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Abstract

In this paper, we develop a high-order positivity-preserving polynomial projection remap-

ping method based on the L2 projection for the discontinuous Galerkin (DG) scheme. Com-

bined with the Lagrangian type DG scheme and the rezoning strategies, we present an

indirect arbitrary Lagrangian-Eulerian discontinuous Galerkin (ALE-DG) method. By clip-

ping precisely the intersections between the old distorted mesh and the new rezoned mesh,

our remapping method is high-order accurate and has no limitation for the mesh move-

ments, so it is suitable for the large deformable problems. A positivity-preserving limiter

is also added for the physical variables in computational fluid dynamics without losing the

original high-order accuracy and conservation. A multi-resolution weighted essentially non-

oscillatory (WENO) limiter is adopted to overcome numerical oscillations and it can keep

the original high-order accuracy in the smooth region. This WENO limiter combines several

different degrees of polynomials which are the local L2 projections of the original polyno-

mial with nonlinear weights calculated by their smoothness, therefore, it is highly parallel

efficient. The properties of positivity-preserving, non-oscillation and high-order accuracy of

the remapping method will be shown by a variety of numerical experiments on one, two

and three dimensional unstructured meshes. The performance of the ALE-DG scheme with

rezoning and remapping is also tested for the Euler system in one and two dimensions.
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1 Introduction

There are two major techniques in computational fluid dynamics: the Lagrangian frame-

work with the mesh moving with the fluid velocity, and the Eulerian framework with a fixed

mesh, which can easily extend to higher-order accuracy. However, the moving mesh may be

twisted in the Lagrangian framework, making the schemes unstable, whereas the Eulerian

framework requires a finer mesh for higher resolution near shocks and especially near contact

discontinuities. The arbitrary Lagrangian-Eulerian (ALE) framework incorporates the ad-

vantages of both frameworks above, and the indirect ALE framework builds in the following

three steps.

1. The Lagrangian step: solving the hydrodynamic equations and moving the mesh ver-

tices with the fluid motion;

2. The rezoning step: adjusting the mesh for better mesh quality;

3. The remapping step: transferring numerical information between the two meshes.

The computational mesh in the arbitrary Lagrangian-Eulerian method can move with

the fluid as in the Lagrangian method. However, when the distorted mesh causes numerical

instability, the rezoning and remapping steps are used to continue the calculation in another

mesh with better mesh quality. The ALE framework is widely applied to computational

fluid dynamics, based on the finite volume (FV) method [8, 6, 5, 2, 13], or the Runge-Kutta

discontinuous Galerkin (RK-DG) method [9, 10, 7].

In the ALE framework based on the FV method, the remapping procedure transfers

cell averages from the old mesh to the new mesh, and this procedure should be high-order

accurate, essentially non-oscillatory, positive and conservative, as, for example, what we

have done in [13, 14]. Based on the discontinuous function space, the DG method [3, 4]

is widely adopted for solving hyperbolic conservation laws, since it is flexible for complex

mesh geometries and unstructured meshes. In the meantime, this method is highly parallel
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efficient, because the elements only communicate with their immediate neighbors. Differ-

ently from the ALE-FV method, the remapping procedure in the ALE-DG method is more

complicated, since it needs to transfer high-order piecewise polynomials to another set of

high-order piecewise polynomials defined on the new rezoned mesh, while maintaining the

good performances. Up to now, most of the remapping methods are applied for the finite

volume method, and there have been fewer discussions on remapping methods for the DG

method. In this paper, we focus on the remapping step in the ALE framework coupled with

the discontinuous Galerkin method.

As we know, one needs to rezone the computational mesh when the mesh is distorted in

the ALE framework, and there are many studies about the rezoning strategies, such as the

reference Jacobian rezoning [11], high-order linear mesh relaxation [1], or using the Voronoi

tessellation method [18]. In [25], the author developed an adaptive mesh topology optimiza-

tion technique, to improve mesh quality with mesh refinements, edge collapse operation and

mesh regularization. We will not focus on this aspect in our study, and hence we may use

different rezoning strategies for each of our numerical test problems.

The remapping algorithm has two popular approaches: the fluxed-based method and the

intersection-based method. By describing the information exchanges between the old and

new mesh cells as a transport equation [5, 19, 12, 17], the flux-based remapping method

is faster and easier to apply in the ALE framework. But this method demands that the

connection and the number of cells should not change, and the mesh motions should not be

too drastic. The solution-updating algorithm in the moving mesh method with the finite

element approach also solves a transport equation to convert finite element solution between

moving meshes [15, 16], which can be regarded as a flux-based method.

The intersection-based remapping approach is more flexible and rigorous since it picks

out exactly the intersections between the old distorted mesh and the new rezoned mesh and

calculates the contributions of the old cells to the new cells [6, 2, 20, 13, 14]. This algorithm

does not require the connectivity on the new mesh to be the same as the old mesh, and it has
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no restriction on the movements of the mesh vertices, both of which limit the fluxed-based

remapping algorithm. Meanwhile, the clipping error is close to machine zero and can be

ignored. Zhang [29] developed a conservative intersection-based remapping method based

on L2 projection for the one-dimensional moving mesh method. But the applications for the

two or three dimensional cases remain to be seen. It is fairly straightforward to detect the

overlaps between two intervals in one dimension, but finding the intersection between two

triangular or tetrahedral cells in two or three dimensions is costly, especially when compared

to the flux-based remapping technique. However, in the Lagrangian type DG method based

on the unstructured mesh, the rezoning step will change the mesh connectivity if a large

deformable mesh appears, and only the intersection-based remapping method can handle

this.

To extend the area of our algorithm’s application for the large deformable problems

on unstructured mesh, we prefer the intersection-based remapping approach and it can be

described as follows. Assume that we have two sets of meshes, and the numerical solution is

a piecewise high order polynomial defined on the old mesh. This piecewise polynomial must

be transferred to the new mesh, and the new piecewise polynomial must also have the same

high order accuracy.

Besides that, we would like to develop an indirect ALE-DG scheme, by combining the

moving mesh DG scheme introduced in [9, 10, 7], via a Lagrangian type mesh movement,

with the rezoning step and our polynomial projection remapping approach. We will use this

Lagrangian type DG scheme to solve the fluid dynamics first, since this scheme can capture

contact discontinuities and flow interfaces automatically and sharply with low numerical

dissipation. When the computational mesh undergoes distortion or large deformation, which

leads to numerical instability or extremely small time step, we will try to rezone the mesh

and then use our intersection-based remapping algorithm to make the scheme more stable.

When dealing with high gradient or discontinuous solutions, the high-order piecewise

polynomial in the discontinuous Galerkin method may be oscillatory, which should be avoided
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during the computation.

Since the ALE-DG framework is usually applied for fluid flow problems, the physical

quantities involved should preserve their physical properties, such as being conservative and

positive (non-negative). Our polynomial projection remapping method is automatically con-

servative which will be explained in the next section. But it is not easy to maintain high-order

accuracy when one needs to preserve also the positivity. Zhang and Shu proposed a widely

used positivity-preserving framework [26, 27, 28], see also [24], which is based on the pos-

itivity of cell averages and includes a simple positivity-preserving scaling limiter, for finite

volume and discontinuous Galerkin schemes. By compressing the high order polynomial to-

wards its positive cell average, this limiter makes the negative minimum of the polynomial in

the target domain greater than 0, without destroying its original high order accuracy. This

positivity-preserving technique has been successfully used for high order conservative remap-

ping method in two and three dimensions [13, 14], and a variety of numerical experiments

have confirmed its high efficiency, so we will introduce it into our remapping procedure.

The multi-resolution weighted essentially non-oscillatory (WENO) technique, which es-

tablishes smoothness indicators for a series of polynomials of different degrees and assigns

different nonlinear weights to them, is a popular solution. In the smooth region, the higher-

order polynomials have more weights so that the new modified polynomial can maintain

high-order accuracy. On the other hand, in the non-smooth region, the lower order polyno-

mials play a larger role in the new modified polynomial, making it essentially non-oscillatory.

Recently, based on a sequence of local L2 projection polynomials in the troubled cell, Zhu,

Qiu and Shu [30, 31] proposed a new multi-resolution WENO limiter for the discontinuous

Galerkin method. In comparison with the traditional WENO limiters, this new WENO

limiter is more flexible with any positive linear weights as long as they sum up to 1, and

can be easily extended to higher order schemes. This limiter is especially suitable for the

moving mesh methods. Besides, since it mainly uses information in the troubled cell itself,

with information from immediate neighboring cells used only for the smoothness indicator of
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the lowest degree polynomial, this limiter is efficient and can be executed in parallel mode.

Therefore, we will use this new multi-resolution WENO limiter for the new polynomials, to

obtain modified polynomials which are essentially non-oscillatory and highly accurate.

In this paper, we develop a high order polynomial projection remapping method with the

local multi-resolution WENO limiter and the positivity-preserving limiter for the ALE-DG

framework. In Section 2, we describe our remapping algorithm step by step. In Section

3, we design a series of numerical experiments in one, two and three dimensions to verify

the excellent properties of our remapping algorithm, such as high order accuracy, essentially

non-oscillatory performance, and positivity-preserving. Afterwards, in conjunction with the

Lagrangian type DG scheme, we use this new ALE-DG scheme to solve some benchmarks of

the one and two dimensional Euler system and compare with the same order Eulerian DG

scheme and the Lagrangian type DG scheme in Section 4. Finally, concluding remarks are

given in Section 5.

2 The polynomial projection remapping algorithm

2.1 Basic concepts

Let us start with the one-dimensional polynomial projection remapping algorithm. In the

discontinuous Galerkin method, the numerical solution uh ∈ Vm is a piecewise polynomial

Vm = {w(x) : w(x)|Ii ∈ Pm, 1 ≤ i ≤ N},

where Ii = [xi− 1

2

, xi+ 1

2

], i = 1, · · · , N are cells of the computational domain Ω :=
⋃N

i=1 Ii. In

each cell Ii, uh can be written as

uh|Ii =
m
∑

l=0

ui
lϕl(x),

where ui
l ∈ R are coefficients and ϕl(x) are basis functions, e.g.

