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ON THE STABILITY OF STRONG-STABILITY-PRESERVING MODIFIED
PATANKAR–RUNGE–KUTTA SCHEMES
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Abstract. In this paper, we perform a stability analysis for classes of second and third order accurate
strong-stability-preserving modified Patankar–Runge–Kutta (SSPMPRK) schemes, which were intro-
duced in Huang and Shu [J. Sci. Comput. 78 (2019) 1811–1839] and Huang et al. [J. Sci. Comput.
79 (2019) 1015–1056] and can be used to solve convection equations with stiff source terms, such as
reactive Euler equations, with guaranteed positivity under the standard CFL condition due to the con-
vection terms only. The analysis allows us to identify the range of free parameters in these SSPMPRK
schemes in order to ensure stability. Numerical experiments are provided to demonstrate the validity
of the analysis.
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1. Introduction

Recently, structure-preserving numerical methods have attracted much attention due to many successful
applications. The first modified Patankar–Runge–Kutta (MPRK) method was introduced in [5] and preserves
the positivity and conservativity of the numerical solution of positive and conservative production-destruction
systems (PDS). The PDS have the following form:

𝑦′
𝑖 = 𝑃𝑖(y) − 𝐷𝑖(y), 𝑖 = 1, . . . , 𝑁 (1)

with

𝑃𝑖(y) =
𝑁∑︁

𝑗=1

𝑝𝑖𝑗(y), 𝐷𝑖(y) =
𝑁∑︁

𝑗=1

𝑑𝑖𝑗(y) (2)

and
𝑝𝑖𝑗(y) = 𝑑𝑗𝑖(y) ≥ 0. (3)
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Here y = (𝑦1, . . . , 𝑦𝑁 )𝑇 and 𝑦𝑖 = 𝑦𝑖(𝑡) > 0 denotes the concentration of the 𝑖-th component. The production
function 𝑝𝑖𝑗(y) denotes the rate at which the 𝑗-th component transforms into the 𝑖-th component, while the
destruction function 𝑑𝑖𝑗(y) denotes the rate at which the 𝑖-th component transforms into the 𝑗-th component.
The exact solutions of (1) share the conservation property, i.e.,

∑︀𝑁
𝑖=1 𝑦𝑖(𝑡) remains unchanged with respect

to time 𝑡. Also, the positivity of the solution is guaranteed as long as the initial value problem (1) with
y(0) = y0 > 0 has a unique solution and lim𝑦𝑖↘0 𝑑𝑖𝑗(y) = 0 holds for all 𝑖, 𝑗 = 1, . . . , 𝑁 [5]. Further discussions
on this topic can be found in [8, 28].

In recent years, there has been a considerable interest in the development of MPRK schemes [5,10,11,16,17,21]
arising from the Patankar-trick [23]. In [16–18], MPRK schemes of second and third order were introduced and
analyzed. In [21], the authors adapted the modified Patankar trick to deferred correction (DeC) schemes and
developed MPDeC schemes of arbitrary order of accuracy. This scheme is used in [6] within the solution of the
shallow water equations to ensure the positivity of the water height after a Finite-Volume discretization in space.
Similar, in [20] a DG scheme in space and the MPRK scheme of [5] in time is used to compute approximations
of the shallow water equations with positive water height. In [10, 11], instead of using the Runge–Kutta (RK)
schemes in the classical form, the authors rewrote the RK schemes in the Shu–Osher form [24] and developed
another class of MPRK schemes for (1), the so-called strong-stability-preserving MPRK (SSPMPRK) schemes.
The purpose was to match the treatment of the convection terms and the reaction terms in the same RK
framework. This framework was then applied to semi-discrete schemes arising from multispecies reactive Euler
equations, in which the convection parts were treated with the SSPRK method [9] and the stiff reactive source
terms were treated with the MPRK method. Combining with the finite-difference WENO schemes, the positivity-
preserving WENO scheme was obtained. It is notable that, to guarantee the positivity of the numerical solution,
the time step size was only constrained by the maximum characteristic speeds of the convection term and was
independent of the stiffness of the reactive sources. Accuracy and positivity-preservation were analyzed in [10,11].
A similar approach as in [10,11] to solve reactive Euler equations was taken in [22]. Here, a BBKS scheme [2–4]
was used to ensure positivity instead of an MPRK method.

In this paper, following the lines of [14], we investigate the Lyapunov stability of the above mentioned
SSPMPRK methods applied to linear positive and conservative PDS of the form

y′(𝑡) = Ay(𝑡) (4)

with A ∈ R𝑁×𝑁 , which possess stable steady states in the sense of Definition 3.19 from [7]. Additionally, the
initial condition is given by

y(0) = y0 > 0. (5)

The presence of exactly 𝑘 > 0 linear invariants means that there exist vectors n1, . . . ,n𝑘 which form a basis of
ker(A𝑇 ), and hence, satisfy that n𝑇

𝑖 y(𝑡) = n𝑇
𝑖 y0 for all 𝑡 ≥ 0 and 𝑖 = 1, . . . , 𝑘. The conservation of

∑︀𝑁
𝑖=1 𝑦𝑖(𝑡)

for all 𝑡 ≥ 0 means that 1 ∈ ker(A𝑇 ). In addition, the system (4) is positive if and only if the matrix A is a
Metzler matrix, i.e., a matrix with nonnegative off-diagonal elements, see [19], which guarantees y(𝑡) > 0 for
all 𝑡 > 0 whenever y0 > 0. Moreover, to ensure stable steady states y* ∈ ker(A), the matrix A in (4) must
have a spectrum 𝜎(A) ⊆ C− = {𝑧 ∈ C | Re(𝑧) ≤ 0} and the eigenvalues of A with vanishing real part have to
be associated with a Jordan block size of 1, see Theorem 3.23 from [7]. Indeed, the same theorem states that
no steady state of the test equation (4) is asymptotically stable.

