) = | B (3.2)
E u(E + p) v(E + p)

Here, p, u = (u,v)T, p and E represent the density, velocity, pressure and total energy
per volume, respectively. An equation of state relates the pressure and the other variables
is given

p=(-1) (B - ot +0). (33)
Here, ~ is the adiabatic constant, which equals to 1.4 for an ideal polytropic gas.

The terms on the right hand side of (3.1) are in the form of

0 0
Sy (W)= | 1L sa(W)= |72
o1 p]

with the components of the viscous stress tensor given by

4 2
T = §u$ - gvya
4 2
Tog = §Uy — gux, (34)

Ti2 = To1 = Vg + Uy,

and
(€*)a
(y=1)Pr’
<02>y
(y—1)Pr
Here, Pr is the Prandtl number, Re is the Reynolds number, T = p/p is the temperature,

and ¢ = \/vp/p is the sound speed.

01 =uTi1 + VT2 +
(3.5)

09 = UTy + VU Too +
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We consider a moving rigid body in viscous flows, with the isothermal no-slip wall
boundary condition on the boundary of the rigid body I'(t) C 9€)(t), which can be written
as:

u = Vb7

(3.6)
T= Tb7

where, Vi, = (up, v)” is the boundary velocity, Ty is the temperature of the boundary,
and n is normal vector point to the rigid body from the fluid.

Suppose the motion of a rigid body is induced by the viscous flow. Both translation
and rotation of the body should be taken into account. For each point X, = (z3, 1) €
['(t), the velocity is given as

V, =V, +wxr,
where, V,, is the translational velocity, w is the rotation velocity, and r is the vector
from the boundary point to the centroid of the rigid body. Since the motion of a rigid

body is induced by the fluid, V. and w satisfy the equations

de thr dw

dt dt gy P (37)
with the translational acceleration a;,. and rotational acceleration ay determined by New-

ton’s second law and rotational law respectively.

Matr:}{ (pn—7-n)dS,
) (3.8)

]ang rx (pn—7-n)dS.
T()

Here, M is the rigid body mass and [ is the moment. The matrix 7 is defined as

1
T = m[%‘bx%
3.2 Numerical schemes

Again, we assume the domain €2(¢) is covered by a fixed Cartesian mesh with uniform
mesh sizes Az and Ay in each direction. The semi-discrete scheme of the NS equations

(3.1) is given as
dW; ;(t) Fz‘+1/2j - ii‘z‘—l/Qj G j1/2 Gz’j—l/Q
2 K ) ) 2, — SZ . 3‘9
a T Ar * Ay g (3.9)
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where Fi—l—l /2, and CA%,'J-H /2 are numerical fluxes obtained by the third order finite dif-
ference WENO scheme. For the right hand term S; ;, we use fourth order central finite

difference scheme. Specifically, the three different types of derivatives are given below as

examples:
af 1
%’” :m(fi—Zj —8fic1; + 8fit1; — fitej)s
0 f 1
@’” :m<_fi—2,j +16fi—1,; — 30fi; + 16 fix1; — fit2j),
o0 f 1
mh’j :M((fi—2,j—2 - 8fi_17j_2 -+ 8fi+1,j—2 - fi+2,j—2) (310)

— 8(fi—2,j—1 — 8fic1j-1 + 8fiv1,j-1 — fix2,j-1)
+8(fi—2j41 — 8fic1j41 + 8fit1 41 — firz41)

— (ficojra = 8fic1ju2 + 8fiv1jr2 — firaji2))-
Again, we use the TVD Runge-Kutta method (2.3) for the time discretization.
At time level t,,, to make the interior finite difference scheme work, we need to define
values of ghost points near the boundary. As before, assume P,; is a ghost point near

the boundary and P, is its pedal on the boundary. With the same rotation as in (2.39),

T\ [ cosa sina T q— u) [ cosa sina U
U —sina cosa) \y/’ U —sina cosa ) \v/’

The Dirichlet boundary conditions are given for the velocity i and the temperature

let

T, so we rewrite the equation (3.1) with respect to the new variables:
U = (p,a,0,T)",

and then we get following system

U, + A(U)U; = B(U)U;; + Res, (3.11)
where
u p 00 0 0 0 0
- z i 0 1 - 0 3= O 0
=17 = ep
0 (=T 0 @ 0 0 o
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and

Res; —ply — Vpy
Res o a~+l@ﬁ—@w
Res = 2| = X R:p( v Y ) 2 , (3.13)
Ress Re_p(Svyy + 3z — SPy — 00y)
Resy RepPr == + NLT

with

v—1 2 . R . . . .
NIT = — p (—g(ua; + by + 2(6F + 07) + 2(03 —|—u@)2)> .