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2, ϕ3(x) = x3, · · ·
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In the arbitrary Lagrangian-Eulerian discontinuous Galerkin method, sometimes we need

to modify the computational mesh after the Lagrangian step to maintain good mesh quality.

Now, assume that we have a new rezoned mesh Ω :=
⋃Ñ

j=1 Ĩj which satisfies

|Ii| > 0, |Ĩj| > 0,
∣

∣

∣
Ii1

⋂

Ii2

∣

∣

∣
= 0,

∣

∣

∣
Ĩj1

⋂

Ĩj2

∣

∣

∣
= 0, ∀i1 6= i2, j1 6= j2,

where | · | means the size of the cell. Then we need to convert the numerical solution uh based

on the old mesh {Ii}Ni=1 to the new rezoned mesh {Ĩj}Ñj=1 with the new discrete polynomial

space

Ṽm = {w(x) : w(x)|Ĩj ∈ Pm, 1 ≤ j ≤ Ñ}.

That means we need to find a new piecewise polynomial ũh ∈ Ṽm, which is the L2 projection

of uh on Ṽm

(ũh, wh)Ĩj = (uh, wh)Ĩj , ∀wh ∈ Ṽm, (2.1)

where (u, v)Ĩj :=
∫

Ĩj
u(x)v(x)dx. It is not easy to compute (uh, wh)Ĩj , since uh is a piecewise

polynomial defined on {Ii}Ni=1 and one needs to calculate the intersection between the new

cell Ĩj and the old mesh {Ii}Ni=1,

(uh, wh)Ĩj =

N
∑

i=1

(uh, wh)Ii
⋂

Ĩj
=

N
∑

i=1

m
∑

l=0

ui
l(ϕl(x), wh)Ii

⋂
Ĩj
.

In practice, we take wh from the basis functions ϕs(x), s = 0, 1, · · · , m, so we can rewrite

(2.1) as

(ũh, ϕs(x))Ĩj =
N
∑

i=1

m
∑

l=0

ui
l(ϕl(x), ϕs(x))Ii

⋂
Ĩj
, s = 0, 1, · · · , m. (2.2)

Notice that, if we take ϕ0(x) = 1 in (2.2), then we have

∫

Ĩj

ũh(x)dx =

N
∑

i=1

∫

Ii
⋂

Ĩj

uh(x)dx

=

∫

Ĩj

uh(x)dx

(2.3)

which means our remapping algorithm is conservative.

7



Assume ũh|Ĩj =
∑m

l=0 ũ
j
lϕl(x). The new coefficients ũj

l satisfy

m
∑

l=0

ũ
j
l (ϕl(x), ϕs(x))Ĩj =

N
∑

i=1

m
∑

l=0

ui
l(ϕl(x), ϕs(x))Ii

⋂
Ĩj
, s = 0, 1, · · ·m

which can be written as

Mjũj = bj (2.4)

whereMj = (M j
sl)

m
s,l=0 is the mass matrix withM

j
sl = (ϕl(x), ϕs(x))Ĩj and ũj = (ũj

0, · · · , ũj
m)

T

are the coefficients which need to be determined. The right-hand side of (2.4) is defined as

bj = (bj0, · · · , bjm)T , bjs =

N
∑

i=1

m
∑

l=0

ui
l (ϕl(x), ϕs(x))Ii

⋂
Ĩj
, s = 0, 1, · · · , m.

So, the idea of the polynomial projection remapping algorithm is finding a new piecewise

polynomial ũh ∈ Ṽm on the new rezoned mesh {Ĩj}Ñj=1 by solving the linear system (2.4).

But the new high-order piecewise polynomial may generate overshoots and the minimum for

the physically non-negative variables may less than 0, both of them should be avoided. After

solving (2.4), we add a positivity-preserving limiter to maintain positivity for the relevant

physical quantities, such as density and internal energy and we add a multi-resolution WENO

limiter on the new polynomial to prevent numerical oscillations, especially when we design

the high-order remapping procedure. The above limiters should not destroy the original

accuracy and the flowchart of the remapping algorithm is below:

1. Clipping: finding the intersection of Ii
⋂

Ĩj, ∀ i, j;

2. Numerical integration: calculate the integration of the basis functions over the inter-

sections (ϕl(x), ϕs(x))Ii
⋂

Ĩj
, then obtain the new polynomials ũh by solving (2.4);

3. Positivity-preserving limiter: modify the high-order polynomials by the positivity-

preserving limiter;

4. Multi-resolution WENO limiter: modify the high-order polynomials by the multi-

resolution WENO limiter, in the so-called troubled cells.

Next, we will introduce our polynomial projection remapping algorithm in detail.
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2.2 Clipping

Although the intersection-based remapping method needs to determine the intersections, it

is much more flexible for large deformable problems on unstructured meshes and easier to

achieve high-order accuracy since the clipping error can be ignored. Therefore, we prefer the

intersection-based remapping method for the ALE-DG scheme on the unstructured mesh.

The clipping procedure for two one-dimensional intervals Ii, Ĩj is very simple, so we

concentrate on the multi-dimensional clipping procedure for the triangular cells and the

tetrahedral cells.

In this paper, we use the Sutherland-Hodgman polygon clipping algorithm [13, 23] for the

two-dimensional triangular cells. In this clipping algorithm, one needs to use the ‘window’

cell to clip against the ‘target’ cell. By setting visible and invisible sides for each edge in the

‘window’ cell, one can separate the ‘target’ cell with the ‘window’ cell’s edges and pick the

intersection parts in the visible sides. Repeating the above loop for each edge in the ‘window’

cell completes the algorithm. Figure 2.1 gives an example for the clipping algorithm with

two triangular cells.

The clipping algorithm for the tetrahedral cells is similar to the 2D clipping algorithm, by

setting visible and invisible faces and clipping the ‘target’ cell using each face of the ‘window’

cell in turn. The clipping error is close to machine zero and has no involvement with the mesh

size, that helps our intersection-based remapping algorithm to achieve high-order precision.

(a) (b) (c) (d) (e)

Figure 2.1: The clipping procedure. The black triangle is the target cell, the red triangle is
the window cell, the gray shaded polygon is the clipping result.
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2.3 Numerical integration

Now, we need to calculate the integration for the product of two basis functions over the

intersections Ii
⋂

Ĩj. For the one-dimensional case, the intersection is also an interval and

it is easy to calculate the integration with suitable high-order quadrature rules by mapping

the intersection interval to the reference unit [−1, 1].

For the two-dimensional case, the intersection can be any polygon, therefore we will

split it into several triangles and use high-order quadrature rules to calculate the numerical

integration over these triangles. We locate the barycenter of the convex polygon and connect

it to the vertices to divide the intersection into multiple smaller triangles. If the polygon

is non-convex, one can also cut it into several triangles by connecting the vertices. The

idea of the numerical integration step for the three-dimensional case is similar. By splitting

complicated polyhedral cells into several small tetrahedral cells, one can do such integration

over these shapes with suitable high-order quadrature rules.

In this paper, we adopt unstructured triangular meshes for the two-dimensional tests and

unstructured tetrahedral meshes for the three-dimensional tests. The reference cell in one

dimension is the interval [−1, 1] and the two-dimensional triangular reference cell is made

up with vertices (0, 0), (1, 0), (0, 1). The three-dimensional tetrahedral reference cell is

made up with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). In Table 2.1, Table 2.2, Table

2.3 and Figure 2.2, we show the quadrature points and the weights on the reference cells for

the third-order remapping schemes in one, two and three dimensions, respectively. These

quadrature rules hold exactly for the product of two quadratic polynomials.

Consider the triangular cell I = {(xI
1, y

I
1), (x

I
2, y

I
2), (x

I
3, y

I
3)} and define matrix AI as:

AI :=

(

xI
2 − xI

1 xI
3 − xI

1

yI2 − yI1 yI3 − yI1

)

,

then we can map the reference cell I0 to the physical cell I as

(

x

y

)

:= AI

(

ξ1

ξ2

)

+

(

xI
1

yI1

)

, (x, y) ∈ I, ∀(ξ1, ξ2) ∈ I0.
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The integration over I can be written as:

(ϕl(x, y), ϕs(x, y))I =

∫

I

ϕl(x, y)ϕs(x, y)dxdy

=

∫

I0

ϕl(x(ξ1, ξ2), y(ξ1, ξ2))ϕs(x(ξ1, ξ2), y(ξ1, ξ2))2|I|dξ1dξ2

= |I|
L
∑

α=1

ωαϕl(xα, yα)ϕs(xα, yα)

(2.5)

where
(

xα

yα

)

= AI

(

ξ1,α
ξ2,α

)

+
(

xI
1

yI
1

)

. ωα and (ξ1,α, ξ2,α) are the weights and the quadrature points in

the reference cell I0, respectively, which have been listed in Table 2.2. The integration over

the tetrahedral cell is similar, so we omit it here.

Up to now, we can use the numerical integration method to calculate the mass matrix Mj

and the right hand side vector bj in (2.4). Then, we obtain our new piecewise polynomial

ũh by solving the linear system (2.4).

Table 2.1: Quadrature rule for the one-dimensional remapping scheme.

ωα ξ1,α

0.5688888888888889 0.0000000000000000
0.4786286704993665 -0.5384693101056831
0.4786286704993665 0.5384693101056831
0.2369268850561891 -0.9061798459386640
0.2369268850561891 0.9061798459386640

Table 2.2: Quadrature rule for the two-dimensional remapping scheme.

ωα ξ1,α ξ2,α

0.205950504760887 0.124949503233232 0.437525248383384
0.205950504760887 0.437525248383384 0.124949503233232
0.205950504760887 0.437525248383384 0.437525248383384
0.063691414286223 0.797112651860071 0.165409927389841
0.063691414286223 0.797112651860071 0.037477420750088
0.063691414286223 0.165409927389841 0.797112651860071
0.063691414286223 0.165409927389841 0.037477420750088
0.063691414286223 0.037477420750088 0.797112651860071
0.063691414286223 0.037477420750088 0.165409927389841
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Table 2.3: Quadrature rule for the three-dimensional remapping scheme.