The paper is organized as follows. In Section 2, we summarize important definitions and results concerned
with the stability of fixed points. In Section 3, we apply Theorems 2.2 and 2.3 to investigate the stability of the
second and third order SSPMPRK schemes from [10, 11]. Numerical experiments are presented in Section 4 to
validate the theoretical analysis. Finally, we collect our conclusions and future research topics in Section 5.
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2. Stability theory

In the following, we summarize the main results on the stability of fixed points of a potentially nonlinear
mapping g : 𝐷 → 𝐷 with 𝐷 ⊆ R𝑁 . Thereby, we use ‖ · ‖ to represent an arbitrary norm in R𝑙 for 𝑙 ∈ N and
Dg denotes the Jacobian of the map g.

Definition 2.1. Let y* be a fixed point of an iteration scheme y𝑛+1 = g(y𝑛), that is y* = g(y*).

(a) y* is called Lyapunov stable if, for any 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖) > 0 such that ‖y0 − y*‖ < 𝛿 implies
‖y𝑛 − y*‖ < 𝜖 for all 𝑛 ≥ 0.

(b) If in addition to (a), there exists a constant 𝑐 > 0 such that ‖y0 − y*‖ < 𝑐 implies ‖y𝑛 − y*‖ → 0 for
𝑛 → ∞, we call y* asymptotically stable.

(c) A fixed point that is not Lyapunov stable is said to be unstable.

In the following, we will also briefly speak of stability instead of Lyapunov stability. The next theorem gives
sufficient conditions for the analysis of a general 𝒞1-map g based on its Jacobian.

Theorem 2.2 ([26], Thm. 1.3.7). Let y𝑛+1 = g(y𝑛) be an iteration scheme with fixed point y*. Suppose the
Jacobian Dg(y*) exists and denote its spectral radius by 𝜌(Dg(y*)). Then

(a) y* is asymptotically stable if 𝜌(Dg(y*)) < 1.
(b) y* is unstable if 𝜌(Dg(y*)) > 1.

Unfortunately, the above theorem does not provide a condition to investigate the stability properties of a
fixed point in the case of 𝜌(Dg(y*)) = 1. However, as mentioned in the introduction, we consider the linear
system (4) that possesses only stable but not asymptotically stable steady states. Now, any steady state solution
of (4) should be a fixed point of a reasonable numerical scheme. And similarly, if a steady state is stable but not
asymptotically stable, we expect the same to hold true for the corresponding fixed point of the numerical method.
According to Theorem 2.2, such a fixed point y* of a 𝒞1-map g must correspond to the case 𝜌(Dg(y*)) = 1,
from which it follows that y* is non-hyperbolic. The analysis of non-hyperbolic fixed points is more delicate
since the analysis of the linearized method is generally not enough to understand the stability properties of
the fixed point. However, under certain circumstances, the stability of a non-hyperbolic fixed point still can be
determined by means of a linearization as the result from [14] states.

To formulate the theorem, we introduce the matrix

N =

⎛⎜⎝n𝑇
1
...

n𝑇
𝑘

⎞⎟⎠ ∈ R𝑘×𝑁 , (6)

where n1, . . . ,n𝑘 form a basis of ker(A𝑇 ) with A from (4), which means that (4) possesses 𝑘 linear invariants.
Furthermore, we define the set

𝐻 =
{︀
y ∈ R𝑁 | Ny = Ny*}︀ (7)

containing all vectors y that satisfy n𝑇
𝑖 y = n𝑇

𝑖 y* for all 𝑖 = 1, . . . , 𝑘. We point out that under the assumption
y ∈ 𝐻 ∩ 𝐷 we obtain g(y) ∈ 𝐻 ∩ 𝐷, if and only if g conserves all linear invariants.

Theorem 2.3 ([14], Thm. 2.9). Let A ∈ R𝑁×𝑁 such that ker(A) = span(v1, . . . ,v𝑘) represents a 𝑘-dimensional
subspace of R𝑁 with 𝑘 > 0. Also, let y* ∈ ker(A) be a fixed point of g : 𝐷 → 𝐷 where 𝐷 ⊆ R𝑁 contains a
neighborhood 𝒟 of y*. Moreover, let any element of 𝐶 = ker(A) ∩ 𝒟 be a fixed point of g and suppose that
g
⃒⃒
𝒟 ∈ 𝒞1 as well as that the first derivatives of g are Lipschitz continuous on 𝒟. Then Dg(y*)v𝑖 = v𝑖 for

𝑖 = 1, . . . , 𝑘 and the following statements hold:

(a) If the remaining (𝑁 − 𝑘) eigenvalues of Dg(y*) have absolute values smaller than 1, then y* is stable.
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(b) Let 𝐻 be defined by (7) and g conserve all linear invariants, which means that g(y) ∈ 𝐻 ∩ 𝐷 for all
y ∈ 𝐻 ∩𝐷. If additionally the assumption of (a) is fulfilled, then there exists a 𝛿 > 0 such that y0 ∈ 𝐻 ∩𝐷
and ‖y0 − y*‖ < 𝛿 imply y𝑛 → y* as 𝑛 → ∞.

We would like to mention that the second part of the above theorem does not imply that the fixed point is
asymptotically stable but rather attracting for appropriately chosen starting vectors y0. Indeed, in the situation
of Theorem 2.3 no y* ∈ ker(A) ∩ 𝐷 is asymptotically stable as in any neighborhood of y* there exist infinitely
many other fixed points.

Remark 2.4. As a final remark, we note that if g ∈ 𝒞2, which is also assumed in [13], we may choose 𝒟 ⊆ 𝐷 in
such a way that 𝒟 ⊆ 𝐷. As a result the second derivatives are bounded on the compact set 𝒟̄, so that the first
derivatives are Lipschitz continuous due to the mean value theorem. Therefore, g restricted to 𝒟 is a 𝒞1-map
with Lipschitz continuous derivatives. For more details, see for example Remark 8.12(b) of [1].

Moreover, we want to mention that Theorem 2.3 recently was applied to analyze the stability properties of
MPRK22(𝛼) when applied to a nonlinear systems of ordinary differential equations, see [15].

