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ABSTRACT
This study addresses the existence and uniqueness of solutions to the
Hoogendoorn–Bovy (HB) pedestrian flow model, which describes the
dynamic user-optimal pedestrian flow assignment problem in continuous
space and time. The HB model consists of a forward conservation law (CL)
equation that governs density and a backward Hamilton–Jacobi–Bellman
(HJB) equation that contains a maximum admissible speed constraint
(MASC), in which the flow direction is determined by the path-choice strat-
egy. The existence and uniqueness of solutions are significantly more dif-
ficult to determine when the HJB equation contains an MASC; however,
we prove that the HB model can be formulated as a forward CL equation
and backward Hamilton–Jacobi (HJ) equation in which the MASC is non-
binding if suitablemodel parameters are selected. Thismodel is formulated
as a fixed-point problem upon the simultaneous satisfaction of both equa-
tions. To verify the existence and uniqueness results, we first demonstrate
the existence and uniqueness of the solutions to the CL and HJ equations,
and then show that the coupled HB model is well-posed and has a unique
solution. A numerical example is presented to illustrate the properties of
the HB model.
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1. Introduction

Dynamic macroscopic pedestrian-flow modelling has received considerable attention in recent
decades (Taherifar et al. 2019; Aghamohammadi and Laval 2020; Lin, Zhang, and Hang 2022). The
continuum modelling approach has been widely used to study these problems. There are two major
components in dynamic macroscopic pedestrian-flow models. The first is a description of the macro-
scopic characteristics of pedestrian speed, density, and flow (Morrall, Ratnayake, andSeneviratne1991;
Lam, Morrall, and Ho 1995; Lam, Cheung, and Lam 1999; Wong et al. 2010; Xie et al. 2013; Xie and
Wong 2015). The second is the route-choice strategy (Hughes 2002; Huang et al. 2009; Frejinger, Bier-
laire, and Ben-Akiva 2009; Fosgerau, Frejinger, and Karlstrom 2013; Hoogendoorn and Bovy 2004b;
Mai, Fosgerau, and Frejinger 2015), whichdescribes the decision-makingprocess performedbypedes-
trians to identify the optimal path between an origin and a destination. An important feature of a
route-choice problem is a dynamic user equilibrium (DUE) (or dynamic user-optimal (DUO)) problem,
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which can be divided into two types: (1) the reactive dynamic user-optimal (RDUO) problem, in which
pedestrians choose their route in a reactive manner based on instantaneous information, to minimize
their instantaneous total walking cost (Hughes 2002; Huang et al. 2009; Yang et al. 2019); and (2) the
predictive dynamic user-optimal (PDUO) problem, in which pedestrians are assumed to have perfect
information regarding themodelled domain and can choose their route to minimize their actual total
walking cost (Hoogendoorn and Bovy 2004a, 2004b).

Many empirical studies (such as experimental or field observation studies) contingent on an
assumption regarding the path choice for movement from one place to another (i.e. the DUE princi-
ple) have been based on the above-mentioned theoretical studies. Asano, Iryo, and Kuwahara (2010)
collected experimental data to validate their pedestrian simulation model that described the antic-
ipatory behaviour of pedestrians and their macroscopic route choice, in which a pedestrian chose
a route that satisfied the dynamic user-optimal (DUO) principle. They also conducted an observa-
tional survey in a railway station to validate this route choice behaviour. Gao et al. (2014) conducted
experiments to collect data for a meeting room with two exits, which were used to calibrate and val-
idate their integrated macroscopic–microscopic approach to simulate the escape process, in which
the DUO criterion was formulated to describe pedestrian exit/route choice behaviour. Crociani and
Laemmel (2016) collected two datasets at the Technical University Berlin, which were used to support
pedestrians’ route choice that satisfied either a DUE or a Nash equilibrium adopted in their simulation
approach tomulti-destination pedestrian crowds in complex environments. In Germany, the dynamic
route choice behaviour was tested using two datasets. The first dataset was extracted from a bidirec-
tional flow experiment in which two groups of pedestrians crossed each other with an intersection
angle of 180 degree (Plaue et al. 2011), and the second dataset described two groups of pedestrians
crossed at an intersection angle of 90 degrees (Plaue et al. 2012).

Confirmation of the existence of solutions is a fundamental challenge to solving both types of DUE
problems, and a proof that solutions exist must be obtained prior to performing computations. Han,
Friesz, andYao (2013) showed that a solution existed for the simultaneous route-and-departure choice
DUE problem. The existence of continuous-time, system-optimal, and user-optimal traffic flows on a
road network is also shown in Bressan and Han (2013). However, a detailed analysis of the existence
anduniqueness of solutions to the PDUO/RDUOproblemhas not been reported, and literature studies
have been limited to discussions on model formulation and numerical simulation (Huang et al. 2009;
Du et al. 2013; Yang et al. 2019, 2022).

TheHBpedestrian flowmodel (Hoogendoorn andBovy2004a, 2004b)wasdeveloped to studyuser-
optimal dynamic traffic assignment problems in continuous time and space, andhas beenwidely cited
in pedestrian modelling studies (> 1000 citations since 2004, according to ISI Web of Science). Most
of these citations have been in the areas of transportation, engineering and computer science, but
there have also been a significant number of citations in a wide variety of other fields. It is therefore
very important to identify whether there are solutions to the HB model, and if so, to determine the
uniqueness of these solutions.

In the HB model, pedestrians cannot improve their experienced utility (e.g. their experienced
or actual walking cost, as opposed to their instantaneous walking costs) by unilaterally changing
their path choice, and the model allows pedestrians to choose their routes from an infinite set of
paths (Hoogendoorn and Bovy 2004b). Themodel assumes that pedestrians have perfect information
regarding future traffic conditions, which they use to choose a route that minimizes their actual walk-
ing cost; thus, this route-choice behaviour is represented as a PDUO problem. This model consists of
a forward conservation law (CL) equation and a backward Hamilton–Jacobi–Bellman (HJB) equation,
where the latter contains a maximum admissible speed constraint (MASC). There is no analytical solu-
tion for this highly coupled model in most cases. In this study, we find that for weight parameters
satisfying certain conditions, pedestrians’ speed can be shown to be consistently less than the max-
imum allowed speed. We can then obtain an equivalent equation for the HB model, which consists
of a forward CL equation and a backward Hamilton–Jacobi (HJ) equation, but which also contains a
non-bindingMASC. This assists us to prove the existence anduniqueness of solutions to this HBmodel.
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Conservation laws (e.g. conservation ofmass, energy, ormomentum laws) can be used to represent
many fundamental physical phenomena, and it is therefore important to find analytical and numerical
solutions for them. Typically, there are no classical solutions to the CL equation, due to its discontinu-
ities; instead, weak solutions have been derived and have been fundamental to the development and
analysis of the CL equation and related numerical methods (Lax 1954). Another mathematical diffi-
culty is that weak solutions are generally non-unique, which means that entropy conditions must be
imposed to select a physically correct weak solution (Lax 1971).

In the current study, we focus on a linear CL equation, which also develops discontinuities in its
linear coefficients, such that it is unclear whether this equation has unique solutions. Several papers
have addressed this issue. Bouchut and James (1998) considered the one-dimensional linear transport
equation with a bounded but possibly discontinuous coefficient. They found that a solution exists
when the coefficient is piecewise continuous, and that unique and general stability results exist for
backward Lipschitz solutions and forwardmeasure solutionswhen the coefficient satisfies a one-sided
Lipschitz condition. Tadmor (1991) showed that the linear transport equation has a unique Lipschitz
continuous solutionwhen the coefficient is uniformly bounded and satisfies a one-sided Lipschitz con-
dition, and also showed that the solution satisfies L1 stability. These and other studies have required
the initial condition to be locally Lipschitz (Conway 1967; Tadmor 1991; Dolcetta and Perthame 1996;
Bouchut and James 1998). In contrast, Petrova and Popov (1999) introduced an entropy condition
that selects a unique weak solution for any continuous initial condition, and provided a complete
existence-uniqueness theory for such cases.