ωα ξ1,α ξ2,α ξ3,α

0.0190476190476190 0.0000000000000000 0.5000000000000000 0.5000000000000000
0.0190476190476190 0.5000000000000000 0.0000000000000000 0.5000000000000000
0.0190476190476190 0.5000000000000000 0.5000000000000000 0.0000000000000000
0.0190476190476190 0.5000000000000000 0.0000000000000000 0.0000000000000000
0.0190476190476190 0.0000000000000000 0.5000000000000000 0.0000000000000000
0.0190476190476190 0.0000000000000000 0.0000000000000000 0.5000000000000000
0.0885898247429807 0.6984197043243866 0.1005267652252045 0.1005267652252045
0.0885898247429807 0.1005267652252045 0.1005267652252045 0.1005267652252045
0.0885898247429807 0.1005267652252045 0.1005267652252045 0.6984197043243866
0.0885898247429807 0.1005267652252045 0.6984197043243866 0.1005267652252045
0.1328387466855907 0.0568813795204234 0.3143728734931922 0.3143728734931922
0.1328387466855907 0.3143728734931922 0.3143728734931922 0.3143728734931922
0.1328387466855907 0.3143728734931922 0.3143728734931922 0.0568813795204234
0.1328387466855907 0.3143728734931922 0.0568813795204234 0.3143728734931922

-1 1

(0,0)

(1,0)

(1,0)

(0,1,0)

(0,0,0)

(0,0,1)

(1,0,0)

Figure 2.2: The quadrature points.

2.4 Positivity-preserving limiter

Associated with fluid flow problems, the involved physical quantities in the ALE framework

such as density and internal energy should preserve positivity. This requires our polynomial

projection remapping procedure to maintain this property as well.

Assume that the input high order piecewise polynomial uh ∈ Vm satisfies ūIi ≥ ε, ∀i,

and uh − u = O(hm+1), where h is the mesh size, ε is a small positive number and we take

ε = 10−14. After clipping the intersections Ii
⋂

Ĩj, we denote Sij as the set of the quadrature

12



points on the intersection Ii
⋂

Ĩj, such that

∫

Ii
⋂

Ĩj

p(x)dx =
∑

xα∈Sij

ωαp(xα), p(x) ∈ Pm

where ωα, xα are the weights and quadrature points, respectively. Define Si, S̃j as the sets

of the quadrature points on the old cell Ii and the new cell Ĩj , hence we have

Ii =

Ñ
⋃

j=1

(

Ii
⋂

Ĩj

)

, Ĩj =

N
⋃

i=1

(

Ii
⋂

Ĩj

)

, Si =

Ñ
⋃

j=1

Sij, S̃j =

N
⋃

i=1

Sij ,

N
⋃

i=1

Si =

Ñ
⋃

j=1

S̃j .

Our positivity-preserving limiter will be divided into the following two steps

1. Based on the positive cell averages ūIi of uh, we can use the Zhang-Shu scaling

positivity-preserving limiter [26, 27, 28] to get a new piecewise polynomial uP
h such

that uP
h (xα) ≥ 0, ∀xα ∈ Si, 1 ≤ i ≤ N , which also means uP

h is positive on the

quadrature points ∀x̃α ∈ S̃j , 1 ≤ j ≤ Ñ .

2. Compute ũh as the L2-projection of uP
h into Ṽm, and we can prove that the new cell

averages is positive, since

¯̃uĨj
|Ĩj| = (ũh, 1)Ĩj =

N
∑

i=1

(ũh, 1)Ĩj
⋂

Ii
=

N
∑

i=1

(uP
h , 1)Ĩj

⋂
Ii
=

N
∑

i=1

∑

xα∈Sij

ωαu
P
h (xα) ≥ ε.

Following this idea, our polynomial projection remapping method can preserve positive with-

out destroying the origin high-order accuracy.

Specifically, referring to the work of Zhang and Shu [26, 27, 28], we compress the poly-

nomial uIi in each cell Ii towards its non-negative cell average ūIi as,

uP
Ii
(x) = θuIi(x) + (1− θ)ūIi,

θ = min

{

1,
|ūIi − ε|

|ūIi −mIi |

}

, mIi = min
x∈Si

uIi(x), ε = 10−14.
(2.6)

So the new polynomials are non-negative uP
Ii
(x) ≥ ε for all x ∈ Si and all cell Ii. Notice

that Si is a finite set and we only need to find the minimum of uIi(x) in Si rather than

the minimum in the entire cell Ii, which makes the implementation of this scaling limiter
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considerably more efficient. Meanwhile, this positivity-preserving limiter is also conservative

because it does not affect the cell averages and also maintains the original high-order accuracy

as proved in [28].

Then, we can follow the steps in Sections 2.2 and 2.3 to compute the L2-projection of uP
h

as ũh ∈ Ṽh, which is also high-order accurate and has positive cell averages ¯̃uĨj
≥ ε. The new

piecewise polynomial ũh can be used in the next loop of remapping or the next Lagrangian

step.

When we solve the Euler system, we first utilize the above positivity-preserving limiter for

the density ρ, then we use the momentum, total energy and the modified density to preserve

positivity for the internal energy e, as detailed in [24]. This conservative and high-order

compressing strategy is also suitable for the multi-dimensional case.

2.5 Multi-resolution WENO limiter

Near the discontinuity or in the large gradient regions, high-order polynomials may generate

overshoots or oscillations which could make the scheme unstable, therefore we should pay

more attention on how to prevent the numerical oscillations effectively. Differently from

our previous remapping work [13, 14], where we reconstructed high-order polynomials based

on the cell averages with the multi-resolution WENO procedure which can overcome the

numerical oscillation, the new polynomials ũh generated by this remapping algorithm may

be oscillatory, since they are solved by the linear system (2.4), corresponding to the standard

L2 projection without any limitation. To overcome this problem, we adopt a new type of

multi-resolution WENO limiter [30, 31] for the DG scheme, which can retain high-order

accuracy in the smooth region and can achieve essentially non-oscillatory performance in the

discontinuous region.

In this part, we will follow the multi-resolution WENO procedure proposed in [32, 30] step

by step to generate an essentially non-oscillatory polynomial. In order to save space, we take

the one-dimensional third-order multi-resolution WENO limiter as an example to discuss
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the specific procedure and we refer to [32, 30] for higher-order schemes or multi-dimensional

cases.

Suppose we need to modify a third-order polynomial ũĨj
(x) =

∑2
l=0 ũ

j
lϕl(x), for all

j = 1, · · · , Ñ .

• Step 1. Define low-order polynomials q0(x), q1(x) on local lower-order polynomial

spaces with the L2 projection method

(qs(x), ϕl(x))Ĩj =
(

ũĨj
(x), ϕl(x)

)

Ĩj

, l = 0, 1, · · · , s (2.7)

where qs(x) ∈ Ps for s = 0, 1. Notice that, qs(x) is defined on the basis qs(x) =

∑s

k=0 q
s
kϕk(x), so the integration in (2.7) can be written as

s
∑

k=0

qsk (ϕk(x), ϕl(x))Ĩj =
m
∑

k=0

ũ
j
k (ϕk(x), ϕl(x))Ĩj , l = 0, 1, · · · , s (2.8)

which is convenient to solve. Besides that, we define the third-order polynomial as

q2(x) := ũĨj
(x).

• Step 2. Introduce linear weights and define

p0(x) = q0(x),

p1(x) =
1

γ1,1
q1(x)−

γ0,1

γ1,1
p0(x),

p2(x) =
1

γ2,2
q2(x)−

γ0,2

γ2,2
p0(x)−

γ1,2

γ2,2
p1(x),

where γ0,1 = 1
11
, γ1,1 = 10

11
and γ0,2 = 1

111
, γ1,2 = 10

111
, γ2,2 = 100

111
. By combining ps(x)

with the linear weights γs,2, we can achieve the optimal third-order accuracy

2
∑

s=0

γs,2ps(x) = q2(x) = ũĨj
(x).

• Step 3. Define smoothness indicators to measure how smooth these functions are in

the cell Ĩj ,

β1 :=

∫

Ĩj

|Ĩj |
(

∂p1(x)

∂x

)2

dx, β2 :=
2

∑

α=1

∫

Ĩj

|Ĩj|2α−1

(

∂αp2(x)

∂xα

)2

dx,
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and the smoothness indicator of the zero-order polynomial p0(x) should be defined in

another way. Define

ζ0 = (¯̃uĨj
− ¯̃uĨj−1

)2, ζ1 = (¯̃uĨj+1
− ¯̃uĨj

)2, η̄0 =

{

1 ζ0 ≥ ζ1
10 else

, η̄1 = 11− η̄0,

and

η0 =
η̄0

η̄0 + η̄1
, η1 = 1− η0, σ0 = η0

(

1 +
|ζ0 − ζ1|
ζ0 + ε0

)

, σ1 = η1

(

1 +
|ζ0 − ζ1|
ζ1 + ε0

)

,

where we take ε0 = 10−10. Then we have

β0 :=
1

σ2

(

σ0(¯̃uĨj
− ¯̃uĨj−1

) + σ1(¯̃uĨj+1
− ¯̃uĨj

)
)2

, σ = σ0 + σ1,

where ¯̃uĨj
is the cell average on the cell Ĩj .

• Step 4. Define the nonlinear weights as

ωl =
ω̄l

ω̄0 + ω̄1 + ω̄2

, ω̄l = γl,2

(

1 +
τ

ε0 + βl

)

, l = 0, 1, 2

where τ = |β2 − β0|+ |β2 − β1| and the final polynomial is given by

ũW
Ĩj
(x) :=

2
∑

s=0

ωsps(x).

However, it is not necessary to apply this multi-resolution WENO limiter for every cell.

Instead, we identify the troubled cells by a shock detection technique [21, 30, 31, 33], and

only apply the WENO limiter on those cells.

To summarize, we simply employ the multi-resolution WENO limiter only on a few

troubled cells to improve the efficiency of our method. Actually, in the following numerical

tests, we do not always utilize this limitation because some of these tests do not need it.