Here, the matrix A(U) is diagonalizable,
A(U) = L(U)A(U)L(U),

with A(U) = diag{t — ¢, 4, 0, 0+ ¢}.
From the previous analysis, we know that the material derivative operator % =
8t + U= 8:0 + v plays an important role in our moving boundary treatment. Applying

the material derivative operator to the boundary condition, we have

DT, _ Du DV,
— = a — = :
Dt MY Dy T Ty

Here, DDt” is the acceleration of the rigid body. On the other hand, with the material

derivative operator, the original NS equations can be written in the following form:

( _Dp
Dt + p(az + 05) =0,
Du 1 1 ( e B+ D )
it = 5 \JUzz T Ugg T S Vz5),
Dt TP T Rep'3 i T gt
Do 1 1 4 ) (3.14)
Dt + pp R_€p<vj§;+ gvgg—i- §Ux3;),
DT y
s+ 0;) = ———— T3z + T NLT.
L Dt ( ) (u _'_Uy) pR@PT( + y)+

These would be used in our boundary treatment later.
Since the point value at the ghost point P, ; is obtained through a third order Taylor

expansion in the Z-direction, approximations of the normal derivatives with suitable

orders of accuracy are needed
U™ ~ 97Ulp, m=0,1,2.
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As before, we use the notations (-);, and (-)es to denote derivatives obtained through
the ILW procedure and the extrapolation respectively.

Firstly, we perform a local characteristic decomposition at P,. However, different
from the discussion in Section 2, we do not have the value of all components of U on
the boundary I'(t). Hence, we will use the extrapolation approximation U9 in the

ext

characteristic decomposition. Let V = L(ﬂ:gg))f} We can see that the components
Vo, - -+, V4 are the outflow variables, and V; is the inflow variable.
To construct U*®, notice that we already know the value of &1 and T" at the boundary

I'(t) given the boundary conditions, so we set
(02)*(0) =iy, (Us)© =10, (U0 =T, (3.15)

Also, we can build the following relation since V} is outgoing,

A~

LG OO _ 1, — 1,(50) . 020,

ext ext

Solving this linear system, we can obtain (Ul)*(o) as following,

A A A~

: o 200 = (OO - ()9 ((G2)) = (02)©)
(O = (D)t —
(Ua)

ext

(3.16)

Next, we try to find U, Using the second equation in (3.14), we have

> * - *(1 N * A *(1 A * Dﬁ‘b 1 4 ~ A 1 ~
Oy OO + OO o) = =00 52 + 52 ( Gas + s + 383 )

For the outflow variables V5, ..., V), we have relations

LUl =), =234

ext

Hence, we can get ﬂ;kz(qi) by solving the above system. We apply combination (2.47) to

get U*®W, which can be written as

2h? 9e? o (1)

c Do\ *
(V)W = (Vi) + (V)

c2h? 4 9¢2? ihw c2h? 4+ 9¢2
(Vi) O =iy j=2.34,
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i — 1 4 0] — 72 22
with € = max{z_, 355, Frke,} and h = /Az? + Ay,

Notice that (‘A/j)fk(l) = (V) (1) j = 2,3, 4 for the outflow characteristic variables. The

ilw ext

second equation can be written as

W0 = () = W gy 92y g5
J ext 02h12+9€2 ilw ()Qh _|_9€2 ext J = 4,9,4.
Therefore, we set

Ch® ey 9€ g

U = (3.17)

59719 . A9 ) cxt
2h? + 9¢2 v c2h? +9e2

Finally, we will construct U*®. According to the boundary conditions and (3.14),

the second derivative (U2)le), (U, )le can be set as:
(- 3Re-p (Du, 1 1 1
0. *(2): L Zpy — —— A _AQEA
( 2)7,lw 4 Dt + p Re - p<u'yy + 3U y) )

Dy, 1 1 4 1
U = Re 39) |
( 3)zlw '0<Dt + ppy R p(3 yy+ 3“ y))
Re-p- Pr (DT,
Dt

O =

ilw

(v — DT (i + 05) — ————T; NLT)
\ Y

Re-p- Pr
All the derivatives on the right hand side can be obtained by extrapolation. Note that,

there is no diffusion term in the first equation of (3.14), so we just take

(052 = (00).

ilw

Finally, we combine (-)iz, and (+)ez as

Wy = oy 9 gy (3.18)
J 22 + 96 ext 02h2 + 96 ihw '
where {€1, €2, €3, ¢4} = {0, 31369, R%,ﬂ Pr%ep}.

