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Abstract

In this paper, a high order accurate positivity-preserving conservative remapping algo-
rithm is developed. Quadrilateral meshes in two dimensions are used as examples. This
remapping method is based on the numerical solution of the trivial equation ∂u

∂t
= 0 on a

moving mesh, which is the old mesh before remapping at t = 0 and is the new mesh after
remapping at t = T . A high order finite volume scheme on the moving mesh is used to solve
this problem. Specifically, we adopt the multi-resolution weighted essentially non-oscillatory
(WENO) method for the spatial discretization and a strong stability preserving (SSP) Runge-
Kutta method for the temporal discretization. The remapping algorithm is high order accu-
rate under very mild smoothness requirement (Lipschitz continuity) on the mesh movement
velocity, which can always be satisfied with a suitable choice of the final pseudo-time T .
Furthermore, we design our remapping algorithm to have positivity-preserving property by
using the linear scaling positivity-preserving limiter so that the algorithm could ensure the
positivity-preserving property of relevant physical variables and maintain conservation and
original order of accuracy. A series of numerical experiments are given to demonstrate the
properties of our remapping algorithm such as high order accuracy, essentially non-oscillatory
performance, positivity-preserving and high computational efficiency.
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1 Introduction

The Eulerian description and the Lagrangian description are two classical approaches in

computational fluid dynamics (CFD). In a pioneering paper [11], Hirt et al. developed

the arbitrary Lagrangian-Eulerian (ALE) framework, combining the best properties of the

Lagrangian and Eulerian methods. We consider the indirect ALE approach which consists of

three distinct stages: a Lagrangian stage, in which the solution and the computational mesh

are updated; a rezoning stage, in which the nodes of the computational mesh are moved to

more optimal positions to improve the quality of the mesh; and a remapping stage, in which

the Lagrangian solution is transferred from the old distorted Lagrangian mesh to the new

rezoned mesh.

The focus of this paper is on the last step of the indirect ALE method, i.e., the remapping

step. The remapping algorithm is an essential component of the indirect ALE method since it

must preserve important mathematical and physical properties of the Lagrangian solution. A

good remapping method is required to be conservative, high order accurate, essentially non-

oscillatory, positivity-preserving for certain physical variables and efficient. There are two

classical classes of remapping methods, namely the intersection based remapping methods

and the transport equation based (or flux based) remapping methods.

The most straightforward approach is remapping based on intersections [3,6,9,10,16,24,

29], which involves computing the intersections of the old and new cells exactly. The geo-

metrical intersection of a new cell and the old mesh can be computed by an exact polygon

clipping algorithm [6, 16] or the construction of a supermesh [9, 29], for instance. The cell

averages of the remapping variables on the new mesh can be obtained by the sum of inte-

grated variables over the intersection regions. The intersection-based method can be used for

remapping between two arbitrary meshes, but may suffer from relatively high computational

cost resulting from exactly calculating the overlaps between the old and new meshes.

The transport equation based (or flux-based) remapping method is another typical remap-

ping strategy. This method has the underlying assumptions that the old mesh and the new
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mesh must have the same number of cells and the same mesh connectivity topology. In

this approach, the remapping procedure can be expressed as a dynamic process governed

by a linear transport equation. If the new mesh is constrained to be close enough to the

old mesh, more precisely, if the movement of each node at the rezoning step does not ex-

ceed the size of its neighboring cells, the remapping values can be written in simple flux

form [8, 15, 22, 25, 27, 28, 31]. That is, the values of the variables on each new cell can be set

to those on the corresponding old cell plus terms which define the exchange of variables with

nearest neighbors. For the more general case, that is, the size of the mesh displacement has

no limitation, the remapping is typically carried out by solving a transport (or advection)

equation [1,2,17,18,20,21,30,33]. The remapping results are obtained by marching from the

old mesh to the new mesh over several pseudo time steps. This method avoids the precise

calculation of intersecting regions between the cells of the old and new meshes. It is easy in

coding and reduces complexity and computational cost.

In recent years, the field of high order remapping algorithms is under very active re-

search since it is the basis of the high order indirect ALE method. Most remapping methods

start with function reconstruction on the Lagrangian mesh while the high order reconstruc-

tion polynomials may produce numerical oscillations near the discontinuities. The classical

technique to prevent numerical oscillation is to use some limiting strategies such as es-

sentially non-oscillatory (ENO) method [6], weighted essentially non-oscillatory (WENO)

method [16], slope limiter [32] or a posteriori limiting [3] in the reconstruction stage. The

authors in [2, 20, 21] design the high order remapping algorithm by solving the advection

equation with high accuracy in space and time. It should be noted that this method requires

the mapping from the old mesh to the new mesh to be sufficiently smooth so as to achieve

high order accuracy.

Another important issue for the remapping algorithm is the positivity-preserving prop-

erty. The positivity of certain physical quantities such as density or internal energy must

be preserved during the remapping process to avoid the failure of the numerical solution.
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Margolin and Shashkov [27] proposed a second order, sign-preserving conservative interpola-

tion for remapping inspired from the multidimensional positive definite advection transport

algorithm (MPDATA). The authors in [15, 25, 28] utilized a conservative repair procedure

re-distributing the remapping results in the neighboring cells to maintain local bounds. The

remapping algorithm can also preserve local bounds by the flux corrected method, the core

of which is the convex combination of the bound-preserving low order numerical fluxes and

the high order fluxes [2, 22, 30, 31]. A posteriori multi-dimensional optimal order detection

(MOOD) limiting added in the high order accurate remapping algorithm can lead to ro-

bustness and maintain intrinsic physical properties such as positivity [3]. Recently, Zhang

et al. [33] proposed a high-order and positivity-preserving interpolation scheme, which is

developed based on the discontinuous Galerkin solution of a linear time-dependent equation

on deforming meshes. Lei et al. [16] proposed a high order positivity-preserving conservative

WENO remapping method based on intersections. They are all based on the positivity-

preserving limiter to get the positivity-preserving property. The positivity-preserving limiter

proposed by Zhang and Shu in [34] is utilized to maintain the positivity property of physical

quantities without losing the conservation and the original high order accuracy.

In this paper, we will focus on designing a new remapping method, based on the numer-

ical solution of the trivial equation ∂u
∂t

= 0 on a moving mesh, which is the old mesh before

remapping at t = 0 and is the new mesh after remapping at t = T . Quadrilateral meshes

in two dimensions are used as examples. A high order finite volume scheme on the moving

mesh is used to solve this problem. In order to design a high order accurate and positivity-

preserving remapping algorithm, first we will construct a high order accurate finite volume

scheme to solve the trivial equation ∂u
∂t

= 0 on a moving mesh, based on the recently devel-

oped moving mesh finite volume technique [13, 14, 19]. An important feature of the moving

mesh finite volume technique in [13, 14, 19] is its weak reliance on the smoothness of mesh

movements: only Lipschitz continuity of the mesh movement is required to obtain high order

accuracy, which can always be satisfied by choosing the ending pseudo-time T suitably. The
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spatial approximation of our scheme is based on the new multi-resolution WENO reconstruc-

tion procedure of Zhu and Shu [37], which constructs a series of unequal-sized hierarchical

central spatial stencils and produces a polynomial on each cell. The linear weights of this

type of WENO scheme can be any fixed positive numbers on the condition that they sum

to one. Compared with the traditional WENO reconstruction, this new WENO scheme uses

fewer stencils and does not need to recalculate the linear weights at each time step, hence it

is particularly suitable and efficient for the remapping problem where the shape of the mesh

cells always changes. The temporal discretization is based on the high order strong stabil-

ity preserving (SSP) Runge-Kutta method. We apply the Zhang-Shu positivity-preserving

framework to maintain the positivity of certain variables such as density and internal energy

by using a positivity-preserving limiter which is valid under suitable time step restriction.

This method is widely adopted for its easy implementation and maintenance of high order

accuracy.

Compared with the existing remapping algorithms, the novelty of our new algorithm is

as follows. It does not require strong smoothness of the mesh movement for maintaining

high order accuracy, and it can achieve high order accuracy under very mild conditions on

the mesh movement. Specifically, only boundedness and Lipschitz continuity of the mesh

movement velocity are required. This method does not limit the range of mesh movement

and it can always be applied and yield high order accuracy as long as the final pseudo-time

T is chosen suitably. When the new mesh is only a small perturbation of the old mesh, T

can be chosen to be very small, requiring very few pseudo time steps for the moving mesh

solver, hence saving computational cost. When the new mesh is very far from the old mesh,

T has to be chosen suitably large to ensure Lipschitz continuity of the mesh movement, hence

increasing the computational cost. Thus our remapping method is particularly advantageous

for problems which involve small mesh changes, such as for ALE algorithms with remapping

performed every time step or every few time steps. The positivity-preserving limiter is

added to make the remapping algorithm have the positivity-preserving property without
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losing accuracy and conservation.