This limiter combines the polynomial’s local L2 projection on lower discrete polynomial

spaces with nonlinear weights given by the polynomials’ smoothness, and this limiter is

parallel efficient, since there is little information exchange between neighbors (only for the

smoothness indicator of the lowest degree polynomial). The nonlinear weights are close to
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the linear weights in the smooth region, and the modified polynomial ũW
Ĩj
(x) is close to the

original high-order polynomial ũĨj
(x). In the discontinuous region, on the other hand, the

low-order polynomials play a larger role in ũW
Ĩj
(x), which can prevent numerical oscillations.

We have now completed the discussion of the polynomial projection remapping algo-

rithm. Although we have only introduced the local multi-resolution WENO limiter and

the positivity-preserving limiter for the one-dimensional situation in detail, extending to the

multi-dimensional case is not difficult, and details may be found in the references [31, 26, 27].

Following that, we apply our remapping method to several benchmarks in one, two, and three

dimensions to validate its good properties such as conservation, high-order accuracy, posi-

tivity and essentially non-oscillatory performance. After that, we utilize the novel ALE-DG

scheme consisting of this remapping algorithm and the Lagrangian type DG scheme to solve

the Euler system in one and two dimensions.

3 Numerical results

3.1 One-dimensional case

Suppose Ω = {I0i }Ni=1, I
0
i = [x0

i− 1

2

, x0
i+ 1

2

] is the initial mesh and we design a randomly moving

mesh strategy Ω = {I ti}Ni=1, I
t
i = [xt

i− 1

2

, xt
i+ 1

2

],

xt
i− 1

2

= x0
i− 1

2

+ cRhr
t
i− 1

2

, h = min
i

hi, hi = x0
i+ 1

2

− x0
i− 1

2

, i = 2, · · · , N, (3.1)

where rt
i− 1

2

∈ [−1, 1] are random numbers and we take cR = 0.5 in our numerical tests. After

remapping T times on the randomly moving mesh, we require the final mesh to move back

to the initial mesh in the accuracy tests.

3.1.1 Accuracy test

Now, we verify the high-order accuracy of our polynomial projection remapping method.

Suppose the initial function is

u(x) = cos8(8πx) + 10−12, x ∈ [0, 1].
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First, we calculate the initial L2 projection u0
h(x) of u(x) on the initial mesh and calculate

the error ‖u0
h − u‖. After that, we will remap T = 10 times on the randomly moving mesh

(3.1) and move back to the initial mesh {I0i }Ni=1. We denote the remapping results as ũ10
h

without any limiters, ũP,10
h with the positivity-preserving limiter and ũ

W,P,10
h with the local

multi-resolution WENO limiter and the positivity-preserving limiter.

Based on the different degrees of the DG space, we show the third-order and the fourth-

order remapping results in Table 3.1 and Table 3.2 as examples, respectively. The last

column ‘PP’ and ‘WENO’ in these tables represent the ratio of the cells being modified by

the positivity-preserving limiter and the local multi-resolution WENO limiter. As one can

see, our high-order polynomial projection remapping method achieves the designed high-

order accuracy, regardless of the limiters being involved.

3.1.2 Discontinuity test

In this subsection, we consider a discontinuous function (3.2) to verify our polynomial pro-

jection remapping method is positive and essentially non-oscillatory

u(x) =















10−12 x ≤ 0.25
1 0.25 < x ≤ 0.7
0.5 0.7 < x ≤ 0.8

10−12 0.8 < x ≤ 1

, 0 ≤ x ≤ 1. (3.2)

Just as before, we remap on the randomly moving mesh for T = 10 times with N = 80 cells.

In Figure 3.1, there are about 2.13% cells which have been modified by the positivity-

preserving limiter and about 1.75% cells which have been modified by the local multi-

resolution WENO limiter. It is obvious that our positivity-preserving limiter can preserve

positivity in the top right subfigure and the multi-resolution WENO limiter can prevent the

numerical oscillation in the bottom right subfigure.

3.2 Two-dimensional case

Now, we move to the two-dimensional polynomial projection remapping method on the

triangular mesh. Suppose (xp, yp) is the coordinate of an interior node of the computational
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Table 3.1: One-dimensional third-order accuracy test: error and order of the polynomial
projection remapping method on the randomly moving meshes with T = 10.

||u0
h − u||

N L1 error order L2 error order L∞ error order -

80 6.3222E-04 1.3081E-03 6.4792E-03 -
160 7.4433E-05 3.09 1.6780E-04 2.96 9.7294E-04 2.74 -
320 9.1500E-06 3.02 2.1112E-05 2.99 1.2489E-04 2.96 -
640 1.1378E-06 3.01 2.6433E-06 3.00 1.5622E-05 3.00 -

||ũ10
h − u||

N L1 error order L2 error order L∞ error order -

80 2.0806E-03 4.0362E-03 2.3422E-02 -
160 2.1561E-04 3.27 4.3533E-04 3.21 3.0377E-03 2.95 -
320 2.7779E-05 2.96 6.1088E-05 2.83 5.3377E-04 2.51 -
640 3.2693E-06 3.09 7.1444E-06 3.10 5.7270E-05 3.22 -

||ũP,10
h − u||

N L1 error order L2 error order L∞ error order PP(%)

80 2.2009E-03 4.1378E-03 2.3389E-02 6.63
160 2.1557E-04 3.35 4.3538E-04 3.25 3.0377E-03 2.94 3.44
320 2.7781E-05 2.96 6.1088E-05 2.83 5.3377E-04 2.51 2.03
640 3.2693E-06 3.09 7.1444E-06 3.10 5.7270E-05 3.22 1.03

||ũW,P,10
h − u||

N L1 error order L2 error order L∞ error order WENO(%)

80 2.2007E-03 4.1374E-03 2.3389E-02 2.25
160 2.1557E-04 3.35 4.3537E-04 3.25 3.0373E-03 2.94 0.38
320 2.7781E-05 2.96 6.1088E-05 2.83 5.3377E-04 2.51 0.00
640 3.2693E-06 3.09 7.1444E-06 3.10 5.7270E-05 3.22 0.00
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Table 3.2: One-dimensional fourth-order accuracy test: error and order of the polynomial
projection remapping method on the randomly moving meshes with T = 10.

||u0
h − u||

N L1 error order L2 error order L∞ error order -

80 7.4378E-05 1.5060E-04 6.8521E-04 -
160 4.5190E-06 4.04 9.6719E-06 3.96 5.8090E-05 3.56 -
320 2.8097E-07 4.01 6.0863E-07 3.99 3.8955E-06 3.90 -
640 1.7696E-08 3.99 3.8104E-08 4.00 2.4771E-07 3.98 -

||ũ10
h − u||

N L1 error order L2 error order L∞ error order -

80 4.1647E-04 8.0582E-04 4.0711E-03 -
160 2.7564E-05 3.92 5.5238E-05 3.87 3.2861E-04 3.63 -
320 1.6354E-06 4.08 3.4513E-06 4.00 2.8659E-05 3.52 -
640 1.0805E-07 3.92 2.2483E-07 3.94 1.8635E-06 3.94 -

||ũP,10
h − u||

N L1 error order L2 error order L∞ error order PP(%)

80 5.6114E-04 9.4540E-04 4.0694E-03 5.88
160 2.8468E-05 4.30 5.5564E-05 4.09 3.2861E-04 3.63 3.06
320 1.6389E-06 4.12 3.4516E-06 4.01 2.8659E-05 3.52 1.53
640 1.0806E-07 3.92 2.2483E-07 3.94 1.8635E-06 3.94 5.78

||ũW,P,10
h − u||

N L1 error order L2 error order L∞ error order WENO(%)

80 5.6114E-04 9.4540E-04 4.0694E-03 0.25
160 2.8468E-05 4.30 5.5564E-05 4.09 3.2861E-04 3.63 0.00
320 1.6389E-06 4.12 3.4516E-06 4.01 2.8659E-05 3.52 0.00
640 1.0806E-07 3.92 2.2483E-07 3.94 1.8635E-06 3.94 0.00
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Figure 3.1: One-dimensional discontinuity test: third-order polynomial projection remapping
method with 80 cells. The black solid lines are the initial function (3.2), the blue dash lines
are the numerical results ũ10

h (x) without any limiter, the red dash dot lines are the numerical
results with the two limiters ũW,P,10

h (x). Top right: the zoomed-in subfigure at x ∈ [0.2, 0.25];
bottom right: the zoomed-in subfigure at x ∈ [0.675, 0.825].

domain Ω, and h = min
Ii∈Ω

hi is the minimum of the diameter hi, where hi is the circumscribed

sphere’s diameter of the triangle Ii. We design a randomly moving mesh as:

(xt+1
p , yt+1

p )R = (x0
p, y

0
p) + cRh(r

t
xp
, rtyp),

where rtxp
, rtyp ∈ [−1, 1] are random numbers and cR = 0.5.

3.2.1 Accuracy test

We use the initial function

u(x, y) = sin8(2πx) cos8(2πy) + 10−12, −1 ≤ x, y ≤ 1,

to verify high-order accuracy of our remapping method. We remap T = 10 times on the

randomly moving mesh and move back to the initial mesh and denote u0
h(x, y) as the L2

projection of u(x, y).

The initial mesh divides the computational domain uniformly into small squares with

mesh size h = 2
Nx

, where Nx = Ny are number of cells in each directions, then each square
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will be divided into two triangles with the same area. As one can see in Table 3.3, our

polynomial projection remapping method achieves the designed third-order accuracy with

the positivity-preserving limiter. Besides the positivity-preserving modification, we also use

the local multi-resolution WENO limiter in this accuracy test but there are no cells which

have been picked out by the shock detection technique.