4 Numerical examples

In this section, we show some numerical examples to demonstrate that our method is

stable and high order accurate if the solution is smooth. Our method also performs well
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for problems involving interactions between shocks and moving rigid bodies. We test
all examples with the third order boundary treatment. The third order finite difference
WENO approximation and fourth order central approximation are employed to discretize

the convection terms and diffusion terms, respectively.

4.1 Accuracy tests
Example 1. We now consider the one-dimensional linear convection-diffusion equation
(U + cuy = €Upy, x € (xy(t), 2,(t)), t >0,

u(zy(t),t) = gi(t), t>0,

U(IT@)’t) = gr<t)= t>0,

[ u(z,0) =sinz, x € (z;(t),z (1))

We take the left boundary as a continuous piecewise polynomial

3t2 1 1

th— 23 - 3 0§t§§
ut)=91 4 1
St = >,
2" 16’ 2

and the right moving boundary z,.(t) = 0.5 + 0.5sin*(¢). The functions g,(t) and g, (t)
are given such that we have the exact solution u(z,t) = e~ sin(z — ct).

We take different pairs of (¢, €) to test the accuracy and stability of our algorithm for
pure convection, convection-dominated, diffusion-dominated, and pure diffusion cases.

In all situations, the time step is taken as

At = min ( 06 A )

lcl/ Az + 6¢/Ax?" max(|i(t)], |=.(£)])

The numerical results at the final time t.,q = 1.0 are listed in Table 1. Especially, for
the cases of pure convection and convection-dominated, we set ¢ = 0.5, such that the
situation f’(u(g:(t))) — x(t) = 0 will occur during our computation when ¢ > 3. It can
be seen from the table that the algorithm we have constructed is stable under different
convection-diffusion coefficients and can achieve the expected third order accuracy, which

demonstrates that our method performs well in all situations.
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Table 1: Example 1: errors and convergence orders at t.,q, = 1.0.

Pure convection: (c,¢€) = (0.5,0)

h L' error order L error  order
1/20 6.911E-006 - 4.879E-005 -
1/40 9.476E-007 2.866 || 1.042E-005 2.226
1/80 1.251E-007 2.920 || 2.141E-006 2.284
1/160 | 1.419E-008 3.139 || 3.633E-007 2.559
1/320 || 1.372E-009 3.370 || 5.401E-008 2.749
1/640 || 9.554E-011 3.844 | 5.828E-009 3.212
1/1280 || 4.676E-012 4.352 || 4.238E-010 3.781

Convection-dominated: (¢, €) = (0.5,0.01)

h L' error order L error  order
1/20 3.474E-006 - 1.604E-005 -
1/40 6.553E-007 2.406 || 5.049E-006 1.667
1/80 8.728E-008 2.908 || 4.939E-007 3.353
1/160 | 1.122E-008 2.958 | 7.195E-008 2.779
1/320 || 1.213E-009 3.209 || 9.803E-009 2.875
1/640 || 1.093E-010 3.472 | 1.310E-009 2.902
1/1280 || 1.013E-011 3.431 || 1.687E-010 2.957

Diffusion-dominated: (c,e) = (0.01,0.5)

h L' error order L error  order
1/20 6.536E-006 - 3.540E-005 -
1/40 9.689E-007 2.753 || 4.172E-006 3.085
1/80 1.104E-007 3.132 || 4.769E-007 3.128
1/160 || 1.449E-008 2.930 || 9.401E-008 2.342
1/320 | 1.809E-009 3.001 || 8.270E-009 3.506
1/640 || 2.262E-010 2.999 | 1.454E-009 2.507

1/1280 || 2.903E-011 2.961 || 1.426E-010 3.349
Pure diffusion: (¢, €) = (0,0.5)

h L' error order L error  order
1/20 6.642E-006 - 3.542E-005 -
1/40 9.678E-007 2.778 || 4.168E-006 3.086
1/80 1.109E-007 3.124 || 4.787TE-007 3.122
1/160 | 1.453E-008 2.932 || 9.411E-008 2.346
1/320 || 1.817E-009 2.999 | 8.285E-009 3.505
1/640 || 2.273E-010 2.998 | 1.456E-009 2.507