The organization of this paper is as follows. The main procedures of the remapping

algorithm are given in Section 2, including four subsections: designing a finite volume scheme

to solve the trivial equation ∂u
∂t

= 0, where the old mesh is set at the initial time, the new mesh

is set at the final time; determining the final pseudo-time T according to the boundedness

and Lipschitz continuity requirements on the mesh movement velocity; using the multi-

resolution WENO method for spatial discretization and high order SSP Runge-Kutta time

discretization to obtain high order of accuracy in space and time and designing a positive-

preserving remapping algorithm based on a positivity-preserving limiter. Section 3 will give

several numerical tests to assess the performance of the algorithm on several types of moving

meshes. Furthermore, we apply our remapping algorithm in an indirect ALE method and

show its performance on certain benchmark flow problems, such as the Sedov problem, the

Saltzman problem, the Noh problem, the Leblanc shock tube problem and the multi-material

Sod shock tube problem. Finally, concluding remarks are given in Section 4.

2 Remapping algorithm

In this section, as an example, we design a third order positivity-preserving conservative

WENO remapping method based on a moving mesh solver of the trivial equation ∂u
∂t

= 0,

where u is the function of the variable to be remapped. The input to the remapping problem

includes the old distorted mesh, its corresponding physical quantities (their cell averages)

and the new rezoned mesh. The goal of the remapping problem is to provide data (cell

averages) on the new mesh which is transferred from the old mesh. We introduce a pseudo-

time T and connect the corresponding nodes of the old and new meshes by straight lines to

obtain a moving mesh. The remapping results can be obtained by solving the trivial equation
∂u
∂t

= 0 on this moving mesh. We only require boundedness and Lipschitz continuity of mesh

movement velocity to obtain high order accuracy. The multi-resolution WENO method and

the SSP Runge-Kutta method are used in the spatial discretization and time discretization
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respectively. Finally, the positive-preserving limiter is adopted so that we can obtain a

high order accurate positivity-preserving conservative remapping algorithm. We take the

scalar function u as an example to show the remapping procedures. The remapping of

vector and tensor functions can be performed component by component, except for some of

the positivity-preserving procedure, e.g. for the positivity-preserving of pressure or internal

energy, that would require us to look at the vector of conserved variables as one entity.

2.1 The moving mesh algorithm in pseudo time

Now, we consider a connected bounded computational domain Ω in two-dimension. We

regard the old mesh as the initial mesh configuration at the time t = 0 and denote it as

M0. The new mesh is taken as the final mesh configuration at the final time t = T and

denoted as MT . The final time T is the pseudo time we introduce. For consistency with

the discussion that follows, we use the following notation. The old mesh M0 consists of

groups of quadrilateral cells {I0i,j}, i = 1, · · · , Nx, j = 1, · · · , Ny, where the superscript 0

means at t = 0, Nx and Ny are the number of cells in the x and y directions respectively.

Each quadrilateral cell {I0i,j} has four nodes
{
P 0
i− 1

2
,j− 1

2

, P 0
i+ 1

2
,j− 1

2

, P 0
i+ 1

2
,j+ 1

2

, P 0
i− 1

2
,j+ 1

2

}
and

the coordinate of the node P 0
i− 1

2
,j− 1

2

is
(
x0
i− 1

2
,j− 1

2

, y0
i− 1

2
,j− 1

2

)
. Similarly, we replace the symbol

superscript with T to get the elements, nodes and coordinates of the new mesh MT . In Fig.

1 the connection of the two corresponding cells on the old mesh and on the new mesh is

illustrated. Here we require the meshes M0 and MT to have the same numbers of nodes and

cells. We adopt the quadrilateral type mesh as it is commonly used in Lagrangian methods.

In fact, our high order positivity-preserving conservative WENO remapping algorithm can

be used on any polygon type mesh, such as triangles, as long as the old and new meshes

have the same mesh topology.

We assume that there is a function u, such as density, momentum or total energy, defined

on the computational domain, whose cell averages need to be remapped from the old mesh

to the new mesh. The function u is a time independent quantity, namely the equation we
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↑

→

→

Fi g ur e 1: T h e ol d a n d n e w m e s h e s i n t h e r e m a p pi n g p r o bl e m.

ar e s ol vi n g is t h e tri vi al e q u ati o n

∂ u

∂ t
= 0 , ( 2. 1)

t o b e s ol v e d o n a m o vi n g m es h c o n n e cti n g t h e ol d m es h at t = 0 a n d t h e n e w m es h at t = T .

We c o n n e ct t h e c orr es p o n di n g n o d es of t h e ol d a n d n e w gri ds b y str ai g ht li n es, t o g et

a ti m e-r el at e d c o ntr ol v ol u m e I i, j (t). C o n v erti n g t h e E q.( 2. 1) i nt o t h e i nt e gr al f or m w hi c h

h ol ds f or a n y c o ntr ol v ol u m e

I i, j ( t)

∂ u

∂ t
d x d y = 0 ,

b y t h e R e y n ol ds tr a ns p ort t h e or e m a n d t h e di v er g e n c e t h e or e m, w e c a n g et t h e f oll o wi n g

i nt e gr al e q u ati o n

d

d t
S i, j (t) ū i, j (t) +

∂ I i, j ( t)

F (ω , u) · n d l = 0 , F (ω , u) = (− ω x u, − ω y u ) T . ( 2. 2)

H er e, S i, j (t) is t h e ar e a of I i, j (t), ū i, j (t) is t h e c ell a v er a g es of t h e f u n cti o n u i n t h e

c ell I i, j (t). ω = ( ω x , ωy )
T is t h e m es h m o v e m e nt v el o cit y. ω x a n d ω y r e pr es e nt t h e m es h

m o v e m e nt v el o cit y i n t h e x dir e cti o n a n d i n t h e y dir e cti o n, r es p e cti v el y. n = ( n x , ny )
T is

t h e u nit o ut w ar d n or m al t o t h e c ell b o u n d ar y.
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2.2 Mesh movement velocity

In order to solve the Eq.(2.2), first we have to determine the mesh movement velocity ω. We

introduce the pseudo-time T and connect the old node P 0
i− 1

2
,j− 1

2

and the new node P T
i− 1

2
,j− 1

2

by a straight line, therefore ω is a constant (independent of t) at this node and is given as

ωx
i− 1

2 ,j− 1
2

=
xT
i− 1

2
,j− 1

2

− x0
i− 1

2
,j− 1

2

T
, ωy

i− 1
2 ,j− 1

2

=
yT
i− 1

2
,j− 1

2

− y0
i− 1

2
,j− 1

2

T
. (2.3)

We denote the points at the n-th time level as
{(

xn
i− 1

2
,j− 1

2

, yn
i− 1

2
,j− 1

2

)}
. According to

the mesh movement velocity, we can have the points Pi− 1
2
,j− 1

2
(t) between the time level n

(denoted as tn) and the time level n+ 1 (denoted as tn+1)

xi− 1
2
,j− 1

2
(t) = xn

i− 1
2
,j− 1

2
+ ωx

i− 1
2 ,j− 1

2

(t− tn), t ∈ [tn, tn+1],

yi− 1
2
,j− 1

2
(t) = yn

i− 1
2
,j− 1

2
+ ωy

i− 1
2 ,j− 1

2

(t− tn), t ∈ [tn, tn+1].

The authors pointed out in [13,14] that the mesh movement velocity is a linear function

on the edge connecting two nodes. For example, the mesh movement velocity ω = (ωx, ωy)
T

at any point P = (x, y) on the edge connecting nodes Pi− 1
2
,j− 1

2
(t) and Pi+ 1

2
,j− 1

2
(t) is as

follows,

ωx(x, y) = ωx
i+1

2 ,j− 1
2

θ(x, y) + ωx
i− 1

2 ,j− 1
2

(1− θ(x, y)) ,

ωy(x, y) = ωy
i+1

2 ,j− 1
2

θ(x, y) + ωy
i− 1

2 ,j− 1
2

(1− θ(x, y)) ,
(2.4)

where

θ(x, y) =

√
(x− xi− 1

2
,j− 1

2
(t))2 + (y − yi− 1

2
,j− 1

2
(t))2√

(xi+ 1
2
,j− 1

2
(t)− xi− 1

2
,j− 1

2
(t))2 + (yi+ 1

2
,j− 1

2
(t)− yi− 1

2
,j− 1

2
(t))2

.