In physics, the HJ equation is an alternative formulation of classical mechanics, which is particularly
useful for identifying the conserved quantities of mechanical systems. The HJB equation is a special
class of HJ equation that is crucial for analysing continuous/differential dynamic game and control
theory problems. HJ equations do not always have classical solutions, even if the Hamiltonian and
initial/boundary conditions are smooth. Thus, the HJ equation is typically solved by searching for vis-
cosity solutions (Crandall and Lions 1983) that are Lipschitz continuous but may have discontinuities
in their first derivatives. Several papers have discussed the existence and uniqueness of solutions to
HJ equations. Crandall and Lions (1983) established the existence, uniqueness, and stability of vis-
cosity solutions for certain classes of HJ equation. Lions (1982) extended these existence results to
more general HJ equation. Crandall, Evans, and Lions (1984) introduced several equivalent formula-
tions for a viscosity solution, examined two of these equivalent criteria in detail, and demonstrated
their strengthbyusing themtoprove several new results and to reprove various known results in a sim-
plermanner. Fathi (2011) studied the existence of C1 critical sub-solutions of the HJ equation, whereas
Sánchez-Morgadoet al. (2012) studied thephysical solutions of theHJ equation. Existence andunique-
ness results have also been obtained by several other authors (e.g. Fleming 1969; Friedman and
Hopf 1973).

As outlined above, there have been many studies in recent years to identify and determine the
uniqueness of solutions to the conservation law (CL) and to the Hamilton–Jacobi (HJ) equation. In this
study, we use suitable parameters to identify and determine the uniqueness of a solution to the HB
model. First, we separately consider the existence anduniqueness properties of solutions to theCL and
HJ equations. We then focus on a coupled system of CL and HJ equations. This coupling, especially its
forward (for the CL equation) and backward (for the HJ equation) nature, makes the analysis of the
existence and uniqueness properties of these equations highly challenging.

The findings from this paper provide a solid foundation for understanding the analytical properties
of the HB model, which will be useful for researchers who implement this model to solve real-world
problems, as it provides insight into the solution properties under different combinations of model
parameters. This will enhance user confidence in the existence of a solution and ease user concern
about the possibility of multiple solutions under specific conditions. Users will therefore more fully
comprehend the limitations and applications of the method for solving real-world problems.

The remainder of this paper is organized as follows. TheHBmodel is described in thenext section. In
Section 3, we demonstrate the existence and uniqueness of the solution to the HBmodel. In Section 4,
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a numerical example is used to demonstrate the effectiveness of the model and justify the exclusion
of the minimum value constraint in the analysis. Our conclusions are presented in Section 5.

2. The HBmodel

In this section, we introduce the formulation of the HB model. First, before discussing the modelling
process, we present in Subsection 2.1 the notation and definitions used in the remainder of the paper.
In Subsections 2.2–2.3, we introduce the problem formulation and modelling assumptions. In Sub-
section 2.4, we give the complete model formulation of the original HB model. In Subsection 2.5, we
demonstrate that the original HB model can be simplified using suitable parameters, such that the
MASC can be ignored.

2.1. Notation and definition

Themodel region is denotedby� ⊂ R2 inwhich the pedestriansmove. LetO ⊂ �be the origin area in
which the pedestrian enters the model region and D ⊂ � be the destination in which the pedestrian
leaves the model region, where both the origin and destination are assumed to be closed sets and
pedestrian can use any point in the origin/destination area to enter/exit the model region. Let B ⊂
� be an obstruction where pedestrians are not allowed to enter and around which they must move
while walking to their destination. Let�i be the outer boundary of the region�,�b be the obstruction
boundary, and �d be the destination boundary. In this study, � is assumed to be a bounded set of R2

with a piecewise regular boundary.
The continuum modelling approach is used to describe pedestrian flow; thus, a feasible trajec-

tory for pedestrian movement in the model region can be described by a continuous mathematical
function with respect to continuous time t, defined as

x[t,t̄] = {x(s) = (x1(s), x2(s)) ∈ �| t ≤ s ≤ t̄, x(s) /∈ B} (1)

where t is the departure time and t̄ is the terminal time. A pedestrian walks from origin O ⊂ � to des-
tinationD ⊂ �. A feasible trajectory should satisfy x(t) ∈ O. If x(t̄) is in destinationD, then t̄ is the time
at which the pedestrian arrives at the destination; otherwise, t̄ is the end of the time period under
consideration.

In the continuummodel, a trajectory is assumed to be a differentiable function of t; thus, a velocity
exists and is finite. The velocity v[t,t̄] along the trajectory x[t,t̄] can be defined by

v[t,t̄] = {v(s) ∈ �(x(s), s)| t ≤ s ≤ t̄} (2)

where �(x(s), s) = {v(s) | |v(s)| ≤ V0(x(s), s)} is the set of admissible velocities at location x(s) and
time s, and V0(x(s), s) is the local maximum admissible speed at location x(s) and time s and is defined
as:

V0 = Vmax exp(−(ρ/ρe)
2) (3)

where Vmax(x(s), s) is the local maximum speed under free-flow traffic conditions at location x(s) and
time s, ρ(x(s), s) is the pedestrian density at location x(s) and time s, and ρe is a given parameter. In
general, the velocity v is a vector and can be represented as v = eV , where V ∈ R is the speed and
e ∈ R2 is the walk direction with |e| = 1. The set of admissible velocities depends on the structure of
themodel region (pedestrians cannot enter the obstacle; hence, the travel direction is restricted here)
and pedestrian flow (pedestrian’ speed should be less than the local maximum admissible speed). The
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trajectory x[t,t̄] and velocity have the following relation

x(t′) = x(t) +
∫ t′

t
v(s)ds, v(s) = dx(s)

ds
(4)

When a pedestrian walks from the origin to the destination, we define a generalized walking cost that
depends on the trajectory x[t,t̄] and velocity v[t,t̄] and is defined as

J(x(t), t) =
∫ t̄

t
L(x(τ ), τ , v(τ ))dτ + h(x(t̄), t̄) (5)

where L and h are the running and terminal costs, respectively. Because x[t,t̄] is uniquely determined
by v[t,t̄], the walking cost J(x(t), t) is a function of velocity.

The running cost L(x(τ ), τ , v(τ )) is the local walking cost per unit time at location x(τ ) and time τ .
There are many types of running costs for pedestrian en route to their destination. For simplicity, we
assume that the running cost satisfies the following linear form

L(x, t, v) = c1 + c2r(d(x, B)) + c3
2

‖v‖2 + c4ζ(ρ(x, t)) (6)

where each term on the right-hand side represents a different type of running cost and ck , k = 1, . . . , 4
are the relatedweights (relative importance of each term), || · || is the Euclidean length. The first term 1
is the expected travel time and the weight c1 expresses the time-pressure. The second term r(d(x, B))
represents the cost that a pedestrian incurs to eliminate the discomfort due to closeness to obstacle B,
where r is amonotonically decreasing functionof distanced(x, B)between location x and theobstacle.
The distance is defined by

d(x, B) = min
y∈B

‖x − y‖ (7)

where ‖z‖ is the Euclidean length of vector z. The third term ‖v‖2/2 represents the cost associated
with energy consumption. The fourth term ζ(ρ(x, t)) represents the part of running cost that depends
on the density.

The terminal cost h(x(t̄), t̄) represents the cost at position x(t̄) and time t̄. If t̄ is the time atwhich the
pedestrian arrives at thedestination and x(t̄) ∈ D, thenh(x(t̄), t̄) is the cost for entering thedestination
(e.g. the price of a movie ticket if the destination is a cinema) and penalty for arriving early, defined as

h(x(t̄), t̄) = φD(t̄) (8)

If t̄ is the end of the period under consideration, then h(x(t̄), t̄) is the penalty that the pedestrian incurs
for not arriving on time at destination D, defined as

h(x(T), T) = φ0(x, ρ) (9)

where T is the end time of the period under consideration, ρ is the pedestrian density, andwe assume
that φ0 may depend on ρ. Next, we briefly introduce the HB pedestrian flowmodel and related route-
choice strategy.