3. Stability of SSPMPRK schemes

As SSPMPRK schemes can only be directly applied to positive and conservative PDS, we assume that the
linear test equation (4) is conservative (i.e., 1 ∈ ker(A𝑇 )) and the system matrix A is a Metzler matrix. Then
the test equation can be rewritten as a positive and conservative PDS with 𝑝𝑖𝑗(y) = 𝑑𝑗𝑖(y) = 𝑎𝑖𝑗𝑦𝑗 for 𝑖 ̸= 𝑗

and 𝑝𝑖𝑖 = 𝑑𝑖𝑖 = 0. Moreover, from 1 ∈ ker(A𝑇 ), one can easily derive
∑︀𝑁

𝑗=1 𝑎𝑗𝑖 = 0 and thus obtain

−
𝑁∑︁

𝑗=1

𝑑𝑖𝑗(y) = −
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝑎𝑗𝑖𝑦𝑖 = 𝑎𝑖𝑖𝑦𝑖, (8)

which will be used in the following to write the SSPMPRK schemes in the matrix-vector notation.

3.1. Second order SSPMPRK Scheme

The second order SSPMPRK scheme for solving (1), introduced in [10], is given by

𝑦
(1)
𝑖 = 𝑦𝑛

𝑖 + 𝛽∆𝑡

⎛⎝ 𝑁∑︁
𝑗=1

𝑝𝑖𝑗(y𝑛)
𝑦
(1)
𝑗

𝑦𝑛
𝑗

−
𝑁∑︁

𝑗=1

𝑑𝑖𝑗(y𝑛)
𝑦
(1)
𝑖

𝑦𝑛
𝑖

⎞⎠,

𝑦𝑛+1
𝑖 = (1 − 𝛼)𝑦𝑛

𝑖 + 𝛼𝑦
(1)
𝑖 + ∆𝑡

⎛⎝ 𝑁∑︁
𝑗=1

(︁
𝛽20𝑝𝑖𝑗(y𝑛) + 𝛽21𝑝𝑖𝑗

(︁
y(1)

)︁)︁ 𝑦𝑛+1
𝑗(︀

𝑦𝑛
𝑗

)︀1−𝑠
(︁
𝑦
(1)
𝑗

)︁𝑠

−
𝑁∑︁

𝑗=1

(︁
𝛽20𝑑𝑖𝑗(y𝑛) + 𝛽21𝑑𝑖𝑗

(︁
y(1)

)︁)︁ 𝑦𝑛+1
𝑖

(𝑦𝑛
𝑖 )1−𝑠

(︁
𝑦
(1)
𝑖

)︁𝑠

⎞⎠, (9)

where 𝛽20 = 1 − 1
2𝛽 − 𝛼𝛽, 𝛽21 = 1

2𝛽 and 𝑠 = 1−𝛼𝛽+𝛼𝛽2

𝛽(1−𝛼𝛽) . Thereby, the free parameters 𝛼 and 𝛽 satisfy

0 ≤ 𝛼 ≤ 1, 𝛽 > 0, 𝛼𝛽 +
1

2𝛽
≤ 1. (10)

We refer to the above scheme as SSPMPRK2 (𝛼, 𝛽). When applied to (4), the terms 𝑝𝑖𝑗 and 𝑑𝑖𝑗 fulfill (8). As
a consequence, the scheme (9) can be rewritten as

0 = Φ1

(︁
y𝑛,y(1)

)︁
= y𝑛 + 𝛽∆𝑡Ay(1) − y(1),
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0 = Φ𝑛+1

(︁
y𝑛,y(1),y𝑛+1

)︁
= (1 − 𝛼)y𝑛 + 𝛼y(1)

+ ∆𝑡A diag
(︀
y𝑛+1

)︀(︁
diag

(︁
y(1)

)︁)︁−𝑠

(diag(y𝑛))𝑠−1
(︁
𝛽20y𝑛 + 𝛽21y(1)

)︁
− y𝑛+1, (11)

where we use the notation (diag(y))𝑖𝑗 = 𝛿𝑖𝑗𝑦𝑖 with the Kronecker delta 𝛿𝑖𝑗 as well as ((diag(y))𝑥)𝑖𝑗 = 𝛿𝑖𝑗𝑦
𝑥
𝑖 for

𝑥 ∈ R. Furthermore, y(1) = y(1)(y𝑛) and y𝑛+1 = g(y𝑛) defined by (11) are functions of y𝑛. In order to apply
Theorems 2.2 and 2.3, we have to investigate the map g with respect to its smoothness as well as steady state
and linear invariants preservation.

First of all, we show that g ∈ 𝒞2 and then use Remark 2.4 in order to see that the first derivatives are Lipschitz
continuous on an appropriately chosen neighborhood 𝒟 of y*. Indeed, the maps Φ1 : R𝑁

>0 × R𝑁
>0 → R𝑁 and

Φ𝑛+1 : R𝑁
>0 × R𝑁

>0 × R𝑁
>0 → R𝑁 are in 𝒞2, and as defined in (11), vanish for the argument (y𝑛,y(1)(y𝑛))

and (y𝑛,y(1)(y𝑛),g(y𝑛)), respectively. And since the computation of y𝑛+1 requires only the solution of linear
systems which possess always a unique solution for any y𝑛 > 0, the function g is also a 𝐶2-map.

Next, we show that any positive steady state of (4) is a fixed point of g. To see this, we want to mention
that y𝑛 = y(1) = y𝑛+1 = y* is a solution to the system of equations (11) due to Ay* = 0. Since the solution
for given y𝑛 is unique, we conclude that y𝑛 = y* implies y(1) = y𝑛+1 = y*, i.e., g(y*) = y*.

Moreover, g conserves all linear invariants since n𝑇 A = 0 and (11) imply

n𝑇 g(y𝑛) = n𝑇 y𝑛+1 = (1 − 𝛼)n𝑇 y𝑛 + 𝛼n𝑇 y(1) + 0 = (1 − 𝛼)n𝑇 y𝑛 + 𝛼n𝑇
(︁
y𝑛 + 𝛽∆𝑡Ay(1)

)︁
= n𝑇 y𝑛.

