

1 **Neural Circuit Regulation by Identified Modulatory Projection Neurons**
2

3 Dawn M Blitz^{1*}
4

5 ¹Department of Biology and Center for Neuroscience, Miami University, Oxford OH, United
6 States
7

8

9 *Corresponding Author
10 blitzdm@miamioh.edu

11

12 Words in main body: 3089
13 Figures: 2
14 Tables: 0

15

16 Running title: Modulatory Projection Neurons

17

18 Keywords: central pattern generator, neuropeptide, feedback, neuromodulation, neural circuit,
19 modulatory projection neuron

20

21 Acknowledgements: I thank Savanna-Rae H. Fahoum and Barathan Gnanabharathi for
22 feedback on earlier versions of the manuscript and current and former students and colleagues
23 for their participation in work reviewed here. Research in the author's lab is supported by the
24 National Science Foundation (IOS-1755283) and the National Institute of Neurological Disorders
25 and Stroke (R15-NS128619).

26

27 Contribution to the field (199 words)

28 Central pattern generator (CPG) circuits underlying rhythmic behaviors (e.g., walking, breathing,
29 chewing) must adapt to changes in the internal and external environments. Multiple sources
30 alter CPG neuron intrinsic and synaptic properties to generate different outputs. In particular,
31 modulatory projection neuron (PN) inputs integrate sensory, higher-order, and internal state
32 information to select behaviorally appropriate outputs from their target CPGs. Thus, it is
33 important to understand how modulatory PN activity is controlled and how PNs select different
34 outputs. Similar to general principles of circuit function established from studying individually
35 identifiable CPG neurons, identified modulatory PNs have enabled key insights into circuit
36 flexibility. Insights from several invertebrate systems are highlighted in this review, including the
37 importance of spatial and temporal regulation of PN (co-)transmitter release for circuit output.
38 Further, recordings from identified PNs in isolated nervous systems, semi-intact preparations,
39 and *in vivo*, have identified state-dependent PN effects on CPG circuits, and that both a
40 population code and an activity code can be used by PN populations to select different circuit
41 outputs. Small invertebrate circuits and the ability to perform electrophysiological recordings and
42 manipulations of small populations of identified neurons is continuing to provide insights into the
43 rapid adaptability of rhythmic neural circuits.

44 **Abstract**

45 Rhythmic behaviors (e.g. walking, breathing, chewing) are produced by central pattern
46 generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they
47 receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not
48 only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select
49 behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully
50 identified connectomes to establishing general principles of circuit function and flexibility,
51 identified modulatory neurons have enabled key insights into neural circuit modulation. For
52 instance, while bath-applying neuromodulators continues to be an important approach to
53 studying neural circuit modulation, this approach does not always mimic the neural circuit
54 response to neuronal release of the same modulator. There is additional complexity in the
55 actions of neuronally-released modulators due to: 1) the prevalence of co-transmitters, 2) local-
56 and long-distance feedback regulating the timing of (co-)release, and 3) differential regulation of
57 co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that
58 activate modulatory projection neurons has demonstrated multiple “modulatory codes” for
59 selecting particular circuit outputs. In some cases, population coding occurs, and in others
60 circuit output is determined by the firing pattern and rate of the modulatory projection neurons.
61 The ability to perform electrophysiological recordings and manipulations of small populations of
62 identified neurons at multiple levels of rhythmic motor systems remains an important approach
63 for determining the cellular and synaptic mechanisms underlying the rapid adaptability of
64 rhythmic neural circuits.

65
66 **1. Introduction**

67 Rhythmic motor behaviors are generated by central nervous system (CNS) circuits called
68 central pattern generators (CPGs) (Bucher et al., 2015). Although CPGs can produce rhythmic
69 output without rhythmic input, modulatory input is often required to configure CPGs into an
70 active state. Additionally, beyond simply turning on or off, CPGs are often “multifunctional”, in
71 that they produce different outputs to adapt to changes in the internal and external
72 environments (Briggman and Kristan, 2008; Benjamin, 2012; Daur et al., 2016; Marder et al.,
73 2022). In some cases, the source of modulation is intrinsic to the CPG and a necessary
74 component of motor output (Katz, 1998). However, many sources originate outside the CPG,
75 including sensory inputs, hormones, and modulatory projection neurons (PNs), i.e., neurons
76 which originate in higher order CNS regions and project to CPGs (Rosen et al., 1991; Briggman
77 and Kristan, 2008; Nusbaum, 2008; Hsu and Bhandawat, 2016).

78 Small circuits, particularly those underlying rhythmic behaviors, with their identified neurons,
79 have enabled many important insights into circuit function and plasticity (Calabrese et al., 2016;
80 Cropper et al., 2018; Katz and Quinlan, 2019; Marder et al., 2022). Similar to the accessibility of
81 identified circuit neurons, several invertebrate preparations also have relatively small
82 populations of modulatory PNs which are accessible to electrophysiological approaches (Rosen
83 et al., 1991; Heinrich, 2002; Mesce et al., 2008; Nusbaum, 2008). PN populations range from
84 ~20 pairs in crab and mollusc feeding systems to ~200-500 pairs targeting the insect ventral
85 nerve cord (Rosen et al., 1991; Coleman et al., 1992; Hsu and Bhandawat, 2016; Namiki et al.,
86 2018). Comparable PN populations in vertebrates are typically larger, include heterogeneous
87 types, and can be distributed across multiple nuclei (Garcia et al., 2011; Sharples et al., 2014;
88 Ruder and Arber, 2019; Flavie et al., 2020). While technological advances are increasing the
89 ability to control vertebrate neuron populations *in vitro* and *in vivo*, cellular-level experimental
90 access to modulatory PNs and a fully described motor circuit connectome remains challenging
91 in many vertebrate preparations (Kim et al., 2017; Leiras et al., 2022). Here, I will focus on
92

94 lessons learned from several small, invertebrate motor systems, regarding the cellular
95 mechanisms by which modulatory PNs alter CPG output, and how their activity is regulated.
96 Much additional work on descending motor control, including fast activation of escape
97 behaviors, and large-scale genetic approaches investigating insect descending neurons is
98 beyond the scope of this article (Cande et al., 2018; Herberholz, 2022).

99 **2. Modulatory Projection Neurons Alter CPG Output**

100 **2.1 Bath-application vs Neuronal-release**

101 Early studies primarily using bath-applied neuromodulators, but also stimulation of identified
102 modulatory PNs, demonstrated that there is considerable flexibility in the strength and pattern of
103 neuronal activity, as well as in which CPG(s) the neurons are participating (Hooper and Marder,
104 1984; Kuhlman et al., 1985; Flamm and Harris-Warrick, 1986; Dickinson et al., 1990; Harris-
105 Warrick and Marder, 1991; Ramirez and Pearson, 1991; Marder, 2012). Although bath-
106 application continues to provide insights into circuit modulation, bath-applied modulator actions
107 range from very similar to neuronally-released modulator, to only mimicking some effects, to
108 having distinct, even opposite effects (Marder, 2012; Nusbaum et al., 2017). The small numbers
109 and exceptional experimental access afforded by invertebrate modulatory neurons have
110 revealed several explanations for distinctions between bath-applied and neuronally-released
111 modulators. The crustacean stomatogastric nervous system (STNS), is particularly useful
112 because the transmitters, intrinsic properties, and synaptic connections are identified for the ~30
113 neurons comprising two feeding-related CPGs (pyloric, gastric mill) (Fig. 1A) (Marder and
114 Bucher, 2007; Daur et al., 2016). Additionally, identified modulatory PNs are amenable to intra-
115 somatic and intra-axonal recordings, and identification of their (co-)transmitter content allows for
116 direct comparison of bath-applied vs neuronally-released neuromodulators (Fig. 1A) (Nusbaum
117 and Marder, 1989a; Coleman and Nusbaum, 1994; Stein, 2009; Kwiatkowski et al., 2013;
118 Nusbaum et al., 2017).

119 **2.2 Co-transmission**

120 Modulatory CPG inputs, including PNs, use metabotropic receptors and second messenger
121 signaling to alter intrinsic and synaptic properties of circuit neurons to select different outputs
122 (Katz and Calin-Jageman, 2009; Nadim and Bucher, 2014). However, they often also use rapid
123 ionotropic transmission. Co-transmission is ubiquitous and a likely contributor to distinctions
124 between modulatory neuron activation and bath-application. Co-transmitter complements
125 include neuropeptide plus classical and/or amine small molecule transmitters, or multiple small
126 molecule transmitters (Nusbaum et al., 2017; Nässel, 2018; Trudeau and el Mestikawy, 2018;
127 Svensson et al., 2019; Eiden et al., 2022). One or more neuropeptides plus a small molecule
128 transmitter is common in modulatory PNs targeting CPGs (Fig. 1A) (Schlegel et al., 2016;
129 Nusbaum et al., 2017; Nässel, 2018).