In order to ensure the accuracy of the scheme on a moving mesh, the mesh movement

velocity should satisfy the following properties [13, 14].

• Boundedness of mesh movement velocity, here C0 is a constant independent of the

mesh size,

|ωx
i− 1

2 ,j− 1
2

| ⩽ C0, |ωy
i− 1

2 ,j− 1
2

| ⩽ C0.
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• Lipschitz continuity of mesh movement velocity, here C0,1 is a constant independent of

the mesh size,∣∣∣∣∂ωx

∂x

∣∣∣∣ ⩽ C0,1,

∣∣∣∣∂ωy

∂x

∣∣∣∣ ⩽ C0,1,

∣∣∣∣∂ωx

∂y

∣∣∣∣ ⩽ C0,1,

∣∣∣∣∂ωy

∂y

∣∣∣∣ ⩽ C0,1.

We take C0 = C0,1 = 10 in numerical experiments. The requirements for the boundedness

and Lipschitz continuity of mesh movement velocity can be transformed into the constraints

of the final pseudo-time T . We can choose a suitable final pseudo-time T , then we have the

mesh movement velocity ω according to (2.3).

2.3 The finite volume scheme on the moving mesh

If the line integral in (2.2) is discretized by a Gauss-Lobatto integration formula on each

edge, then we have∫
∂Ii,j(t)

F (ω, u) · ndl ≈
K∑
k=1

lki,j

qN∑
q=1

w̃qF (ω(G(k)
q (t)), u(G(k)

q (t))) · nk.

K is the number of the cell boundary edges, for the quadrilateral mesh K = 4. lki,j is the

length of the k-th edge of ∂Ii,j(t). qN is the number of Gauss-Lobatto quadrature points

which is determined by the order of accuracy of the scheme. For our third order scheme

we take qN = 3. G
(k)
q (t) is the q-th Gauss-Lobatto quadrature point on the k-th edge of

quadrilateral Ii,j(t) and w̃q is the corresponding quadrature weight. nk is the unit outward

normal of Ii,j(t) along the k-th cell edge. Notice that we have used the Gauss-Lobatto

quadrature rule rather than the Gaussian quadrature rule, because this makes it easier to

implement the positivity-preserving technique as described in Section 2.6.

F (ω(G
(k)
q (t)), u(G

(k)
q (t))) · nk is approximated by a numerical flux. Here we choose the

upwind flux (Roe flux) as an example,
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F̂ (ω(G(k)
q (t)), u−(G(k)

q (t)), u+(G(k)
q (t))) · nk

=

F (ω(G
(k)
q (t)), u−(G

(k)
q (t))) · nk, ω(G

(k)
q (t)) · nk ⩽ 0,

F (ω(G
(k)
q (t)), u+(G

(k)
q (t))) · nk, ω(G

(k)
q (t)) · nk > 0.

Here ω(G
(k)
q (t)) can be calculated in the same way as (2.4), u−(G

(k)
q (t)) and u+(G

(k)
q (t))

are the values of the reconstruction polynomial at the Gauss-Lobatto quadrature points

inside and outside the cell Ii,j(t) respectively.

Thus the semi-discrete finite volume scheme of (2.2) is given by

d

dt
Si,j(t)ūi,j(t) = −

4∑
k=1

lki,j

qN∑
q=1

w̃qF̂ (ω(G(k)
q (t)), u−(G(k)

q (t)), u+(G(k)
q (t))) · nk. (2.5)

We will use the multi-resolution WENO reconstruction procedure, described in detail

in Section 2.4, to determine u−(G
(k)
q (t)) and u+(G

(k)
q (t)) in the spatial discretization. After

that, we will further use the SSP Runge-Kutta time discretization described in Section 2.5

to obtain a high order scheme both in space and time.

2.4 Multi-resolution WENO reconstruction in the spatial discretiza-

tion

In order to obtain a high order approximation to u−(G
(k)
q (t)) and u+(G

(k)
q (t)) in (2.5), we

use the multi-resolution WENO reconstruction proposed by Zhu and Shu [37]. It selects

a series of unequal-sized hierarchical central spatial stencils to construct high-order and

low-order polynomials on these stencils respectively. The final reconstruction polynomial

is a linear combination of high-order and low-order polynomials obtained with appropriate

linear and nonlinear weights. This new type of multi-resolution WENO method can achieve

optimal accuracy on the largest stencil in the smooth regions and is non-oscillatory near

discontinuities. The linear weights of such WENO scheme can be any fixed positive numbers

so this scheme is particularly suitable and easy to implement for irregular and moving meshes.
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This method can achieve arbitrarily high order accuracy. We will design the third order

scheme as an example in this paper and the procedure of the third order multi-resolution

WENO reconstruction in two-dimension includes the following steps.

Step 1. We choose two central spatial stencils of different sizes. The small stencil is

T1 = {Ii,j} and the large stencil is

T2 = {Ii−1,j−1, Ii,j−1, Ii+1,j−1, Ii−1,j, Ii,j, Ii+1,j, Ii−1,j+1, Ii,j+1, Ii+1,j+1}.

When the relevant variables in the ghost cells outside the computational domain are given

by boundary conditions such as periodic, reflecting, piston, and so on, the cells at the

boundary can be treated in the same way as the inner cells. We consider periodic boundary

conditions in the multi-resolution WENO reconstruction procedure for simplicity. We can

reconstruct a zeroth degree polynomial q1(x, y) and a quadratic polynomial q2(x, y) on T1

and T2 respectively which satisfy∫∫
Ii,j

qs(x, y)dxdy = ūi,jSi,j, s = 1, 2.

It is easy to get q1(x, y) = ūi,j. We set the second degree polynomial q2(x, y) = a0 +

a1(x−xc
i,j)+ a2(y− yci,j)+ a3(x−xc

i,j)
2+ a4(x−xc

i,j)(y− yci,j)+ a5(y− yci,j)
2, where (xc

i,j, y
c
i,j)

is the center of Ii,j. As a quadratic polynomial has six degrees of freedom, while the large

stencil T2 has nine cells, we adopt a constrained least-square procedure. The approximation

q2(x, y) is obtained as

q2(x, y) = arg min
q̃2∈P 2

1∑
m=−1

1∑
n=−1

|
∫∫

Ii+m,j+n

q̃2(x, y)dxdy − ūi+m,j+nSi+m,j+n|2,

s.t.

∫∫
Ii,j

q̃2(x, y)dxdy = ūi,jSi,j,

where P 2 is the set of polynomials of degree at most 2.

Step 2. We take p1(x, y) = q1(x, y) and define a second degree polynomial p2(x, y) by

p2(x, y) =
1

γ2
q2(x, y)−

γ1
γ2

p1(x, y).

12



Here γ1 and γ2 are the linear weights and γ1 + γ2 = 1. If γ2 is chosen larger, the eventual

WENO polynomial will have a better accuracy in smooth regions yet may produce oscillations

near strong discontinuities. Following [37], we choose γ1 =
1
11
, γ2 =

10
11

as a good balance.

Step 3. Compute the smoothness indicators β1 and β2, which measure how smooth the

function p1(x, y) and p2(x, y) are in the cell Ii,j respectively.

β2 =
∑

l1+l2=1,2
l1,l2=0,1,2

∫∫
Ii,j

S
|l1+l2|−1
i,j

(
∂l1+l2

∂xl1∂yl2
p2(x, y)

)2

dxdy. (2.6)

Since p1(x, y) is a zeroth degree polynomial, if we use (2.6) to determine β1, we would

get β1 = 0. Zhu and Shu pointed out in [37] that this does not seem to cause any problems

in the accuracy test, however it does lead to more smearing for problems containing strong

shocks or contact discontinuities. We take an alternative definition of β1 which is proposed

in [37],

β1 = min{ζ1 + ζ2, ζ2 + ζ3, ζ3 + ζ4, ζ4 + ζ1},

where

ζ1 = (ūi,j − ūi,j−1)
2, ζ2 = (ūi,j − ūi−1,j)

2,

ζ3 = (ūi,j − ūi,j+1)
2, ζ4 = (ūi,j − ūi+1,j)

2.

Step 4. We compute the nonlinear weights based on the linear weights and the smooth-

ness indicators, which follows the WENO-Z strategy as shown in [5]. The nonlinear weights

are given as

wl =
w̄l

w̄1 + w̄2

, l = 1, 2,

where

w̄l = γl

(
1 +

(
τ

βl + ε1

)2
)
, τ = |β2 − β1|, l = 1, 2,

and ε1 is taken as 10−3 in our code.