Therefore, the map g : R𝑁
>0 → R𝑁

>0 meets the assumptions of Theorem 2.3, so that we now focus on computing
the Jacobian Dg(y*). Instead of calculating g explicitly, we take advantage of the fact that g(y𝑛) = y𝑛+1 occurs
as an argument within the function Φ𝑛+1 while computing its total derivative DΦ𝑛+1 and solving for Dg(y*).
Doing so, we have to compute several partial derivatives. For the operator returning the Jacobian obtained
by differentiating with respect to the first argument we use the notation D𝑛 as we plug in y𝑛 in (11) as the
first variable. Similarly, we introduce the operators D1 for the derivatives with respect to the variable where
we plugged in y(1), and similarly, the operator D𝑛+1. As we are interested in the Jacobian of g evaluated at
y𝑛 = y*, we plug in the values (y*,y(1)(y*)) or (y𝑛(y*),y(1)(y*),g(y*)) into the Jacobians of Φ1 and Φ𝑛+1,
respectively. To indicate this in the following formula, we use the notation D*

𝑛, D*
1 and D*

𝑛+1. Therefore, we
obtain

0 = D*Φ𝑛+1 = D*
𝑛Φ𝑛+1 + D*

1Φ𝑛+1D*y(1) + D*
𝑛+1Φ𝑛+1Dg(y*),

where D*y(1) is the Jacobian of y(1)(y𝑛) evaluated at y*. If D*
𝑛+1Φ𝑛+1 is nonsingular, we can solve for Dg(y*)

which results in
Dg(y*) = −(D*

𝑛+1Φ𝑛+1)−1
(︁
D*

𝑛Φ𝑛+1 + D*
1Φ𝑛+1D*y(1)

)︁
. (12)

In order to compute D*y(1), we use the same trick, i.e.,

0 = D*Φ1 = D*
𝑛Φ1 + D*

1Φ1D*y(1),

which yields
D*y(1) = −(D*

1Φ1)−1D*
𝑛Φ1, (13)

if D*
1Φ1 is invertible. Hence, we have to compute several auxiliary Jacobians in order to calculate Dg(y*) and

we start with
D*

𝑛Φ1 = I and D*
1Φ1 = 𝛽∆𝑡A − I.

Note that 𝛽 > 0 and 𝜎(A) ⊆ C−, which implies that D*
1Φ1 is nonsingular. Thus, we can use (13) and find

D*y(1) = −(𝛽∆𝑡A − I)−1 · I = (I − 𝛽∆𝑡A)−1. (14)
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Next, we compute D*
𝑛Φ𝑛+1 and D*

1Φ𝑛+1. For this, we first define f(y𝑛,y(1)) = diag(y𝑛)𝑘(𝛽20y𝑛 + 𝛽21y(1)) for
some 𝑘 ∈ R and get

(D*
𝑛f)𝑖𝑗 = 𝜕𝑦𝑛

𝑗

(︁
(𝑦𝑛

𝑖 )𝑘
(︁
𝛽20𝑦

𝑛
𝑖 + 𝛽21𝑦

(1)
𝑖

)︁)︁⃒⃒⃒
y𝑛=y*

= 𝛿𝑖𝑗

(︁
𝑘(𝑦*

𝑖 )𝑘−1(𝛽20 + 𝛽21)𝑦*
𝑖 + (𝑦*

𝑖 )𝑘
𝛽20

)︁
=
(︁

diag(y*)𝑘
)︁

𝑖𝑗
(𝑘(𝛽20 + 𝛽21) + 𝛽20),

(15)

where we have used the fact that y(1)(y*) = y*. Similarly, defining u(y𝑛,y(1)) = diag
(︀
y(1)

)︀𝑘
(𝛽20y𝑛 + 𝛽21y(1)),

we obtain
D*

1u = diag(y*)𝑘(𝑘(𝛽20 + 𝛽21) + 𝛽21). (16)

In order to apply the formulas (15) and (16) to compute D*
𝑛Φ𝑛+1 and D*

1Φ𝑛+1, we also make use of the fact
that diagonal matrices commute, so that we end up with

D*
𝑛Φ𝑛+1 = (1 − 𝛼)I + ∆𝑡A((𝑠 − 1)(1 − 𝛼𝛽) + 𝛽20) and D*

1Φ𝑛+1 = 𝛼I + ∆𝑡A(−𝑠(1 − 𝛼𝛽) + 𝛽21), (17)

where we have exploited 𝛽20+𝛽21 = 1−𝛼𝛽. Finally, to compute D*
𝑛+1Φ𝑛+1 we rewrite (11) utilizing diag(v)w =

diag(w)v to get

Φ𝑛+1

(︁
y𝑛,y(1)(y𝑛),y𝑛+1(y𝑛)

)︁
= (1 − 𝛼)y𝑛 + 𝛼y(1) + ∆𝑡A diag

(︁
𝛽20y𝑛 + 𝛽21y(1)

)︁(︁
diag

(︁
y(1)

)︁)︁−𝑠

× (diag(y𝑛))𝑠−1y𝑛+1 − y𝑛+1. (18)

From this, it is easy to see that
D*

𝑛+1Φ𝑛+1 = (1 − 𝛼𝛽)∆𝑡A − I

which is a nonsingular matrix since 𝜎(A) ⊆ C−, and (10) implies 1 − 𝛼𝛽 ≥ 1
2𝛽 > 0. Finally, we introduce the

expressions for the Jacobians into the formula (12) resulting in

Dg(y*) = (I − (1 − 𝛼𝛽)∆𝑡A)−1
(︁

(1 − 𝛼)I + ∆𝑡A((𝑠 − 1)(1 − 𝛼𝛽) + 𝛽20)

+ (𝛼I + ∆𝑡A(−𝑠(1 − 𝛼𝛽) + 𝛽21))(I − 𝛽∆𝑡A)−1
)︁
. (19)

Since Dg(y*) is a rational function of A and the identity matrix I, any eigenvector of A with the eigenvalue 𝜆
is consequently an eigenvector of Dg(y*) with the eigenvalue 𝑅(∆𝑡𝜆) where