1/1280 || 2.850E-011 2.995 || 1.425E-010 3.353

27



Example 2. Next, we consider the following viscous Burgers’ equation:
(U + Uty = €Upy, € (xy(t), 2,(t)), t >0,
u(z(t),t) = gi(t), t>0,

u(z,(t),t) = g,(t), >0,

 u(z,0) = 0.5 — 0.5tanh((z — 0.5)/4e€), x € (x;(t), x.(t)).
Boundary conditions g;(t) and g,(t) are given such that the exact solution is u(z,t) =
0.5 —0.5tanh((z — 0.5 — 0.5¢) /4¢). The exact solution contains a sharp interface located

at x,.(t) = 0.5 + 0.5¢ for small e. The time step is taken as

0.6 Az

Al = mi
b= min(_— u;]/ A + 6¢/Az? max(|z!(1)], |[7.(1)])

)

We simulate cases with different ¢ and moving boundary
x(t) = =0.5+0.5t, x.(t) = 0.5+ 0.5,

or

7(t) = —0.5+0.5sin*(t), x,(t) = 0.5+ 0.5sin*(t).

The numerical results of ¢ = 1.0 and 0.01 at the final time t.,; = 1.0 are listed in Table
2. We can observe that the scheme achieves third order accuracy eventually with mesh
refinements. Moreover, in Figure 2, we plot the numerical results of four different ¢ with
x(t) = —0.5 4 0.5, z,(t) = 0.5+ 0.5t and h = 1/160. We can see that a very sharp
interface appears near boundary as € goes to zero without obvious spurious oscillation,

demonstrating the non-oscillatory property of our boundary treatment.

Example 3. Now, we test the 1D linear system
(U; + AU, =BU,, +S, =z € (x(t),z,.(t), t >0,
U(l’l(t), t) = Gl(t), t >0,

U(xr(t)’t) = Gr(t)v t>0,

L U(z,0) = Up(x), =€ (x(t),x(1)).
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X
Figure 2: Example 2: Numerical solutions for different e with z;(t) = —0.5 + 0.5¢,

z.(t) = 0.5+ 0.5t and h = 1/160 at te,q = 1.0.

We consider the moving boundaries as x;(t) = —0.540.5¢ and z,(t) = 0.5+0.5¢. Here, A
is a diagonalizable matrix and B is a diagonal matrix with positive elements. Specifically,

we take

(3 05 (1 05 by 0
A_A1—<o.5 2) or A_A2_<0.5 10—6‘)’ and B_(o 522>’

with (b1, bae) = (0.8,1), (107°,107%) and (0, 0), corresponding to the convection-diffusion
case, convection-dominant case and pure convection case, respectively. Proper source

term S is given such that exact solution is

U— <eb11tsin(x — aut)) .

e~b22t cos(x — agyt)

For this example, the time step is taken as

. 0.6 Az
B = min s G T )

where the notation o(-) means the spectral radius of the matrix. The numerical results
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Table 2: Example 2: errors and convergence orders at t.,q = 1.0

zi(t) = —0.5+0.5t, 2,(t) = 0.5+ 0.5t

e =0.01 e=1.0
h L' error order L error  order L' error order L error  order
1/20 6.126E-003 - 0.111 - 1.510E-007 - 7.403E-007 -

1/40 1.889E-003 1.697 || 4.938E-002 1.169 || 1.792E-008 3.075 || 9.495E-008 2.962
1/80 || 4.431E-004 2.091 | 1.226E-002 2.009 || 2.191E-009 3.031 || 1.201E-008 2.982
1/160 | 7.377TE-005 2.586 | 2.030E-003 2.595 | 2.696E-010 3.023 | 1.510E-009 2.991
1/320 | 9.893E-006 2.898 | 2.757E-004 2.880 | 3.328E-011 3.018 || 1.894E-010 2.995
1/640 | 1.195E-006 3.049 || 3.392E-005 3.023 || 4.154E-012 3.001 | 2.372E-011 2.997

7(t) = —0.5+ 0.5sin%(t), z,.(t) = 0.5+ 0.5sin?(¢).

e =0.01 e=1.0
h L' error order L error  order L' error order L error  order
1/20 2.593E-006 — 4.729E-005 - 1.521E-007 - 6.727E-007 -