130 Neuropeptide and small molecule co-neurotransmitter actions range from varying degrees of
131 convergence, to complementary, to entirely divergent (Thirumalai and Marder, 2002; Nusbaum
132 et al., 2017; Nässel, 2018; Florman and Alkema, 2022). In the crab STNS, a modulatory PN
133 (MCN5) switches the CPG neuron LPG from pyloric-only network participation to dual-network
134 (pyloric plus gastric mill) activity via its neuropeptide Gly¹-SIFamide (Fig. 1B) (Fahoum and Blitz,
135 2021; Snyder and Blitz, 2022). However, bath applied Gly¹-SIFamide excites the pyloric CPG
136 neuron LP, which inhibits LPG and prevents it from fully expressing dual-network activity. This
137 Gly¹-SIFamide excitation of LP is opposite of MCN5 actions (Fig. 1B) (Fahoum and Blitz, 2021).
138 MCN5-released Gly¹-SIFamide can elicit the switch in LPG activity due to co-released glutamate
139 inhibiting the LP neuron that would otherwise interfere with LPG switching into dual-network
140 activity (Fig. 1B). Thus, ionotropic classical transmitter actions are essential for metabotropic
141 neuropeptide actions to be fully expressed. Conversely, in *Aplysia* feeding, ionotropic actions

143 are enhanced by metabotropic receptor-mediated co-transmitter actions. The feeding motor
144 pattern activated by the modulatory PN CBI-2 changes over time, due to CBI-2 modulation of its
145 cholinergic synaptic transmission onto feeding motor neurons (Koh et al., 2003). The time-
146 dependent effects on the motor pattern and enhanced fast cholinergic synaptic transmission are
147 mimicked by either of the CBI-2 peptide co-transmitters (CP2, FCAP). However, the cooperative
148 peptide effects are distinct, with CP2 and FCAP increasing quantal content versus size,
149 respectively (Koh et al., 2003). Intracellular recordings from identified modulatory PNs such as
150 MCN5 and CBI-2, with identified co-transmitters, revealed co-transmitter cooperativity
151 necessary for motor pattern selection that would be missed in bath-application studies.

152
153 In some cases, neuropeptide and small molecule actions appear partially redundant. In the
154 nematode *Caenorhabditis elegans*, serotonin or NLP-3 neuropeptide release from a modulatory
155 PN is sufficient to activate egg-laying, however their combined actions elicit additional egg-
156 laying. Further work is necessary to determine whether their actions converge onto the same
157 targets (Brewer et al., 2019). Co-transmitters may converge onto the same cellular or even
158 subcellular targets (Nadim and Bucher, 2014), however without cellular-level access to the full
159 CPG circuit, similar network level actions may hide cellular divergence. In *Aplysia* feeding, three
160 neuropeptides released from modulatory neuron CBI-12, each have the same circuit level effect,
161 shortening the protraction phase of an ingestive motor pattern (Jing and Weiss, 2005; Zhang et
162 al., 2018). However, the peptides act on different CPG neurons to mediate the same circuit
163 effect (Zhang et al., 2018). Such redundancy may ensure a particular adjustment to circuit
164 output even when some targets are unresponsive.

165 166 **2.3 Spatial Segregation of Co-transmitter Actions**

167 Divergent co-transmitter actions may result from spatial segregation. In the crustacean STNS,
168 modulatory PNs (MPN, PS) each use their peptide transmitter on CPG neurons within the
169 stomatogastric ganglion (STG), but their small molecule transmitters act at distinct arbors, in
170 different ganglia (commissural ganglia [CoGs]) (Fig. 1C) (Nusbaum and Marder, 1989b; Blitz
171 and Nusbaum, 1999; Kwiatkowski et al., 2013). Spatially distinct actions could occur due to
172 distinct trafficking of transmitter vesicles, differential receptor expression on postsynaptic
173 targets, or differential sensitivity of transmitter release to neuronal activity (Kueh and Jellies,
174 2012; Nusbaum et al., 2017; Cropper et al., 2018; Cifuentes and Morales, 2021). Where
175 determined, the low end of physiological firing frequencies is sufficient to release both peptide
176 and small molecule transmitters (Cropper et al., 2018). On a finer scale, peptidases can
177 constrain the actions of neuronally-released peptides, enabling distinct effects even when
178 released into the same densely overlapping neuropil regions (Christie et al., 1997; Blitz et al.,
179 1999; Nusbaum, 2002; Wood and Nusbaum, 2002; Nässel, 2009). Although neuromodulators
180 are often considered to act via relatively non-specific “volume transmission”, it is becoming
181 increasingly clear that there is also spatial constraint of neuromodulator actions (Disney and
182 Higley, 2020; Liu et al., 2021; Nässel and Zandawala, 2022). Localization of reuptake and
183 degradative machinery, and constrained release/receptor distributions beyond anatomically-
184 defined synapses can limit the sphere of neuromodulator influence (Nusbaum, 2002; Disney
185 and Higley, 2020; Liu et al., 2021; Eiden et al., 2022).

186 187 **2.4 Local Presynaptic Feedback onto Modulatory Projection Neurons**

188 The ability to record from modulatory PN axon terminals revealed local presynaptic regulation of
189 their transmission (Nusbaum, 1994). For example, rhythmic presynaptic inhibition from a circuit
190 neuron onto modulatory PN terminals in the crab STNS and the subsequent waxing and waning
191 of modulatory effects is essential to elicit a chewing pattern (Coleman et al., 1995). Further, the
192 system is tuned such that this local feedback inhibition results in a more coordinated motor
193 pattern when both PN copies are coactive compared to the same cumulative activity in a single

194 PN copy (Colton et al., 2020). The presynaptic regulation occurs at terminals that are ~ 1-2 cm
195 distant from the soma (Fig. 1A) and due to electrotonic decay, is not present in somatic
196 recordings and does not alter PN activity initiating in the PN ganglion of origin (Nusbaum et al.,
197 1992; Coleman and Nusbaum, 1994; Coleman et al., 1995). Local synaptic input includes
198 chemical transmission between circuit neurons and PNs and between PNs, plus extensive
199 electrical coupling between circuit neurons and PN terminals (Perrins and Weiss, 1998; Hurwitz
200 et al., 2005; Stein et al., 2007; Marder et al., 2017; Blitz et al., 2019). Local feedback actions
201 may generally alter transmission, or be more specific, including decreasing chemical but not
202 electrical transmission (Coleman et al., 1995), or decreasing peptide but not small molecule
203 transmitter release (DeLong et al., 2009). Rhythmic presynaptic regulation from CPG elements
204 can also cause modulatory PN actions to occur via distinct mechanisms (e.g., electrical vs
205 chemical transmission) during different phases of motor output (Coleman et al., 1995; Hurwitz et
206 al., 2005). Long-distance synaptic feedback also regulates PN transmission, however through
207 changes in PN activity (see 3.3). While much continues to be learned from bath-application
208 studies, studies discussed above provide a note of caution, as even co-transmitter bath
209 application may not mimic neuronal release due to the lack of spatial and temporal control that
210 occurs with neuronally-released neuromodulators.

211

212 **3. Regulation of Modulatory Projection Neuron Activity**

213 Modulatory PNs serve as a link between sensory and/or higher-order inputs, and the motor
214 circuits responsible for behavior. Thus, understanding how PN activity is controlled is important
215 to understanding how sensory information and higher-order decisions are converted to
216 appropriate behavioral responses.

217

218 **3.1. State-dependence**

219 *In vitro* and *in vivo*, single modality sensory input can be sufficient to initiate relevant behaviors
220 via activation of identified modulatory PNs (Willard, 1981; Rosen et al., 1991; Horn et al., 1999;
221 Jing and Weiss, 2005; Hedrich et al., 2011). However, PN activity is often regulated by multiple
222 sources. In particular, inputs relaying behavioral state information can alter PN sensitivity to
223 other inputs during ongoing behaviors, or result in different behavioral versions, on multiple time
224 scales (Kristan and Shaw, 1997; Staudacher, 2001; Beenakker et al., 2007; Barrière et al.,
225 2008; White et al., 2017; Ache et al., 2019; Cook and Nusbaum, 2021). State-dependent PN
226 activity may be a consequence of inputs specifically targeting PNs, such as courtship-promoting
227 neurons converging with visual input onto the *Drosophila* P9 PN, to elicit courtship locomotor
228 behavior (Bidaye et al., 2020). Behavioral state can also be conveyed to PNs through broadly-
229 acting hormones (Willard, 1981; Mesce and Pierce-Shimomura, 2010; Flood et al., 2013). In the
230 medicinal leech, circulating serotonin increases with hunger, coincident with a decreased
231 threshold for swimming. Although serotonin does not activate swim-activating cell 204, it
232 modulates its intrinsic properties, making it easier for other inputs to activate this neuron and
233 elicit swimming (Angstadt and Friesen, 1993; Kristan et al., 2005). Even if the responsiveness of
234 a modulatory PN does not change, the consequences of its activity may be state-dependent.
235 The leech R3b1 PN elicits crawling or swimming, with the decision determined by the
236 surrounding fluid level (Esch and Kristan, 2002). “Shallow water detector” sensory neurons
237 appear to select motor output downstream from modulatory PNs, via actions on CPG neurons
238 (Fig. 2A). However, dopamine application biases the entire nervous system toward crawling and
239 R3b1 only elicits crawling in this context (Fig. 2A) (Puhl et al., 2012), suggesting both PN- and
240 CPG-level control of motor system state.