Step 5. The final reconstruction polynomial for the cell Ii,j is given by

ui,j(x, y) = w1p1(x, y) + w2p2(x, y).
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Therefore, we can get a third order approximation to u−(G
(k)
q (t)) at the Gauss-Lobatto

integration points on the boundary of Ii,j(t). Similarly, we can reconstruct the polynomials

on the neighboring cells to obtain a third order approximation of u+(G
(k)
q (t)).

2.5 High order SSP Runge-Kutta time discretization

To obtain high accuracy in time discretization for the scheme (2.5), the time marching is

implemented by a high order SSP Runge-Kutta method. In this paper, we use the third

order SSP Runge-Kutta method as follows

Sn+1
i,j ū

(1)
i,j = Sn

i,jū
n
i,j +△tL(un

i,j, t
n),

1

2
(Sn

i,j + Sn+1
i,j )ū

(2)
i,j =

3

4
Sn
i,jū

n
i,j +

1

4
(Sn+1

i,j ū
(1)
i,j +△tL(u

(1)
i,j , t

n+1)),

Sn+1
i,j ūn+1

i,j =
1

3
Sn
i,jū

n
i,j +

2

3
(
1

2
(Sn

i,j + Sn+1
i,j )ū

(2)
i,j +△tL(u

(2)
i,j ,

1

2
(tn + tn+1))),

(2.7)

where the operator L represents the terms at the right hand side of (2.5). Thus, up to now

we have a fully discrete numerical scheme with third order accuracy both in space and time.

We calculate the time step △t by the CFL condition,

△t =
Ccflh

α
, α = max

i,j
max
q,k

G
(k)
q (tn)∈In

i,j

|ω(G(k)
q (tn)) · nk|, (2.8)

where Ccfl is the Courant number. In the computation we choose it as 0.8. h is the minimum

diameter of the inscribed circles for all the quadrilateral cells on the computational mesh.

In some cases α in (2.8) could be very small, leading to a very large △t determined by

the stability constraint (2.8). In such cases, it is necessary to reduce △t in order to ensure

temporal accuracy. Referring to [19], if △t determined by (2.8) is larger than 5h in our

numerical tests, we will set it to be 5h.

2.6 The positivity-preserving property

The indirect ALE method in computational fluid dynamics requires frequent remapping of

conserved quantities such as density ρ, momentum m and total energy E from the old dis-

torted Lagrangian mesh to a new rezoned mesh. Positivity is a very valuable property in the
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simulation of fluid flow since non-physical negative density ρ or internal energy e = E− |m|2
2ρ

can lead to an ill-posed system. During the remapping process, density and internal energy

may become negative, which violates the physical properties. In [34, 36], Zhang et al. pro-

posed the positivity-preserving high-order discontinuous Galerkin schemes for conservation

laws on rectangular meshes and triangular meshes. Following [7, 35], we design our remap-

ping algorithm to have the positivity-preserving property based on the positivity-preserving

limiter valid under suitable time step restriction.

2.6.1 First order positivity-preserving remapping algorithm

Considering the variables in the fluid dynamics, we denote the vector of conservative variables

U = (ρ,m, E)T . Ūi,j = (ρ̄i,j, m̄i,j, Ēi,j)
T is the cell average of U in the cell Ii,j. We define

the set of admissible states by

G =
{
U = (ρ, m, E)T , ρ > 0, e > 0

}
.

G can be proven to be a convex set. The scheme (2.7) is called positivity-preserving if

{Ūn
i,j ∈ G, i = 1, · · · , Nx, j = 1, · · · , Ny} implies {Ūn+1

i,j ∈ G, i = 1, · · · , Nx, j = 1, · · · , Ny}.

In order to make our high order finite volume scheme (2.7) positivity-preserving, we start

with the first order finite volume scheme,

Sn+1
i,j Ūn+1

i,j = Sn
i,jŪ

n
i,j −△t

4∑
k=1

lki,jF̂ (ω(k), Ūn
i,j, Ū

ext(Ii,j)
k ) · nk, (2.9)

where Ūn
i,j is the cell average for the conserved variables in the cell Ii,j and Ū

ext(Ii,j)
k is the

cell average of U in the neighboring cell of Ii,j along the k-th edge of cell Ii,j. ω(k) is the

value of the mesh movement velocity ω at the middle point of the k−th edge of cell Ini,j.

According to the proof in [7, 35], the following theorem can ensure the first order finite

volume scheme is positivity-preserving.

Theorem 2.1. The first order scheme (2.9) is positivity-preserving under the time step

restriction

△tn ⩽ 1

2
min
i,j

[
Sn
i,j∑4

k=1 l
k
i,j

/(
max

k
|ω(k) · nk|

)]
.
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2.6.2 High order positivity-preserving remapping algorithm

Next, we derive the sufficient conditions to enable our high order remapping algorithm to

have the positive-preserving property. First we use the Euler forward method for time

discretization and we get the fully discrete scheme as

Sn+1
i,j Ūn+1

i,j = Sn
i,jŪ

n
i,j −△t

4∑
k=1

lki,j

qN∑
q=1

w̃qF̂ (ω(G(k)
q (tn)),U

−(G(k)
q (tn)),U

+(G(k)
q (tn))) · nk.

(2.10)

Motivated by the derivation in the previous papers [7,34,35], to find a sufficient condition

for the scheme (2.10) to be positivity-preserving, we need to decompose the cell average Ūn
i,j

by a Gauss quadrature rule that takes care of both area and line integrals, hence we would

use Gauss-Lobatto quadrature rules. Such a quadrature for a general quadrilateral can

be constructed by using a coordinate transformation. We transform the cells Ii,j with the

general quadrilateral shape in the x − y coordinates to the square grid [−1
2
, 1
2
] × [−1

2
, 1
2
]

in the ξ − η coordinates. In order to make the Gauss-Lobatto quadrature to be exact for

our reconstructed quadratic polynomial, we choose the 3× 3-point tensor product Simpson

quadrature rule where the quadrature points consist of the cell vertices, the middle points

of the cell edges and the cell center. Fig. 2 shows the specific information of the quadrature

points.

We define the set of Gauss-Lobatto quadrature points for the cell Ii,j to be Gi,j =

{(xm1,m2 , ym1,m2),m1,m2 = 1, 2, 3} and the quadrature weights w̃1 = w̃3 = 1
6
, w̃2 = 2

3
. We

denote Um1,m2

i,j to be the values of reconstruction polynomial Ui,j(x, y) for the cell Ii,j at

the corresponding Gauss-Lobatto quadrature points, namely Um1,m2

i,j = Ui,j(xm1,m2 , ym1,m2).

For simplicity, we have another way to denote the values of Ui,j(x, y) at the Gauss-Lobatto

quadrature points along the four cell boundaries of Ii,j, namely U1,m1 = U 1,m1

i,j , U2,m1 =

Um1,1
i,j , U3,m1 = U 3,m1

i,j , U4,m1 = Um1,3
i,j . ω with the same subscript means the value of the

mesh movement velocity at the Gauss-Lobatto quadrature point on the corresponding edge.

In the same way, the value of the reconstruction polynomial of adjacent cells can be defined.
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Figure 2: The transformation from x − y coordinates to ξ − η coordinates for the calculation of

integration.

Ji,j is the Jacobian for the coordinate transformation and |J |m1,m2

i,j are the values of Ji,j at

the corresponding Gauss-Lobatto quadrature points.

By some algebraic manipulations, Ūn+1
i,j can be rewritten as

Sn+1
i,j Ūn+1

i,j =
1

2

[
3∑

m1=1

w̃2w̃m1 |J |
2,m1

i,j U 2,m1

i,j +
3∑

m1=1

w̃m1w̃2|J |m1,2
i,j Um1,2

i,j

]

+
w̃1

2

3∑
m1=1

w̃m1

[
F̂1

m1
+ F̂2

m1
+ F̂3

m1
+ F̂4

m1

]
,

(2.11)

where

F̂1
m1

=|J |1,m1

i,j U1,m1 −
2△t

w̃1

[
l1i,jF̂

(
ω1,m1 ,U1,m1 , (U1,m1)

+) · n1 + l2i,jF̂ (ω1,m1 ,U1,m1 ,U2,m1) · n2

+l3i,jF̂ (ω1,m1 ,U1,m1 ,U3,m1) · n3 + l4i,jF̂ (ω1,m1 ,U1,m1 ,U4,m1) · n4

]
,

F̂2
m1

=|J |m1,1
i,j U2,m1 −

2l2i,j△t

w̃1

[
F̂
(
ω2,m1 ,U2,m1 , (U2,m1)

+) · n2 − F̂ (ω1,m1 ,U1,m1 ,U2,m1) · n2

]
,

F̂3
m1

=|J |3,m1

i,j U3,m1 −
2l3i,j△t

w̃1

[
F̂
(
ω3,m1 ,U3,m1 , (U3,m1)

+) · n3 − F̂ (ω1,m1 ,U1,m1 ,U3,m1) · n3

]
,

F̂4
m1

=|J |m1,3
i,j U4,m1 −

2l4i,j△t

w̃1

[
F̂
(
ω4,m1 ,U4,m1 , (U4,m1)

+) · n4 − F̂ (ω1,m1 ,U1,m1 ,U4,m1) · n4

]
.