𝑅(𝑧) =
1 − 𝛼 + 𝑧((𝑠 − 1)(1 − 𝛼𝛽) + 𝛽20) + 𝛼+𝑧(−𝑠(1−𝛼𝛽)+𝛽21)

1−𝛽𝑧

1 − (1 − 𝛼𝛽)𝑧
·

From

𝛽20 = 1 − 1
2𝛽

− 𝛼𝛽, 𝛽21 =
1

2𝛽
and 𝑠 =

𝛼𝛽2 − 𝛼𝛽 + 1
𝛽(1 − 𝛼𝛽)

elementary computations lead to

𝑅(𝑧) =
−2 + (2𝛼𝛽2 − 2𝛼𝛽 + 1)𝑧2 − 2𝛽(𝛼 − 1)𝑧

2(1 + (𝛼𝛽 − 1)𝑧)(𝛽𝑧 − 1)
·

In summary, we obtain the following proposition.
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Proposition 3.1. Let g : R𝑁
>0 → R𝑁

>0 be the map given by the application of the second order SSPMPRK
to the differential equation (4) with 1 ∈ ker(A𝑇 ). Then any y* ∈ ker(A) ∩ R𝑁

>0 is a fixed point of g and
g ∈ 𝒞2(R𝑁

>0, R𝑁
>0), whereby the first derivatives of g are Lipschitz continuous in an appropriate neighborhood

of y*. Moreover, all linear invariants are conserved and an eigenvalue 𝜆 of A corresponds to the eigenvalue
𝑅(∆𝑡𝜆) of the Jacobian of g where

𝑅(𝑧) =
−2 +

(︀
2𝛼𝛽2 − 2𝛼𝛽 + 1

)︀
𝑧2 − 2𝛽(𝛼 − 1)𝑧

2(1 + (𝛼𝛽 − 1)𝑧)(𝛽𝑧 − 1)
· (20)

By this proposition, the SSPMPRK2(𝛼, 𝛽) scheme satisfies all preconditions in order to apply Theorem 2.3.
Thus, we have to analyze the stability function 𝑅.

Proposition 3.2. Let 𝑅 be defined by (20) with 𝛼, 𝛽 satisfying (10).

(a) For any 𝛼 > 1
2𝛽 , the set {𝑧 ∈ C− | |𝑅(𝑧)| ≤ 1} is bounded.

(b) For all 𝛼 < 1
2𝛽 with (𝛼, 𝛽) ̸= (0, 1

2 ) we have |𝑅(𝑧)| < 1 for all 𝑧 ∈ C− ∖ {0}.
(c) For 𝛼 = 1

2𝛽 or (𝛼, 𝛽) = (0, 1
2 ) the relation |𝑅(𝑧)| < 1 is true for all 𝑧 with Re(𝑧) < 0, and |𝑅(𝑧)| = 1 holds

whenever Re(𝑧) = 0.

Proof. For proving part (a) of the proposition, we consider (20) which yields

lim
𝑧→−∞

𝑅(𝑧) =
2𝛼𝛽2 − 2𝛼𝛽 + 1

2𝛽(𝛼𝛽 − 1)
=

2𝛼𝛽2 − 2𝛼𝛽 + 1
2𝛼𝛽2 − 2𝛽

·

Note that for 𝛼 = 1
2𝛽 , we obtain lim𝑧→−∞ 𝑅(𝑧) = 𝛽−1+1

𝛽−2𝛽 = −1. Finally, it is straightforward to verify

𝜕𝛼

(︂
lim

𝑧→−∞
𝑅(𝑧)

)︂
= 𝜕𝛼

(︂
2𝛼𝛽2 − 2𝛼𝛽 + 1

2𝛽(𝛼𝛽 − 1)

)︂
=

2𝛽(𝛽 − 1)2𝛽(𝛼𝛽 − 1) − (2𝛼𝛽(𝛽 − 1) + 1)2𝛽2

4𝛽2(𝛼𝛽 − 1)2
=

1 − 2𝛽

2(𝛼𝛽 − 1)2
< 0,

since 𝛽 ≥ 1
2 . Therefore lim𝑧→−∞ 𝑅(𝑧) decreases with increasing 𝛼. As a result, for any 𝛼 > 1

2𝛽 , we find
lim𝑧→−∞ 𝑅(𝑧) < −1 and thus, there exists 𝑧* ∈ C− so that |𝑅(𝑧*)| > 1. Indeed, the set {𝑧 ∈ C− | |𝑅(𝑧)| ≤ 1}
is bounded, as we find |𝑅(𝑧*)| > 1 for any 𝑧* ∈ C− with |𝑧*| large enough.

We now focus on the derivation of the remaining statements, we investigate |𝑅(𝑧)| first on the imaginary
axis. A technical but elementary computation for 𝑧 = i𝑏, with 𝑏 ∈ R, yields

|𝑅(i𝑏)|2 =
1 + 𝑏4

(︀
𝛼𝛽2 − 𝛼𝛽 + 1

2

)︀2 + 𝑏2
(︀
1 + (𝛼2 + 1)𝛽2 − 2𝛼𝛽

)︀(︁
1 + (𝛼𝛽 − 1)2𝑏2

)︁
(𝛽2𝑏2 + 1)

·

Subtracting the denominator from the numerator leads to the expression

−(2𝛼𝛽 − 2𝛽 − 1)(2𝛼𝛽 − 1)(2𝛽 − 1)𝑏4. (21)

With respect to statement (b), we consider 𝛼 < 1
2𝛽 and 𝛽 > 1

2 , as 𝛽 = 1
2 implies 𝛼 = 0 due to equation (10). It

follows that 2𝛽 − 1 > 0. Due to 𝛼 < 1
2𝛽 , we see 2𝛼𝛽 < 1 and 2𝛼𝛽 − 2𝛽 − 1 < 1 − 2𝛽 − 1 < 0, so that the whole

product (21) becomes negative, whenever 𝑧 = i𝑏 ̸= 0. This is equivalent to |𝑅(𝑧)| < 1 on the imaginary axis
without the origin. Using the Phragmén–Lindelöf principle, see [25,27], applied to the sector given by the union
of the origin and the interior of C−, we conclude that |𝑅(𝑧)| ≤ 1 for all 𝑧 ∈ C−, as 𝑅 is rational and no poles
are located in C−. Furthermore, since 𝑅 is not constant, we conclude from the maximum modulus principle
that there exists no 𝑧0 in the interior of C− with |𝑅(𝑧0)| = 1, so that, |𝑅(𝑧)| < 1 holds for all 𝑧 ∈ C− ∖ {0}.