2.2. Flow conservation equation

Let f(x, t) = (f1(x, t), f2(x, t)) be the flow vector at location x and time t, which is defined as

f = ρv (10)

where velocity v(x, t) is determined by the path choice, which is introduced in the following section.
Let q(x, t) be the travel demand at location x and time t. Similar to the flow conservation in fluid
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dynamics, the density satisfies the following flow conservation law

ρt(x, t) + ∇ · f(x, t) = q(x, t), ∀x ∈ �, ∀t ∈ [0, T] (11)

where ρt(x, t) = ∂ρ(x, t)/∂t and ∇ · f(x, t) = ∂f1(x, t)/∂x1 + ∂f2(x, t)/∂x2. Because we assume that
no pedestrian is allowed to leave the walking platform by crossing boundary �i or entering the
obstruction through �b, we have

ρ(x, t) = 0. ∀x ∈ �i ∪ �b, ∀t ∈ [0, T] (12)

2.3. Path choice

In the HB model, a pedestrian chooses a path by minimizing the expected cost. In this section, we
briefly describe the path choice model. We must first make some assumptions:

(1) The pedestrian has perfect information regarding traffic conditions over time, and is familiar with
the model region.

(2) The pedestrian chooses his/her path based on the expected path cost.
(3) We do not consider the stochastic case.
(4) The velocity belongs to the set of admissible velocities.
(5) The pedestrian’s departure time is fixed.

The HB model is used to describe the dynamic user-equilibrium problem. For each origin-
destination pair, if all pedestrians have the same departure time, the actual walking costs are equal
and minimized, where the actual cost is the minimum expected cost. Pedestrians in the system thus
choose their path by minimizing their actual walking cost. We next provide a mathematical formula-
tion of the DUO equilibrium principle. First, because the actual walking cost is the expected cost, the
minimum actual walking cost is defined as

φ(x(t), t) = min
x[t,t̄)

J(x(t), t) = min
v[t,t̄)

J(x(t), t) (13)

where φ(t, x(t)) is the minimum actual walking cost to the destination from location x(t) at time
t. Because x[t,t̄) is determined uniquely by v[t,t̄) and the velocity appears in the flow conserva-
tion equation, which is introduced in the following section, we usually take the second minimum
expression in Equation (13). The DUO equilibrium principle by definition is

J(x(t), t) = φ(x(t), t), if q(x(t), t) > 0 (14)

This condition implies that any used path has a minimum actual walking cost.
For the path choicemodel, the key is to determine the optimal velocity v∗(x, t) using Equation (13),

which is a function of the minimum actual walking cost φ(x, t). In the HB model (Hoogendoorn and
Bovy 2004a, 2004b), φ(x, t) satisfies the following HJB equation

⎧⎪⎨
⎪⎩

− ∂

∂t
φ(x, t) = H(x, t,∇φ), ∀x ∈ �, ∀t ∈ [0, T]

φ(x, t) = φD(t), ∀ x ∈ �d , ∀ t ∈ [0, T]
φ(x, T) = φ0(x, ρ), ∀x ∈ �

(15)

where the terminal conditions reflect the penalty for not arriving at the destination before the end of
the period, and the boundary conditions describe the utility of arriving at the destination at time t. The
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Hamiltonian H is defined by

H(x, t,∇φ) = min
v

{L(x, t, v) + v · ∇φ} (16)

Thus, the optimal velocity v∗(x, t) satisfies:

v∗(x, t) = argmin{L(x, t, v) + v · ∇φ | v ∈ �(x, t)} (17)

Substituting Equation (6) into the above equation and assuming the functions r and ζ do not depend
on velocity, we find that

v∗(x, t) = V∗(x, t)e∗(x, t) (18)

where the optimal speed V∗ and optimal direction e∗ are defined by

V∗(x, t) = min{c−1
3 ‖∇φ‖, V0(x, t)} (19)

e∗(x, t) = − ∇φ

‖∇φ‖ (20)

where Equation (19) is theMASCand Equation (20) defines the optimal direction,which is the direction
inwhich theminimumactual costmost rapidly decreases. The optimal speed depends on the rate∇φ.
If theminimumwalking cost∇φ very rapidly decreases in the optimal direction, a pedestrian will walk
at the maximum admissible speed V0(x, t); otherwise, if∇φ decreases slowly in the optimal direction,
a pedestrian will walk at a speed slower than V0(x, t). The first case represents situations in which a
pedestrian is under high time-pressure andmustwalk at themaximumspeed to arrive at a destination,
such as when escaping a fire. The second case, in which the pedestrian chooses to walk at a slower
speed to a destination, represents situations such as a shopping trip.

2.4. Completemodel formulation of HBmodel

From the above analysis, the HB model can be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−φt(x, t) = H(x, t,∇φ), ∀x ∈ �, ∀t ∈ [0, T]
ρt + ∇ · (ρv∗) = q(x, t), ∀x ∈ �, ∀t ∈ [0, T]
φ(x, t) = φD(t), ∀x ∈ �d , ∀t ∈ [0, T]
φ(x, T) = φ0(x, ρ), ∀x ∈ �

ρ(x, 0) = ρ0(x), ∀x ∈ �

ρ(x, t) = 0, ∀x ∈ �i ∪ �b, ∀t ∈ [0, T]

(21)

where H and v∗ are defined in Equations (16) and (17), respectively.

2.5. Simplified HBmodel under suitable parameters

FromEquation (19), there are two choices for theoptimal speedv∗. In general,when computing theHB
model, v∗ can be chosen as either of these two speeds. Hencewemust solve theminimumvalue prob-
lem, which introduces considerable complication to the analysis. Fortunately, the following theorem
helps to simplify the situation:

Theorem 2.1: If the density ρ ≤ θ where θ is a given constant, for weight parameters (c1, c2, c3, c4)
satisfying certain conditions in the running cost function, c−1

3 ‖∇φ‖ ≤ V0(x, t) is always satisfied.

This theorem is proved in Section 3.4.
From this theorem, in a low-density traffic systemwith suitable choices for parameters c1, c2, c3, and

c4, we can rewrite the HB model Equation (21) into two parts
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The HJ part is

⎧⎪⎪⎨
⎪⎪⎩

−φt(x, t) + 1
2c3

|∇φ|2 = F(x, ρ), ∀x ∈ �, ∀t ∈ [0, T]

φ(x, t) = φD(t), ∀x ∈ �d , ∀t ∈ [0, T]
φ(x, T) = φ0(x, ρ), ∀x ∈ �

(22)

The CL part is ⎧⎨
⎩

ρt + ∇ · (−ρc−1
3 ∇φ) = q(x, t), ∀x ∈ �, ∀t ∈ [0, T]

ρ(x, 0) = ρ0(x), ∀x ∈ �

ρ(x, t) = 0. ∀x ∈ �i ∪ �b, ∀t ∈ [0, T]
(23)

where F(x, ρ) = c1 + c2r(d(x, B)) + c4ζ(ρ(x, t)). We point out the coupling between the backward
HJ Equation (22) and forward CL Equation (23) through the source term and terminal condition in
Equation (22) and the coefficient in the spatial derivative term in Equation (23).

Our complete, simplified HB model consists of a forward conservation law (CL) and a backward
Hamilton–Jacobi (HJ) equation, so the solution to the pedestrian flowmodel (HBmodel) is equivalent
to the solution to the system coupled by the CL and HJ equations.