F̂1
m1

is a two-dimensional first order positivity-preserving finite volume scheme which

has the same type as (2.9). F̂2
m1

, F̂3
m1

and F̂4
m1

are one-dimensional first order positivity-

preserving finite volume schemes. So Ūn+1
i,j is the convex combination of Um1,m2

i,j and first
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order finite volume schemes. If all the terms at the right hand side of (2.11) are in the set

G, then it is obvious that Ūn+1
i,j ∈ G since G is convex. We can enforce a linear scaling

positivity-preserving limiter so that Um1,m2

i,j ∈ G . The first order finite volume scheme can

be positivity-preserving under a suitable time step condition. More detailed proof can be

referred to [7, 35].

In summary, for solving a linear partial differential equation by a finite volume scheme

with the upwind flux on a general quadrilateral moving mesh, in order to obtain a high order

positive-preserving scheme, we have the following theorem.

Theorem 2.2. Assume Ūn
i,j ∈ G and Um1,m2

i,j ∈ G for all i = 1, · · · , Nx, j = 1, · · ·Ny, m1,m2 =

1, 2, 3, then the scheme (2.10) is positivity-preserving under the time step restriction

△t ⩽ w̃1

2
λmin

i,j

{
|J |i,j∑4
k=1 l

k
i,j

/(
max
k,m1

|ωk,m1 · nk|
)}

, (2.12)

where w̃1 =
1
6
, λ = 1

2
, |J |i,j = min

m1=1,2,3
{|J |m1,1

i,j , |J |m1,3
i,j , |J |1,m1

i,j , |J |3,m1

i,j }.

The SSP high order Runge-Kutta scheme (2.7) will keep the positivity since they are the

convex combinations of Euler forward time discretization and G is convex.

Remark. The above theorem theoretically proves that the high order finite volume

scheme has the positivity-preserving property under the time step restriction (2.12). As

we know the smaller time step will lead to higher computational cost. In our numerical

experiments, we take another approach to ensure the positivity-preserving property of the

our high order remapping algorithm. This approach obeys the standard CFL condition first,

namely (2.8), which is more relaxed than the time step (2.12). In this approach we check

at each time step whether all new cell averages belong to the set G. If yes, we continue the

computation, otherwise we need to return to the previous time step and march time with

△t/2. Compared with the method with the time step restriction (2.12), this implementation

approach is more efficient. Theorem 2.2 makes sure that we need to return only a finite

number of times to have the cell averages belonging to the set G.
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2.6.3 The positivity-preserving limiter

The scheme (2.7) cannot automatically satisfy the sufficient condition Um1,m2

i,j ∈ G, it can

be enforced by the linear scaling positivity-preserving limiter proposed in [34]. The idea

of the linear scaling positivity-preserving limiter is to perform a linear compression on the

original reconstruction polynomial Ui,j(x, y) to modify it into a new polynomial Ũi,j(x, y).

The modified polynomial Ũi,j(x, y) satisfies that its values at all Gauss-Lobatto quadrature

points are positivity-preserving. The specific implementation can be taken as follows.

The first step is to enforce the positivity of density. We modify the reconstructed

quadratic polynomial ρi,j(x, y) by

ρ̂i,j(x, y) = θ1(ρi,j(x, y)− ρ̄i,j) + ρ̄i,j,

θ1 = min{1, | ρ̄i,j − ε2
ρ̄i,j − b

|}, b = min
(x,y)∈Gi,j

ρi,j(x, y),

where Gi,j is a set of Gauss-Lobatto quadrature points in Ii,j, ε2 is a very small positive

constant which satisfies ρ̄i,j ⩾ ε2 for all i, j. For example, we take ε2 = 10−13 in our code.

The second step is to enforce the positivity of the internal energy e for the cells. Define

Ûi,j(x, y) = (ρ̂i,j(x, y),mi,j(x, y), Ei,j(x, y))
T after the first step. For each (x, y) ∈ Gi,j, if

e(Ûi,j(x, y)) ⩾ 0 set θ2 = 1; otherwise, set

θ2 = min
(x,y)∈Gi,j

e(Ūi,j)

e(Ūi,j)− e(Ûi,j(x, y))
.

Then we get the limited polynomial

Ũij(x, y) = θ2(Ûi,j(x, y)− Ūi,j) + Ūi,j.

It is easy to show that the cell average of the limited polynomial Ũi,j(x, y) over Ii,j is still

Ūi,j and Ũm1,m2

i,j ∈ Gi,j. More importantly, this limiter will not destroy conservation and

accuracy, its detailed proof can be found in [34]. Thus this positivity-preserving limiter can

keep conservation, accuracy and positivity.

So far, the main procedures of the high order positivity-preserving conservative remapping

algorithm are accomplished. In the next section, we will verify the accuracy, non-oscillatory
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and positivity-preserving properties of our remapping algorithm through a series of numer-

ical examples. Finally, we apply our remapping algorithm in an indirect ALE method and

show its performance on certain benchmark flow problems.

3 Numerical examples

In this section, we provide a series of numerical examples to demonstrate the conservative,

high order accurate, non-oscillatory, and positivity-preserving properties of the remapping

algorithm. For the sake of simplicity, we set the computational area Ω as [0, 1] × [0, 1].

Suppose M0 is a uniform mesh with the step size hx = 1
Nx

along the x axes and the step

size hy =
1
Ny

along the y axes, we can define the vertex (xi, yj) = ((i− 1)hx, (j − 1)hy). We

have the following two ways to get a distorted mesh. Note that here the old and new meshes

have the same number of nodes and cells. Besides, we require that the boundary points of

the old and new meshes remain the same for simplicity.

1. The smoothly moving mesh Mn
S

xn
i− 1

2
,j− 1

2
= xi + Cs

n

N
sin(2πxi) sin(2πyj),

yn
i− 1

2
,j− 1

2
= yj + Cs

n

N
sin(2πxi) sin(2πyj),

where Cs = 0.1. The superscript n represents the times of remapping and N is the

total number of remapping. Fig. 3 shows the schematic diagrams of uniform mesh M0

to smoothly moving mesh M1
S and smoothly moving mesh M7

S to smoothly moving

mesh M8
S.

2. The randomly moving mesh Mn
R

xn
i− 1

2
,j− 1

2
= xi + Crr

n
i,jhx,

yn
i− 1

2
,j− 1

2
= yj + Crs

n
i,jhy,

where rni,j, s
n
i,j ∈ [−0.5, 0.5] are two sequences of independent random numbers. The

points on the boundary of the randomly moving mesh Mn
R are the same as the uniform
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Figure 3: The uniform mesh and the smoothly moving mesh, Nx = Ny = 10, N = 10. Left: the

black solid mesh is the uniform mesh M0 and the blue dashed mesh is the smoothly moving mesh

M1
S ; Right: the black solid mesh is the smoothly moving mesh M7

R and the blue dashed mesh is

the smoothly moving mesh M8
S .

mesh M0. We take Cr = 0.5 in the following examples and the schematic diagrams

are given by Fig. 4.

In the following numerical experiments, the remapping process first transfers the phys-

ical variables from the uniform mesh M0 to the smoothly moving mesh M1
S or the

randomly moving mesh M1
R by our remapping algorithm, and then to the next mesh.

This process ends after remapping N times. In order to measure errors and conver-

gence rates simply, we enforce the final mesh to coincide with the original one M0

after several times of remapping. Suppose the initial cell average of physical quantity

in the cell Ii,j is ū0
i,j and after remapping N times the cell average is ūN

i,j in the same

cell, the norms of the error ϵ are given by
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Figure 4: The uniform mesh and the randomly moving mesh, Nx = Ny = 10, N = 10. Left: the

black solid mesh is the uniform mesh M0 and the blue dashed mesh is the randomly moving mesh

M1
R; Right: the black solid mesh is the randomly moving mesh M7

R and the blue dashed mesh is

the randomly moving mesh M8
R.