1/40 7.065E-007 1.876 || 1.773E-005 1.414 || 1.801E-008 3.077 || 7.508E-008 3.163

1/80 2.219E-007 1.670 || 9.502E-006 0.900 | 2.076E-009 3.117 || 9.274E-009 3.017
1/160 | 5.637TE-008 1.976 | 2.634E-006 1.850 | 2.366E-010 3.132 || 1.606E-009 2.528
1/320 | 9.503E-009 2.568 | 5.490E-007 2.262 | 3.206E-011 2.884 || 1.460E-010 3.460
1/640 | 1.355E-009 2.809 | 1.037E-007 2.403 | 3.811E-012 3.072 || 2.470E-011 2.563
1/1280 || 1.845E-010 2.877 || 1.236E-008 3.069 - - - -

at teng = 1.0 are listed in Table 3 and Table 4. We can observe the designed third order

accuracy for all cases.

Example 4. Now we consider the Navier-Stokes equations with additional source terms

so that we have an explicit exact solution to test accuracy. The modified system is

(e + (pu)s = fi(z,t),

(pu)e + (pu® 4 p)e = é (§U> + fa(x, 1), (4.1)

with x;(t) = —0.5 — 0.5t and z,(¢) = 0.5 — 0.5¢. The exact solution is

esm t

= 1132 u(z,t) =1+ 32%, pla,t) = pre.

p(z,t)

We consider the cases that Re = 100, 10° and pre = 0.5, 10 to demonstrate the ef-

fectiveness of our algorithm. We investigate the error of the numerical solutions with
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Table 3: Example 3: errors and convergence orders at t.,q = 1.0, for A = A;.

Convection-diffusion case

N L' error order L error  order
20 3.405E-005 - 1.374E-004 -
40 4.868E-006 2.806 || 1.911E-005 2.847
80 6.533E-007 2.898 || 2.536E-006 2.913
160 || 8.477E-008 2.946 | 3.283E-007 2.950
320 || 1.078E-008 2.975 || 4.187E-008 2.971
640 || 1.357TE-009 2.990 || 5.298E-009 2.983
1280 || 1.675E-010 3.018 || 6.672E-010 2.989

Convection-dominated case

N L' error order L error  order
20 8.887E-005 - 2.762E-004 -
40 1.092E-005 3.025 || 3.525E-005 2.970
80 1.374E-006 2.991 || 4.578E-006 2.945
160 || 1.708E-007 3.008 | 5.898E-007 2.957
320 || 2.130E-008 3.003 || 7.335E-008 3.007
640 || 2.656E-009 3.003 || 9.301E-009 2.979
1280 || 3.315E-010 3.002 || 1.157E-009 3.007

Pure convection case

N L' error order L error  order
20 8.887E-005 - 2.762E-004 -
40 1.092E-005 3.025 || 3.523E-005 2.971
80 1.371E-006 2.993 || 4.572E-006 2.946
160 || 1.705E-007 3.007 || 5.850E-007 2.966
320 || 2.135E-008 2.998 || 7.300E-008 3.002
640 || 2.671E-009 2.999 || 9.342E-009 2.966
1280 || 3.337E-010 3.000 || 1.156E-009 3.014

respect to the density p. The numerical results at t.,q = 1.0 are listed in Table 5. We
can observe third order accuracy for all the choices of Reynolds numbers and pressure.

The time step is taken as

At = min ( 06 A ),

Ao/ Az + Ng/Ax?” max(|z)(t)], |2..(t)])

1 4 'y).

with Ae = max [u;] + ¢ and As = max(z.7, 5050 ey
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Table 4: Example 3: errors and convergence orders at t.,q = 1.0, for A = A,.

Convection-diffusion case

N L' error order L error  order
20 3.375E-005 - 1.627E-004 -
40 3.822E-006 3.142 || 2.132E-005 2.931
80 4.559E-007 3.067 || 2.731E-006 2.964
160 || 5.579E-008 3.030 || 3.455E-007 2.982
320 || 6.862E-009 3.023 || 4.345E-008 2.991
640 || 8.472E-010 3.017 || 5.448E-009 2.995
1280 || 1.053E-010 3.007 || 6.822E-010 2.997

Convection-dominated case

N L' error order L error  order
20 9.830E-005 - 2.892E-004 -
40 1.200E-005 3.033 || 3.962E-005 2.867
80 1.520E-006 2.981 || 5.218E-006 2.924
160 | 1.917E-007 2.987 || 6.681E-007 2.965
320 || 2.408E-008 2.992 || 8.368E-008 2.997
640 || 2.972E-009 3.018 || 1.029E-008 3.023
1280 || 3.336E-010 3.154 || 1.167E-009 3.140