The assertion (c) can be proved in a similar way using (21). Indeed, in the case of 𝛼 = 1
2𝛽 or (𝛼, 𝛽) = (0, 1

2 ),
the product (21) vanishes proving |𝑅(𝑧)| = 1 on the imaginary axis. Once again taking advantage of the
Phragmén–Lindelöf principle one can conclude |𝑅(𝑧)| < 1 in the interior of C−. �
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Figure 1. The black curve is implicitly given by the function 𝛼(𝛽) =
1− 1

2𝛽

𝛽 . The blue graph is
determined by the equation 𝛼 = 1

2𝛽 and the red rectangular possesses the vertices (𝛼, 𝛽) with
(0.2, 3), (0.2, 3.5), (0.24, 3) and (0.24, 3.5) which lie between the black and blue curve.

As a result we obtain the following corollaries that are a direct consequence of the application of Theo-
rems 2.2 and 2.3.

Corollary 3.3. Let y* be a positive steady state of the differential equation (4). Then y* is a fixed point of the
SSPMPRK2(𝛼, 𝛽) scheme and the following holds:

(a) For any 𝛼 > 1
2𝛽 , the stability region of the SSPMPRK2(𝛼, 𝛽) method is bounded.

(b) For all 𝛼 < 1
2𝛽 with (𝛼, 𝛽) ̸= (0, 1

2 ), the fixed point y* is stable for all ∆𝑡 > 0.
(c) For 𝛼 = 1

2𝛽 or (𝛼, 𝛽) = (0, 1
2 ), the fixed point y* is stable for all ∆𝑡 > 0, if all nonzero eigenvalues of A

have a negative real part.

Corollary 3.4. Let the unique steady state y* of the initial value problem (4), (5) be positive. Then the iterates
of the SSPMPRK2(𝛼, 𝛽) scheme locally converge towards y* for all ∆𝑡 > 0, if any of the following condition
holds:

(a) 𝛼 < 1
2𝛽 and (𝛼, 𝛽) ̸= (0, 1

2 ).
(b) 𝛼 = 1

2𝛽 or (𝛼, 𝛽) = (0, 1
2 ) and additionally all nonzero eigenvalues of A have a negative real part.

In order to illustrate the consequences of Corollary 3.3, consider Figure 1, where due to (10) all permitted pairs
of (𝛼, 𝛽) with 𝛽 ≤ 5 lie between the 𝛽-axis and the black curve. The blue graph is determined by 𝛼 = 1

2𝛽 , and
thus, separates pairs of parameters associated with unconditionally stable fixed points from those with bounded
stability domains. As an example, here we will consider the red rectangular with vertices (0.2, 3), (0.2, 3.5),
(0.24, 3) and (0.24, 3.5), which is located in that critical region, so that we further analyze the corresponding
choices of parameters with the help of Figure 2, where we plot the corresponding stability regions. One can
observe that the chosen pairs of parameters from Figure 1 that are closer to the blue graph are associated with
a larger stability domain. The smallest stability region among the examples from Figure 2 are associated with
the (𝛼, 𝛽) pair at the top right corner of the red rectangular from Figure 1.

3.2. Third order SSPMPRK Scheme

In this section, we analyze the stability properties of the third order SSPMPRK scheme, introduced in [11],
by using the same tools as for the second order scheme. We start by presenting the method, which can be
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Figure 2. Different stability domains of the SSPMPRK2(𝛼, 𝛽) method are plotted for (𝛼, 𝛽)
associated with the corners of the red rectangular from Figure 1. (a) (𝛼, 𝛽) = (0.2, 3). (b)
(𝛼, 𝛽) = (0.24, 3). (c) (𝛼, 𝛽) = (0.2, 3.5). (d) (𝛼, 𝛽) = (0.24, 3.5).

written as

𝑦
(1)
𝑖 = 𝛼10𝑦

𝑛
𝑖 + 𝛽10∆𝑡

⎛⎝ 𝑁∑︁
𝑗=1

𝑝𝑖𝑗(y𝑛)
𝑦
(1)
𝑗

𝑦𝑛
𝑗

−
𝑁∑︁

𝑗=1

𝑑𝑖𝑗(y𝑛)
𝑦
(1)
𝑖

𝑦𝑛
𝑖

⎞⎠,

𝜌𝑖 = 𝑛1𝑦
(1)
1 + 𝑛2𝑦

𝑛
𝑖

(︃
𝑦
(1)
𝑖

𝑦𝑛
𝑖

)︃2

,

𝑦
(2)
𝑖 = 𝛼20𝑦

𝑛
𝑖 + 𝛼21𝑦

(1)
𝑖 + ∆𝑡

(︃
𝑁∑︁

𝑗=1

(︁
𝛽20𝑝𝑖𝑗(y𝑛) + 𝛽21𝑝𝑖𝑗

(︁
y(1)

)︁)︁𝑦
(2)
𝑗

𝜌𝑗
−

𝑁∑︁
𝑗=1

(︁
𝛽20𝑑𝑖𝑗(y𝑛) + 𝛽21𝑑𝑖𝑗

(︁
y(1)

)︁)︁𝑦
(2)
𝑖

𝜌𝑖

)︃
,

𝛾𝑖 = 𝜂1𝑦
𝑛
𝑖 + 𝜂2𝑦

(1)
𝑖

+ ∆𝑡

(︃
𝑁∑︁

𝑗=1

(︁
𝜂3𝑝𝑖𝑗(y𝑛) + 𝜂4𝑝𝑖𝑗

(︁
y(1)