When considering the solution to the coupled system, note that the two parts of the model are
closely interconnected. Thus, when computing the density ρ by solving the forward CL, wemust know
the total cost φ of reaching the destination from every point, such that we can decide on the flow
direction needed to compute the density at the next time level. Similarly, when computing the cost
by solving the backward HJ, we must know ρ to obtain the local cost. However, neither ρ nor φ are
known in advance, and these two equations cannot be solved together as they have different initial
times. This model is in fact a fixed-point problem that can be solved by iteration, and the two-step
process that comprises one iteration is as follows:

Step 1. Use a given solution ρold to the forward CL to solve the backward HJ to obtain solution φ.
We denote this step as

φ = f (ρold)

Step 2. Solve the forward CL to obtain an updated solution ρnew based on φ. We denote this step as:

ρnew = g(φ)

As mentioned, we regard steps 1 and 2 as one iteration, which we denote as

ρnew = g(φ) = g(f (ρold)) = �(ρold)

Given this definition of one iteration and the function �, the model translates to the following fixed-
point problem:

ρ = �(ρ)

Remark: In HBmodel, V0 is the local admissible maximum speed, it usually represents the physiolog-
ical limit of a pedestrian, i.e. it is the fastest speed that an average pedestrian can walk. In this paper,
V0 is an exponential function about density, we can also use other empirical formulation, like linear
function used in Hoogendoorn and Bovy (2004b). The type of V0 not influence analysis in Section 3,
we could derive similar conclusion. In practice, people’s walk speed influenced by a list of factors, such
as number of pedestrians around him, waking energy required, and the aim to the destination. Each
factor has different weight in different situation, such as people go to shopping and fire escape, the
weight of time in these two situations have a big difference, so the walk speed in the latter is much
larger than the former. Thus, under the specific condition, people do not walk as a speed of their phys-
iological limit, because walk at a speed of physiological is undesirable, and it is exhaustive to walk to
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such top speed, the energy consumption is very high. Under such circumstance, the hardcore physical
assumption, conversation law, and behavioural assumptions, e.g. user equilibrium, route choice, etc.,
are fully satisfied, additionally, in Section 3, we want to show that the resulting equilibrium pattern is
unique mathematically. It means that the modellers or practitioners do no need to worry about the
problem of multiple solutions (movement patterns), in which they do not know, and cannot know,
which one is more physically relevant.

3. Existence and uniqueness of the solution

In this section, we prove the existence and uniqueness of the solution to the simplified HB model
(Equations (22) and (23)). In Subsections 3.1 and 3.2, we introduce some common theories used for
analysing properties related to the existence, uniqueness and stability of solutions to the CL equation
and the HJ equation, respectively. In Subsection 3.3, we prove the existence and uniqueness of the
solution to the simplified HB model. In Subsection 3.4, we prove Theorem 2.1.

3.1. Hamilton–Jacobi equation

The aim of this section is to study the following HJ equation, and investigate some of its properties.⎧⎪⎪⎨
⎪⎪⎩

−φt(x, t) + 1
2c3

|∇φ|2 = g(x, t), ∀x ∈ �, ∀t ∈ [0, T]

φ(x, t) = φD(t), ∀x ∈ �d , ∀t ∈ [0, T]
φ(x, T) = φ0(x), ∀x ∈ �

(24)

For this equation, we denote H(x, t,∇φ) = 1/2c3|∇φ|2 − g(x, t). In general, the classical solution to
the HJB equationmay not exist. Generalized or weak solutions do exist, but are generally non-unique.
To solve this problem, Crandall and Lions (1983) introduced the viscosity solution. Next, we define the
viscosity solution to the above equation:

Definition 3.1: A bounded, uniformly continuous function φ is considered a viscosity solution of the
initial-value problem (Equation (24)) for the HJ equation provided that

(1) φ = φ0 on � × {t = T} and φ = φD on �d × [0, T].
(2) For each v ∈ C∞(� × (0, T))⎧⎨

⎩
if φ − v has a local maximum at a point (x0, t0) ∈ � × (0, T), then

−φt(x, t) + 1
2c3

|∇φ|2 − g(x, t) ≥ 0
(25)

and ⎧⎨
⎩

if φ − v has a local minimum at a point (x0, t0) ∈ � × (0, T), then

−φt(x, t) + 1
2c3

|∇φ|2 − g(x, t) ≤ 0
(26)

We next consider the uniqueness of the viscosity solutions of the initial-value problem
(Equation (24)). From Evans (1998) we have the following theorem (Theorem 1 in Section 10.2 in
Evans (1998)):

Theorem 3.2: If H satisfies{ |H(x, t,p) − H(x, t,q)| ≤ C|p − q|, ∀x ∈ �, p,q ∈ R2,∀t ∈ [0, T]
|H(x, t,p) − H(y, t,p)| ≤ C|x − y|(1 + |p|), ∀x, y ∈ �, p ∈ R2,∀t ∈ [0, T]

(27)

then there exists at most one viscosity solution to Equation (24).
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The semi-concavity is the most fundamental regularity property of HJ equation solution. We
briefly recall this property and refer interested readers to a detailed introduction in Cannarsa and
Sinestrari (2004).

Definition 3.3: A map w : E → R, with E being open and convex, is semi-concave if there is some
constant C, such that one of the following conditions is satisfied:

(1) Map x → w(x) − C
2 |x|2 is concave in E

(2) w(λx + (1 − λ)y) ≥ λw(x) + (1 − λ)w(y) − Cλ(1 − λ)|x − y|2 for any x, y ∈ E, λ ∈ [0, 1]
(3) D2w ≤ CId in the sense of distribution,
(4) 〈p − q, x − y〉 ≤ C|x − y|2 for any x, y ∈ E,p ∈ D+

x w(x) and q ∈ D+
x w(y), where D+

x denotes the
super-differential of w with respect to the variable x, defined by

D+
x w(x) = {p ∈ R2 : lim sup

y→x

w(y) − w(x) − 〈p, y − x〉
|y − x| ≤ 0} (28)

We next turn to the analysis of Equation (24).

Theorem 3.4: If g : � × [0, T] → R and φ0 : � → R are continuous and satisfy

‖g(·, t)‖C2 ≤ C, ∀t ∈ [0, T], ‖φ0(·)‖C2 ≤ C (29)

where C is constant, then, Equation (24) has a unique uniformly bounded viscosity solution, which is given
by

φ(x, t) = inf
α∈L2([t,T],R2)

∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) (30)

where x(s) = x + ∫ s
t α(τ )dτ and φ is Lipschitz continuous and semi-concave.

To prove Theorem 3.4, we require Lemma 4.8 from Cardaliaguet (2010).

Lemma 3.5 (Euler–Lagrange optimality condition): If α(x, t) is the optimal function for φ(x, t) in
Equation (30), then α ∈ C1([t, T])with

α′(s) = 1√
c3
Dxg(x(s), s), ∀s ∈ [t, T], α(T) = − 1√

c3
Dxφ0(x(T)) (31)

If there exists a constant C1 = C1(C) such that for all (x, t) ∈ � × [0, T) we have ‖α‖∞ ≤ C1, where C is
given by Equation (29).

Next we prove Theorem 3.4.

Proof: The proof is postponed until Appendix 1. �

3.2. Conservation law equation

Our aim in this section is to consider the existence and uniqueness of the following general linear
conservation law ⎧⎪⎨

⎪⎩
∂ρ

∂t
+ ∇ · (Aρ) = B(x, t), ∀x ∈ �,∀t ∈ [0, T]

ρ(x, 0) = ρ0(x), ∀x ∈ �

ρ(x, t) = 0. ∀x ∈ ∂�, ∀t ∈ [0, T]

(32)

where x = (x1, x2), A(x, t) = (A1(x, t),A2(x, t)) and � is a bounded domain with a piecewise regular
boundary. We assume that A1(·, t) and A2(·, t) satisfy the following assumptions:
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(1) Ai(·, t), i = 1, 2 is bounded for almost every t, i.e. for almost every t, there is a constant C, such that

|Ai(x, t)| ≤ C, ∀x ∈ �, i = 1, 2 (33)

(2) A(x, t) satisfies the one-sided Lipschitz condition

〈A(x, t) − A(y, t), x − y〉 ≥ −m(t)|x − y|2, ∀x, y ∈ � (34)

wherem ∈ L1[0, T],m(t) ≥ 0 a.e. in [0, T], and 〈x, y〉 = x1y1 + x2y2 and |x|2 = 〈x, x〉.

In this study, we solve the conservation law equation in the distribution sense. ρ is considered to
be a weak solution to Equation (32) if for all test functions ϕ ∈ C1c (� × [0, T)). Thus, we have

∫ T

0

∫
�

ρϕtdxdt +
∫ T

0

∫
�

ρ(∇ϕ · ∇A)dxdt +
∫

�

ϕ(x, 0)ρ0(x)dx

=
∫ T

0

∫
�

B(x, t)ϕ(x, t)dxdt (35)

Next, we recall some results from Cardaliaguet (2010), mentioned also in Conway (1967), Bouchut
and James (1998), and Petrova and Popov (1999) (Theorem 4.18 in Cardaliaguet (2010), Theorem 1
in Conway (1967), Theorem 2.3 in Petrova and Popov (1999)).