∥ϵ∥L1 =

Nx∑
i=1

Ny∑
j=1

|ūN
i,j − ū0

i,j|Si,j

Nx∑
i=1

Ny∑
j=1

Si,j

,

∥ϵ∥L2 =

√√√√√√√√
Nx∑
i=1

Ny∑
j=1

(ūN
i,j − ū0

i,j)
2Si,j

Nx∑
i=1

Ny∑
j=1

Si,j

,

∥ϵ∥L∞ = max
1⩽i⩽Nx,1⩽j⩽Ny

|ūN
i,j − ū0

i,j|.

3.1 Accuracy tests

To verify the convergence property of our remapping algorithm, we perform accuracy tests

on two remapping algorithms: the multi-resolution WENO remapping algorithm without the

positivity-preserving limiter (WENO) and the multi-resolution WENO remapping algorithm

with the positivity-preserving limiter (P-WENO). We choose the following smooth function
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with periodic boundary condition for the accuracy test.

u(x, y) = sin2(2πx) sin2(2πy). (3.1)

Table 3.1: Error and order of the WENO and P-WENO remapping algorithms on the smoothly

moving meshes, N = 10. Nc is the percentage of cells with negative cell averages.

Mesh L1 order L2 order L∞ order Nc(%)

20× 20 3.403E-02 5.562E-02 2.184E-01 0.00
40× 40 5.334E-03 2.67 1.222E-02 2.19 7.492E-02 1.54 0.03

WENO 80× 80 4.306E-04 3.63 8.375E-04 3.87 5.398E-03 3.79 0.00
160× 160 5.404E-05 2.99 8.637E-05 3.28 3.890E-04 3.79 0.00
320× 320 5.225E-06 3.37 8.003E-06 3.43 2.791E-05 3.80 0.00
20× 20 3.397E-02 5.562E-02 2.184E-01 0
40× 40 5.334E-03 2.67 1.222E-02 2.19 7.492E-02 1.54 0

P-WENO 80× 80 4.316E-04 3.63 8.375E-04 3.87 5.398E-03 3.79 0
160× 160 5.416E-05 2.99 8.637E-05 3.28 3.890E-04 3.79 0
320× 320 5.235E-06 3.37 8.004E-06 3.43 2.791E-05 3.80 0

Table 3.2: Error and order of the WENO and P-WENO remapping algorithms on the randomly

moving meshes, N = 10. Nc is the percentage of cells with negative cell averages.

Mesh L1 order L2 order L∞ order Nc(%)

20× 20 2.012E-02 3.122E-02 1.209E-01 2.86
40× 40 1.666E-03 3.59 3.320E-03 3.23 2.637E-02 2.20 1.63

WENO 80× 80 9.048E-05 4.20 1.299E-04 4.68 7.739E-04 5.09 0.43
160× 160 8.203E-06 3.46 1.217E-05 3.42 9.133E-05 3.08 0.12
320× 320 6.172E-07 3.73 8.929E-07 3.77 8.074E-06 3.50 0.03
20× 20 2.000E-02 3.117E-02 1.209E-01 0
40× 40 1.655E-03 3.59 3.319E-03 3.23 2.637E-02 2.20 0

P-WENO 80× 80 9.179E-05 4.17 1.305E-04 4.67 7.739E-04 5.09 0
160× 160 8.335E-06 3.46 1.224E-05 3.41 9.133E-05 3.08 0
320× 320 6.265E-07 3.73 8.997E-07 3.77 8.074E-06 3.50 0

We choose five levels of meshes: Nx = Ny = 20, 40, 80, 160, 320 with 10 remapping times

to investigate convergence. Table 3.1 and 3.2 summarize the errors and numerical rates of

convergence. The last column shows the percentage of the cells with negative cell averages

during the remapping, denoted as Nc,

Nc =
Npp

Nl ×Nx ×Ny

,
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where Npp is the total amount of cells with negative cell averages during the remapping

and Nl is the total times of remapping. From these tables, we can clearly see that all the

remapping algorithms have the expected third order of accuracy on both types of moving

meshes.

In order to verify that our remapping method is not limited by mesh movement, that is,

it can remap between the old and new meshes where the mesh nodes move more than one

cell, we give the following initial mesh configuration

h1
x < h2

x < · · · < hNx
x , hNx

x = 2h1
x,

where the mesh size hi
x = xi+ 1

2
− xi− 1

2
and the y direction is divided equally.

Then we design the flipping mesh with the mesh size

h̃1
x = hNx

x , · · · , h̃Nx
x = h1

x.

Fig. 5 shows the schematic diagrams of these two meshes. We remap from the initial

mesh to the flipping mesh and return to the initial mesh for N = 10 times. The remapping

results of the WENO remapping algorithm and the P-WENO remapping algorithm have

been shown in Table 3.3 and both of them have the expected third order accuracy, which

indicates our remapping method can also have good accuracy when the old and new meshes

are not close.

3.2 Non-oscillatory test

In this subsection, we test the following discontinuous function inspired by [12] to verify the

essentially non-oscillatory property of the WENO remapping algorithm and the positivity-

preserving remapping algorithm.

u(x, y) =


10, if x ⩽ 0.3 and y ⩾ 0.5,

0.1, if x ⩽ 0.3 and y ⩽ 0.5,

5 + sin(2π((x− 0.9)2 + (y − 0.5)2)), otherwise.
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Figure 5: The schematic diagrams of the flipping meshes.

Table 3.3: Error and order of the WENO and P-WENO remapping algorithms on the flipping

meshes, N = 10. Nc is the percentage of cells with negative cell averages.

Mesh L1 order L2 order L∞ order Nc(%)

20× 20 1.184E-01 1.696E-01 4.798E-01 0.84
40× 40 2.121E-02 2.48 3.614E-02 2.23 1.394E-01 1.78 5.67

WENO 80× 80 1.957E-03 3.44 3.114E-03 3.54 1.281E-02 3.44 3.15
160× 160 2.319E-04 3.08 3.238E-04 3.27 9.348E-04 3.78 1.33
320× 320 2.628E-05 3.14 3.601E-05 3.17 1.126E-04 3.05 0.53
20× 20 1.185E-01 1.696E-01 4.798E-01 0
40× 40 2.033E-02 2.54 3.598E-02 2.24 1.394E-01 1.78 0

P-WENO 80× 80 1.899E-03 3.42 3.090E-03 3.54 1.281E-02 3.44 0
160× 160 2.299E-04 3.05 3.233E-04 3.26 9.458E-04 3.76 0
320× 320 2.625E-05 3.13 3.609E-05 3.16 1.220E-04 2.95 0
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We perform the remapping algorithms 10 times on a 80×80 mesh. We test both on smoothly

and randomly moving meshes and the results are similar, so only those with randomly moving

meshes are listed to save space.
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Figure 6: The non-oscillatory test: remapping the discontinuous function by the WENO and P-

WENO remapping algorithms, randomly moving meshes, N = 10, Nx = Ny = 80.

We plot here the results of the WENO and P-WENO remapping algorithms against the

exact results in Fig. 6. It can be observed that our numerical results have no oscillation near

the discontinuity, which validates that the WENO and P-WENO remapping algorithms are

essentially non-oscillatory and robust.
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3.3 Positivity-preserving tests

Compared with the WENO remapping algorithm, the P-WENO remapping algorithm en-

sures that the remapping results are always positive by using a positivity-preserving limiter.

In this subsection we perform several numerical experiments to demonstrate the positivity-

preserving property of our P-WENO remapping algorithm. The remapping process still

starts from a uniform grid, and the mesh returns to a uniform grid after 10 random move-

ments. In addition, we perform the tests on the flipping mesh to demonstrate that our

remapping algorithms can still handle the problem with large mesh deformation.

3.3.1 The step function

We start with the step function (3.2) to test the positivity-preserving property of our remap-

ping algorithm.

u(x, y) =


100, y >

10

3
(x− 0.4),

0, y ⩽ 10

3
(x− 0.4).

(3.2)

In this test, when y ⩽ 10
3
(x − 0.4), the value of the function is zero, possibly producing

negative cell averages during remapping.