)︁)︁ 𝛾𝑗

(𝑦𝑛
𝑗 )1−𝑠(𝑦(1)

𝑗 )𝑠
−

𝑁∑︁
𝑗=1

(︁
𝜂3𝑑𝑖𝑗(y𝑛) + 𝜂4𝑑𝑖𝑗

(︁
y(1)

)︁)︁ 𝛾𝑖

(𝑦𝑛
𝑖 )1−𝑠(𝑦(1)

𝑖 )𝑠

)︃
,

𝜎𝑖 = 𝛾𝑖 + 𝜁𝑦𝑛
𝑖

𝑦
(2)
𝑖

𝜌𝑖
,
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𝑦𝑛+1
𝑖 = 𝛼30𝑦

𝑛
𝑖 + 𝛼31𝑦

(1)
𝑖 + 𝛼32𝑦

(2)
𝑖 + ∆𝑡

(︃
𝑁∑︁

𝑗=1

(︁
𝛽30𝑝𝑖𝑗(y𝑛) + 𝛽31𝑝𝑖𝑗

(︁
y(1)

)︁
+ 𝛽31𝑝𝑖𝑗

(︁
y(2)

)︁)︁𝑦𝑛+1
𝑗

𝜎𝑗

−
𝑁∑︁

𝑗=1

(︁
𝛽30𝑑𝑖𝑗(y𝑛) + 𝛽31𝑑𝑖𝑗

(︁
y(1)

)︁
+ 𝛽32𝑑𝑖𝑗

(︁
y(2)

)︁)︁𝑦𝑛+1
𝑖

𝜎𝑖

)︃
, (22)

where we use the parameters

𝛼10 = 1, 𝛼20 = 9.2600312554031827 × 10−1, 𝛼21 = 7.3996874459681783 × 10−2,

𝛼30 = 7.0439040373427619 × 10−1, 𝛼31 = 2.0662904223744017 × 10−10, 𝛼32 = 2.9560959605909481 × 10−1,

𝛽10 = 4.7620819268131703 × 10−1, 𝛽20 = 7.7545442722396801 × 10−2, 𝛽21 = 5.9197500149679749 × 10−1,

𝛽30 = 2.0044747790361456 × 10−1, 𝛽31 = 6.8214380786704851 × 10−10, 𝛽32 = 5.9121918658514827 × 10−1,

𝜁 = 0.62889380778287493358, 𝜂1 = 0.37110619221712506642 − 𝜂2, 𝜂3 = −1.2832127371313151768𝜂2

+ 0.6146025595987523739
𝜂4 = 2.2248760403511226405, 𝑛1 = 0.25690460257320105191, 𝑛2 = 1 − 𝑛1 (23)

in accordance with [11]. Here, 𝜂2 is a free parameter satisfying 𝜂2 ∈ [0, 𝑟1] with 𝑟1 = 0.37110619221712506642,
so that we refer to this scheme as SSPMPRK3(𝜂2). For more details on the parameters we refer to the Maple
code in the reproducibility repository [12].

As the first step, we apply this scheme to the linear test problem (4) and rewrite it in the matrix-vector
notation. For this, we again make use of equation (8) and the fact that the production and destruction terms
are linear, which results in

0 = Φ1

(︁
y𝑛,y(1)

)︁
= 𝛼10y𝑛 + 𝛽10∆𝑡Ay(1) − y(1),

0 = Φ𝜌

(︁
y𝑛,y(1), 𝜌

)︁
= 𝑛1y(1) + 𝑛2

(︁
diag

(︁
y(1)

)︁)︁2

(diag(y𝑛))−11 − 𝜌,

0 = Φ2

(︁
y𝑛,y(1), 𝜌,y(2)

)︁
= 𝛼20y𝑛 + 𝛼21y(1) + ∆𝑡A diag

(︁
y(2)

)︁
(diag(𝜌))−1

(︁
𝛽20y𝑛 + 𝛽21y(1)

)︁
− y(2),

0 = Φ𝛾

(︁
y𝑛,y(1), 𝛾

)︁
= 𝜂1y𝑛 + 𝜂2y(1) + ∆𝑡A diag(𝛾)(diag(y𝑛))𝑠−1

(︁
diag

(︁
y(1)

)︁)︁−𝑠(︁
𝜂3y𝑛 + 𝜂4y(1)

)︁
− 𝛾,

0 = Φ𝜎

(︁
y𝑛,y(2), 𝜌, 𝛾, 𝜎

)︁
= 𝛾 + 𝜁

(︁
diag

(︁
y(2)

)︁)︁
(diag(𝜌))−1y𝑛 − 𝜎,

0 = Φ𝑛+1

(︁
y𝑛,y(1), 𝜌,y(2),y𝑛+1

)︁
= 𝛼30y𝑛 + 𝛼31y(1) + 𝛼32y(2) + ∆𝑡A diag

(︀
y𝑛+1

)︀(︀
diag(𝜎)−1

)︀(︁
𝛽30y𝑛 + 𝛽31y(1) + 𝛽32y(2)

)︁
− y𝑛+1, (24)

where we omitted to write the arguments as functions of y𝑛. Moreover, the parameter 𝑠 is determined by
equation (3.19) of [11], also see [12] for the details of the computation. Nevertheless, we want to point out that
all functions from above are 𝒞2-maps for positive arguments. Thus, the map g, which is determined by solving
linear systems, is in 𝒞2. Due to Remark 2.4, the first derivatives are Lipschitz continuous for a sufficiently small
neighborhood of y*.

Also, we can prove g(v) = v for all v ∈ ker(A) ∩ R𝑁
>0 as follows. We know that Φ1(y*,y*) = 0, and hence,

y𝑛 = y* implies y(1) = y* as y(1) is uniquely determined by y𝑛. Analogously, we conclude 𝜌(y*) = y* as
𝑛1 + 𝑛2 = 1. As a consequence, we conclude from 𝑎20 + 𝑎21 = 1 at double precision that also y(2)(y*) = y*.
However, 𝛾(y*) = (𝜂1 + 𝜂2)y*, from which it follows that 𝜎(y*) = (𝜂1 + 𝜂2)y* + 𝜁y* = y* since 𝜂1 + 𝜂2 = 1− 𝜁.
Finally y𝑛+1(y*) = g(y*) = y* because of

∑︀2
𝑖=0 𝛼3𝑖 = 1 is true at double precision.