241

242 **3.2 Long-lasting Activity States**

243 Inputs to modulatory PNs have rapid transient effects, via fast synaptic transmission, or trigger
244 activity persisting beyond the stimulus duration, via slower metabotropic actions (Rosen et al.,
245 1991; Beenhakker and Nusbaum, 2004; Kristan et al., 2005; Brodfuehrer et al., 2008; Benjamin,
246 2012). For long-lasting PN activation, a behavioral switch might require active termination of PN
247 activity, such as a transient “stop” signal from a sensory pathway that triggers an incompatible
248 behavior via other PNs (Esch and Kristan, 2002; Mesce and Pierce-Shimomura, 2010).

249 Additionally, interactions between modulatory neurons, serving to either reinforce or suppress
250 activity in other modulatory PNs, enables them to play important roles in maintaining or
251 switching behavioral state. This includes inhibiting competing PNs to remove their drive of an
252 alternative CPG, activating PNs which inhibit a competing CPG, or exciting complementary PNs
253 (Blitz and Nusbaum, 1997, 1999; Crisp and Mesce, 2006; Wu et al., 2014; Pirger et al., 2021).

254
255 A persistent behavioral state can also occur without long-term PN activation, but instead due to
256 the duration of PN modulatory actions. In *Aplysia* feeding, repeated CBI-2 stimulation
257 progressively adapts CPG activity and improves behavioral output, due to second messenger
258 accumulation in target CPG neurons (Cropper et al., 2017). As a result, the CPG is biased
259 toward one output over another, which may stabilize the circuit when one behavior is more likely
260 to be useful (Cropper et al., 2017). Different from this auto-regulation, in another mollusc,
261 *Lymnaea*, the octopaminergic OC cells enhance CPG responses to other modulatory neurons
262 for multiple motor pattern cycles (Benjamin, 2012). Thus, motor system state can be regulated
263 directly at the PN level, or in circuit responsiveness to PNs, across multiple timescales.

264 265 **3.3 Long-distance CPG Feedback**

266 Another source of regulation is synaptic feedback from CPG neurons to PNs, which results in
267 PN firing being time-locked to circuit activity, including *in vivo* and in semi-intact preparations
268 when PNs are activated by physiological stimuli (Gillette et al., 1978; Blitz and Nusbaum, 2008;
269 Mesce et al., 2008; Hedrich et al., 2011; Blitz, 2017). A distinct case occurs in the stick insect
270 *Carausius morosus* in which PN walking-timed activity is due to sensory feedback instead of
271 CPG feedback (Stolz et al., 2019). Feedback to PNs contributes to inter-circuit coordination,
272 duration of PN activity, and gating of other PN inputs (Wood et al., 2004; Antri et al., 2009;
273 Kozlov et al., 2014). Additionally, feedback control of modulatory PN activity can be important
274 for motor pattern selection (see 4.2).

275 **4. Motor Pattern Selection**

276 **4.1 Population Code**

277 Although experimentally-induced activation of an individual PN can elicit a motor pattern,
278 physiological stimuli often activate more than one PN type (Coleman and Nusbaum, 1994; Esch
279 and Kristan, 2002; Beenhakker and Nusbaum, 2004; Benjamin, 2012; Follmann et al., 2018;
280 Fahoum and Blitz, 2021). This raises the possibility that the “modulatory code” for selecting a
281 motor output is one in which different stimuli activate distinct PN subsets, resulting in a
282 combinatorial “population code”. Such a scenario occurs in several systems, and experimentally
283 manipulating which PNs are active elicits switches between motor patterns (Kristan and Shaw,
284 1997; Combes et al., 1999; Kupfermann and Weiss, 2001; Hedrich et al., 2009; Guo et al.,
285 2022). In *Aplysia* when the modulatory PN CBI-2 is active, repeated stimulations are necessary
286 to elicit an ingestive pattern, which is persistent, but if CBI-2 and CBI-3 are both active, they
287 immediately elicit an ingestive motor pattern without induction of a persistent state (Evans et al.,
288 2021) (Fig. 2B). Thus, the population of modulatory neurons active can determine the pattern
289 produced, and other aspects such as the dynamics of motor pattern selection.

290 291 **4.2 Activity Code**

292 Quantitatively, modulatory PN firing rate can regulate motor output, although differences occur
293 in network sensitivity (Kristan et al., 2005; Hedrich et al., 2011; Benjamin, 2012; Spencer and
294 Blitz, 2016; Sakurai and Katz, 2019). Additionally, an “activity code”, i.e., PN pattern and/or rate
295 can encode qualitatively distinct motor patterns and behaviors. In *Drosophila* courtship, the
296 same descending PN (aSP22) uses cumulative spike count, to elicit different behaviors in a
297 sequential fashion. In this “ramp-to-threshold” mechanism, different behavioral components of
298 courtship are generated as the aSP22 spike count crosses a series of thresholds (Fig. 2C)
299 (McKellar et al., 2019). In the crab STNS, mechanosensory neurons and neuroendocrine cells
300 each trigger long-lasting activation of two modulatory PNs (MCN1, CPN2) (Beenhakker and
301 Nusbaum, 2004; Blitz et al., 2008). However, differential, long-lasting, modulation of CPG
302 feedback in these two states results in distinct MCN1/CPN2 activity patterns and rates which
303 encode different chewing behaviors, and different sensitivity to sensory feedback (Fig. 2D)
304 (Beenhakker et al., 2007; Blitz and Nusbaum, 2008, 2012; Diehl et al., 2013; Blitz, 2017; White
305 et al., 2017). The ability to manipulate feedback synapses onto small populations of identified
306 modulatory neurons was essential for these insights into how CPG feedback to PNs contributes
307 to motor pattern selection. Collectively, these examples illustrate that the same PNs can use an
308 activity code to select motor outputs, instead of a population code of different PN subsets, with
309 both mechanisms possible even in the same system, albeit in distinct species (Beenhakker and
310 Nusbaum, 2004; Blitz et al., 2008; Hedrich et al., 2009).

311 **Conclusions**

312 Cellular-level access to modulatory PNs at their somata and axon terminals, and their CPG
313 neuron targets in several invertebrate preparations enabled insights into regulation of PN
314 activity, strategies for selecting an appropriate motor pattern, and significant complexity in
315 communication between modulatory PNs and their CPG targets. Invertebrate PNs and larger
316 vertebrate populations similarly link sensory and higher-order processing with motor circuits,
317 and many of the insights discussed have already, or likely will be found to extend to larger
318 circuits (Dickinson, 2006; Sharples et al., 2014; Yang et al., 2020). Technological advances are
319 enabling recording and manipulation of genetically identified populations in organisms with
320 barriers to electrophysiological approaches (e.g., neuronal size, accessibility, population size).
321 However invertebrate organisms remain important for determining how modulatory PNs regulate
322 circuits at the cellular-level, via electrophysiological recordings and manipulations that remain
323 difficult in larger systems. Given the rapidly developing techniques making investigation in larger
324 systems more tractable, plus the application of genetic approaches to classic
325 neurophysiologically-accessible model organisms (Kim et al., 2017; Northcutt et al., 2018, 2019;
326 Devineni and Scaplen, 2022; Leiras et al., 2022), diverse models and approaches are expected
327 to continue increasing our understanding of how motor circuits rapidly adapt to the
328 everchanging conditions in and around us.

329 **References**

330 Ache, J. M., Namiki, S., Lee, A., Branson, K., and Card, G. M. (2019). State-dependent decoupling of
331 sensory and motor circuits underlies behavioral flexibility in *Drosophila*. *Nat Neurosci* 22, 1132–
332 1139. doi: 10.1038/S41593-019-0413-4.

333 Angstadt, J. D., and Friesen, W. O. (1993). Modulation of swimming behavior in the medicinal leech. I.
334 Effects of serotonin on the electrical properties of swim-gating cell 204. *J Comp Physiol A* 172, 223–
335 234. doi: 10.1007/BF00189398.

336 Antri, M., Fénelon, K., and Dubuc, R. (2009). The contribution of synaptic inputs to sustained
337 depolarizations in reticulospinal neurons. *J Neurosci* 29, 1140–1151. doi:
338 10.1523/JNEUROSCI.3073-08.2009.

339 Barrière, G., Simmers, J., and Combes, D. (2008). Multiple mechanisms for integrating proprioceptive
340 inputs that converge on the same motor pattern-generating network. *J Neurosci* 28, 8810–8820.
341 doi: 10.1523/JNEUROSCI.2095-08.2008.

342 Beenhakker, M. P., Kirby, M. S., and Nusbaum, M. P. (2007). Mechanosensory gating of proprioceptor
343 input to modulatory projection neurons. *J Neurosci* 27, 14308–14316. doi:
344 10.1523/JNEUROSCI.4404-07.2007.

345 Beenhakker, M. P., and Nusbaum, M. P. (2004). Mechanosensory activation of a motor circuit by
346 coactivation of two projection neurons. *J Neurosci* 24, 6741–6750. doi: 10.1523/JNEUROSCI.1682-
347 04.2004.