Theorem3.6: If� is a boundeddomainwith apiecewise regular boundary,A satisfies the above assump-
tion,ρ0 is a Borel probabilitymeasure andabsolutely continuous in�, and B(x, t) is Lipschitz continuous in
� × [0, T], then there exists a unique weak solution ρ ∈ C([0, T],P1) to Equation (32), where C([0, T],P1)

is the set of continuous functions from [0, T] toP1.

3.3. The existence and uniqueness for the coupled system

Based on the analysis of the existence and uniqueness of CL and HJ separately, we prove the existence
and uniqueness of the solution to the following HB model in this subsection

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) − φt(x, t) + 1
2c3

|∇φ|2 = F(x, ρ), ∀x ∈ �, ∀t ∈ [0, T]

(ii) ρt + ∇ · (−ρc−1
3 ∇φ) = q(x, t), ∀x ∈ �, ∀t ∈ [0, T]

(iii) φ(x, t) = φD(t), ∀x ∈ �d , ∀t ∈ [0, T]
(iv) φ(x, T) = φ0(x, ρ), ρ(x, 0) = ρ0(x)), ∀x ∈ �

(v) ρ(x, t) = 0. ∀x ∈ �i ∪ �b, ∀t ∈ [0, T]

(36)

We must first make some assumptions regarding F and φ0. Let P1 be the set of Borel probability
measures ρ on �, such that

∫
�

|x|dρ(x) < ∞, and the following Kantorovitch–Rubinstein distance
is endowed

d1(μ, ν) = inf
γ∈�(μ,ν)

[∫
�×�

|x − y|dγ (x, y)
]

(37)

where�(μ, ν) is the set of Borel probabilitymeasureson� × �.Wenowconsider the functions F(x, ρ)

andφ0(x, ρ). From the analysis of theHJ equation,wewould hope that F(x, ρ) andφ0(x, ρ) areC2 func-
tions. In general, ρ is not a C2 function; thus, F(x, ρ) and φ0(x, ρ) are also not C2. Similar to the practice
in mean field games (Lasry and Lions 2007), the functions F(x, ρ) and φ0(x, ρ) are taken as smooth-
ing operators on ρ denoted as F[ρ] and φ0[ρ], respectively, using a simple regularization procedure.
We replace ρ by ρ ∗ kε , where kε is a regularizing kernel of width ε (small but finite) in the operator
F. ρ ∗ kε is a good mollifier of ρ. After the regularization procedure, we may consider the source term
F[ρ] = F(x, ρ) and φ0[ρ] = φ0(x, ρ) to be C2 functions.
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The following are our main assumptions:

• F is continuous over � × P1, φ0 is continuous over � × P1, and φD is Lipschitz continuous on �d .
• There is a constant C such that

‖F(·, ρ)‖C2 ≤ C, ‖φ0(·, ρ)‖C2 ≤ C, ∀ρ ∈ P1

where C2 is the space of the functions with continuous second order derivatives, and the related
norm is

‖f‖C2 = sup
x∈�

[|f (x)| + |Dxf (x)| + |D2
xxf (x)|

]
(38)

• q(x, t) is Lipschitz continuous over � × [0, T], and the probability measure ρ0 is absolutely contin-
uous with respect to the Lebesgue measure.

A solution to Equation (36) is defined as a pair (φ, ρ) ∈ W1,∞(� × [0, T]) × L1(� × [0, T]), such that
(i) is satisfied in the viscosity sense and (ii) is satisfied in the sense of distribution. We next elaborate on
the viscosity solutions to the HJ equation with a description of the weak solutions to the conservation
law later in the paper.

Theorem 3.7: Under the above assumptions, there is at least one solution to the HBmodel problem (36).

3.3.1. Proof of existence
Before prove Theorem 3.7, we have the following theorem:

Theorem 3.8: Under the assumptions introduced in the beginning of this subsection, the conservation
law Equation (23) in our pedestrian flowmodel has a unique weak solution ρ ∈ C([0, T],P1).

Proof: The proof is postponed until Appendix 2. �

Next, we try to prove the existence. To prove Theorem 3.7, we must first show that the system
(Equation (36)) is stable. Denote

C = {m : m ∈ C([0, T],P1),m(0) = ρ0} (39)

Given any m ∈ C, we define the mapping � : m → ρ = �(m) in the following way, and solve the
equation for φ

HJ

⎧⎪⎪⎨
⎪⎪⎩

−φt(x, t) + 1
2c3

|∇φ|2 = F(x,m), ∀x ∈ �, ∀t ∈ [0.T]

φ(x, t) = φD(t), ∀ x ∈ �d , ∀t ∈ [0, T]
φ(x, T) = φ0(x,m), ∀x ∈ �

(40)

We then define ρ = �(m) to be the solution of the conservation law

CL

⎧⎨
⎩

ρt + ∇ · (−ρc−1
3 ∇φ) = q(x, t), ∀x ∈ �, ∀t ∈ [0, T]

ρ(x, 0) = ρ0(x), ∀x ∈ �

ρ(x, t) = 0. ∀x ∈ �i ∪ �b, ∀t ∈ [0, T]
(41)

Based on the analysis in Section 3.2, Equations (40) and (41) have a unique solution; thus, themapping
� is well-defined.

We next show that� is a continuous and compactmapping. Let {mn} be a sequence of C([0, T],P1)

that uniformly converges tom ∈ C([0, T],P1).
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Let φn be the solution to

⎧⎪⎪⎨
⎪⎪⎩

−∂φn

∂t
+ 1

2c3
|∇φn|2 = F(x,mn) ∀x ∈ �, t ∈ [0, T]

φn(x, t) = φn,D(t) ∀x ∈ �d , t ∈ [0, T]
φn(x, T) = φn,0(x,mn) ∀x ∈ �

(42)

and φ be the solution to

⎧⎪⎪⎨
⎪⎪⎩

−∂φ

∂t
+ 1

2c3
|∇φn|2 = F(x,m) ∀x ∈ �, t ∈ [0, T]

φ(x, t) = φD(t) ∀x ∈ �d , t ∈ [0, T]
φ(x, T) = φ0(x,m) ∀x ∈ �

(43)

then φn and φ solve the following CL equations, respectively

⎧⎪⎨
⎪⎩

∂ρn

∂t
+ ∇ · (−ρnc

−1
3 ∇φn) = q(x, t) ∀x ∈ �, t ∈ [0, T]

ρn (x, 0) = ρn,0(x) ∀x ∈ �

ρn(x, t) = 0. ∀x ∈ �i ∪ �b, ∀t ∈ [0, T]

(44)

⎧⎪⎨
⎪⎩

∂ρ

∂t
+ ∇ · (−ρc−1

3 ∇φ) = q(x, t) ∀x ∈ �, t ∈ [0, T]

ρ (x, 0) = ρ0(x) ∀x ∈ �

ρ(x, t) = 0. ∀x ∈ �i ∪ �b, ∀t ∈ [0, T]

(45)

Lemma 3.9 (Stability): Whenmn uniformly converges to m, φn locally uniformly converges to φ in� ×
[0, T] and ρn converges to ρ inP1.

Proof: The proof is postponed until Appendix 3. �

Next,weproveTheorem3.7: theexistenceof the solution. Recall themap� : m → ρ, fromtheanal-
ysis for the HJ and CL equations. For anym ∈ C, we have a unique solution φ to the HJ equation. We
then have a unique solution to the CL equation and the solution ρ ∈ C. From Lemma 3.9, themapping
� is continuous. From Equation (A18), this implies that t → ρ(t) ∈ P1 is uniformly Lipschitz continu-
ous on �; thus, the mapping � is compact. By the Schauder fixed-point theorem, the map has a fixed
point in C, which is a solution of the pedestrian flow model.

3.3.2. Uniqueness
About the uniqueness, we have the following Theorem

Theorem3.10: Under theassumptionsgivenat thebeginningof this section, if
∫
�
(ρ1 − ρ2)(φ1,0(x, ρ1) −

φ2,0(x, ρ2))dx ≥ 0, ∀ρ1, ρ2 ∈ C, there is a unique solution to the HBmodel (Equation (36)).