Pure convection case

N L' error order L error  order
20 9.841E-005 - 2.896E-004 -
40 1.202E-005 3.032 || 3.972E-005 2.865
80 1.526E-006 2.978 || 5.248E-006 2.920
160 || 1.933E-007 2.981 || 6.726E-007 2.963
320 || 2.453E-008 2.978 || 8.589E-008 2.969
640 || 3.110E-009 2.979 || 1.082E-008 2.987
1280 || 3.930E-010 2.984 || 1.363E-009 2.989

Example 5. Now we consider the 2D linear convection-diffusion equation
U+ Uy + Uy = €(Ugy + Uyy), (z,y) € Qi(t), £ >0,
u(z,y,t) = g(x,y,t), (x,y) € 0Q(t), t >0,

U(l’,y, O) = Sinxsiny, (ZE, y) S Qz(t)a
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Table 5: Example 4: errors and convergence orders at t.,q = 1.0.

Re =100
pre = 0.5 pre =10
h L' error  order | L error order L' error  order | L error order
1/10 || 3.154E-003 - 1.972E-002 — 2.478E-003 - 9.677E-003 —

1/20 || 6.053E-004 2.381 || 2.578E-003 2.935 || 1.837E-004 3.753 || 1.139E-003 3.086
1/40 || 1.024E-004 2.562 | 4.245E-004 2.602 || 2.078E-005 3.144 || 1.213E-004 3.230
1/80 || 1.554E-005 2.721 || 5.607E-005 2.920 || 5.331E-006 1.963 || 2.918E-005 2.056
1/160 || 2.169E-006 2.840 || 7.163E-006 2.968 || 9.853E-007 2.435 || 5.185E-006 2.492
1/320 || 2.887E-007 2.909 || 9.518E-007 2.911 || 1.479E-007 2.735 || 7.300E-007 2.828
1/640 || 3.746E-008 2.946 || 1.256E-007 2.921 || 2.064E-008 2.840 || 9.317E-008 2.969

Re =105
pre = 0.5 pre =10
h L' error  order L error  order L' error  order L error  order
1/10 || 3.564E-003 - 1.922E-002 — 3.220E-003 - 1.172E-002 -

1/20 || 4.996E-004 2.834 || 2.777E-003 2.791 | 2.782E-004 3.532 || 1.263E-003 3.214
1/40 || 7.676E-005 2.702 || 7.178E-004 1.951 || 2.533E-005 3.457 || 1.185E-004 3.413
1/80 || 1.235E-005 2.635 || 1.128E-004 2.669 | 2.698E-006 3.230 || 1.222E-005 3.277
1/160 || 1.682E-006 2.875 || 2.052E-005 2.459 || 3.153E-007 3.097 || 1.472E-006 3.053
1/320 || 2.083E-007 3.013 || 3.078E-006 2.736 || 3.847E-008 3.034 || 1.854E-007 2.989
1/640 || 2.487E-008 3.066 || 3.003E-007 3.357 || 4.749E-009 3.018 || 2.330E-008 2.992

with the following three moving boundaries
Q) = {(2, )" : (x —0.5t)% + (y — 0.5¢)* < 0.5},
Do(t) = {(z,y)" : ()" + (y)* < 0.5 - 0.2t},
Q3(t) = {(z, )" : (2)* + (y)* < 0.5+ 0.2t}.
Also, different diffusion coefficients € = 0.1 and 10~ are considered. We give specific

boundary conditions g(z,y,t) so that the exact solution is u(wz,y,t) = e ?*sin(z —

t)sin(y —t). The numerical results at t.,q = 1.0 are listed in Table 6, with the time step

At =min ( 06 A Ay )

1/Az+1/Ay + e(1/Az? 4+ 1/Ay?)’ I%%X(]ub\)’ I%%X(Wb\)

Again, our scheme is stable and can achieve the designed third order accuracy for all

cases.
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Table 6: Example 5: errors and convergence orders at t.,q = 1.0.

moving boundary ()

e=0.1 e=10"3
N L' error order L error  order L' error order L error  order
20 | 2.344E-005 — 1.224E-004 - 1.209E-004 — 2.134E-003 -