348 Benjamin, P. R. (2012). Distributed network organization underlying feeding behavior in the mollusk
349 *Lymnaea*. *Neural Syst Circuits* 2. doi: 10.1186/2042-1001-2-4.

350 Bidaye, S. S., Latsbury, M., Chang, A. K., Liu, Y., Bockemühl, T., Büschges, A., et al. (2020). Two Brain
351 Pathways Initiate Distinct Forward Walking Programs in *Drosophila*. *Neuron* 108, 469–485.e8. doi:
352 10.1016/J.NEURON.2020.07.032.

353 Blitz, D. M. (2017). Circuit feedback increases activity level of a circuit input through interactions with
354 intrinsic properties. *J Neurophysiol* 118, 949–963. doi: 10.1152/jn.00772.2016.

355 Blitz, D. M., Christie, A. E., Coleman, M. J., Norris, B. J., Marder, E., and Nusbaum, M. P. (1999). Different
356 proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. *J
357 Neurosci* 19, 5449–5463. doi: 10.1523/jneurosci.19-13-05449.1999.

358 Blitz, D. M., Christie, A. E., Cook, A. P., Dickinson, P. S., and Nusbaum, M. P. (2019). Similarities and
359 differences in circuit responses to applied Gly¹-SIFamide and peptidergic (Gly¹-SIFamide) neuron
360 stimulation. *J Neurophysiol* 121, 950–972. doi: 10.1152/jn.00567.2018.

361 Blitz, D. M., and Nusbaum, M. P. (1997). Motor pattern selection via inhibition of parallel pathways. *J
362 Neurosci* 17, 4965–4975. doi: 10.1523/jneurosci.17-13-04965.1997.

363 Blitz, D. M., and Nusbaum, M. P. (1999). Distinct functions for cotransmitters mediating motor pattern
364 selection. *J Neurosci* 19, 6774–6783. doi: 10.1523/jneurosci.19-16-06774.1999.

365 Blitz, D. M., and Nusbaum, M. P. (2008). State-dependent presynaptic inhibition regulates central
366 pattern generator feedback to descending inputs. *J Neurosci* 28, 9564–9574. doi:
367 10.1523/JNEUROSCI.3011-08.2008.

368 Blitz, D. M., and Nusbaum, M. P. (2012). Modulation of circuit feedback Specifies motor circuit output. *J
369 Neurosci* 32, 9182–9193. doi: 10.1523/JNEUROSCI.1461-12.2012.

370 Blitz, D. M., White, R. S., Saideman, S. R., Cook, A., Christie, A. E., Nadim, F., et al. (2008). A newly
371 identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory
372 projection neurons. *J Exp Biol* 211, 1000–1011. doi: 10.1242/jeb.015222.

373 Brewer, J. C., Olson, A. C., Collins, K. M., and Koelle, M. R. (2019). Serotonin and neuropeptides are both
374 released by the HSN command neuron to initiate *Caenorhabditis elegans* egg laying. *PLoS Genet*
375 15. doi: 10.1371/JOURNAL.PGEN.1007896.

376 Briggman, K. L., and Kristan, W. B. (2008). Multifunctional pattern-generating circuits. *Annu Rev Neurosci*
377 31, 271–294. doi: 10.1146/annurev.neuro.31.060407.125552.

378 Brodfuehrer, P. D., McCormick, K., Tapyrik, L., Albano, A. M., and Graybeal, C. (2008). Activation of two
379 forms of locomotion by a previously identified trigger interneuron for swimming in the medicinal
380 leech. *Invert Neurosci* 8, 31–39. doi: 10.1007/S10158-007-0064-0.

381 Bucher, D., Haspel, G., Golowasch, J., and Nadim, F. (2015). Central pattern generators. *eLs*. doi:
382 10.1002/9780470015902.a0000032.pub2.

383 Calabrese, R. L., Norris, B. J., and Wenning, A. (2016). The neural control of heartbeat in invertebrates.
384 *Curr Opin Neurobiol* 41, 68–77. doi: 10.1016/J.CONB.2016.08.004.

385 Cande, J., Namiki, S., Qiu, J., Korff, W., Card, G. M., Shaevitz, J. W., et al. (2018). Optogenetic dissection
386 of descending behavioral control in *Drosophila*. *Elife* 7. doi: 10.7554/ELIFE.34275.

387 Christie, A. E., Baldwin, D. H., Marder, E., and Graubard, K. (1997). Organization of the stomatogastric
388 neuropil of the crab, *Cancer borealis*, as revealed by modulator immunocytochemistry. *Cell Tissue
389 Res* 288, 135–148. doi: 10.1007/S004410050801.

390 Christie, A. E., Stein, W., Quinlan, J. E., Beenhakker, M. P., Marder, E., and Nusbaum, M. P. (2004).
391 Actions of a histaminergic/peptidergic projection neuron on rhythmic motor patterns in the
392 stomatogastric nervous system of the crab *Cancer borealis*. *J Comp Neurol* 469, 153–169. doi:
393 10.1002/CNE.11003.

394 Cifuentes, F., and Morales, M. A. (2021). Functional Implications of Neurotransmitter Segregation. *Front
395 Neural Circuits* 15. doi: 10.3389/fncir.2021.738516.

396 Coleman, M. J., Meyrand, P., and Nusbaum, M. P. (1995). A switch between two modes of synaptic
397 transmission mediated by presynaptic inhibition. *Nature* 378, 502–505. doi: 10.1038/378502a0.

398 Coleman, M. J., and Nusbaum, M. P. (1994). Functional consequences of compartmentalization of
399 synaptic input. *J Neurosci* 14, 6544–6552. doi: 10.1523/JNEUROSCI.14-11-06544.1994.

400 Coleman, M. J., Nusbaum, M. P., Cournil, I., and Claiborne, B. J. (1992). Distribution of modulatory inputs
401 to the stomatogastric ganglion of the crab, *Cancer borealis*. *J Comp Neurol* 325, 581–594. doi:
402 10.1002/CNE.903250410.

403 Colton, G. F., Cook, A. P., and Nusbaum, M. P. (2020). Different microcircuit responses to comparable
404 input from one versus both copies of an identified projection neuron. *J Exp Biol* 223. doi:
405 10.1242/JEB.228114.

406 Combes, D., Meyrand, P., and Simmers, J. (1999). Dynamic restructuring of a rhythmic motor program by
407 a single mechanoreceptor neuron in lobster. *J Neurosci* 19, 3620–3628. doi:
408 10.1523/JNEUROSCI.19-09-03620.1999.

409 Cook, A. P., and Nusbaum, M. P. (2021). Feeding state-dependent modulation of feeding-related motor
410 patterns. *J Neurophysiol* 126, 1903–1924. doi: 10.1152/JN.00387.2021.

411 Crisp, K. M., and Mesce, K. A. (2006). Beyond the central pattern generator: amine modulation of
412 decision-making neural pathways descending from the brain of the medicinal leech. *J Exp Biol* 209,
413 1746–1756. doi: 10.1242/JEB.02204.

414 Cropper, E. C., Jing, J., Perkins, M. H., and Weiss, K. R. (2017). Use of the *Aplysia* feeding network to
415 study repetition priming of an episodic behavior. *J Neurophysiol* 118, 1861–1870. doi:
416 10.1152/JN.00373.2017.

417 Cropper, E. C., Jing, J., Vilim, F. S., Barry, M. A., and Weiss, K. R. (2018). Multifaceted Expression of
418 Peptidergic Modulation in the Feeding System of *Aplysia*. *ACS Chem Neurosci* 9, 1917–1927. doi:
419 10.1021/ACSCHEMNEURO.7B00447.

420 Daur, N., Nadim, F., and Bucher, D. (2016). The complexity of small circuits: the stomatogastric nervous
421 system. *Curr Opin Neurobiol* 41, 1–7. doi: 10.1016/J.CONB.2016.07.005.

422 DeLong, N. D., Beenhakker, M. P., and Nusbaum, M. P. (2009). Presynaptic inhibition selectively weakens
423 peptidergic cotransmission in a small motor system. *J Neurophysiol* 102, 3492–3504. doi:
424 10.1152/jn.00833.2009.

425 Devineni, A. v., and Scaplen, K. M. (2022). Neural Circuits Underlying Behavioral Flexibility: Insights From
426 *Drosophila*. *Front Behav Neurosci* 15. doi: 10.3389/FNBEH.2021.821680.

427 Dickinson, P. S. (2006). Neuromodulation of central pattern generators in invertebrates and vertebrates.
428 *Curr Opin Neurobiol* 16, 604–614. doi: 10.1016/J.CONB.2006.10.007.

429 Dickinson, P. S., Mecsas, C., and Marder, E. (1990). Neuropeptide fusion of two motor-pattern generator
430 circuits. *Nature* 344, 155–158. doi: 10.1038/344155A0.

431 Diehl, F., White, R. S., Stein, W., and Nusbaum, M. P. (2013). Motor circuit-specific burst patterns drive
432 different muscle and behavior patterns. *J Neurosci* 33, 12013–12029. doi:
433 10.1523/JNEUROSCI.1060-13.2013.