Table 3.3: Two-dimensional third-order accuracy test: error and order of the polynomial
projection remapping method on the randomly moving meshes with T = 10.

||u0
h − u||

N L1 error order L2 error order L∞ error order -

3200 3.4041E-04 8.4090E-04 5.1226E-03 -
7200 1.0441E-04 2.91 2.5425E-04 2.95 1.6435E-03 2.80 -
12800 4.4169E-05 2.99 1.0801E-04 2.98 7.0773E-04 2.93 -
20000 2.2683E-05 2.99 5.5478E-05 2.99 3.7241E-04 2.88 -

||ũ10
h − u||

N L1 error order L2 error order L∞ error order -

3200 5.7979E-04 1.3293E-03 9.1929E-03 -
7200 1.8175E-04 2.86 4.2199E-04 2.83 3.1854E-03 2.61 -
12800 7.9977E-05 2.85 1.8771E-04 2.82 1.4200E-03 2.81 -
20000 4.0482E-05 3.05 9.5285E-05 3.04 7.3757E-04 2.94 -

||ũP,10
h − u||

N L1 error order L2 error order L∞ error order PP(%)

3200 5.6341E-04 1.3256E-03 9.1929E-03 0.0391
7200 1.8117E-04 2.80 4.2198E-04 2.82 3.1854E-03 2.61 0.0556
12800 7.9899E-05 2.85 1.8771E-04 2.82 1.4200E-03 2.81 0.0820
20000 4.0474E-05 3.05 9.5285E-05 3.04 7.3757E-04 2.94 0.0900

3.2.2 Positivity-preserving test

Then, we verify our remapping method can preserve positivity for the cell averages. This

time, the computational domain is a circle with radius 1 and center at (0, 0), and the initial

function is

u(x, y) =

{

1 + sin
(

2π(r − 1
4
)
)

+ 10−12 r ≤ 0.75
10−12 r > 0.75

, r =
√

x2 + y2, r ≤ 1. (3.3)
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Figure 3.2: Two-dimensional positivity-preserving test: third-order polynomial projection
remapping method with 1,016 triangular cells. Left: the initial function; middle: remap-
ping results without any limiter ũ10

h (x, y); right: remapping results with the two limiters
ũ
W,P,10
h (x, y). White symbols represent the cells where the cell-averages are negative.

We move the interior nodes randomly for T = 10 times and return to the initial triangular

mesh. There are about 5.49% of the cells which have been modified by the positivity-

preserving limiter and about 7.94% of the cells which have been modified by the multi-

resolution WENO limiter. Near the discontinuity, there are many negative cell averages

marked in white in Figure 3.2 without the positivity-preserving modification, but our remap-

ping method preserves positivity well with the limiter.

3.2.3 Discontinuity test

We design a discontinuous initial function

u(x, y) =















10−12 x ≤ 0, y ≤ 0
f1(x, y) x ≤ 0, y > 0
f2(x, y) x > 0, y > 0
f3(x, y) x > 0, y ≤ 0

, −1 ≤ x, y ≤ 1, (3.4)

where

f1(x, y) = 10−12 + 10max(0, 1− 2.5R1), R1 =

√

(x+
1

2
)2 + (y − 1

2
)2, (3.5)
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Figure 3.3: Two-dimensional discontinuity test: third-order polynomial projection remap-
ping method with 14,120 triangular cells. Left: the initial function; middle: remapping
results without any limiter ũ10

h (x, y); right: remapping results with two limiters ũW,P,10
h (x, y).

White symbols represent the cells where the cell-averages are negative.

f2(x, y) =

{

10 x > 0.1, y > 0.1
10−12 else

, (3.6)

f3(x, y) =

{

10 R2 < 0.4
10−12 R2 ≥ 0.4

R2 =

√

(x− 1

2
)2 + (y +

1

2
)2. (3.7)

Remapping on the randomly moving mesh with T = 10 times, we show the values at 128

points at the cut line x = y and x = −y in Figure 3.4.

Overall, there are about 1.38% of the cells which have been modified by the positivity-

preserving limiter and about 5.32% of the cells which have been modified by the multi-

resolution WENO limiter. In Figure 3.3, our remapping results with these two limiters

preserve positivity well and the WENO limiter can handle the overshoots near the disconti-

nuity which can be seen in Figure 3.4.

3.3 Three-dimensional case

Consider the three-dimensional polynomial projection remapping method on the tetrahedral

meshes. Suppose that (xp, yp, zp) is the coordinate of an interior node of the computational

domain Ω, and h = min
Ii∈Ω

hi is the minimum of the diameter hi, where hi is the circumscribed

sphere’s diameter of the tetrahedral Ii. Here, the randomly moving mesh is defined as before:

(xt+1
p , yt+1

p , zt+1
p )R = (x0

p, y
0
p, z

0
p) + cRh(r

t
xp
, rtyp, r

t
zp
).
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(a) Cut line x = y

(b) Cut line x = −y

Figure 3.4: The function values at the cut lines x = y and x = −y. The black solid lines:
the initial function; the blue dash lines: the remapping results without any limiter ũ10

h (x, y);
the red dash dot lines: the remapping results with two limiters ũW,P,10

h (x, y).
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3.3.1 Accuracy test

First, we use the following function to verify the high-order accuracy of our remapping

method

u(x, y, z) = cos4(πx) cos4(πy) cos4(πz) + 10−12, 0 ≤ x, y, z ≤ 2.

The initial mesh divides the computational domain uniformly into small cubes with mesh size

h = 2
Nx

, where Nx = Ny = Nz are number of cells in each directions, then each cube will be

divided into six tetrahedrons with the same volume. The remapping results with or without

the positivity-preserving limiter are listed in Table 3.4, denoted as ũ10
h and ũ

P,10
h , respectively.

Besides the positivity-preserving limiter, we also add the multi-resolution WENO limiter in

this accuracy test but there are no cells which have been picked out by the shock detection

technique. As one can see, our three-dimensional polynomial projection remapping method

achieves the designed third-order accuracy, regardless whether the limiter is involved.

3.3.2 Positivity-preserving test

In this subsection, we verify the 3D remapping method can preserve positivity for the cell

averages. We dig a ball of radius 1.4 centered at (0, 0, 0) in the cube computational domain

[−2, 2]× [−2, 2]× [−2, 2] and design a positive initial function

u(x, y, z) =

{

10−12 r ≤ 1.8
r r > 1.8

, r =
√

x2 + y2 + z2, −2 ≤ x, y, z ≤ 2. (3.8)

Part of the computational domain in [0, 2] × [0, 2] × [0, 2] is shown in Figure 3.5. Here,

we plot the values on the computational nodes (xp, yp, zp) and we mark the cell which has

negative cell average with white color. Near the discontinuity, there are many negative

cell averages marked in white without the positivity-preserving limiter, and our remapping

method preserves positivity well.
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Table 3.4: Three-dimensional third-order accuracy test: error and order of the polynomial
projection remapping method on the randomly moving meshes with T = 10.

||u0
h − u||

N L1 error order L2 error order L∞ error order -

6000 1.2729E-03 2.3126E-03 1.7824E-02 -
20250 4.1717E-04 2.75 7.1604E-04 2.89 5.3933E-03 2.95 -
48000 1.7943E-04 2.93 3.0686E-04 2.95 2.2191E-03 3.09 -
93750 9.1861E-05 3.00 1.5826E-04 2.97 1.2293E-03 2.65 -

||ũ10
h − u||

N L1 error order L2 error order L∞ error order -

6000 1.7112E-03 2.9751E-03 2.6823E-02 -
20250 5.9499E-04 2.61 9.9972E-04 2.69 9.5736E-03 2.54 -
48000 2.6383E-04 2.83 4.4650E-04 2.80 4.3434E-03 2.75 -
93750 1.3698E-04 2.94 2.3409E-04 2.89 2.2625E-03 2.92 -

||ũP,10
h − u||

N L1 error order L2 error order L∞ error order PP(%)

6000 2.4407E-03 4.0926E-03 4.8257E-02 0.15
20250 5.8573E-04 3.52 9.9562E-04 3.49 9.5734E-03 3.99 0.04
48000 2.5952E-04 2.83 4.4593E-04 2.79 4.3434E-03 2.75 0.00
93750 1.3511E-04 2.93 2.3376E-04 2.89 2.2625E-03 2.92 0.00
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Figure 3.5: Three-dimensional positivity-preserving test: third-order polynomial projection
remapping method with 3,938 tetrahedral cells. Left: the initial function; middle: remap-
ping results without any limiter ũ10

h (x, y, z); right: remapping results with the two limiters
ũ
W,P,10
h (x, y, z). The bottom three subfigures are the 2D cut planes at x = 0 and white

symbols represent the cells where the cell-averages are negative.
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Figure 3.6: Three-dimensional discontinuity test: third-order polynomial projection remap-
ping method with 37,160 tetrahedral cells. Left: the initial function; middle: remapping
results without any limiter ũ10

h (x, y, z); right: remapping results with the two limiters
ũ
W,P,10
h (x, y, z). White symbols represent the cells where the cell-averages are negative.

3.3.3 Discontinuity test

In this subsection, we verify our 3D remapping method can handle the numerical oscillation

with the limiters. The discontinuous initial function is

u(x, y, z) =















5 r ≤ 0.4
0.5 0.4 < r ≤ 0.8
2.5 0.8 < r ≤ 1.4

10−12 r > 1.4

, r =
√

(x− 1)2 + (y − 1)2 + (z − 1)2, 0 ≤ x, y, z ≤ 2.

(3.9)

There are about 0.60% of the cells which have been modified by the positivity-preserving

limiter and about 4.63% of the cells which have been modified by the multi-resolution WENO

limiter. In Figure 3.6, we show the whole computational domain without the part x, y, z > 1

and we can observe that the remapping results with these two limiters preserve positivity

well. In Figure 3.7, we show the values of 40 points at the cut line x = y = z, and one can

observe that the WENO limiter prevent the numerical oscillation well.

4 Numerical results with the ALE-DG scheme

Klingenberg, Schnucke and Xia [9, 10] and Fu, Schnucke and Xia [7] proposed a discon-

tinuous Galerkin method on the moving mesh for conservation laws and Hamilton-Jacobi

equations. The semi-discrete scheme is L2 stable and achieves optimal accuracy with an up-
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Figure 3.7: The function values at the cut line x = y = z. The black solid line: the initial
function; the blue dash line: the remapping results without any limiter ũ10

h (x, y, z); the red
dash dot line: the remapping results with the two limiters ũW,P,10

h (x, y, z).
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wind flux. Combined with the total-variation-diminishing Runge-Kutta time discretization

(TVD-RK) methods [22], the fully-discrete scheme satisfies the discrete geometric conserva-

tion law (dGCL), under the condition that the accuracy of the time discretization is greater

than the spatial dimension. Based on the dGCL and suitable time step conditions, the cell

averages of this ALE-DG scheme satisfies the local maximum principle.