Proof: The proof is postponed until Appendix 4. �
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3.4. Proof of Theorem 2.1

Proof: Wemust consider the value of |∇φ|. Recall the HJ equation
⎧⎨
⎩

−φt(x, t) + 1
2c3

|∇φ|2 = g(x, t), ∀x ∈ �, ∀t ∈ [0, T]

φ(x, T) = φ0(x), ∀x ∈ �
(46)

where g(x, t) = c1 + c2r(d(x, B)) + c4ζ(ρ(x, t)). From our analysis regarding the HJ equation in
Theorem 3.4, we have

φ(x, t) = inf
α∈L2([t,T],R2)

∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) (47)

where x(s) = x + ∫ s
t α(τ )dτ . Let x1, x2 ∈ �, t ∈ [0, T], α ∈ L2([t, T], R2) be ε-optimal for φ(x1, t), and

set x(s) = x1 + ∫ T
t α(s)ds; thus, we have

∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) ≤ φ(x1, t) + ε (48)

From the expression of φ(x, t) (Equation (30)), we have

φ(x2, t) − φ(x1, t) ≤
∫ T

t

c3
2

|α(s)|2 + g(x(s) + x2 − x1, s)ds + φ0(x(T) + x2 − x1)

−
∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) + ε

=
∫ T

t
(g(x(s) + x2 − x1, s) − g(x(s), s))ds + φ0(x(T) + x2 − x1)

− φ0(x(T)) + ε

≤ C(1 + T)|x2 − x1| + ε (49)

where C depends on g and φ0, and according to the assumptions at the beginning of this section, the
constant C depends on c1, c2, c4 and φ0. Once we are given c1, c2, c4, and φ0, the constant C is fixed;

Figure 1. The modelling domain.
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thus, our speed V∗ will satisfy

V∗ = c−1
3 |∇φ| ≤ c−1

3 C(1 + T) (50)

Due to the choice V0 = Vmax exp(−(ρ/ρe)
2) and ρ ≤ θ , we have V0 ≥ Vmax exp(−(θ/ρe)

2). Hence, if
we take the parameter

c3 ≥ C(1 + T)

Vmax exp(−(θ/ρe)2)
(51)

the speedV∗ will never exceed the localmaximumadmissible speedV0. For the special case thatρ = 0,
the source term g(x, t) = c1 + c2r(d(x, B)), we also obtain the same result if c3 ≥ C(1 + T)/Vmax.
Therefore, if we select suitable values for parameters c1, c2, c3, c4, and φ0, the pedestrian speed will
always be less than the maximum admissible speed. The theorem thus holds and we can ignore the
MASC in Equation (19). �

Figure 2. density plot. (a) t = 10 s. (b) t = 20 s. (c) t = 30 s. (d) t = 40 s. (c) t = 50 s. (d) t = 80 s.
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4. Numerical experiments

In this section, we use the Lax-Friedrichs schemes to solve the conservation law (Equation (23)) and
HJ equation (Equation (22)), with a self-adaptive method of successive averages (MSA) to handle the
fixed-point problem (Du et al. 2013; Yang et al. 2022). A numerical example is given to demonstrate
the proposed HB model. As shown in Figure 1, a 35m long and 25m wide rectangular modelling
region is considered in the numerical experiment, and the centre of the destination is located at (10m,
10m) with a diameter of 2m. A square obstacle where pedestrians are not allowed to enter or leave is
located at (25m, 15m)with a diameter of 4m. Set T = 100 s; thus, themodelling period is [0, 100 s].We
assume that there is no pedestrian at the beginning of the modelling period, i.e. ρ0(x) = 0, ∀x ∈ �.
The penalty for a pedestrian not arriving at the destination on time is solved by

{ ‖∇φ0(x)‖ = √
2c3(1 + c2r(d(x, B))), ∀x ∈ �

φ0(x) = φD, ∀x ∈ �d
(52)

Figure 3. Speed plot. (a) t = 10 s. (b) t = 20 s. (c) t = 30 s. (d) t = 40 s. (c) t = 50 s. (d) t = 80 s.



928 L. YANG ET AL.

where x = (x1, x2) and there is no cost to enter the destination; thus, φD = 0. The travel demand
function q(x, t) is defined as

q(x, t) = qmax[1 − γ1d(x)]d(t) (53)

where qmax = 0.05 ped/(m2 · s) is themaximumdemand, d(x) =
√

(x1 − 10)2 + (x2 − 10)2 is the dis-
tance from the location x to the centre of the destination D, and γ1 = 0.01. The factor [1 − γ1d(x)]
represents the higher travel demand generated in the region closer to the destination, where more
pedestrians live. d(t) is a non-negative function of the time variable t, and is defined as

d(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t

5
, t ∈ [0, 5 s]

10 − t

5
, t ∈ [5, 10 s]

0, otherwise

(54)

Figure 4. Maximum speed plot. (a) t = 10 s. (b) t = 20 s. (c) t = 30 s. (d) t = 40 s. (c) t = 50 s. (d) t = 80 s.
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For the local maximum admissible speed V0 in Equation (3), we take Vmax = 1m/s (Xie and
Wong2015) andρe = 2 ped/m2. In the running cost L, theweights take values of c1 = 1, c2 = 10, c3 =
3, and c4 = 1 (Hoogendoorn andBovy 2004a, 2004b). The cost around theobstacle r(d(x, B)) is defined
as

r(d(x, B)) = a exp
(

−d(x, B)
b

)
(55)

where a = 1 and b = 0.1 are the parameters. The part of the cost that depends on the density
is defined as ζ(ρ) = 0.3ρ2. We next show the numerical results obtained with a uniform mesh of
140 × 100 grid points.

Figure 2 shows the spatial distribution of the density of pedestrian at different time. Pedestrians
depart from their location and go to the destination within [0, 10 s]. Thus, the northeast region of the
destination boundary became congested (see sub-Figure 2(a,b)). Although the demand becomes zero
from t = 10 s, the areas around the destination are still in the congested condition at t = 30 s and

Figure 5. The plot of ratio of speed V∗ and local maximum admissible speed V0. (a) t = 10 s. (b) t = 20 s. (c) t = 30 s. (d) t = 40 s.
(c) t = 50 s. (d) t = 80 s.
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t = 40 s due to the limitation on the maximum flow intensity into the destination (Sub-Figure 2(c,d).
With the pedestrian entered the destination gradually, all parts of the region return to the non-
congested condition eventually (Sub-Figure 2(e,f)).

Figures 3 and 4 show the spatial distribution of the pedestrian speed V∗ and localmaximumadmis-
sible speed V0 at different times, respectively. The pedestrians walk faster when they are close to the
destination or obstacle. As all of the pedestrians walk to the destination, the region around the desti-
nation (especially the northeast region) has a higher density; thus, the local maximum speed is small
(Figure 4). According to the expression of V0, when the density is zero, the local maximum speed is
V0 = 1 m/s. However, a comparison of Figures 3 and 4 shows that the pedestrian speed V∗ is less
than V0 in the zero-density region. This is because the pedestrian speed also depends on travel time,

Figure 6. Velocity vector plot. (a) t = 10 s. (b) t = 20 s. (c) t = 30 s. (d) t = 40 s. (c) t = 50 s. (d) t = 80 s.
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Figure 7. The value of critical value c∗3 with different c2 and c4.

energy consumption, distance to the obstacle, and pedestrian density. This is a peculiar property of
the HB model.

We define k(x, t) = V∗(x, t)/V0(x, t) as the ratio of the pedestrian speed V∗ and local maximum
admissible speed V0. Figure 5 shows the spatial distribution of the ratio k(x, t) at different times.
Figure 5 shows that the ratio is always less than 1, i.e. V∗ is always less than V0. We also verified in
the code that this is true for all locations and times. This demonstrates our conclusion of Theorem 2.1,
namely, for weight parameters (c1, c2, c3, c4) satisfying certain conditions, c−1

3 ‖∇φ‖ ≤ V0 is always
satisfied and the MASC is non-binding.