434 Disney, A. A., and Higley, M. J. (2020). Diverse Spatiotemporal Scales of Cholinergic Signaling in the
435 Neocortex. *J Neurosci* 40, 720–725. doi: 10.1523/JNEUROSCI.1306-19.2019.

436 Eiden, L. E., Hernández, V. S., Jiang, S. Z., and Zhang, L. (2022). Neuropeptides and small-molecule amine
437 transmitters: cooperative signaling in the nervous system. *Cell Mol Life Sci* 79. doi:
438 10.1007/S00018-022-04451-7.

439 Esch, T., and Kristan, W. B. (2002). Decision-Making in the Leech Nervous System. *Integr Comp Biol* 42,
440 716–724. Available at: <https://academic.oup.com/icb/article/42/4/716/659085>.

441 Esch, T., Mesce, K. A., and Kristan, W. B. (2002). Evidence for sequential decision making in the medicinal
442 leech. *J Neurosci* 22, 11045–11054. doi: 10.1523/JNEUROSCI.22-24-11045.2002.

443 Evans, C. G., Barry, M. A., Jing, J., Perkins, M. H., Weiss, K. R., and Cropper, E. C. (2021). The Complement
444 of Projection Neurons Activated Determines the Type of Feeding Motor Program in *Aplysia*. *Front*
445 *Neural Circuits* 15. doi: 10.3389/FNCIR.2021.685222.

446 Fahoum, S. R. H., and Blitz, D. M. (2021). Neuronal switching between single- And dual-network activity
447 via modulation of intrinsic membrane properties. *J Neurosci* 41, 7848–7863. doi:
448 10.1523/JNEUROSCI.0286-21.2021.

449 Flavie, A., Fougère, M., van der Zouwen, C. I., and Ryczko, D. (2020). Serotonergic Modulation of
450 Locomotor Activity From Basal Vertebrates to Mammals. *Front Neural Circuits* 14. doi:
451 10.3389/FNCIR.2020.590299.

452 Flamm, R. E., and Harris-Warrick, R. M. (1986). Aminergic modulation in lobster stomatogastric ganglion.
453 I. Effects on motor pattern and activity of neurons within the pyloric circuit. *J Neurophysiol* 55,
454 847–865. doi: 10.1152/JN.1986.55.5.847.

455 Flood, T. F., Iguchi, S., Gorczyca, M., White, B., Ito, K., and Yoshihara, M. (2013). A single pair of
456 interneurons commands the *Drosophila* feeding motor program. *Nature* 2013 499:7456 499, 83–
457 87. doi: 10.1038/nature12208.

458 Florman, J. T., and Alkema, M. J. (2022). Co-transmission of neuropeptides and monoamines
459 choreograph the *C. elegans* escape response. *PLoS Genet* 18. doi:
460 10.1371/JOURNAL.PGEN.1010091.

461 Follmann, R., Goldsmith, C. J., and Stein, W. (2018). Multimodal sensory information is represented by a
462 combinatorial code in a sensorimotor system. *PLoS Biol* 16, e2004527. doi:
463 10.1371/JOURNAL.PBIO.2004527.

464 Garcia, A. J., Zanella, S., Koch, H., Doi, A., and Ramirez, J. M. (2011). Chapter 3–networks within
465 networks: the neuronal control of breathing. *Prog Brain Res* 188, 31–50. doi: 10.1016/B978-0-444-
466 53825-3.00008-5.

467 Gillette, R., Kovac, M. P., and Davis, W. J. (1978). Command neurons in *Pleurobranchaea* receive synaptic
468 feedback from the motor network they excite. *Science* 199, 798–801. doi:
469 10.1126/SCIENCE.622571.

470 Guo, L., Zhang, N., and Simpson, J. H. (2022). Descending neurons coordinate anterior grooming
471 behavior in *Drosophila*. *Curr Biol* 32, 823-833.e4. doi: 10.1016/J.CUB.2021.12.055.

472 Harris-Warrick, R. M., and Marder, E. (1991). Modulation of neural networks for behavior. *Annu Rev
473 Neurosci* 14, 39–57. doi: 10.1146/ANNUREV.NE.14.030191.000351.

474 Hedrich, U. B. S., Diehl, F., and Stein, W. (2011). Gastric and pyloric motor pattern control by a
475 modulatory projection neuron in the intact crab *Cancer pagurus*. *J Neurophysiol* 105, 1671–1680.
476 doi: 10.1152/JN.01105.2010.

477 Hedrich, U. B. S., Smarandache, C. R., and Stein, W. (2009). Differential activation of projection neurons
478 by two sensory pathways contributes to motor pattern selection. *J Neurophysiol* 102, 2866–2879.
479 doi: 10.1152/jn.00618.2009.

480 Heinrich, R. (2002). Impact of descending brain neurons on the control of stridulation, walking, and flight
481 in orthoptera. *Microsc Res Tech* 56, 292–301. doi: 10.1002/JEMT.10033.

482 Herberholz, J. (2022). The giant escape neurons of crayfish: Past discoveries and present opportunities.
483 *Front Physiol* 13. doi: 10.3389/FPHYS.2022.1052354.

484 Hooper, S. L., and Marder, E. (1984). Modulation of a central pattern generator by two neuropeptides,
485 proctolin and FMRFamide. *Brain Res* 305, 186–191. doi: 10.1016/0006-8993(84)91138-7.

486 Horn, C. C., Benjamin, P. R., Weiss, K. R., and Kupfermann, I. (1999). Decrement of the response of a
487 serotonergic modulatory neuron (the metacerebral cell) in *Aplysia*, during repeated presentation
488 of appetitive (food) stimuli. *Neurosci Lett* 267, 161–164. doi: 10.1016/S0304-3940(99)00339-0.

489 Hsu, C. T., and Bhandawat, V. (2016). Organization of descending neurons in *Drosophila melanogaster*.
490 *Sci Rep* 6. doi: 10.1038/SREP20259.

491 Hurwitz, I., Susswein, A. J., and Weiss, K. R. (2005). Transforming tonic firing into a rhythmic output in
492 the *Aplysia* feeding system: presynaptic inhibition of a command-like neuron by a CpG element. *J
493 Neurophysiol* 93, 829–842. doi: 10.1152/JN.00559.2004.

494 Jing, J., and Weiss, K. R. (2005). Generation of variants of a motor act in a modular and hierarchical
495 motor network. *Curr Biol* 15, 1712–1721. doi: 10.1016/J.CUB.2005.08.051.

496 Katz, P. S. (1998). Neuromodulation intrinsic to the central pattern generator for escape swimming in
497 *Tritonia*. *Ann N Y Acad Sci* 860, 181–188. doi: 10.1111/J.1749-6632.1998.TB09048.X.

498 Katz, P. S., and Calin-Jageman, R. J. (2009). Neuromodulation. *Encyclopedia of Neuroscience*, 497–503.
499 doi: 10.1016/B978-008045046-9.01964-1.

500 Katz, P. S., and Quinlan, P. D. (2019). The importance of identified neurons in gastropod molluscs to
501 neuroscience. *Curr Opin Neurobiol* 56, 1–7. doi: 10.1016/J.CONB.2018.10.009.

502 Kim, L. H., Sharma, S., Sharples, S. A., Mayr, K. A., Kwok, C. H. T., and Whelan, P. J. (2017). Integration of
503 Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. *Front
504 Neurosci* 11. doi: 10.3389/FNINS.2017.00581.

505 Koh, H. Y., Vilim, F. S., Jing, J., and Weiss, K. R. (2003). Two neuropeptides colocalized in a command-like
506 neuron use distinct mechanisms to enhance its fast synaptic connection. *J Neurophysiol* 90, 2074–
507 2079. doi: 10.1152/JN.00358.2003.

508 Kozlov, A. K., Kardamakis, A. A., Kortaleski, J. H., and Grillner, S. (2014). Gating of steering signals through
509 phasic modulation of reticulospinal neurons during locomotion. *Proc Natl Acad Sci U S A* 111,
510 3591–3596. doi: 10.1073/PNAS.1401459111.

511 Kristan, W. B., Calabrese, R. L., and Friesen, W. O. (2005). Neuronal control of leech behavior. *Prog
512 Neurobiol* 76, 279–327. doi: 10.1016/J.PNEUROBIO.2005.09.004.

513 Kristan, W. B., and Shaw, B. K. (1997). Population coding and behavioral choice. *Curr Opin Neurobiol* 7,
514 826–831. doi: 10.1016/S0959-4388(97)80142-0.

515 Kueh, D., and Jellies, J. A. (2012). Targeting a neuropeptide to discrete regions of the motor
516 arborizations of a single neuron. *J Exp Biol* 215, 2108–2116. doi: 10.1242/JEB.067603.

517 Kuhlman, J. R., Li, C., and Calabrese, R. L. (1985). FMRF-amide-like substances in the leech. II. Bioactivity
518 on the heartbeat system. *J Neurosci* 5, 2310–2317. doi: 10.1523/JNEUROSCI.05-09-02310.1985.

519 Kupfermann, I., and Weiss, K. R. (2001). Motor program selection in simple model systems. *Curr Opin
520 Neurobiol* 11, 673–677. doi: 10.1016/S0959-4388(01)00267-7.