When applied to fluid dynamics, if we take the velocities of the mesh movements as

the fluid velocities as in the Lagrangian methods, this DG scheme (which we refer as the

Lagrangian type DG scheme) may generate distorted meshes in the presence of large fluid

deformations, just as the standard Lagrangian schemes. We therefore use an indirect ALE-

DG scheme to overcome this difficulty. This ALE-DG scheme combines the Lagrangian type

DG method, suitable rezoning strategy and our high order polynomial projection remapping

method. In this section, we will compare the performances of the following three DG schemes,

the Eulerian DG scheme on the fixed mesh, the Lagrangian type DG scheme on the moving

mesh with the fluid velocities and the indirect ALE-DG scheme. The numerical results on

these schemes will be denoted as ρE , ρL and ρA, respectively.

4.1 One-dimensional ALE-DG scheme with the high order poly-

nomial projection remapping method

Here, we will first introduce the one-dimensional ALE-DG scheme briefly and then display

our numerical results. Consider the following model problem:

∂tu+ ∂xf(u) = 0, (x, t) ∈ Ω× (0, T ],
u(x, 0) = u0(x), x ∈ Ω.

(4.10)

In the DG framework [9], we assume that there are given points {xn
j− 1

2

}N+1
j=1 and mesh ve-

locities {ωn
j− 1

2

}N+1
j=1 at the time level tn. In our Lagrangian type DG scheme, we take the

mesh velocity as the fluid velocity in the Euler system. Then we can define the new mesh

{xn+1
j− 1

2

}N+1
j=1 at the time level tn+1 by

xn+1
j− 1

2

:= xn
j− 1

2

+ ωn
j− 1

2

(tn+1 − tn),
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which should satisfy Ω =
⋃N

j=1 I
n
j =

⋃N

j=1 I
n+1
j with Inj = [xn

j− 1

2

, xn
j+ 1

2

]. Connect the point

xn
j− 1

2

and xn+1
j− 1

2

by a straight line

xn
j− 1

2

(t) := xn
j− 1

2

+ ωn
j− 1

2

(t− tn), ∀t ∈ [tn, tn+1],

and assume that all of the points in the cell Inj also move in the same way (along the straight

line). Then we define the mesh velocity in Inj as

ωn(x, t) := ωn
j+ 1

2

x− xn
j− 1

2

∆n
j (t)

+ ωn
j− 1

2

xn
j+ 1

2

− x

∆n
j (t)

, x ∈ Kn
j (t),

where

Kn
j (t) = [xn

j− 1

2

(t), xn
j+ 1

2

(t)], ∆n
j (t) = xn

j+ 1

2

(t)− xn
j− 1

2

(t).

Suppose {ϕl}ml=0 are the basis functions on the reference cell [−1, 1] and define

ϕ̂n
l (x, t) := ϕl





2
(

x− xn
j− 1

2

)

∆n
j (t)

− 1



 , x ∈ Kn
j (t),

on the discrete space

Vh(t) :=
{

vh ∈ L2(Ω)|vh(x, t) ∈ Pm
}

.

Then, by the integration-by-parts method we obtain the DG scheme on the moving mesh:

Find a function uh ∈ Vh(t) such that

d

dt
(uh, vh)Kj(t) = (g(ω, uh), ∂xvh)Kj(t)

− ĝ
(

ωj+ 1

2

, u−
h,j+ 1

2

, u+
h,j+ 1

2

)

v−
h,j+ 1

2

+ ĝ
(

ωj− 1

2

, u−
h,j− 1

2

, u+
h,j− 1

2

)

v+
h,j− 1

2

(4.11)

for all vh =
∑m

l=0 vlϕ̂l(x, t) ∈ Vh(t) and cells. Notice that g(ω, uh) := f(uh) − ωuh and

ĝ
(

ωj+ 1

2

, u−
h,j+ 1

2

, u+
h,j+ 1

2

)

is the numerical flux which should satisfy consistency, monotonicity

and Lipschitz continuity.

Based on this Lagrangian type DG method and our high order polynomial projection

remapping method, we give the flowchart of our indirect ALE-DG scheme. Suppose we

know the mesh {xn
j− 1

2

}N+1
j=1 and piecewise polynomial un

h at t = tn,

1. Calculate the mesh velocity {ωn
j− 1

2

}N+1
j=1 as the Lagrangian method,
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2. Calculate the time step τ which satisfies the CFL condition,

3. Solve the DG scheme (4.11) with the TVD-RK time discretization to get un+1
h on the

new mesh {xn+1
j− 1

2

}N+1
j=1 ,

4. When the mesh is distorted, rezone the mesh {xn+1
j− 1

2

}N+1
j=1 into {x̃n+1

j− 1

2

}N+1
j=1 ,

5. After the rezoning step, remap un+1
h to the new rezoned mesh and obtain ũn+1

h ,

then ũn+1
h on the new rezoned mesh {x̃n+1

j− 1

2

}N+1
j=1 can enroll in the next loop.

4.1.1 Numerical tests for the one-dimensional Euler equations of gas dynamics

We consider the Euler equation of gas dynamics:





ρ

ρu

E





t

+





ρu

ρu2 + p

u(E + p)





x

= 0, (4.12)

while p = (γ − 1)(E − 1
2
ρu2) for the calorically ideal gas. Here, ρ is the density, u is the

fluid velocity, E is the total energy, p is the pressure and γ is a constant that depends on

the particular gas under consideration.

The time step satisfies

τ ≤ 1

2m+ 1
min
j

hj

|λj − ωj |
where m is the order of the piecewise polynomial space and |λj| is the maximum wave speed.

In the numerical tests, we adopt two sets of meshes,

• The fixed Eulerian mesh

xj+ 1

2

(tn) = xj+ 1

2

(0) (4.13)

• The Lagrangian type moving mesh

Here, we assume that the mesh moves with the fluid as x′(t) = u

xj+ 1

2

(tn+1) = xj+ 1

2

(tn) + τµn
h,j+ 1

2

(4.14)
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where µ is the Roe average of the velocity u

µn
h,j+ 1

2

=

(√
ρ−u− +

√
ρ+u+

√
ρ− +

√
ρ+

)

h,j+ 1

2

,

and ρ±
h,j+ 1

2

and u±
h,j+ 1

2

are the left and right values of ρh, uh on the cell boundaries

xj+ 1

2

, respectively.

Accuracy test. The initial condition is given as

(ρ0, u0, p0) =

(

1 + 0.2 sin(x)

2
√
3

,
√
γρ0, ρ

γ
0

)

, x ∈ [0, 2π].

Suppose that ρ(x, t), u(x, t), p(x, t) are the exact solutions, and if we take γ = 3, then we

can verify that 2
√
3ρ(x, t) is the exact solution of the Burgers’ equation:

vt +

(

v2

2

)

x

= 0, v(x, 0) = 1 + 0.2 sin(x)

and

u(x, t) =
√
γρ(x, t), p(x, t) = ρ(x, t)γ .

We demonstrate the numerical results for density at t = 0.3 calculated by the Eulerian

type DG scheme ρE , the Lagrangian type DG scheme ρL and the ALE-DG scheme ρA. In

the meantime, we show the projection error between the initial condition ρ(x, 0) and its

projection ρ0. We rezone the old mesh to the new uniform mesh and apply our remapping

procedure in the ALE-DG scheme every 10 time steps. Table 4.5 shows the error on different

sizes of the mesh N = 32, 64, 128, 256 and we can observe that the error for the Lagrangian

type DG scheme ||ρ(x, T )−ρL|| is a little smaller than the error for the Eulerian DG scheme

||ρ(x, T )− ρE ||, and there is almost no difference after applying the remapping procedure.

The Lax problem. Now, we consider the Lax problem for the Euler system with the

initial condition

{

(ρ, u, p) = (0.445, 0.698, 3.528), x ∈ [−5, 0]
(ρ, u, p) = (0.5, 10−10, 0.571), x ∈ (0, 5]

γ = 1.4. (4.15)
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Table 4.5: Error at time t = 0.3 for the one-dimensional Euler system with three third-order
DG schemes.

initial projection error ||ρ(x, 0)− ρ0||
N L1 error order L2 error order L∞ error order

32 1.3369E-06 1.7768E-06 3.6271E-06
64 1.6684E-07 3.00 2.2220E-07 3.00 4.5481E-07 3.00
128 2.0842E-08 3.00 2.7778E-08 3.00 5.6909E-08 3.00
256 2.6058E-09 3.00 3.4722E-09 3.00 7.1298E-09 3.00

||ρ(x, T )− ρE ||
N L1 error order L2 error order L∞ error order

32 2.8338E-06 4.4243E-06 1.7132E-05
64 3.5842E-07 2.98 5.5769E-07 2.99 2.2268E-06 2.94
128 4.5526E-08 2.98 7.0768E-08 2.98 2.8311E-07 2.98
256 5.7121E-09 2.99 8.8737E-09 3.00 3.5532E-08 2.99

||ρ(x, T )− ρL||
N L1 error order L2 error order L∞ error order

32 2.6026E-06 4.0057E-06 1.5937E-05
64 3.2157E-07 3.02 4.8801E-07 3.04 1.8884E-06 3.08
128 4.0057E-08 3.00 6.0117E-08 3.02 2.1532E-07 3.13
256 5.2076E-09 2.94 7.7262E-09 2.96 2.4073E-08 3.16

||ρ(x, T )− ρA||
N L1 error order L2 error order L∞ error order

32 2.6026E-06 4.0057E-06 1.5937E-05
64 3.2157E-07 3.02 4.8801E-07 3.04 1.8884E-06 3.08
128 4.0057E-08 3.00 6.0117E-08 3.02 2.1532E-07 3.13
256 5.2076E-09 2.94 7.7262E-09 2.96 2.4073E-08 3.16
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(a) Eulerian DG, ρE (b) Lagrangian type DG, ρL (c) ALE-DG, ρA

Figure 4.8: Comparison of the exact solution (black solid line) and three third-order DG
solutions (red points) for the Lax problem with N = 100 at time t = 1.3.