Figure 6 shows a plot of the velocity vector that reveals the pedestrian path choice. Pedestrians are
observed to pass around the obstacle if they come from the east. In this example, the density is low;
hence, pedestrians walk to the destination in nearly straight lines.

In fact, the original HB model is valid for all c3 > 0, but we cannot prove this general case. From
Theorem 2.1, we find that we can ignore theMASC in the Hamilton–Jacobi equationwhen c3 ≥ C(1 +
T)/Vmax exp(−(θ/ρe)

2), where C depends on the values of c1, c2,and c4, and thus the choices of values
for c2, c3, and c4 (assuming c1 = 1) are closely related. If the values of c1, c2,and c4 are known, we can
use a value for c3 that enables theMASC to be ignored (according to Theorem 2.1), and thus we define

c∗3 = min{c3 : c3 ≥ C(1 + T)

Vmax exp(−(θ/ρe)2)
} (56)

When c3 < c∗3, this also represents the weighting of the cost associated with energy consumption,
which is valid for the original HB model. However, we cannot ignore the MASC, i.e. there exists a
locationx0 ∈ � and time t0 such that c−1

3 ||∇φ(x0, t0)|| > V0(x0, t0), and thus we cannot prove the
existence and uniqueness of the solution. In contrast, when c3 ≥ c∗3, we can ignore the MASC, i.e.
c−1
3 ||∇φ(x, t)|| ≤ V0(x, t) always holds. In Figure 7, we plot the value of c∗3 versus c2 for different c4.
We can observe that c∗3 is an increasing function of both c2 and c4, and increases more rapidly for
larger values of either c2 or c4. Furthermore, when c2 takes a large value (≥ 15), c∗3 depends only on c2
and is insensitive to a change in c4.
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5. Conclusions

In this study, we first briefly introduce the HB pedestrian-flowmodel (Hoogendoorn and Bovy 2004b),
whichdescribespedestrianmovements in continuous space and time. Thismodel consists of a forward
CLequationandbackwardHJBequation, inwhich the latter contains anMASC. It is difficult toprove the
existence and uniqueness of the solution to this coupled model system with this MASC. Based on an
analysis of the HBmodel, we find that if weight parameters satisfying certain conditions for use in the
running cost function, the travel speed will always be less than the maximum admissible speed, and
thus the MASC can be removed from the HBmodel. In this case, the HBmodel also contains a forward
CL equation and a backward HJ equation, but lacks an MASC; hence, the analysis and computation of
the HB model are simpler.

In Section 3, we consider the existence and uniqueness of the solution to the HB model. We first
confirm the existence and uniqueness of the solution to the CL and HJ equations, and present some
properties of the solutions to each. We then use the Schauder fixed-point theorem to show that the
coupled HB model has a unique solution under certain assumptions. We use Lax-Friedrichs schemes
for the CL and HJ equations, and use the self-adaptive MSA in the fixed-point problem to solve the HB
model and provide a numerical example. This demonstrates that the travel speed is always less than
the localmaximumadmissible speed if weight parameters satisfying certain conditions, which justifies
the exclusion of the MASC in the analysis. We also explore the dependency of the model parameter
c3 (the weight for the energy consumption) as a function of the other two model parameters c2 (the
weight for the discomfort due to closeness to the obstacles) and c4 (the weight for the part of the
running cost that depends on the density) when the removal of theMASC is justified. The results show
that c3 is an increasing function of both c2 and c4. However, c3 changes very little with changes in c4,
and can be approximately considered as a function only of c2.

In this study,weonly consider the existence anduniqueness of the solution to anHBmodelwithout
an MASC. Although this is theoretically justified by the use of suitable model parameters and verified
a posteriori by a numerical example with physical parameters chosen from the literature, there is no
guarantee that the chosen physical parameters will ensure the exclusion of an MASC under all situa-
tions. Next, we will use the HB model to simulate the real-life pedestrian flow based on our analysis,
and in turn, use the empirical results to calibrate the HB model. The existence and uniqueness of the
solution to the HB model with an MASC (Hoogendoorn and Bovy 2004b) and the PDUO model (Du
et al. 2013; Yang et al. 2022) are more difficult to analyse, because these models consist of coupled
partial differential equations (the CL and HJ equations), a forward-backward structure, and are further
complicated by the presence of an MASC. We will investigate these problems in our future work.
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Appendices

Appendix 1. Proof of Theorem 3.4

Proof: By the dynamic programming principle, Equation (24) has a bounded uniformly continuous viscosity solution,
which can be written as

φ(x, t) = inf
α∈L2([t,T],R2)

∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T))

According to the dynamic programming principle, Hamiltonian in Equation (24) can be written as

H(x, t,p) := min
α∈L2([t,T],R2)

{
α · p + c3

2
α2 − g(x, t)

}
(A1)

Thus, H(x, t,p) satisfies the conditions in Equation (27), and φ(x, t) is the unique viscosity solution to Equation (24). We
next check that the solution φ is Lipschitz with respect to variables x and t. Let x1, x2 ∈ �, t ∈ [0, T], α ∈ L2([t, T], R2) be
ε-optimal for φ(x1, t), and set x(s) = x1 + ∫ T

t α(s)ds. Thus, we obtain

∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) ≤ φ(x1, t) + ε (A2)

From the expression of φ(x, t) (Equation (30)), we have

φ(x2, t) ≤
∫ T

t

c3
2

|α(s)|2 + g(x(s) + x2 − x1, s)ds + φ0(x(T) + x2 − x1)

≤
∫ T

t

c3
2

|α(s)|2 + (g(x(s), s) + C|x2 − x1|)ds + φ0(x(T)) + C|x2 − x1|

≤
∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) + C(1 + T)|x2 − x1|

≤ φ(x1, t) + ε + C(1 + T)|x1 − x2| (A3)

Thus, φ is Lipschitz continuous with respect to the variable x, and the Lipschitz constant is C(1 + T).
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From the dynamic programming principle, if α is optimal for φ(x, t) in Equation (30), from the equivalent definition of
the dynamic programming principle for any t < s ≤ T , we have

φ(x, t) =
∫ s

t

c3
2

|α(τ )|2 + g(x(τ ), τ)dτ + φ(x(s), s) (A4)

Now let x ∈ �, 0 ≤ t < t̂ ≤ T . Take ε > 0 and choose α to satisfy

φ(x, t) + ε ≥
∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T)) (A5)

where x(s) = x + ∫ s
t α(τ )dτ . Define

α̂(s) := α(s + t − t̂) for t̂ ≤ s ≤ T (A6)

We can then define the related x̂(s) as

x̂(s) = x +
∫ s

t
α̂(τ )dτ = x(s + t − t̂) (A7)

Hence

φ(x, t̂) − φ(x, t) ≤
∫ T

t̂

c3
2

|α̂(s)|2 + g(x̂(s), s)ds + φ0(x̂(T))

−
∫ T

t

c3
2

|α(s)|2 + φ0(x(s), s)ds − φ0(x(T)) + ε

= −
∫ T

T−t−t̂

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T + t − t̂)) − φ0(x(T)) + ε

≤
∫ T

T−t−t̂
(
c3
2

‖α‖∞ + ‖g(·, s)‖∞)ds + φ0(x(T + t − t̂)) − φ0(x(T)) + ε

≤ C|t − t̂| + ε (A8)

Additionally, we can take α̂ satisfying

φ(x, t̂) + ε ≥
∫ T

t̂

c3
2

|α̂(s)|2 + g(x̂(s), s)ds + φ0(x̂(T)) (A9)

where x̂(s) = x + ∫ s
t̂ α̂(τ )dτ , then, we define

α(s) =
{

α̂(s + t̂ − t) if t ≤ s ≤ T + t − t̂
α̂(T) if T + t − t̂ ≤ s ≤ T

(A10)

Similarly, we can define the related x(s) = x + ∫ T
t α(τ )dτ , and thus, α(s) = α̂(s + t̂ − t) x(s) = x̂(s + t̂ − t) for t ≤ s ≤

T + t − t̂. Then

φ(x, t) − φ(x, t̂) ≤
∫ T

t

c3
2

|α(s)|2 + g(x(s), s)ds + φ0(x(T))