521 Kwiatkowski, M. A., Gabrinski, E. R., Huber, K. E., Chapline, M. C., Christie, A. E., and Dickinson, P. S.
522 (2013). Coordination of distinct but interacting rhythmic motor programs by a modulatory
523 projection neuron using different co-transmitters in different ganglia. *J Exp Biol* 216, 1827–1836.
524 doi: 10.1242/JEB.082503.

525 Leiras, R., Cregg, J. M., and Kiehn, O. (2022). Brainstem Circuits for Locomotion. *Annu Rev Neurosci* 45,
526 63–85. doi: 10.1146/ANNUREV-NEURO-082321-025137.

527 Liu, C., Goel, P., and Kaeser, P. S. (2021). Spatial and temporal scales of dopamine transmission. *Nat Rev
528 Neurosci* 22, 345–358. doi: 10.1038/S41583-021-00455-7.

529 Marder, E. (2012). Neuromodulation of Neuronal Circuits: Back to the Future. *Neuron* 76, 1–11. doi:
530 10.1016/j.neuron.2012.09.010.

531 Marder, E., and Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous
532 system of lobsters and crabs. *Ann Rev Physiol* 69. doi: 10.1146/annurev.physiol.69.031905.161516.

533 Marder, E., Gutierrez, G. J., and Nusbaum, M. P. (2017). Complicating connectomes: Electrical coupling
534 creates parallel pathways and degenerate circuit mechanisms. *Dev Neurobiol* 77, 597–609. doi:
535 10.1002/DNEU.22410.

536 Marder, E., Kedia, S., and Morozova, E. O. (2022). New insights from small rhythmic circuits. *Curr Opin
537 Neurobiol* 76. doi: 10.1016/J.CONB.2022.102610.

538 McKellar, C. E., Lillvis, J. L., Bath, D. E., Fitzgerald, J. E., Cannon, J. G., Simpson, J. H., et al. (2019).
539 Threshold-Based ordering of sequential actions during *Drosophila* courtship. *Curr Biol* 29, 426–
540 434.e6. doi: 10.1016/J.CUB.2018.12.019.

541 Mesce, K. A., Esch, T., and Kristan, W. B. (2008). Cellular substrates of action selection: a cluster of
542 higher-order descending neurons shapes body posture and locomotion. *J Comp Physiol A
543 Neuroethol Sens Neural Behav Physiol* 194, 469–481. doi: 10.1007/S00359-008-0319-1.

544 Mesce, K. A., and Pierce-Shimomura, J. T. (2010). Shared strategies for behavioral switching:
545 Understanding how locomotor patterns are turned on and off. *Front Behav Neurosci* 4. doi:
546 10.3389/FNBEH.2010.00049.

547 Meyrand, P., Faumont, S., Simmers, J., Christie, A. E., and Nusbaum, M. P. (2000). Species-specific
548 modulation of pattern-generating circuits. *Eur J Neurosci* 12, 2585–2596. doi: 10.1046/J.1460-
549 9568.2000.00121.X.

550 Nadim, F., and Bucher, D. (2014). Neuromodulation of neurons and synapses. *Curr Opin Neurobiol* 29,
551 48–56. doi: 10.1016/j.conb.2014.05.003.

552 Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W., and Card, G. M. (2018). The functional organization
553 of descending sensory-motor pathways in *Drosophila*. *Elife* 7. doi: 10.7554/ELIFE.34272.

554 Nässel, D. R. (2009). Neuropeptide signaling near and far: how localized and timed is the action of
555 neuropeptides in brain circuits? *Invert Neurosci* 9, 57–75. doi: 10.1007/S10158-009-0090-1.

556 Nässel, D. R. (2018). Substrates for neuronal cotransmission with neuropeptides and small molecule
557 neurotransmitters in *drosophila*. *Front Cell Neurosci* 12, 83. doi:
558 10.3389/FNCEL.2018.00083/BIBTEX.

559 Nässel, D. R., and Zandawala, M. (2022). Endocrine cybernetics: neuropeptides as molecular switches in
560 behavioural decisions. *Open Biol* 12. doi: 10.1098/RSOB.220174.

561 Norris, B. J., Coleman, M. J., and Nusbaum, M. P. (1994). Recruitment of a projection neuron determines
562 gastric mill motor pattern selection in the stomatogastric nervous system of the crab, *Cancer*
563 *borealis*. *J Neurophysiol* 72, 1451–1463. doi: 10.1152/JN.1994.72.4.1451.

564 Norris, B. J., Coleman, M. J., and Nusbaum, M. P. (1996). Pyloric motor pattern modification by a newly
565 identified projection neuron in the crab stomatogastric nervous system. *J Neurophysiol* 75, 97–108.
566 doi: 10.1152/JN.1996.75.1.97.

567 Northcutt, A. J., Fischer, E. K., Puhl, J. G., Mesce, K. A., and Schulz, D. J. (2018). An annotated CNS
568 transcriptome of the medicinal leech, *Hirudo verbana*: De novo sequencing to characterize genes
569 associated with nervous system activity. *PLoS One* 13. doi: 10.1371/JOURNAL.PONE.0201206.

570 Northcutt, A. J., Kick, D. R., Otopalik, A. G., Goetz, B. M., Harris, R. M., Santin, J. M., et al. (2019).
571 Molecular profiling of single neurons of known identity in two ganglia from the crab *Cancer*
572 *borealis*. *Proc Natl Acad Sci U S A* 116, 26980–26990. doi: 10.1073/PNAS.1911413116.

573 Nusbaum, M. P. (1994). Presynaptic control of neurones in pattern-generating networks.

574 Nusbaum, M. P. (2002). Regulating peptidergic modulation of rhythmically active neural circuits. in
575 *Brain, Behav Evol*, 378–387. doi: 10.1159/000067791.

576 Nusbaum, M. P. (2008). Modulatory Projection Neurons. *Encyclopedia of Neuroscience*, 2385–2388. doi:
577 10.1007/978-3-540-29678-2_3538.

578 Nusbaum, M. P., Blitz, D. M., and Marder, E. (2017). Functional consequences of neuropeptide and
579 small-molecule co-transmission. *Nat Rev Neurosci* 18, 389–403. doi: 10.1038/nrn.2017.56.

580 Nusbaum, M. P., and Marder, E. (1989a). A modulatory proctolin-containing neuron (MPN). I.
581 Identification and characterization. *J Neurosci* 9, 1591–1599. doi: 10.1523/JNEUROSCI.09-05-
582 01591.1989.

583 Nusbaum, M. P., and Marder, E. (1989b). A modulatory proctolin-containing neuron (MPN). II. State-
584 dependent modulation of rhythmic motor activity. *J Neurosci* 9, 1600–1607. doi:
585 10.1523/JNEUROSCI.09-05-01600.1989.

586 Nusbaum, M. P., Weimann, J. M., Golowasch, J., and Marder, E. (1992). Presynaptic control of
587 modulatory fibers by their neural network targets. *J Neurosci* 12, 2706–2714. doi:
588 10.1523/JNEUROSCI.12-07-02706.1992.

589 Perrins, R., and Weiss, K. R. (1998). Compartmentalization of information processing in an *Aplysia*
590 feeding circuit interneuron through membrane properties and synaptic interactions. *J Neurosci* 18,
591 3977–3989. doi: 10.1523/JNEUROSCI.18-10-03977.1998.

592 Pirger, Z., László, Z., Naskar, S., Crossley, M., O’Shea, M., Benjamin, P. R., et al. (2021). Interneuronal
593 mechanisms for learning-induced switch in a sensory response that anticipates changes in
594 behavioral outcomes. *Curr Biol* 31, 1754-1761.e3. doi: 10.1016/J.CUB.2021.01.072.

595 Puhl, J. G., Masino, M. A., and Mesce, K. A. (2012). Necessary, sufficient and permissive: a single
596 locomotor command neuron important for intersegmental coordination. *J Neurosci* 32, 17646–
597 17657. doi: 10.1523/JNEUROSCI.2249-12.2012.

598 Ramirez, J. M., and Pearson, K. G. (1991). Octopaminergic modulation of interneurons in the flight
599 system of the locust. *J Neurophysiol* 66, 1522–1537. doi: 10.1152/JN.1991.66.5.1522.

600 Rosen, S. C., Teyke, T., Miller, M. W., Weiss, K. R., and Kupfermann, I. (1991). Identification and
601 characterization of cerebral-to-buccal interneurons implicated in the control of motor programs
602 associated with feeding in *Aplysia*. *J Neurosci* 11, 3630–3655. doi: 10.1523/JNEUROSCI.11-11-
603 03630.1991.

604 Ruder, L., and Arber, S. (2019). Brainstem Circuits Controlling Action Diversification. *Annu Rev Neurosci*
605 42, 485–504. doi: 10.1146/ANNUREV-NEURO-070918-050201.

606 Sakurai, A., and Katz, P. S. (2019). Command or Obey? Homologous Neurons Differ in Hierarchical
607 Position for the Generation of Homologous Behaviors. *J Neurosci* 39, 6460–6471. doi:
608 10.1523/JNEUROSCI.3229-18.2019.