We show the numerical results at time t = 1.3 with N = 100 cells in Figure 4.8. Notice that,

all of the DG schemes need a positivity-preserving limiter [26, 27]. We can observe from the

middle subfigure of Figure 4.8 that there are almost no points at the contact discontinuity

produced by the Lagrangian type DG scheme, which is the advantage of the Lagrangian

method, but numerical oscillations appear near the contact discontinuity.

To control these overshoots and keep high resolution on the contact discontinuity, we uti-

lize the local multi-resolution WENO limiter for the Lagrangian DG step and the remapping

step in the ALE-DG scheme. Here, we perform the remapping and the rezoning step with-

out moving the points at the contact discontinuity, every 20 time steps when t > 1.0. The

numerical solution ρA in the right subfigure of Figure 4.8 shows that the ALE-DG scheme

makes a balance between the low numerical oscillations and the low numerical dissipation.

The blast wave problem. In this part, we consider the blast wave problem for the Euler

system with

ρ = 1, u = 1, p =







1000, x ∈ [0, 0.1)
0.01, x ∈ [0.1, 0.9)
100, x ∈ [0.9, 1]

γ = 1.4, x ∈ [0, 1]. (4.16)

In Figure 4.9, we show the numerical results of the density for the above three DG schemes

at time t = 0.038 with N = 200 cells. The black solid line is the numerical solution from [2]
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(a) Eulerian DG, ρE (b) Lagrangian type DG, ρL (c) ALE-DG, ρA

Figure 4.9: Comparison of the reference solution (black solid line) and three third-order DG
solutions (red points) for the blast wave problem with N = 200 at time t = 0.038.

with 16,000 cells, which can be regarded as the reference solution.

This Lagrangian type DG scheme captures the contact discontinuity and the shock rigor-

ously, but there are some overshoots near the contact discontinuity, see the middle subfigure

of Figure 4.9. Besides that, we apply our remapping procedure and the rezoning method

without moving the points at the contact discontinuities, every 50 time steps after t > 0.03

and the results of the ALE-DG scheme are displayed in the right of Figure 4.9, which can

handle the overshoots very well and maintain the good performance of the Lagrangian type

DG scheme that there are less transition points on the contact discontinuity.

4.2 Two-dimensional ALE-DG scheme with the high order poly-

nomial projection remapping method

Let us apply our remapping method for the two-dimensional Lagrangian type DG scheme [7]

to solve the fluid flow problems. We still begin with the brief description of the DG scheme

for the following model problem:

∂tu+ ∂xf(u) + ∂yg(u) = 0, (x, y, t) ∈ Ω× (0, T ],
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

(4.17)

Assume the computational domain is divided into several triangles Ω =
⋃N

i=1 I
n
i at the time

level tn and we know the mesh velocities ωn
l = (ωn

1,l, ω
n
2,l)

T at the vertex P n
l = (xn

l , y
n
l ) where
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l denotes the index of the mesh vertices. Then the mesh at the time level tn+1 is defined as

P n+1
l := P n

l + ωn
l (t

n+1 − tn),

and the new mesh satisfies Ω =
⋃N

i=1 I
n+1
i , where the new triangular cells In+1

i are made up

with the new vertices P n+1
l . Define time-dependent straight lines for all t ∈ [tn, tn+1],

Pl(t) := P n
l + ωn

l (t− tn),

and these vertices Pl(t) make up with the time-dependent triangular cell I(t).

By an integration-by-parts method, we obtain the DG scheme on the moving mesh: Find

a function uh ∈ Vh(t) such that for all vh ∈ Vh(t) and all cells I(t),

d

dt
(uh, vh)I(t) =(f̃(ω1, uh), ∂xvh)I(t) + (g̃(ω2, uh), ∂yvh)I(t)

−
〈

ˆ̃
f(ω1, u

in
h , u

ex
h , nx,I(t)), v

in
h

〉

∂I(t)

−
〈

ˆ̃g(ω2, u
in
h , u

ex
h , ny,I(t)), v

in
h

〉

∂I(t)

(4.18)

where f̃(ω1, uh) := f(uh)− ω1uh, g̃(ω2, uh) := g(uh)− ω2uh, and

Vh(t) :=
{

vh ∈ L2(Ω)|vh(x, y, t) ∈ Pm
}

.

Notice that ~nI(t) = (nx,I(t), ny,I(t))
T is the outer normal vector for the cell boundary. The

values of uh on the cell boundary L ∈ ∂I(t) with outer normal vector ~nL are defined as

uin
h (x)|L := lim

ε→0+
uh(x− ε~nL), uex

h (x)|L := lim
ε→0+

uh(x+ ε~nL).

In our numerical test, we use the Lax-Friedrichs flux

ˆ̃
f(ω1, u

in
h , u

ex
h , nx,I(t)) =

nx,I(t)

2

(

f̃(ω1, u
in
h ) + f̃(ω1, u

ex
h )

)

− λ1,I(t)

2

(

uex
h − uin

h

)

λ1,I(t) = max
{∣

∣

∣
nx,I(t)∂uf̃(ω1, u)

∣

∣

∣
: t ∈ [tn, tn+1]

}

ˆ̃g(ω2, u
in
h , u

ex
h , ny,I(t)) =

ny,I(t)

2

(

g̃(ω2, u
in
h ) + g̃(ω2, u

ex
h )

)

− λ2,I(t)

2

(

uex
h − uin

h

)

λ2,I(t) = max
{∣

∣ny,I(t)∂ug̃(ω2, u)
∣

∣ : t ∈ [tn, tn+1]
}

(4.19)

which satisfies consistency, monotonicity and Lipschitz continuity. We refer to [7] for the

details of this Lagrangian type DG scheme.
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If we define the matrix AI(t) as

AI(t) := (Pl2(t)− Pl1(t), Pl3(t)− Pl1(t)) ,

then we can map the 2D triangular reference cell I0 to the physical cell I(t) as

P (t) := AI(t)ξ + Pl1(t), P (t) ∈ I(t), ∀ξ ∈ I0

where the physical cell I(t) is made up with Pl1(t), Pl2(t), Pl3(t).

The above DG scheme (4.18) can also be constructed on the reference cell I0,

(

d

dt
(JI(t)u

∗
h), v

∗
h

)

I0

=
(

JK(I)

≈

f(ω1, u
∗
h), ∂xv

∗
h

)

I0
+
(

JK(I)
≈

g(ω2, u
∗
h), ∂yv

∗
h

)

I0

−
〈

ˆ̃
f(ω1, u

in,∗
h , u

ex,∗
h , JI(t)ñx), v

in,∗
h

〉

∂I0

−
〈

ˆ̃g(ω2, u
in,∗
h , u

ex,∗
h , JI(t)ñy), v

in,∗
h

〉

∂I0

(4.20)

where JI(t) = det(AI(t)) = 2|I(t)| is the determinant of the Jacobian matrix, ñ(t) = A−T
I(t)nI0,

u∗
h, v

∗
h are defined on the reference cell I0 and

(
≈

f(ω1, u
∗
h)

≈

g(ω2, u
∗
h)

)

= A−1
I(t)

(

f̃(ω1, u
∗
h)

g̃(ω2, u
∗
h)

)

= A−1
I(t)

(

f(u∗
h)− ω1u

∗
h

g(u∗
h)− ω2u

∗
h

)

.

Just like before, we develop a two-dimensional indirect ALE-DG scheme with the La-

grangian type DG method, the rezoning step and our high-order polynomial projection

remapping method. The flowchart is as the same as that in Section 4.1, so we omit it here.

4.2.1 Numerical tests for the two-dimensional Euler equations of gas dynamics

Consider the two-dimensional Euler system

∂

∂t









ρ

ρu

ρv

E









+
∂

∂x









ρu

ρu2 + p

ρuv

u(E + p)









+
∂

∂y









ρv

ρuv

ρv2 + p

v(E + p)









= 0 (4.21)

where ρ is the density, u, v are the fluid velocities on the x, y directions respectively, E is

the total energy, p = (γ − 1)
(

E − 1
2
ρ(u2 + v2)

)

is the pressure for calorically ideal gas and

γ is a constant that depends on the particular gas under consideration. In the following, we
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will set the mesh velocity in the Lagrangian type moving mesh as ω = (u, v)T , where u, v

are the velocities of the fluid flows. Notice that, in the following five tests, we do not apply

the multi-resolution WENO limiter, since it is not necessary for these tests.

The accuracy test. We design an accuracy test for the 2D Euler system on [0, 4π]×[0, 4π].

The initial condition is:

ρ0(x, y) =
1 + 0.2 sin(x+y

2
)√

6
, u0(x, y) = v0(x, y) =

√

γ

2
ρ0(x, y), p0(x, y) = ρ0(x, y)

γ.

Suppose that ρ(x, y, t), u(x, y, t), v(x, y, t), p(x, y, t) are the exact solutions, and if we take

γ = 3, then we can verify that
√
6ρ(x, y, t) is the exact solution of the 2D Burgers’ equation:

ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, with u0(x, y) = 1 + 0.2 sin(
x+ y

2
)

and

u(x, y, t) = v(x, y, t) =

√

γ

2
ρ(x, y, t), p(x, y, t) = ρ(x, y, t)γ.

The initial mesh divides the computational domain uniformly into small squares with mesh

size h = 4π
Nx

, where Nx = Ny are number of cells in each directions, then each square will

be divided into two triangles with the same area. N = 2NxNy is the total number of the

triangular cells.

We show the numerical results of density obtained by the above three DG schemes at

t = 0.3, and denote them as ρE , ρL and ρA in Table 4.6, respectively. In this test, we rezone

the old mesh to the new uniform mesh and apply our remapping procedure in the ALE-DG

scheme every 10 time steps. One can observe that all of these DG schemes have achieved

the designed third-order accuracy.