Fig. 7 shows the results of the WENO and P-WENO remapping algorithms with the mesh

size 80 × 80. We can observe that the WENO remapping algorithm produces negative cell

averages, which are marked with white symbols in Fig. 7. For a more intuitive observation,

we cut Fig. 7 along j = 40 and show the results in Fig. 8. According to numerical results

along j = 40, we count that the WENO remapping algorithm produces 13 cells with negative

cell averages and the 51st cell with the smallest value of the cell average of −3.83×10−4. The

results from the P-WENO remapping algorithm, by contrast, can always preserve positivity.
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Figure 7: The positivity-preserving test on the step function by the WENO and P-WENO remap-

ping algorithms, N = 10, Nx = Ny = 80. Top left: exact; Top right: WENO; Bottom: P-WENO.

The white symbols in the top right subfigure represent the cells with negative cell averages.
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Figure 8: The positivity-preserving test on the step function by the WENO and P-WENO remap-

ping algorithms, N = 10, Nx = Ny = 80, remapping results at j = 40, there are 13 cells with

negative cell averages and the 51st cell with the smallest value of the cell average, zoomed-in figure

at i = 51 on the right.

3.3.2 Discontinuous profiles

Next we perform a set of discontinuous profiles (3.3) which is composed of the cylinder

function and the cone function.

u(x, y) =


10, d1(x, y) < 0.15,

5max(1− 5d2(x, y), 0), otherwise,
(3.3)

where d1(x, y) =
√

(x− 0.7)2 + (y − 0.7)2 and d2(x, y) =
√
(x− 0.25)2 + (y − 0.25)2.

Fig. 9 shows the results of the WENO and P-WENO remapping algorithms with the

mesh size 80 × 80. We cut Fig. 9 along the diagonal to see more clearly and show the

results in Fig. 10. According to the numerical results along the diagonal, there are 19 cells

with negative cell averages which are produced by the WENO remapping algorithm and the

smallest value of the cell average is −1.88× 10−3 at i = 45 near the discontinuity. However

the P-WENO remapping algorithm can ensure that the solution remains positive.

In addition, we carry out the positivity-preserving test on the flipping mesh. In Fig. 11,

we present the results of the WENO and P-WENO remapping algorithms with the mesh

29



x

0
0.2

0.4
0.6

0.8
1

y

0

0.2

0.4

0.6

0.8

10

2

4

6

8

10
u

8
7
6
5
4
3
2
1
0u

(a) Exact

x

0
0.2

0.4
0.6

0.8
1

y

0

0.2

0.4

0.6

0.8

10

2

4

6

8

10
u

8
7
6
5
4
3
2
1
0u

(b) WENO

x

0
0.2

0.4
0.6

0.8
1

y

0

0.2

0.4

0.6

0.8

10

2

4

6

8

10
u

8
7
6
5
4
3
2
1
0u

(c) P-WENO

Figure 9: The positivity-preserving test on the discontinuous profiles by the WENO and P-WENO

remapping algorithms, N = 10, Nx = Ny = 80. Top left: exact; Top right: WENO; Bottom: P-

WENO. The white symbols in the top right subfigure represent the cells with negative cell averages.
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Figure 10: The positivity-preserving test on the discontinuous profiles by the WENO and P-

WENO remapping algorithms, N = 10, Nx = Ny = 80, remapping results along the diagonal, there

are 19 cells with negative cell averages and the 45th cell with the smallest value of the cell average,

zoomed-in figure at i = 45 on the right.

size 160× 160 on the flipping mesh. We cut Fig. 11 along the diagonal and show the results

in Fig. 12. We can see that neither the WENO nor the P-WENO remapping results contain

numerical oscillations around the discontinuities. The P-WENO remapping algorithm can

still guarantee the remapping solution to be positive on the flipping mesh.

From the above numerical examples, we illustrate that the WENO remapping algorithm

may generate negative cell averages near the discontinuity or in the regions where the values

are close to 0 while no negative cell averages appear if the positive-preserving remapping

algorithm is used.

3.4 The cost of the high order remapping algorithm

In this subsection we demonstrate that our remapping algorithm has low computational cost

when the mesh is mildly changed. We consider the following mesh where the node movement
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Figure 11: The positivity-preserving test for the discontinuous profiles by the WENO and P-

WENO remapping algorithms on the flipping mesh, N = 10, Nx = Ny = 160. Top left: exact; Top

right: WENO; Bottom: P-WENO. The white symbols in the top right subfigure represent the cells

with negative cell averages.
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Figure 12: The positivity-preserving test for the discontinuous profiles by the WENO and P-

WENO remapping algorithms on the flipping mesh, N = 10, Nx = Ny = 160, remapping results

along the diagonal, there are 35 cells with negative cell averages and the 92nd cell with the smallest

value of the cell average, zoomed-in figure at i = 92 on the right.

does not exceed the length of one cell,

x̃i− 1
2
,j− 1

2
= ihx + hx sin(2πihx) sin(2πjhy),

ỹi− 1
2
,j− 1

2
= jhy + hy sin(2πihx) sin(2πjhy).

(3.4)

For simplicity, we only run the remapping algorithm two times. We set the initial mesh

to be the uniform mesh, remap the variables to the smoothly moving mesh described by

(3.4). Then the final mesh moves back to the original mesh. The WENO and P-WENO

remapping algorithms are tested on the function (3.1). As shown in Table 3.4, we record the

number of pseudo time steps and the total computational cost. It can be seen that only three

pseudo time steps are required for each remapping, which means that the number of pseudo

time steps required for each remapping does not increase with the mesh refinement. This

is because the final pseudo-time T in our remapping algorithm depends on the magnitude

of the mesh movement. As the mesh is refined, the time step constraint (2.8) and the final

pseudo-time T are halved simultaneously. Consequently, the number of pseudo time steps

remains the same on different mesh sizes. This is different from most existing transport
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equation based remapping methods in which the final pseudo-time is fixed as a constant

such as 1. The computational cost is only proportioned to Nx × Ny and the extra cost

brought by the use of positivity-preserving limiter is not too much. It illustrates that our

new remapping algorithm is efficient when dealing with the remapping problems with mild

grid movement.

Table 3.4: The number of pseudo time steps Nl and the total computational cost.

Mesh Nl Cost(s)
20× 20 6 0.641
40× 40 6 1.438

WENO 80× 80 6 4.641
160× 160 6 17.563
320× 320 6 69.470
20× 20 6 0.641
40× 40 6 1.453

P-WENO 80× 80 6 4.641
160× 160 6 17.656
320× 320 6 70.078

3.5 The tests in the ALE simulation

In this subsection we will test the performance of our P-WENO conservative remapping

algorithm applied in an indirect ALE method. We use the 2D third order positive-preserving

ENO Lagrangian scheme proposed in [7] and adopt this scheme in the Lagrangian step in

the ALE method. We will test five benchmark flow problems, i.e., the Sedov problem,

the Saltzman problem, the Noh problem, the Leblanc problem and the multi-material Sod

problem, in two ways, the purely positivity-preserving Lagrangian scheme and the positivity-

preserving ALE method, and compare their results. We remark that there are various

Lagrangian schemes in the literature, e.g. [4, 23, 26], which may produce better or more

robust results in some of the numerical test examples, however since our emphasis in this

paper is on remapping rather than on Lagrangian schemes, we will not give more discussions

on this topic.
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3.5.1 The Sedov problem

The Sedov problem describes the evolution of a blast wave. The initial computational domain

is the initially uniform grid consisting of 35 × 35 rectangular cells in [0, 1.1] × [0, 1.1]. The

initial condition is,

ρ = 1, u = 0, v = 0.

The internal energy of the system is 10−14 almost everywhere except the cell contained the

origin where it has a value of 182.09. The computational domain is filled with a perfect gas

with γ = 1.4 and the pressure is given by p = (γ − 1)ρe. Reflective boundary conditions are

applied on the four boundaries.

The Sedov problem is solved by the pure Lagrangian scheme and the ALE method with

the P-WENO conservative remapping algorithm, respectively. The rezone and remapping

algorithm are implemented every 20 time steps in the ALE computation. Fig. 13 shows the

solution for density and pressure at the final time t = 1 of the simulation as well as the mesh

configuration. Fig. 14 shows the simulation of the density as a function of the radius, and

one can observe that both the density peak and shock wave position are well captured. The

radial nature of the solution is also well preserved. We can clearly see that both methods

handle this situation well, and the mesh quality in the ALE method is superior to that in

the Lagrange scheme.