609 Schlegel, P., Texada, M. J., Mirochnikow, A., Schoofs, A., Hückesfeld, S., Peters, M., et al. (2016).
610 Synaptic transmission parallels neuromodulation in a central food-intake circuit. *Elife* 5. doi:
611 10.7554/ELIFE.16799.

612 Sharples, S. A., Koblinger, K., Humphreys, J. M., and Whelan, P. J. (2014). Dopamine: a parallel pathway
613 for the modulation of spinal locomotor networks. *Front Neural Circuits* 8. doi:
614 10.3389/FNCIR.2014.00055.

615 Snyder, R. R., and Blitz, D. M. (2022). Multiple intrinsic membrane properties are modulated in a switch
616 from single- to dual-network activity. *J Neurophysiol* 128, 1181–1198. doi: 10.1152/JN.00337.2022.

617 Spencer, R. M., and Blitz, D. M. (2016). Network feedback regulates motor output across a range of
618 modulatory neuron activity. *J Neurophysiol* 115, 3249–3263. doi: 10.1152/jn.01112.2015.

619 Staudacher, E. M. (2001). Sensory responses of descending brain neurons in the walking cricket, *Gryllus*
620 *bimaculatus*. *J Comp Physiol A* 187, 1–17. doi: 10.1007/S003590000171.

621 Stein, W. (2009). Modulation of stomatogastric rhythms. *J Comp Physiol A Neuroethol Sens Neural Behav*
622 *Physiol* 195, 989–1009. doi: 10.1007/S00359-009-0483-Y.

623 Stein, W., DeLong, N. D., Wood, D. E., and Nusbaum, M. P. (2007). Divergent co-transmitter actions
624 underlie motor pattern activation by a modulatory projection neuron. *Eur J Neurosci* 26, 1148–
625 1165. doi: 10.1111/j.1460-9568.2007.05744.x.

626 Stoltz, T., Diesner, M., Neupert, S., Hess, M. E., Delgado-Betancourt, E., Pflüger, H. J., et al. (2019).
627 Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons
628 in stick insects. *J Neurophysiol* 122, 2388–2413. doi: 10.1152/JN.00196.2019.

629 Svensson, E., Apergis-Schouote, J., Burnstock, G., Nusbaum, M. P., Parker, D., and Schiöth, H. B. (2019).
630 General principles of neuronal co-transmission: Insights from multiple model systems. *Front Neural*
631 *Circuits* 12, 117. doi: 10.3389/fncir.2018.00117.

632 Swensen, A. M., Golowasch, J., Christie, A. E., Coleman, M. J., Nusbaum, M. P., and Marder, E. (2000).
633 GABA and responses to GABA in the stomatogastric ganglion of the crab *Cancer borealis*. *J Exp Biol*
634 203, 2075–2092. doi: 10.1242/JEB.203.14.2075.

635 Thirumalai, V., and Marder, E. (2002). Colocalized neuropeptides activate a central pattern generator by
636 acting on different circuit targets. *J Neurosci* 22, 1874–1882. doi: 10.1523/JNEUROSCI.22-05-
637 01874.2002.

638 Trudeau, L. E., and El Mestikawy, S. (2018). Glutamate cotransmission in cholinergic, GABAergic and
639 monoamine systems: Contrasts and commonalities. *Front Neural Circuits* 12, 113. doi:
640 10.3389/FNCIR.2018.00113/BIBTEX.

641 White, R. S., and Nusbaum, M. P. (2011). The same core rhythm generator underlies different rhythmic
642 motor patterns. *Journal of Neuroscience* 31, 11484–11494. doi: 10.1523/JNEUROSCI.1885-11.2011.

643 White, R. S., Spencer, R. M., Nusbaum, M. P., and Blitz, D. M. (2017). State-dependent sensorimotor
644 gating in a rhythmic motor system. *J Neurophysiol* 118, 2806–2818. doi: 10.1152/jn.00420.2017.

645 Willard, A. L. (1981). Effects of serotonin on the generation of the motor program for swimming by the
646 medicinal leech. *J Neurosci* 1, 936–944. doi: 10.1523/JNEUROSCI.01-09-00936.1981.

647 Wood, D. E., Manor, Y., Nadim, F., and Nusbaum, M. P. (2004). Intercircuit control via rhythmic
648 regulation of projection neuron activity. *J Neurosci* 24, 7455–7463. doi: 10.1523/JNEUROSCI.1840-
649 04.2004.

650 Wood, D. E., and Nusbaum, M. P. (2002). Extracellular Peptidase Activity Tunes Motor Pattern
651 Modulation. *J Neurosci* 22, 4185–4195. doi: 10.1523/jneurosci.22-10-04185.2002.

652 Wu, J. S., Wang, N., Siniscalchi, M. J., Perkins, M. H., Zheng, Y. T., Yu, W., et al. (2014). Complementary
653 interactions between command-like interneurons that function to activate and specify motor
654 programs. *J Neurosci* 34, 6510–6521. doi: 10.1523/JNEUROSCI.5094-13.2014.

655 Yang, C. F., Kim, E. J., Callaway, E. M., and Feldman, J. L. (2020). Monosynaptic Projections to Excitatory
656 and Inhibitory preBötzinger Complex Neurons. *Front Neuroanat* 14. doi:
657 10.3389/FNANA.2020.00058.

658 Zhang, G., Yuan, W. D., Vilim, F. S., Romanova, E. v., Yu, K., Yin, S. Y., et al. (2018). Newly Identified
659 Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function. *ACS Chem Neurosci* 9,
660 2041–2053. doi: 10.1021/ACSCHEMNEURO.7B00513.

661

662

663 Figure Legends

664 **Figure 1. Identified modulatory projection neurons reveal cooperative and divergent**
665 **actions contributing to distinctions between bath-applied and neuronally-released**
666 **modulator.** (A) The crustacean stomatogastric nervous system (STNS) includes the pyloric
667 (food filtering, ~ 1 Hz rhythm) and gastric mill (food chewing, ~ 0.1 Hz) CPGs within the
668 stomatogastric ganglion (STG). Modulatory PNs originating in the oesophageal (OG), the paired
669 commissural ganglia (CoGs), and the supraoesophageal ganglion (SOG) project to and
670 modulate the CPGs. Intracellular recordings of modulatory PNs can be made at the soma in the
671 SOG, CoG, or OG, and axon terminals near the entrance to the STG (electrode symbols). Most
672 modulatory PNs contain small molecule and neuropeptide co-transmitters as listed in the upper
673 table. ^{a,b}Some analogous modulatory neurons in different species (lobster, *Homarus gammarus*,
674 *H. americanus*; crab, *Cancer borealis*) contain the same co-transmitters, and others contain
675 different complements. All PNs listed occur as pairs, either as a single copy in each CoG
676 (MCN1/5/7, CPN2), or in the same location (OG: MPN/GN; SOG: IVN/PS), however they are
677 drawn as single neurons for clarity. (B) Ionotropic co-transmitter actions are necessary for full
678 expression of metabotropic actions. In *C. borealis*, the modulatory PN MCN5 elicits a motor
679 pattern that includes dual-network activity in the LPG neuron (shorter duration, faster pyloric-
680 timed bursts alternating with slower gastric mill-timed bursts). Pyloric network activity is evident
681 in LP and PD neuron activity, gastric mill network activity is represented by DG neuron activity.
682 Neuron activity is schematized as extracellular recordings with each box representing a burst of
683 action potentials. Bath application of the MCN5 neuropeptide Gly¹-SIFamide mimics some but
684 not all MCN5 actions. In particular, Gly¹-SIFamide excites the pyloric LP neuron (+) whereas
685 MCN5 inhibits LP (-). The increased LP activity during Gly¹-SIFamide application inhibits the
686 LPG neuron, preventing it from fully participating in the slower gastric mill network, note the
687 extended duration LPG bursts alternating with DG that do not fully merge into a gastric mill-
688 timed burst. MCN5 inhibits LP (grey) via its co-transmitter glutamate, which is essential for LPG
689 to fully participate in the gastric mill network via Gly¹-SIFamide effects (Blitz et al., 2019;
690 Fahoum and Blitz, 2021). (C) Spatially divergent co-transmitter actions occur in modulatory PNs
691 in the STNS. The MPN and PS neurons use their peptide transmitters (proctolin and crust-MS,
692 respectively) on pyloric and gastric mill CPGs in the STG, but their small molecule transmitters
693 (GABA and histamine, respectively) in the CoGs. It is not known whether there is differential
694 trafficking or other explanations for these segregated co-transmitter actions (Nusbaum and
695 Marder, 1989a; Blitz and Nusbaum, 1999; Kwiatkowski et al., 2013). Species used in the
696 referenced studies are indicated in each panel. Neuron/transmitter identification in panel (A):
697 (Nusbaum and Marder, 1989a; Coleman and Nusbaum, 1994; Norris et al., 1994, 1996; Blitz
698 and Nusbaum, 1999; Blitz et al., 1999, 2019; Meyrand et al., 2000; Swensen et al., 2000;
699 Thirumalai and Marder, 2002; Christie et al., 2004; Kwiatkowski et al., 2013; Fahoum and Blitz,
700 2021)