40 || 3.891E-006 2.591 | 2.242E-005 2.448 | 8.540E-006 3.823 || 1.305E-004 4.031
80 || 5.856E-007 2.732 || 3.625E-006 2.629 || 7.341E-007 3.540 || 4.435E-006 4.878
160 || 7.536E-008 2.958 || 4.770E-007 2.925 || 7.063E-008 3.377 || 8.651E-007 2.358
320 || 9.711E-009 2.956 || 6.481E-008 2.879 | 4.112E-009 4.102 || 5.356E-008 4.013

moving boundary Qs(t)

e=0.1 e=10"3
N L! error order L error  order L! error order L error  order
20 | 3.081E-005 — 2.613E-004 — 6.234E-005 - 1.124E-003 —

40 || 3.428E-006 3.168 || 2.841E-005 3.200 || 3.331E-006 4.226 || 9.606E-005 3.549
80 || 1.757E-007 4.285 || 3.064E-006 3.212 || 3.199E-007 3.380 || 3.916E-006 4.616
160 || 2.564E-008 2.777 || 4.033E-007 2.925 || 3.580E-008 3.159 || 6.672E-007 2.553
320 || 3.097E-009 3.049 || 5.502E-008 2.873 | 3.809E-009 3.232 | 6.652E-008 3.326

moving boundary Q3(t)

e=0.1 e=10"3
N L' error order L error order L' error order L error order
20 | 2.233E-004 - 7.493E-004 - 3.124E-004 — 1.956E-003 —

40 || 8.014E-005 1.478 || 2.343E-004 1.677 || 4.029E-005 2.954 || 3.794E-004 2.366
80 | 1.907E-005 2.070 || 6.339E-005 1.886 | 6.524E-006 2.626 || 5.687E-005 2.737
160 || 4.968E-007 5.262 || 2.538E-006 4.642 || 2.170E-007 4.909 || 1.244E-006 5.513
320 || 3.821E-008 3.700 || 1.774E-007 3.838 || 1.519E-008 3.836 || 1.008E-007 3.624

4.2 Interaction between shocks and moving rigid bodies

In the following three examples, the time step At is taken as

At =min < 06 A Ay >7

Ao/ Az + Ny /Ay + Xa(1/Az? 4+ 1/Ay?)” max(|up|)” max(|vs))

1 _4 1)
Rep’ 3Rep’ PrRep/*

with A\, = max |u; j| + ¢, Ay = max|v; j| + ¢, and \q = max(
1) )

Example 6. This example is the viscous flow version of Example 5 in [23] and Example
2 in [4]. We consider the interaction of shock wave and cylinder in a two-dimensional

viscous fluid. The computational domain is [0, 1]x [0, 0.2]. The horizontally moving shock
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wave is initially placed at the position of x = 0.08. A cylinder with radius R, = 0.05
and surface density o = 10.77 is immersed in the fluid, and the initial center position is

(0.15,0.05). The initial state is shown in Figure 3, where, pr = 1.4, ug = vg = 0 and

PL Shock wave PR
uL e UR
vL UR
Py Pp

Figure 3: The initial state of Example 6.

pr = 1.0. For the left side of the initial shock wave, we set

B Ma?y
P (Ma2 - &
2(Ma, — 51—)
Uy, = =
v+1
vy = O,
2v(Ma? -1

v+1
where Mag is the Mach number of the shock wave.

The governing equation is a dimensionless compressible Navier-Stokes equation. The
left boundary and the right boundary of the computational domain are the inflow bound-
ary and the outflow boundary, respectively. The upper and lower boundaries are reflec-
tive boundaries. The classical boundary treatments are applied on these outer lines.
On the cylindrical wall I'(¢), the isothermal no-slip wall boundary condition (3.6) is em-
ployed with the cylinder wall temperature 7T, = % (which is the temperature of the flow

field at the right side of the initial shock). In our computation, Pr = 0.7 and v = 1.4.

We test the problem with different Re and Mach number Ma, under Az = Ay = 6}1—0.
Pressure p and velocity magnitude |[u|| at different times are shown in Figure 4 - Figure

7. Tt is observed that our scheme is stable for all cases.
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Figure 4: Example 6: Pressure contours (53 contours from 2 to 28), Mas, = 3

) Re= 107 £=0.07293 (b) Re= 107 £=0.16410
) Re=1000, t=0.07293 (d) Re=1000, t=0.16410

=500, t=0.07293 (f) Re=500, t=0.16410

Figure 5: Example 6: Pressure contours (53 contours from 2 to 108), Mas = 6

For Re = 1000 and Ma, = 3, the trajectory of the center under grids of different

scales is shown in Figure 8. We can see that as the mesh is refined, the position of the

center converges.