The Sedov problem. Consider the Sedov problem with the initial condition as:







ρ = 1,
u = 0,
v = 0,

(x, y) ∈ [0, 1.1]× [0, 1.1], (4.22)
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Table 4.6: Error at time t = 0.3 for the two-dimensional Euler system with three third-order
DG schemes.

initial projection error ||ρ(x, 0)− ρ0||
N L1 error order L2 error order L∞ error order

200 2.6257E-05 3.0854E-05 5.7684E-05
800 3.3675E-06 2.96 3.8656E-06 3.00 7.4948E-06 2.94
3200 4.2002E-07 3.00 4.8347E-07 3.00 9.4584E-07 2.99
7200 1.2440E-07 3.00 1.4327E-07 3.00 2.8075E-07 3.00

||ρ(x, T )− ρE ||
N L1 error order L2 error order L∞ error order

200 3.4846E-05 4.5010E-05 1.2433E-04
800 5.7684E-06 2.59 7.0419E-06 2.68 1.8629E-05 2.74
3200 5.9869E-07 3.27 7.7396E-07 3.19 2.8207E-06 2.72
7200 1.7409E-07 3.05 2.2913E-07 3.00 7.9754E-07 3.12

||ρ(x, T )− ρL||
N L1 error order L2 error order L∞ error order

200 3.4814E-05 4.4429E-05 1.2076E-04
800 5.3049E-06 2.71 6.5904E-06 2.75 1.7712E-05 2.77
3200 5.6200E-07 3.24 7.2203E-07 3.19 2.7120E-06 2.71
7200 1.6017E-07 3.10 2.1291E-07 3.01 8.1529E-07 2.96

||ρ(x, T )− ρA||
N L1 error order L2 error order L∞ error order

200 3.5181E-05 4.5255E-05 1.2388E-04
800 5.8654E-06 2.58 7.1579E-06 2.66 1.9292E-05 2.68
3200 6.1853E-07 3.25 8.0111E-07 3.16 2.9961E-06 2.69
7200 1.7986E-07 3.05 2.3630E-07 3.01 8.4165E-07 3.13
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(a) Density (b) Pressure

Figure 4.10: The Sedov problem of the Eulerian DG scheme.

and the initial internal energy e = 10−13 almost everywhere except for the only one cell I

near the origin where we set e = 0.244816
|I|

. This problem is performed on the initially uniform

mesh with 2,048 triangular cells. In Figure 4.10 and 4.11, we show the numerical results of

density and pressure at time t = 1, calculated by the Eulerian DG scheme on the fixed mesh

and the ALE-DG scheme.

For the Sedov problem, we utilize the rezoning procedure and the remapping procedure

after t > 0.5 every 20 time steps, and we perform a simple smoothing operator on the inner

points in the rezoning step. In order not to destroy the high-resolution at the shock front,

we only perform the smoothing operator to modify the points behind the shock. Since the

speed of the shock is almost 1, and we only change the points Pl(xl, yl) satisfying

√

x2
l + y2l ≤ αtn,

at discrete time level tn with α = 0.8 in our code.

For this case, the ALE-DG scheme captures the shock precisely and the mesh quality is

well after adjusting the inner mesh. In Figure 4.12, we demonstrate the cut line at x = y on

these two DG schemes, and one can observe that the numerical diffusion for the ALE-DG

scheme is much less than that for the Eulerian DG scheme.

42



(a) Density (b) Pressure

Figure 4.11: The Sedov problem of the ALE-DG scheme.

(a) Density (b) Pressure

Figure 4.12: The Sedov problem at the cut line x = y.
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The Noh problem. Consider the Noh problem with the initial condition as:







ρ = 1,
ur = −1,
e = 10−13,

(x, y) ∈ [0, 1]× [0, 1], (4.23)

where ur is the radial velocity and take γ = 5
3
. Reflective boundary conditions are considered

for the left and below boundaries, besides that, free boundary conditions are considered for

the right and top boundaries. In practice, the free boundary condition is set as the initial

values. Since the initial internal energy is very close to 0 and the numerical results may be

negative that makes the scheme unstable, the positivity-preserving limiter is essential in this

test.

In Figure 4.13, we show the numerical results of density and pressure for the Eulerian

DG scheme at time t = 0.6 with 2,048 triangular cells. In Figure 4.14, we show the results

for the Lagrangian type DG scheme at t = 0.058 and we can observe that the mesh quality

is very bad near the origin so we need to introduce the polynomial projection remapping

procedure and the rezoning strategy.

For the Noh problem, we perform the rezoning procedure and the remapping procedure

after t > 0 every 10 time steps, and the rezoning strategy is as same as that in the Sedov

problem. As one can see, the numerical results of the ALE-DG scheme are much better

than the results on the fixed mesh, and the shock surface is sharper, in Figure 4.15. We

demonstrate the cut line at x = y in Figure 4.16, and one can observe that the ALE-DG

scheme captures the shock well.

The Saltzman problem Consider the Saltzman problem with the initial condition as:















ρ = 1,
u = 0,
v = 0,

e = 10−10,

(x, y) ∈ [0, 1]× [0, 0.1], (4.24)

and take γ = 5
3
. Reflective boundary conditions are adopted for the right, up and below

boundaries, besides that, the left boundary is a piston with velocity u = 1. Figure 4.17
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(a) Density (b) Pressure

Figure 4.13: The Noh problem of the Eulerian DG scheme at t = 0.6.

Figure 4.14: The Noh problem of the Lagrangian type DG scheme at t = 0.058. Right: the
zoomed mesh near the origin.
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(a) Density (b) Pressure

Figure 4.15: The Noh problem of the ALE-DG scheme at t = 0.6.

(a) Density (b) Pressure

Figure 4.16: The Noh problem at the cut line x = y.
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Figure 4.17: The initial Saltzman mesh.

shows the initial mesh on the computational domain [0, 1]× [0, 0.1] with 640 triangular cells.

For the cells I near the left boundary and its virtual neighbor cell J which has common

edge with I on the left boundary, we take the values on the cell J as

ρJ = ρI , uJ = 2− uI , vJ = vI , pJ = pI .

For this Saltzman problem and the next Dukowicz problem, as the left boundary is

moving, it is difficult for the Eulerian DG scheme to solve this kind of problem, thus we

just use the Lagrangian type DG scheme and the indirect ALE-DG scheme to solve these

problems.

We first try to use the Lagrangian type DG scheme to solve the Saltzman problem,

but the triangular cells is squeezed and distorted soon (see Figure 4.18) and that stops the

simulation. For the Saltzman problem, our rezoning method preserves the y-coordinates

unchanged and modifies the inner point Pl(xl, yl) in the x direction as

x̃l :=
1

S

S
∑

s=1

xl,s,

where xl,s, 1 ≤ s ≤ S are the x-coordinates of the S neighbors of Pl. Therefore, we apply

the rezoning method and our remapping procedure every 50 time steps to maintain the mesh

quality, then we show the numerical results at t = 0.6 in Figure 4.19. The shock front in the

ALE-DG scheme is clear and it is much more robust.
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Figure 4.18: The Saltzman problem of the Lagrangian type DG scheme at t = 0.034. Right:
the zoomed mesh near the left moving boundary.

Figure 4.19: The Saltzman problem of the ALE-DG scheme at t = 0.6.
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Figure 4.20: The initial Dukowicz mesh with 4,800 triangular cells.

The Dukowicz problem. Last, consider the Dukowicz problem in [6]. The computational

domain in the Dukowicz problem consists of two parts, the left one is a trapezoid with the

vertical left boundary and the right boundary slanted at 60◦. The right region is a slanted

parallelogram and Figure 4.20 shows the initial computational mesh with 4, 800 triangular

cells. The left region is made up with the trapezoid (0, 0), (1, 0), (0, 3
2
), (1 + 3

2

√
3, 3

2
), and

the right region is made up with the parallelogram (1, 0), (3, 0), (1 + 3
2

√
3, 3

2
), (3 + 3

2

√
3, 3

2
).

The initial condition is given as














ρL = 1,
uL = 0,
vL = 0,
pL = 1,

and,















ρR = 1.5,
uR = 0,
vR = 0,
pR = 1,

(4.25)

where we take γ = 1.4 in the whole region.

Reflective boundary conditions are considered for the top, bottom and right boundaries,

and the left boundary is a piston with velocity u = 1.48. The computational mesh is squeezed

and distorted and that terminates the program in the Lagrangian type DG method, which

can be seen in Figure 4.21. This time, our rezoning method preserves the y-coordinates un-

changed and divide the mesh uniformly in the x direction. After adjusting the computational

mesh and applying the remapping procedure every 20 time steps, we calculate to t = 1.3

under the indirect ALE-DG scheme and show the density contour in Figure 4.22 with 4, 800

triangular cells and 19, 200 triangular cells. One can observe high resolution incident shock

and transmitted shock interfaces in our ALE-DG scheme. Figure 4.23 shows the cut line
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Figure 4.21: The Dukowicz problem of the Lagrangian type DG scheme at t = 0.025. Right:
the zoomed mesh near the left moving boundary.

at y = 0.375 and y = 0.75 with different meshes, and the more refined mesh has smoother

results.

5 Concluding remarks

In this paper, we develop a high-order accurate, essentially non-oscillatory, conservative and

positivity-preserving polynomial projection remapping method in one, two and three dimen-

sions to couple with the discontinuous Galerkin method for the Lagrangian type moving

mesh, and establish an indirect ALE-DG framework. Since our remapping method is based

on determining the intersections between the old and new meshes, it has a wider range of

application. By applying a positivity-preserving scaling limiter, our remapping method can

ensure positivity without affecting the high order accuracy. We also add the local multi-

resolution WENO limiter to prevent the numerical oscillations generated by the high-order

polynomials near the discontinuities. We have designed a series of numerical tests in one,

two and three dimensions to show that our remapping algorithm is high-order accurate,

non-negative and essentially non-oscillatory. When used to solve the fluid dynamics, our

remapping method is conservative for mass, momentum and total energy, and it can pre-

serve positivity for density and internal energy. All of the above good properties have been

verified by benchmark test problems for the Euler system. In future work, we will develop a
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Figure 4.22: The Dukowicz problem of the ALE-DG scheme at t = 1.3. Upper: 4,800
triangular cells; bottom: 19,200 triangular cells.

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
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19,200 cells
4,800 cells

1.5 2 2.5 3 3.5 4 4.5
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1.5

2

2.5
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3.5

4

4.5
y = 0.75

19,200 cells
4,800 cells

Figure 4.23: The cut line of the Dukowicz problem at y = 0.375 and y = 0.75.
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three-dimensional indirect ALE-DG scheme as an application of this remapping method in

three dimensions.
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