701

702 **Figure 2. Motor pattern selection by modulatory PNs is state-dependent, and can be**
703 **encoded in the population of active PNs, or in PN activity.** (A) The effects of PN R3b1 are
704 determined by environmental and internal conditions. *Left*, In an *in vitro* or semi-intact leech
705 preparation, the R3b1 neuron elicits either swimming or crawling in response to the same input.
706 The swim and crawl CPGs consist of partially overlapping neurons (orange and blue boxes).
707 Fluid depth around the animal determines which locomotor pattern is selected. The proposed

708 mechanism is that “shallow water detector” neurons provide inhibitory input to the swim CPG
709 and excitatory input to the crawl CPG (Esch et al., 2002). *Right*, In the presence of dopamine
710 (yellow cloud), the entire nervous system is biased toward crawling, and R3b1 only elicits
711 crawling (Puhl et al., 2012). (B) Distinct subpopulations of activated PNs select feeding patterns
712 with different dynamics. When the modulatory PN CBI-2 alone is activated, repeated stimulation
713 is necessary to elicit an ingestive feeding pattern which persists for ~ 30 min. However, if CBI-2
714 and CBI-3 are co-activated, an ingestive feeding pattern is immediately selected, but it is a
715 transient activation (Evans et al., 2021). (C) The same PN, aSP22, activates different CPGs and
716 different behaviors based on a spike number code. In this “ramp-to-threshold” example, as an
717 increasing number of action potentials crosses different thresholds, aSP22 progressively
718 activates CPGs contributing to different aspects of courtship (McKellar et al., 2019). (D) In
719 response to different stimuli, the modulatory PNs MCN1 and CPN2 elicit qualitatively different
720 chewing patterns due to distinctions in their activity patterns and rates (Beenhakker and
721 Nusbaum, 2004; Blitz et al., 2008; White and Nusbaum, 2011; Diehl et al., 2013). MCN1 and
722 CPN2 activity is indicated as extracellular recordings, with each colored box representing a
723 burst of action potentials (different firing rates are not represented in the schematics). The
724 differences in their activity are due to different strengths of CPG feedback (CPG feedback
725 terminal size [colored circles] is representative of relative CPG feedback strength) (Blitz, 2017).
726 Additionally, proprioceptive sensory neurons regulate MCN1 and CPN2 activity in the “orange”
727 state when CPG feedback is weak, but not in the “blue” state, when CPG feedback is stronger
728 (Beenhakker et al., 2007; White et al., 2017). Species used in the referenced studies are
729 indicated in the panels.

730

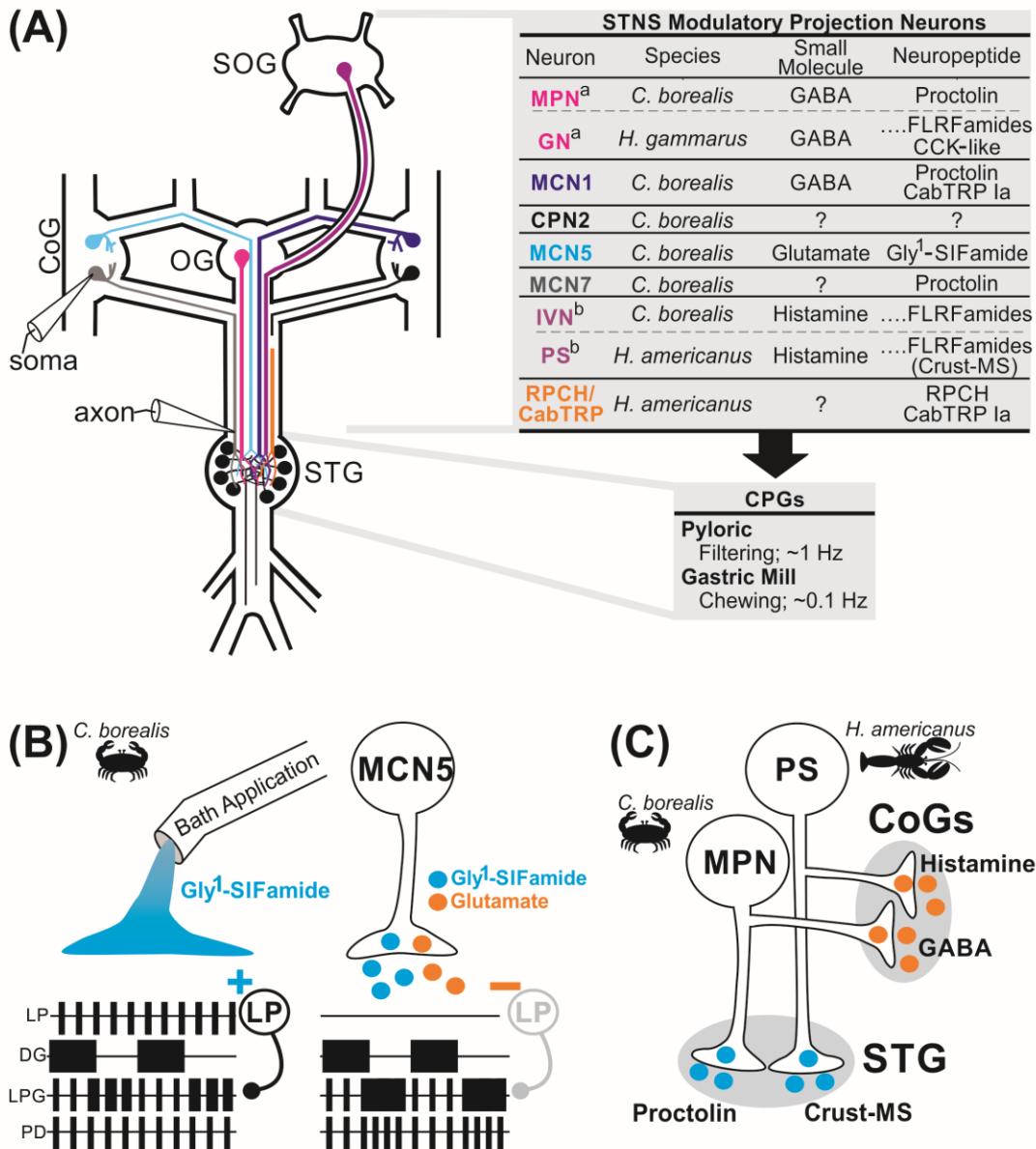


Figure 1

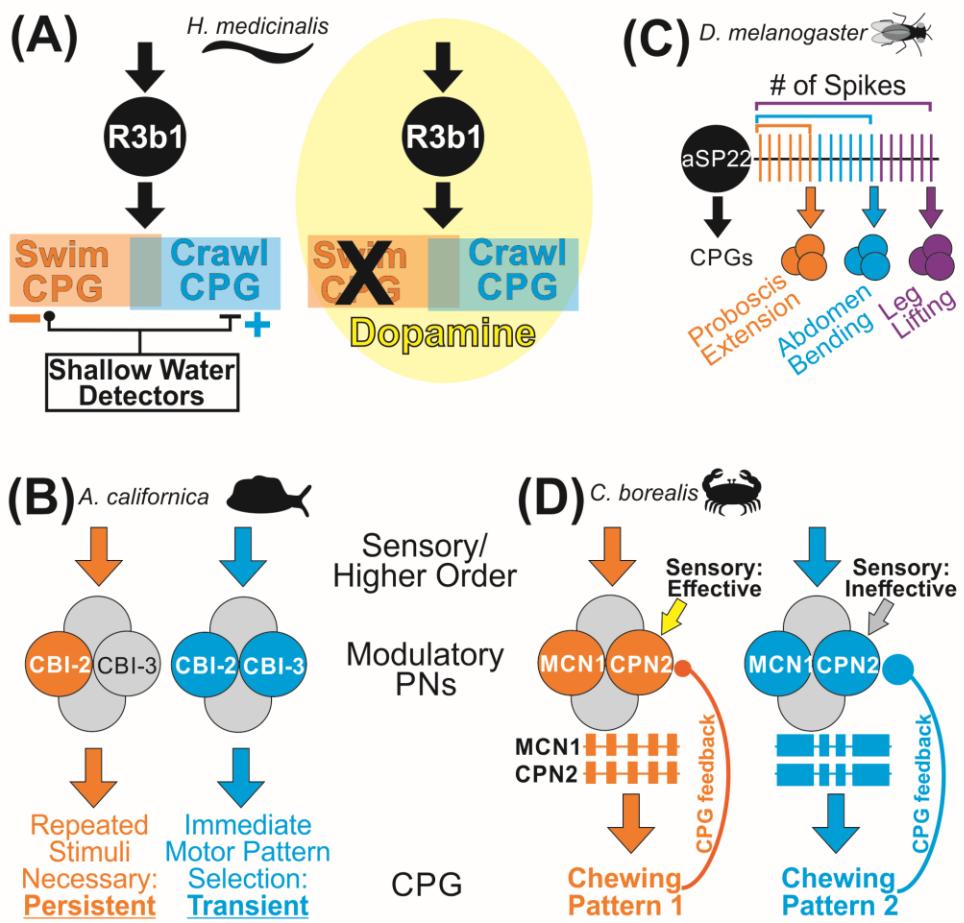


Figure 2