−
∫ T

t̂

c3
2

|α̂(s)|2 + g(x̂(s), s)ds − φ0(x̂(T)) + ε

=
∫ T

T+t−t̂

c3
2

|α(s)|2 + g(x(s), s)ds − φ0(x(T + t − t̂)) + φ0(x(T)) + ε

=
∫ T

T+t−t̂

1
2
(
c3
2

‖α‖∞ + ‖g(·, s)‖∞)ds − φ0(x(T + t − t̂)) + φ0(x(T)) + ε

≤ C|t − t̂| + ε (A11)

Consequently, we have

|φ(x, t) − φ(x, t̂)| ≤ C|t − t̂| (A12)
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Next, we show that φ is semi-concave with respect to the variable x. Let x, y ∈ �, t ∈ [0, T], λ ∈ (0, 1) and xλ = λx + (1 −
λ)y. Let also α ∈ L2([t, T], R2) be ε-optimal for φ(xλ , t), and set xλ(s) = xλ + ∫ s

t α(τ )dτ . Then

λφ(x, t) + (1 − λ)φ(y, t)

≤ λ

∫ T

t

c3
2

|α(s)|2 + g(xλ(s) + x − xλ , s)ds + φ0(xλ(T) + x − xλ)

+ (1 − λ)

∫ T

t

c3
2

|α(s)|2 + g(xλ(s) + y − xλ , s)ds + φ0(xλ(T) + y − xλ)

≤
∫ T

t

c3
2

|α(s)|2 + g(xλ(s), s)ds + φ0(xλ(T)) + C(1 + T)λ(1 − λ)|x − y|2

≤ φ(xλ, t) + ε + C(1 + T)λ(1 − λ)|x − y|2 (A13)

Thus, from Definition 3.3, φ is semi-concave, and the semi-concavity constant is C(1 + T). �

Appendix 2. Proof of Theorem 3.8

Proof: To prove this theorem, we only need to show that the coefficients A1 and A2 satisfy the conditions (33) and (34).
In our problem

A(x, t) = −c−1
3 ∇φ(x, t) (A14)

By the analysis for the HJ equation, we know that φ is Lipschitz continuous and semi-concave; thus, condition (33) is
satisfied. By the equivalent definition of semi-concavity, we have

〈p − q, x − y〉 ≤ C|x − y|2 (A15)

where C > 0, p ∈ D+
x φ(x, t), and q ∈ D+

x (y, t) because ∇φ(x, t) ∈ D+
x (x, t). We then have

〈∇φ(x, t) − ∇φ(y, t), x − y〉 ≤ C|x − y|2 (A16)

Because A(x, t) = −∇φ(x, t), we obtain

〈A(x, t) − A(y, t), x − y〉 ≥ −C|x − y|2 (A17)

Thus, the one-sided Lipschitz condition holds for m(t) = C. According to Theorem 3.6, the conservation law
(Equation (23)) has a unique weak solution so that the theorem holds. �

Appendix 3. Proof of Lemma 3.9

Proof: From our assumptions regarding F and φ0, the sequences of the map (x, t) → F(x,mn) and (x, t) → φ0(x,mn)

locally uniformly converge to the map (x, t) → F(x,m) and (x, t) → φ0(x,m), respectively. Thus, by the stability of the
viscosity solution (Lin and Tadmor 2001), {φn} locally uniformly converges to φ.

According to Lemma 3.5, φn is semi-concave, i.e. there exists a constant C1 such that D2
xxφn ≤ C1Id for all n. Because

the solutions φn locally uniformly converge to φ, Dxφn converges almost everywhere in � × (0, T) to Dxφ (Cannarsa and
Sinestrari 2004). From the consideration of the conservation law equation, ρn ∈ C([0, T],P1) and � is a bounded closed
domain. There then exists a constant C independent of n such that

d1(ρn(t) − ρn(s)) ≤ C|t − s|, ∀t, s ∈ [0, T], ∀n > 0 (A18)

From the above inequality, ρn is equi-continuous. Additionally, ρn is clearly uniformly bounded in � × [0, T] and the set
P1 is compact. Hence by the Arzelà-Ascoli theorem, the sequence {ρn} has a subsequence (still denoted as {ρn}) that
converges in C, with the limit denoted as ρ∗ . Because ρn solves the continuity equation for φn, one easily passes the limit
such thatρ∗ satisfies the continuity equation forφ by the uniqueness that impliesρ∗ = ρ; thus, the proof is complete. �

Appendix 4. Proof of Theorem 3.10

Proof: Assume (φ1, ρ1) and (φ2, ρ2) are twopairs of solutions to the problem.We set φ̄ = φ1 − φ2 and ρ̄ = ρ1 − ρ2. Then

− ∂φ̄

∂t
+ 1

2c3
|∇φ1|2 − 1

2c3
|∇φ2|2 = F(x, ρ1) − φ(x, ρ2) (A19)

∂ρ̄

∂t
+ c−1

3 ∇ · (−ρ1∇φ1 + ρ2∇φ2) = 0 (A20)
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Next, let us use φ̄ as a test function in the second equation (we may need to regularize and truncate φ̄ to C1c (� × [0, T)),
after which we still denote it as φ̄). We then have

−
∫

�

(ρ̄φ̄)(T)dx +
∫

�

(ρ̄φ̄)(0)dx +
∫

�

∫ T

0

∂φ̄

∂t
ρ̄dtdx

+
∫

�

∫ T

0
c−1
3 〈∇φ̄, ρ1∇φ1 − ρ2∇φ2〉dtdx = 0 (A21)

Let us multiply Equation (A19) by ρ̄, integrate over � × (0, T), and add the result to the previous equality. After
simplification and using ρ̄(x, 0) = 0, we obtain

−
∫

�

(ρ̄φ̄)(T)dx +
∫

�

∫ T

0

1
2c3

ρ̄(|∇φ1|2 − |∇φ2|2) − ρ̄(F(x,φ1) − F(x,φ2))dtdx

−
∫

�

∫ T

0
c−1
3 〈∇φ̄, ρ1∇φ1 − ρ2∇φ2〉dtdx = 0 (A22)

Note that

1
2c3

ρ̄(|∇φ1|2 − |∇φ2|2) − c−1
3 〈∇φ̄, ρ1∇φ1 − ρ2∇φ2〉

= −c−1
3 [

1
2
ρ1|∇φ1|2 + 1

2
ρ2|∇φ2|2 + 1

2
ρ1|∇φ2|2 + 1

2
ρ2|∇φ1|2 − (ρ1 + ρ2)∇φ1 · ∇φ2]

= − 1
2c3

[(ρ1 + ρ2)(|∇φ1|2 + |∇φ2|2) − 2(ρ1 + ρ2)∇φ1 · ∇φ2]

= − 1
2c3

[(ρ1 + ρ2)|∇φ1 − ∇φ2|2]

≤ 0 (A23)

and ∫
�

ρ̄φ̄(T)dx =
∫

�

(ρ1 − ρ2)(T)(φ1,0(x, ρ1) − φ2,0(x, ρ2))dx ≥ 0 (A24)

Because F(x, ρ) = c1 + c2r(d(x, B)) + c4ζ(ρ(x, t)), where c4 > 0 and ζ is strictly monotonically increasing about ρ, we
have

(ρ1 − ρ2)(F(x, ρ1) − F(x, ρ2)) > 0, if ρ1 �= ρ2 (A25)

Combining Equations (A23), (A24), and (A25) we obtain

−
∫

�

(ρ̄φ̄)(T)dx +
∫

�

∫ T

0

1
2c3

ρ̄(|∇φ1|2 − |∇φ2|2) − ρ̄(F(x,φ1) − F(x,φ2))dtdx

−
∫

�

∫ T

0
c−1
3 〈∇φ̄, ρ1∇φ1 − ρ2∇φ2〉dtdx < 0 if ρ1 �= ρ2 (A26)

This contradicts with Equation (A22), so ρ1 = ρ2; therefore, φ1 and φ2 solve the same equation; thus, φ1 = φ2 and the
uniqueness of the coupled model system holds. �


