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Contribution to the field (199 words) 27 

Central pattern generator (CPG) circuits underlying rhythmic behaviors (e.g., walking, breathing, 28 
chewing) must adapt to changes in the internal and external environments. Multiple sources 29 
alter CPG neuron intrinsic and synaptic properties to generate different outputs. In particular, 30 
modulatory projection neuron (PN) inputs integrate sensory, higher-order, and internal state 31 
information to select behaviorally appropriate outputs from their target CPGs. Thus, it is 32 
important to understand how modulatory PN activity is controlled and how PNs select different 33 
outputs. Similar to general principles of circuit function established from studying individually 34 
identifiable CPG neurons, identified modulatory PNs have enabled key insights into circuit 35 
flexibility. Insights from several invertebrate systems are highlighted in this review, including the 36 
importance of spatial and temporal regulation of PN (co-)transmitter release for circuit output. 37 
Further, recordings from identified PNs in isolated nervous systems, semi-intact preparations, 38 
and in vivo, have identified state-dependent PN effects on CPG circuits, and that both a 39 
population code and an activity code can be used by PN populations to select different circuit 40 
outputs. Small invertebrate circuits and the ability to perform electrophysiological recordings and 41 
manipulations of small populations of identified neurons is continuing to provide insights into the 42 
rapid adaptability of rhythmic neural circuits.  43 
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Abstract 44 
Rhythmic behaviors (e.g. walking, breathing, chewing) are produced by central pattern 45 
generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they 46 
receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not 47 
only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select 48 
behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully 49 
identified connectomes to establishing general principles of circuit function and flexibility, 50 
identified modulatory neurons have enabled key insights into neural circuit modulation. For 51 
instance, while bath-applying neuromodulators continues to be an important approach to 52 
studying neural circuit modulation, this approach does not always mimic the neural circuit 53 
response to neuronal release of the same modulator. There is additional complexity in the 54 
actions of neuronally-released modulators due to: 1) the prevalence of co-transmitters, 2) local- 55 
and long-distance feedback regulating the timing of (co-)release, and 3) differential regulation of 56 
co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that 57 
activate modulatory projection neurons has demonstrated multiple “modulatory codes” for 58 
selecting particular circuit outputs. In some cases, population coding occurs, and in others 59 
circuit output is determined by the firing pattern and rate of the modulatory projection neurons. 60 
The ability to perform electrophysiological recordings and manipulations of small populations of 61 
identified neurons at multiple levels of rhythmic motor systems remains an important approach 62 
for determining the cellular and synaptic mechanisms underlying the rapid adaptability of 63 
rhythmic neural circuits. 64 

 65 
 66 

1. Introduction 67 
Rhythmic motor behaviors are generated by central nervous system (CNS) circuits called 68 
central pattern generators (CPGs) (Bucher et al., 2015). Although CPGs can produce rhythmic 69 
output without rhythmic input, modulatory input is often required to configure CPGs into an 70 
active state. Additionally, beyond simply turning on or off, CPGs are often “multifunctional”, in 71 
that they produce different outputs to adapt to changes in the internal and external 72 
environments (Briggman and Kristan, 2008; Benjamin, 2012; Daur et al., 2016; Marder et al., 73 
2022). In some cases, the source of modulation is intrinsic to the CPG and a necessary 74 
component of motor output (Katz, 1998). However, many sources originate outside the CPG, 75 
including sensory inputs, hormones, and modulatory projection neurons (PNs), i.e., neurons 76 
which originate in higher order CNS regions and project to CPGs (Rosen et al., 1991; Briggman 77 
and Kristan, 2008; Nusbaum, 2008; Hsu and Bhandawat, 2016).  78 
 79 
Small circuits, particularly those underlying rhythmic behaviors, with their identified neurons, 80 
have enabled many important insights into circuit function and plasticity (Calabrese et al., 2016; 81 
Cropper et al., 2018; Katz and Quinlan, 2019; Marder et al., 2022). Similar to the accessibility of 82 
identified circuit neurons, several invertebrate preparations also have relatively small 83 
populations of modulatory PNs which are accessible to electrophysiological approaches (Rosen 84 
et al., 1991; Heinrich, 2002; Mesce et al., 2008; Nusbaum, 2008). PN populations range from 85 
~20 pairs in crab and mollusc feeding systems to ~200-500 pairs targeting the insect ventral 86 
nerve cord (Rosen et al., 1991; Coleman et al., 1992; Hsu and Bhandawat, 2016; Namiki et al., 87 
2018). Comparable PN populations in vertebrates are typically larger, include heterogeneous 88 
types, and can be distributed across multiple nuclei (Garcia et al., 2011; Sharples et al., 2014; 89 
Ruder and Arber, 2019; Flaive et al., 2020). While technological advances are increasing the 90 
ability to control vertebrate neuron populations in vitro and in vivo, cellular-level experimental 91 
access to modulatory PNs and a fully described motor circuit connectome remains challenging 92 
in many vertebrate preparations (Kim et al., 2017; Leiras et al., 2022). Here, I will focus on 93 
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lessons learned from several small, invertebrate motor systems, regarding the cellular 94 
mechanisms by which modulatory PNs alter CPG output, and how their activity is regulated. 95 
Much additional work on descending motor control, including fast activation of escape 96 
behaviors, and large-scale genetic approaches investigating insect descending neurons is 97 
beyond the scope of this article (Cande et al., 2018; Herberholz, 2022). 98 

2. Modulatory Projection Neurons Alter CPG Output 99 
2.1 Bath-application vs Neuronal-release 100 
Early studies primarily using bath-applied neuromodulators, but also stimulation of identified 101 
modulatory PNs, demonstrated that there is considerable flexibility in the strength and pattern of 102 
neuronal activity, as well as in which CPG(s) the neurons are participating (Hooper and Marder, 103 
1984; Kuhlman et al., 1985; Flamm and Harris-Warrick, 1986; Dickinson et al., 1990; Harris-104 
Warrick and Marder, 1991; Ramirez and Pearson, 1991; Marder, 2012). Although bath-105 
application continues to provide insights into circuit modulation, bath-applied modulator actions 106 
range from very similar to neuronally-released modulator, to only mimicking some effects, to 107 
having distinct, even opposite effects (Marder, 2012; Nusbaum et al., 2017). The small numbers 108 
and exceptional experimental access afforded by invertebrate modulatory neurons have 109 
revealed several explanations for distinctions between bath-applied and neuronally-released 110 
modulators. The crustacean stomatogastric nervous system (STNS), is particularly useful 111 
because the transmitters, intrinsic properties, and synaptic connections are identified for the ~30 112 
neurons comprising two feeding-related CPGs (pyloric, gastric mill) (Fig. 1A) (Marder and 113 
Bucher, 2007; Daur et al., 2016). Additionally, identified modulatory PNs are amenable to intra-114 
somatic and intra-axonal recordings, and identification of their (co-)transmitter content allows for 115 
direct comparison of bath-applied vs neuronally-released neuromodulators (Fig. 1A) (Nusbaum 116 
and Marder, 1989a; Coleman and Nusbaum, 1994; Stein, 2009; Kwiatkowski et al., 2013; 117 
Nusbaum et al., 2017). 118 

2.2 Co-transmission 119 
Modulatory CPG inputs, including PNs, use metabotropic receptors and second messenger 120 
signaling to alter intrinsic and synaptic properties of circuit neurons to select different outputs 121 
(Katz and Calin-Jageman, 2009; Nadim and Bucher, 2014). However, they often also use rapid 122 
ionotropic transmission. Co-transmission is ubiquitous and a likely contributor to distinctions 123 
between modulatory neuron activation and bath-application. Co-transmitter complements 124 
include neuropeptide plus classical and/or amine small molecule transmitters, or multiple small 125 
molecule transmitters (Nusbaum et al., 2017; Nässel, 2018; Trudeau and el Mestikawy, 2018; 126 
Svensson et al., 2019; Eiden et al., 2022). One or more neuropeptides plus a small molecule 127 
transmitter is common in modulatory PNs targeting CPGs (Fig. 1A) (Schlegel et al., 2016; 128 
Nusbaum et al., 2017; Nässel, 2018). 129 
 130 
Neuropeptide and small molecule co-neurotransmitter actions range from varying degrees of 131 
convergence, to complementary, to entirely divergent (Thirumalai and Marder, 2002; Nusbaum 132 
et al., 2017; Nässel, 2018; Florman and Alkema, 2022). In the crab STNS, a modulatory PN 133 
(MCN5) switches the CPG neuron LPG from pyloric-only network participation to dual-network 134 
(pyloric plus gastric mill) activity via its neuropeptide Gly1-SIFamide (Fig. 1B) (Fahoum and Blitz, 135 
2021; Snyder and Blitz, 2022). However, bath applied Gly1-SIFamide excites the pyloric CPG 136 
neuron LP, which inhibits LPG and prevents it from fully expressing dual-network activity. This 137 
Gly1-SIFamide excitation of LP is opposite of MCN5 actions (Fig. 1B) (Fahoum and Blitz, 2021). 138 
MCN5-released Gly1-SIFamide can elicit the switch in LPG activity due to co-released glutamate 139 
inhibiting the LP neuron that would otherwise interfere with LPG switching into dual-network 140 
activity (Fig. 1B). Thus, ionotropic classical transmitter actions are essential for metabotropic 141 
neuropeptide actions to be fully expressed. Conversely, in Aplysia feeding, ionotropic actions 142 
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are enhanced by metabotropic receptor-mediated co-transmitter actions. The feeding motor 143 
pattern activated by the modulatory PN CBI-2 changes over time, due to CBI-2 modulation of its 144 
cholinergic synaptic transmission onto feeding motor neurons (Koh et al., 2003). The time-145 
dependent effects on the motor pattern and enhanced fast cholinergic synaptic transmission are 146 
mimicked by either of the CBI-2 peptide co-transmitters (CP2, FCAP). However, the cooperative 147 
peptide effects are distinct, with CP2 and FCAP increasing quantal content versus size, 148 
respectively (Koh et al., 2003). Intracellular recordings from identified modulatory PNs such as 149 
MCN5 and CBI-2, with identified co-transmitters, revealed co-transmitter cooperativity 150 
necessary for motor pattern selection that would be missed in bath-application studies. 151 
 152 
In some cases, neuropeptide and small molecule actions appear partially redundant. In the 153 
nematode Caenorhabditis elegans, serotonin or NLP-3 neuropeptide release from a modulatory 154 
PN is sufficient to activate egg-laying, however their combined actions elicit additional egg-155 
laying. Further work is necessary to determine whether their actions converge onto the same 156 
targets (Brewer et al., 2019). Co-transmitters may converge onto the same cellular or even 157 
subcellular targets (Nadim and Bucher, 2014), however without cellular-level access to the full 158 
CPG circuit, similar network level actions may hide cellular divergence. In Aplysia feeding, three 159 
neuropeptides released from modulatory neuron CBI-12, each have the same circuit level effect, 160 
shortening the protraction phase of an ingestive motor pattern (Jing and Weiss, 2005; Zhang et 161 
al., 2018). However, the peptides act on different CPG neurons to mediate the same circuit 162 
effect (Zhang et al., 2018). Such redundancy may ensure a particular adjustment to circuit 163 
output even when some targets are unresponsive.  164 
 165 
2.3 Spatial Segregation of Co-transmitter Actions 166 
Divergent co-transmitter actions may result from spatial segregation. In the crustacean STNS, 167 