3.5.2 The Saltzman problem

The Saltzman problem describes the prescribed motion of a piston impacting on the fluid in

an enclosed space. The initial computational domain is [0, 1] × [0, 0.1] which is discretized

with 100 cells in the x-direction and 10 cells in the y-direction. In order to validate the

robustness of the Lagrangian method, the initial mesh (Fig. 15) is set to be not aligned with

the fluid flow. In this test, the initial condition is

ρ = 1, u = 0, v = 0, p = 10−10,
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Figure 13: The results for the Sedov problem with Nx = Ny = 35, t = 1. Top left: grid and density

by the Lagrangian scheme; Top right: grid and density by the ALE method. Bottom left: grid and

pressure by the Lagrangian scheme; Bottom right: grid and pressure by the ALE method.
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Figure 14: Scatter plot of the density value for each cell as a function of the radial position.

the adiabatic gas constant γ = 5/3. The left boundary of the computation domain is a

moving piston with a constant velocity of 1. All the other boundaries satisfy the reflective

boundary conditions.

The numerical results for the purely positivity-preserving Lagrangian scheme and the

ALE method with our P-WENO remapping algorithm are shown in Fig. 16 at t = 0.6. The

Lagrangian scheme will fail at the later time since the meshes are highly compressed and

distorted, so we only run the Saltzman problem with the ALE method at t = 0.925. The

mesh optimization technique at the rezone step is to straighten the mesh in the y direction

and the rezone and remapping steps are implemented every 20 time steps. In Fig. 16, we can

observe that the shock has arrived at x = 0.95 as excepted at the time t = 0.925. The ALE

results can ensure the high quality of the grids and capture the strong shock wave accurately.

It demonstrates the more robustness of the ALE method with our remapping algorithm in

handling large deformation problems by comparing with the pure Lagrangian scheme.

3.5.3 The Noh problem

Then, we test the Noh problem by the purely positivity-preserving Lagrangian scheme and

the ALE method with the P-WENO remapping algorithm. The simulation is performed on
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Figure 16: The results for the Saltzman problem with Nx = 100, Ny = 10. Top: grid, density

and pressure by the Lagrangian scheme at t = 0.6; Middle: grid, density and pressure by the ALE

method at t = 0.6; Bottom: grid, density and pressure by the ALE method at t = 0.925.
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the initially uniform grid consisting of 35× 35 rectangular cells in [0, 1]× [0, 1]. The initial

density is 1, the initial internal energy is 10−14, and the initial velocity is directed toward

the origin with the magnitude 1. The adiabatic gas constant γ = 5/3. The right and upper

boundaries are set as the free boundary conditions and the lower and left boundaries are

taken as the reflective boundary conditions. It is a challenge for the Lagrangian scheme

since the mesh will be severely distorted near the origin with the time marching, causing the

simulation to fail.
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Figure 17: The results for the Noh problem with Nx = Ny = 35. Top left: grid and density by the

Lagrangian scheme at t = 0.54; Top middle: grid and density by the ALE method at t = 0.6; Top

right: grid and internal energy by the ALE method at t = 0.6. Bottom: the zoomed grid, density

and internal energy near the origin.

Initially, we adopt the purely positivity-preserving Lagrangian scheme to simulate the

Noh problem. After the time t = 0.54, the simulation will fail as the time step tends to
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Figure 18: Scatter plot of the density value for each cell as a function of the radial position.

zero due to the heavily distorted mesh. The results calculated by the pure Lagrangian

scheme at t = 0.54 is shown in Fig. 17. In this case, we simulate the problem with the

positivity-preserving ALE method. We perform the rezone and remapping algorithms every

20 time steps from the initial time, in order to prevent the computational mesh from being

so distorted that the shape of the cells cannot keep convex. We have the results of the

ALE method at the time t = 0.6 with better mesh quality shown in Fig. 17. Furthermore,

the positivity-preserving limiter in the remapping algorithm is needed since the code cannot

continue when the negative internal energy and pressure appear. We recorded the cells

which have been modified by the positivity-preserving limiter during the remapping. The

cell centers of these cells have been labeled in white color in Fig. 17. The scatter plot of

the numerical scheme compared with the exact solution at t = 0.6 is presented in Fig. 18,

demonstrating that the ALE simulation agrees with the exact solution well.

3.5.4 The Leblanc shock tube problem

Next we test a more demanding shock tube problem. This Riemann problem consists of a

rectangular box [0, 9]× [0, 1] whose left and right boundaries are fixed with the initial values,

whereas the other boundaries are reflective walls. The initial condition, which consists of
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large ratio jumps for the density and energy, is given as follows,

(ρ, u, v, e) =


(1, 0, 0, 0, 0.1) , 0 ⩽ x < 3,(
0.001, 0, 0, 10−7

)
, 3 ⩽ x < 9.

The computational domain is filled with an ideal perfect gas with γ = 1.4. The terminal

time is t = 6.
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Figure 19: The results of the ALE method for the Leblanc shock tube problem at t = 6. Left:

density with Nx = 2100, Ny = 2; Middle and right: profiles of the density and internal energy by

cutting through the domain.

In such a severe test case, it is quite challenging for the numerical method to obtain the

accurate positions of the contact discontinuity and shock wave. In Fig. 19, we show the

numerical solutions of the ALE method on the meshes with 2100× 2 cells and 4200× 2 cells

respectively. Note that we do not move the points at the front of the shock and the contact

discontinuity at the rezoning step. We can observe that the shape and position of the contact

discontinuity and the shock wave of the numerical results on the finer mesh are in better

agreement with the exact solution. The results demonstrate that the ALE method with

the positivity-preserving WENO conservative remapping algorithm can handle this extreme

shock tube problem well.
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3.5.5 The multi-material Sod shock tube problem

Finally, we test the multi-material Sod shock tube issue, demonstrating the applicability of

our remapping algorithm to the multi-material flows. The initial condition is

(ρ, u, v, p, γ) =


(1, 0, 0, 1, 1.4) , 0 ⩽ x < 0.5,

(0.125, 0, 0, 0.1, 5/3) , 0.5 ⩽ x < 1.

The materials in the left and right regions have different ratio of specific heats γ. The

computational domain is [0, 1]×[0, 0.1]. We run the Sod problem on the uniformly distributed

mesh of 201×3 points where the interface coincides with the edges of the mesh. Specifically,

there are no mixed cells. Initial values are fixed on the left and right boundaries, and the

lower and upper boundaries are taken as the reflective boundary conditions. In Fig. 20, we
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Figure 20: The results of the ALE method for the multi-material Sod shock tube problem with

Nx = 200, Ny = 3, t = 0.2. Left: density ; Middle and right: profiles of the density and velocity by

cutting through the domain.

can see the results of this simulation by the indirect ALE method including the described

remapping algorithm at the final time t = 0.2. We apply our remapping procedure and

the rezoning method without moving the points at the interface after every 20 Lagrangian

steps. The ALE method with our remapping algorithm can handle this multi-material flow

problem very well.

In conclusion, the indirect ALE method with our P-WENO remapping algorithm in

the above five examples is positivity-preserving and more robust than the pure Lagrangian
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scheme.

4 Concluding remarks

In this paper we have presented a conservative, high order accurate, non-oscillatory and

positivity-preserving remapping algorithm based on solving the trivial equation ∂u
∂t

= 0 with

a moving mesh, with the old mesh before remapping as the initial mesh at t = 0 and the

new mesh after remapping as the final mesh at t = T . This remapping algorithm can be

used in the ALE methods simulating the fluid flows. We construct a finite volume scheme to

solve this moving mesh problem, with the multi-resolution WENO method adopted for the

spatial discretization and the SSP Runge-Kutta method used for the temporal discretiza-

tion. Our remapping algorithm does not restrict the mesh movement and does not need to

accurately calculate the intersection regions. It can obtain high order accuracy under very

mild requirement on the mesh movement velocity, as long as the boundedness and Lipschitz

continuity requirement is satisfied, which can always be satisfied by appropriately choosing

the pseudo-time T . Finally, we use a positivity-preserving limiter valid under suitable time

step restriction, to ensure the remapping results maintaining the positivity of certain vari-

ables such as density and internal energy. This approach does not destroy the original high

order of accuracy. We demonstrate numerically that our new remapping algorithm is high

order accurate, essentially non-oscillatory and positivity-preserving for a series of test prob-

lems. In addition, our remapping algorithm is efficient in dealing with the mesh changing

mildly since the final pseudo-time is related to the magnitude of the mesh movement. We

also test the performance of our positivity-preserving remapping algorithm in an indirect

ALE simulation. Compared with the pure Lagrangian scheme, the results computed by the

ALE method with our remapping algorithm can exhibit better performance in terms of the

robustness.

Our future work will involve the extension of high order conservative positivity-preserving

remapping algorithm to three dimensions and the design of 3D high order conservative

43



positivity-preserving ALE method based on our remapping algorithm.
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