Again, the computational domain is [0, 1]

Example 7. Next, we replace the cylinder in Example 6 with a two-dimensional airfoil.

1/1280. The chord of the airfoil is ¢y = 0.1, and the area density is 0=10.77. The

initial centroid position of the airfoil at the initial time is (0.15, 0.05), and the parameter
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x [0,0.2], and the grid width is Az = Ay =
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) Re=1000, t=0.16410

(e) Re=500, t=0.07293 (f) Re=500, t=0.16410

Figure 6: Example 6: Velocity magnitude contours (53 contours from 0.2 to 3.2), Mas =

N

(e) Re=500, t=0.07293 (f) Re=500, t=0.16410

(d) Re=1000, t=0.16410

0.4

Figure 7: Example 6: Velocity magnitude contours (53 contours from 0.2 to 7.4), Ma, =
6

equation of the airfoil is:
r=s54+0.15

y = f£(s) 4+ 0.05

where s € [—agco, co — apco] and

fE(s) = £0.6¢(0.2969y/5, — 0.12650 — 0.351652 + 0.28433s5 — 0.1015s7)

with sg = S'J’%

The same as in Example 6, the initial position of the shock wave is x = 0.08. The
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—h=1/160
~h=1/320
---h=1/640
- -h=1/1280

Figure 8: Example 6: The trajectory of the circle center calculated under the grid of
Ax = Ay = 1/160, 1/320, 1/640, 1/1280.

numerical results at different times, different Re and Ma, under the grid of Ax = Ay =
ﬁ are shown in Figure 9 - Figure 10, and the zoom view around the airfoil are shown in
Figure 11 - Figure 12. No spurious oscillation appears around the surface of the airfoil.

These indicate that our scheme can deal with the non-circle boundary well.

(¢) Re=1000, t=0.16410.

=

M
0.2 04 06 0.8

(e) Re=500, t=0.16410. (f) Re=500, t=0.30085.

Figure 9: Example 7: Pressure contours (53 contours from 2 to 14),Mas = 3

Example 8. Finally, we would like to simulate the Karméan vortex street. Consider

the interaction between the shock wave and the cylinder. The computational domain
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(e) Re=500, t=0.07293. (f) Re=500, t=0.16410.

Figure 10: Example 7: Pressure contours (53 contours from 2 to 63),Mas = 6

is [0,4.0] x [0,1.0], and the mesh is divided into Az = Ay = 1/160. The initial shock
wave position is x = 0.08, with Mach number Ma, = 2.0. We set the Reynolds number
as Re = 500. The initial position of the center of the cylinder is (0.2,0.4), with radius
R, = 0.05, and the surface density is ¢ = 5000. The main difference from Example 7 is
that we set upper and lower boundaries as adiabatic no-slip boundary. The numerical
results at different moments are shown in Figure 13 and 14. We can see that our scheme

can simulate the structures well.

5 Conclusion

In this paper we consider the numerical boundary conditions for high order finite differ-
ence schemes on Cartesian meshes to solve convection-diffusion equations in time-varying
complex domains. Our method is an extension of the so-called inverse Lax-Wendroff
procedure proposed in [14] for convection-diffusion equations in static geometries, in
which a convex combination of boundary treatments for the diffusion-dominated and
the convection-dominated cases was developed to obtain a stable and accurate boundary
condition for general convection-diffusion equations. For moving boundaries, we convert

material derivatives to spatial derivatives in the ILW procedure instead of using the Eu-
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lerian time derivatives in the ILW procedure in [14]. Moreover, our methodology gives
a new definition of the weights to avoid zero denominator, such that the algorithm can
be applied to solving pure convection and pure diffusion cases as well. To maintain high
order accuracy in time, we employ the special time matching technique at the two in-
termediate Runge-Kutta stages. New treatment for the mixed derivatives at boundaries
is designed to maintain high order accuracy and to reduce the computational cost. We
also consider interactions between compressible viscous flows and moving rigid bodies.
Numerical results show the high order accuracy and efficiency of our schemes. Our future
work is to extend this method to convection-diffusion equations with Neumann boundary

conditions.
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Figure 11: Example 7: Pressure contours around the airfoil (53 contours from 2 to
14),Mas =3
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Figure 12: Example 7: Pressure contours around the airfoil (53 contours from 2 to
63),Mas =6
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Figure 13: Example 8: Streamline at different moments
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(c) t=15.5077

Figure 14: Example 8: The contour of vorticity

47