modulatory PNs (MPN, PS) each use their peptide transmitter on CPG neurons within the 168 
stomatogastric ganglion (STG), but their small molecule transmitters act at distinct arbors, in 169 
different ganglia (commissural ganglia [CoGs]) (Fig. 1C) (Nusbaum and Marder, 1989b; Blitz 170 
and Nusbaum, 1999; Kwiatkowski et al., 2013). Spatially distinct actions could occur due to 171 
distinct trafficking of transmitter vesicles, differential receptor expression on postsynaptic 172 
targets, or differential sensitivity of transmitter release to neuronal activity (Kueh and Jellies, 173 
2012; Nusbaum et al., 2017; Cropper et al., 2018; Cifuentes and Morales, 2021). Where 174 
determined, the low end of physiological firing frequencies is sufficient to release both peptide 175 
and small molecule transmitters (Cropper et al., 2018). On a finer scale, peptidases can 176 
constrain the actions of neuronally-released peptides, enabling distinct effects even when 177 
released into the same densely overlapping neuropil regions (Christie et al., 1997; Blitz et al., 178 
1999; Nusbaum, 2002; Wood and Nusbaum, 2002; Nässel, 2009). Although neuromodulators 179 
are often considered to act via relatively non-specific “volume transmission”, it is becoming 180 
increasingly clear that there is also spatial constraint of neuromodulator actions (Disney and 181 
Higley, 2020; Liu et al., 2021; Nässel and Zandawala, 2022). Localization of reuptake and 182 
degradative machinery, and constrained release/receptor distributions beyond anatomically-183 
defined synapses can limit the sphere of neuromodulator influence (Nusbaum, 2002; Disney 184 
and Higley, 2020; Liu et al., 2021; Eiden et al., 2022).  185 
 186 
2.4 Local Presynaptic Feedback onto Modulatory Projection Neurons 187 
The ability to record from modulatory PN axon terminals revealed local presynaptic regulation of 188 
their transmission (Nusbaum, 1994). For example, rhythmic presynaptic inhibition from a circuit 189 
neuron onto modulatory PN terminals in the crab STNS and the subsequent waxing and waning 190 
of modulatory effects is essential to elicit a chewing pattern (Coleman et al., 1995). Further, the 191 
system is tuned such that this local feedback inhibition results in a more coordinated motor 192 
pattern when both PN copies are coactive compared to the same cumulative activity in a single 193 
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PN copy (Colton et al., 2020). The presynaptic regulation occurs at terminals that are ~ 1-2 cm 194 
distant from the soma (Fig. 1A) and due to electrotonic decay, is not present in somatic 195 
recordings and does not alter PN activity initiating in the PN ganglion of origin (Nusbaum et al., 196 
1992; Coleman and Nusbaum, 1994; Coleman et al., 1995). Local synaptic input includes 197 
chemical transmission between circuit neurons and PNs and between PNs, plus extensive 198 
electrical coupling between circuit neurons and PN terminals (Perrins and Weiss, 1998; Hurwitz 199 
et al., 2005; Stein et al., 2007; Marder et al., 2017; Blitz et al., 2019). Local feedback actions 200 
may generally alter transmission, or be more specific, including decreasing chemical but not 201 
electrical transmission (Coleman et al., 1995), or decreasing peptide but not small molecule 202 
transmitter release (DeLong et al., 2009). Rhythmic presynaptic regulation from CPG elements 203 
can also cause modulatory PN actions to occur via distinct mechanisms (e.g., electrical vs 204 
chemical transmission) during different phases of motor output (Coleman et al., 1995; Hurwitz et 205 
al., 2005). Long-distance synaptic feedback also regulates PN transmission, however through 206 
changes in PN activity (see 3.3). While much continues to be learned from bath-application 207 
studies, studies discussed above provide a note of caution, as even co-transmitter bath 208 
application may not mimic neuronal release due to the lack of spatial and temporal control that 209 
occurs with neuronally-released neuromodulators. 210 
 211 

3. Regulation of Modulatory Projection Neuron Activity 212 
Modulatory PNs serve as a link between sensory and/or higher-order inputs, and the motor 213 
circuits responsible for behavior. Thus, understanding how PN activity is controlled is important 214 
to understanding how sensory information and higher-order decisions are converted to 215 
appropriate behavioral responses.  216 
 217 
3.1. State-dependence 218 
In vitro and in vivo, single modality sensory input can be sufficient to initiate relevant behaviors 219 
via activation of identified modulatory PNs (Willard, 1981; Rosen et al., 1991; Horn et al., 1999; 220 
Jing and Weiss, 2005; Hedrich et al., 2011). However, PN activity is often regulated by multiple 221 
sources. In particular, inputs relaying behavioral state information can alter PN sensitivity to 222 
other inputs during ongoing behaviors, or result in different behavioral versions, on multiple time 223 
scales (Kristan and Shaw, 1997; Staudacher, 2001; Beenhakker et al., 2007; Barrière et al., 224 
2008; White et al., 2017; Ache et al., 2019; Cook and Nusbaum, 2021). State-dependent PN 225 
activity may be a consequence of inputs specifically targeting PNs, such as courtship-promoting 226 
neurons converging with visual input onto the Drosophila P9 PN, to elicit courtship locomotor 227 
behavior (Bidaye et al., 2020). Behavioral state can also be conveyed to PNs through broadly-228 
acting hormones (Willard, 1981; Mesce and Pierce-Shimomura, 2010; Flood et al., 2013). In the 229 
medicinal leech, circulating serotonin increases with hunger, coincident with a decreased 230 
threshold for swimming. Although serotonin does not activate swim-activating cell 204, it 231 
modulates its intrinsic properties, making it easier for other inputs to activate this neuron and 232 
elicit swimming (Angstadt and Friesen, 1993; Kristan et al., 2005). Even if the responsiveness of 233 
a modulatory PN does not change, the consequences of its activity may be state-dependent. 234 
The leech R3b1 PN elicits crawling or swimming, with the decision determined by the 235 
surrounding fluid level (Esch and Kristan, 2002). “Shallow water detector” sensory neurons 236 
appear to select motor output downstream from modulatory PNs, via actions on CPG neurons 237 
(Fig. 2A). However, dopamine application biases the entire nervous system toward crawling and 238 
R3b1 only elicits crawling in this context (Fig. 2A) (Puhl et al., 2012), suggesting both PN- and 239 
CPG-level control of motor system state.  240 
 241 
3.2 Long-lasting Activity States 242 
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Inputs to modulatory PNs have rapid transient effects, via fast synaptic transmission, or trigger 243 
activity persisting beyond the stimulus duration, via slower metabotropic actions (Rosen et al., 244 
1991; Beenhakker and Nusbaum, 2004; Kristan et al., 2005; Brodfuehrer et al., 2008; Benjamin, 245 
2012). For long-lasting PN activation, a behavioral switch might require active termination of PN 246 
activity, such as a transient “stop” signal from a sensory pathway that triggers an incompatible 247 
behavior via other PNs (Esch and Kristan, 2002; Mesce and Pierce-Shimomura, 2010). 248 
Additionally, interactions between modulatory neurons, serving to either reinforce or suppress 249 
activity in other modulatory PNs, enables them to play important roles in maintaining or 250 
switching behavioral state. This includes inhibiting competing PNs to remove their drive of an 251 
alternative CPG, activating PNs which inhibit a competing CPG, or exciting complementary PNs 252 
(Blitz and Nusbaum, 1997, 1999; Crisp and Mesce, 2006; Wu et al., 2014; Pirger et al., 2021).  253 
 254 
A persistent behavioral state can also occur without long-term PN activation, but instead due to 255 
the duration of PN modulatory actions. In Aplysia feeding, repeated CBI-2 stimulation 256 
progressively adapts CPG activity and improves behavioral output, due to second messenger 257 
accumulation in target CPG neurons (Cropper et al., 2017). As a result, the CPG is biased 258 
toward one output over another, which may stabilize the circuit when one behavior is more likely 259 
to be useful (Cropper et al., 2017). Different from this auto-regulation, in another mollusc, 260 
Lymnaea, the octopaminergic OC cells enhance CPG responses to other modulatory neurons 261 
for multiple motor pattern cycles (Benjamin, 2012). Thus, motor system state can be regulated 262 
directly at the PN level, or in circuit responsiveness to PNs, across multiple timescales. 263 
 264 
3.3 Long-distance CPG Feedback 265 
Another source of regulation is synaptic feedback from CPG neurons to PNs, which results in 266 
PN firing being time-locked to circuit activity, including in vivo and in semi-intact preparations 267 
when PNs are activated by physiological stimuli (Gillette et al., 1978; Blitz and Nusbaum, 2008; 268 
Mesce et al., 2008; Hedrich et al., 2011; Blitz, 2017). A distinct case occurs in the stick insect 269 
Carausius morosus in which PN walking-timed activity is due to sensory feedback instead of 270 
CPG feedback (Stolz et al., 2019). Feedback to PNs contributes to inter-circuit coordination, 271 
duration of PN activity, and gating of other PN inputs (Wood et al., 2004; Antri et al., 2009; 272 
Kozlov et al., 2014). Additionally, feedback control of modulatory PN activity can be important 273 
for motor pattern selection (see 4.2). 274 

4. Motor Pattern Selection 275 
4.1 Population Code 276 
Although experimentally-induced activation of an individual PN can elicit a motor pattern, 277 
physiological stimuli often activate more than one PN type (Coleman and Nusbaum, 1994; Esch 278 
and Kristan, 2002; Beenhakker and Nusbaum, 2004; Benjamin, 2012; Follmann et al., 2018; 279 
Fahoum and Blitz, 2021). This raises the possibility that the “modulatory code” for selecting a 280 
motor output is one in which different stimuli activate distinct PN subsets, resulting in a 281 
combinatorial “population code”. Such a scenario occurs in several systems, and experimentally 282 
manipulating which PNs are active elicits switches between motor patterns (Kristan and Shaw, 283 
1997; Combes et al., 1999; Kupfermann and Weiss, 2001; Hedrich et al., 2009; Guo et al., 284 
2022). In Aplysia when the modulatory PN CBI-2 is active, repeated stimulations are necessary 285 
to elicit an ingestive pattern, which is persistent, but if CBI-2 and CBI-3 are both active, they 286 
immediately elicit an ingestive motor pattern without induction of a persistent state (Evans et al., 287 
2021) (Fig. 2B). Thus, the population of modulatory neurons active can determine the pattern 288 
produced, and other aspects such as the dynamics of motor pattern selection. 289 
 290 
4.2 Activity Code 291 
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Quantitatively, modulatory PN firing rate can regulate motor output, although differences occur 292 
in network sensitivity (Kristan et al., 2005; Hedrich et al., 2011; Benjamin, 2012; Spencer and 293 
Blitz, 2016; Sakurai and Katz, 2019). Additionally, an “activity code”, i.e., PN pattern and/or rate 294 
can encode qualitatively distinct motor patterns and behaviors. In Drosophila courtship, the 295 
same descending PN (aSP22) uses cumulative spike count, to elicit different behaviors in a 296 
sequential fashion. In this “ramp-to-threshold” mechanism, different behavioral components of 297 
courtship are generated as the aSP22 spike count crosses a series of thresholds (Fig. 2C) 298 
(McKellar et al., 2019). In the crab STNS, mechanosensory neurons and neuroendocrine cells 299 
each trigger long-lasting activation of two modulatory PNs (MCN1, CPN2) (Beenhakker and 300 
Nusbaum, 2004; Blitz et al., 2008). However, differential, long-lasting, modulation of CPG 301 
feedback in these two states results in distinct MCN1/CPN2 activity patterns and rates which 302 
encode different chewing behaviors, and different sensitivity to sensory feedback (Fig. 2D) 303 
(Beenhakker et al., 2007; Blitz and Nusbaum, 2008, 2012; Diehl et al., 2013; Blitz, 2017; White 304 
et al., 2017). The ability to manipulate feedback synapses onto small populations of identified 305 
modulatory neurons was essential for these insights into how CPG feedback to PNs contributes 306 
to motor pattern selection. Collectively, these examples illustrate that the same PNs can use an 307 
activity code to select motor outputs, instead of a population code of different PN subsets, with 308 
both mechanisms possible even in the same system, albeit in distinct species (Beenhakker and 309 
Nusbaum, 2004; Blitz et al., 2008; Hedrich et al., 2009).  310 

Conclusions 311 
Cellular-level access to modulatory PNs at their somata and axon terminals, and their CPG 312 
neuron targets in several invertebrate preparations enabled insights into regulation of PN 313 
activity, strategies for selecting an appropriate motor pattern, and significant complexity in 314 
communication between modulatory PNs and their CPG targets. Invertebrate PNs and larger 315 
vertebrate populations similarly link sensory and higher-order processing with motor circuits, 316 
and many of the insights discussed have already, or likely will be found to extend to larger 317 
circuits (Dickinson, 2006; Sharples et al., 2014; Yang et al., 2020). Technological advances are 318 
enabling recording and manipulation of genetically identified populations in organisms with 319 
barriers to electrophysiological approaches (e.g., neuronal size, accessibility, population size). 320 
However invertebrate organisms remain important for determining how modulatory PNs regulate 321 
circuits at the cellular-level, via electrophysiological recordings and manipulations that remain 322 
difficult in larger systems. Given the rapidly developing techniques making investigation in larger 323 
systems more tractable, plus the application of genetic approaches to classic 324 
neurophysiologically-accessible model organisms (Kim et al., 2017; Northcutt et al., 2018, 2019; 325 
Devineni and Scaplen, 2022; Leiras et al., 2022), diverse models and approaches are expected 326 
to continue increasing our understanding of how motor circuits rapidly adapt to the 327 
everchanging conditions in and around us.  328 
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Figure Legends 663 

Figure 1. Identified modulatory projection neurons reveal cooperative and divergent 664 
actions contributing to distinctions between bath-applied and neuronally-released 665 
modulator. (A) The crustacean stomatogastric nervous system (STNS) includes the pyloric 666 
(food filtering, ~ 1 Hz rhythm) and gastric mill (food chewing, ~ 0.1 Hz) CPGs within the 667 
stomatogastric ganglion (STG). Modulatory PNs originating in the oesophageal (OG), the paired 668 
commissural ganglia (CoGs), and the supraoesophageal ganglion (SOG) project to and 669 
modulate the CPGs. Intracellular recordings of modulatory PNs can be made at the soma in the 670 
SOG, CoG, or OG, and axon terminals near the entrance to the STG (electrode symbols). Most 671 
modulatory PNs contain small molecule and neuropeptide co-transmitters as listed in the upper 672 
table. a,bSome analogous modulatory neurons in different species (lobster, Homarus gammarus, 673 
H. americanus; crab, Cancer borealis) contain the same co-transmitters, and others contain 674 
different complements. All PNs listed occur as pairs, either as a single copy in each CoG 675 
(MCN1/5/7, CPN2), or in the same location (OG: MPN/GN; SOG: IVN/PS), however they are 676 
drawn as single neurons for clarity. (B) Ionotropic co-transmitter actions are necessary for full 677 
expression of metabotropic actions. In C. borealis, the modulatory PN MCN5 elicits a motor 678 
pattern that includes dual-network activity in the LPG neuron (shorter duration, faster pyloric-679 
timed bursts alternating with slower gastric mill-timed bursts). Pyloric network activity is evident 680 
in LP and PD neuron activity, gastric mill network activity is represented by DG neuron activity. 681 
Neuron activity is schematized as extracellular recordings with each box representing a burst of 682 
action potentials. Bath application of the MCN5 neuropeptide Gly1-SIFamide mimics some but 683 
not all MCN5 actions. In particular, Gly1-SIFamide excites the pyloric LP neuron (+) whereas 684 
MCN5 inhibits LP (-). The increased LP activity during Gly1-SIFamide application inhibits the 685 
LPG neuron, preventing it from fully participating in the slower gastric mill network, note the 686 
extended duration LPG bursts alternating with DG that do not fully merge into a gastric mill-687 
timed burst. MCN5 inhibits LP (grey) via its co-transmitter glutamate, which is essential for LPG 688 
to fully participate in the gastric mill network via Gly1-SIFamide effects (Blitz et al., 2019; 689 
Fahoum and Blitz, 2021). (C) Spatially divergent co-transmitter actions occur in modulatory PNs 690 
in the STNS. The MPN and PS neurons use their peptide transmitters (proctolin and crust-MS, 691 
respectively) on pyloric and gastric mill CPGs in the STG, but their small molecule transmitters 692 
(GABA and histamine, respectively) in the CoGs. It is not known whether there is differential 693 
trafficking or other explanations for these segregated co-transmitter actions (Nusbaum and 694 
Marder, 1989a; Blitz and Nusbaum, 1999; Kwiatkowski et al., 2013). Species used in the 695 
referenced studies are indicted in each panel. Neuron/transmitter identification in panel (A): 696 
(Nusbaum and Marder, 1989a; Coleman and Nusbaum, 1994; Norris et al., 1994, 1996; Blitz 697 
and Nusbaum, 1999; Blitz et al., 1999, 2019; Meyrand et al., 2000; Swensen et al., 2000; 698 
Thirumalai and Marder, 2002; Christie et al., 2004; Kwiatkowski et al., 2013; Fahoum and Blitz, 699 
2021) 700 

 701 

Figure 2. Motor pattern selection by modulatory PNs is state-dependent, and can be 702 
encoded in the population of active PNs, or in PN activity. (A) The effects of PN R3b1 are 703 
determined by environmental and internal conditions. Left, In an in vitro or semi-intact leech 704 
preparation, the R3b1 neuron elicits either swimming or crawling in response to the same input. 705 
The swim and crawl CPGs consist of partially overlapping neurons (orange and blue boxes). 706 
Fluid depth around the animal determines which locomotor pattern is selected. The proposed 707 
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mechanism is that “shallow water detector” neurons provide inhibitory input to the swim CPG 708 
and excitatory input to the crawl CPG (Esch et al., 2002). Right, In the presence of dopamine 709 
(yellow cloud), the entire nervous system is biased toward crawling, and R3b1 only elicits 710 
crawling (Puhl et al., 2012). (B) Distinct subpopulations of activated PNs select feeding patterns 711 
with different dynamics. When the modulatory PN CBI-2 alone is activated, repeated stimulation 712 
is necessary to elicit an ingestive feeding pattern which persists for ~ 30 min. However, if CBI-2 713 
and CBI-3 are co-activated, an ingestive feeding pattern is immediately selected, but it is a 714 
transient activation (Evans et al., 2021). (C) The same PN, aSP22, activates different CPGs and 715 
different behaviors based on a spike number code. In this “ramp-to-threshold” example, as an 716 
increasing number of action potentials crosses different thresholds, aSP22 progressively 717 
activates CPGs contributing to different aspects of courtship (McKellar et al., 2019). (D) In 718 
response to different stimuli, the modulatory PNs MCN1 and CPN2 elicit qualitatively different 719 
chewing patterns due to distinctions in their activity patterns and rates (Beenhakker and 720 
Nusbaum, 2004; Blitz et al., 2008; White and Nusbaum, 2011; Diehl et al., 2013). MCN1 and 721 
CPN2 activity is indicated as extracellular recordings, with each colored box representing a 722 
burst of action potentials (different firing rates are not represented in the schematics). The 723 
differences in their activity are due to different strengths of CPG feedback (CPG feedback 724 
terminal size [colored circles] is representative of relative CPG feedback strength) (Blitz, 2017). 725 
Additionally, proprioceptive sensory neurons regulate MCN1 and CPN2 activity in the “orange” 726 
state when CPG feedback is weak, but not in the “blue” state, when CPG feedback is stronger 727 
(Beenhakker et al., 2007; White et al., 2017). Species used in the referenced studies are 728 
indicated in the panels. 729 
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