In the following we use 𝑎20 + 𝑎21 = 1,
∑︀2

𝑖=0 𝛼3𝑖 = 1 and 𝛼10 = 1 as well as the values of the functions
evaluated at y* without further notice.



ON THE STABILITY OF SSPMPRK SCHEMES 1073

Moreover, we can observe that g conserves all linear invariants as follows. First, n𝑇 A = 0 implies

n𝑇 y(1) = 𝛼10n𝑇 y𝑛 + 𝛽10∆𝑡n𝑇 Ay(1) = n𝑇 y𝑛.

As a consequence, we obtain

n𝑇 y(2) = 𝛼20n𝑇 y𝑛 + 𝛼21n𝑇 y(1) + 0 = (𝛼20 + 𝛼21)n𝑇 y𝑛 = n𝑇 y𝑛.

Altogether, we find that g is linear invariants preserving due to

n𝑇 g(y𝑛) = n𝑇 y𝑛+1 =
2∑︁

𝑖=0

𝛼3𝑖n𝑇 y𝑛 + 0 = n𝑇 y𝑛.

Hence, also in the third order case, the map g satisfies all conditions for applying Theorems 2.2 and 2.3.
Therefore, we are now interested in computing the Jacobian of g, which can be done by using the same techniques
and notations as for the second order SSPMPRK scheme. Total differentiation of the last equation of (24) and
solving for Dg(y*) yield

Dg(y*) = −
(︀
D*

𝑛+1Φ𝑛+1

)︀−1
(︁
D*

𝑛Φ𝑛+1 + D*
1Φ𝑛+1D*y(1) + D*

2Φ𝑛+1D*y(2) + D*
𝜎Φ𝑛+1D*𝜎

)︁
, (25)

if (D*
𝑛+1Φ𝑛+1)−1 exists. Hence, we need formulas for D*y(1),D*y(2) and D*𝜎. We use the same strategies as

for the second order scheme and obtain by means of a total differentiation of the corresponding equation in (24)
the formulas

D*y(1) = −(D*
1Φ1)−1D*

𝑛Φ1,

D*y(2) = −(D*
2Φ2)−1

(︁
D*

𝑛Φ2 + D*
1Φ2D*y(1) + D*

𝜌Φ2D*𝜌
)︁
,

D*𝜎 = −(D*
𝜎Φ𝜎)−1

(︁
D*

𝑛Φ𝜎 + D*
2Φ𝜎D*y(2) + D*

𝜌Φ𝜎D*𝜌 + D*
𝛾Φ𝜎D*𝛾

)︁
,

(26)

provided that the inverses exist. However, to compute the last two Jacobians, we now require to have knowledge
about D*𝜌 and D*𝛾. These Jacobians can be obtained by

D*𝜌 = −
(︀
D*

𝜌Φ𝜌

)︀−1
(︁
D*

𝑛Φ𝜌 + D*
1Φ𝜌D*y(1)

)︁
,

D*𝛾 = −
(︀
D*

𝛾Φ𝛾

)︀−1
(︁
D*

𝑛Φ𝛾 + D*
1Φ𝛾D*y(1)

)︁
,

(27)

if the expressions are defined. Starting off with the calculation of D*y(1), we obtain

D*
𝑛Φ1 = 𝛼10I, D*

1Φ1 = 𝛽10∆𝑡A − I.

Since 𝛽10 > 0 we can use (26) to conclude that

D*y(1) = −(𝛽10∆𝑡A − I)−1 · 𝛼10I = (I − 𝛽10∆𝑡A)−1

is defined. Next we focus on D*𝜌 so that we can compute D*y(2) afterwards. For this purpose, we use again
that diagonal matrices commute and that diag(v)w = diag(w)v holds. Hence, we find

D*
𝑛Φ𝜌 = −𝑛2I, D*

1Φ𝜌 = (𝑛1 + 2𝑛2)I, D*
𝜌Φ𝜌 = −I,

and due to (27),
D*𝜌 = −𝑛2I + (𝑛1 + 2𝑛2)(I − 𝛽10∆𝑡A)−1

.
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The computation of the following Jacobians requires the same technique as described in equations (15) and
(18), from which we get

D*
𝑛Φ2 = 𝛼20I + 𝛽20∆𝑡A, D*

1Φ2 = 𝛼21I + 𝛽21∆𝑡A, D*
𝜌Φ2 = −(𝛽20 + 𝛽21)∆𝑡A and

D*
2Φ2 = (𝛽20 + 𝛽21)∆𝑡A − I,

respectively. Since 𝛽20 + 𝛽21 > 0 the inverse of D*
2Φ2 exists, and thus, D*y(2) is formally given by (26).

Next, we need D*𝛾 in order to find D*𝜎. Exploiting once again the ideas from (15) and (18), we obtain with
𝛾(y*) = (𝜂1 + 𝜂2)y* the Jacobians

D*
𝑛Φ𝛾 = 𝜂1I + (𝜂1 + 𝜂2)∆𝑡A((𝑠 − 1)(𝜂3 + 𝜂4) + 𝜂3), D*

1Φ𝛾 = 𝜂2I + (𝜂1 + 𝜂2)∆𝑡A(−𝑠(𝜂3 + 𝜂4) + 𝜂4),
D*

𝛾Φ𝛾 = (𝜂3 + 𝜂4)∆𝑡A − I,

where D*
𝛾Φ𝛾 is nonsingular since 𝜂3 + 𝜂4 > 0. Hence, with (27) even the Jacobian D*𝛾 can be determined.

Computing

D*
𝑛Φ𝜎 = 𝜁I, D*

2Φ𝜎 = 𝜁I, D*
𝜌Φ𝜎 = −𝜁I, D*

𝛾Φ𝜎 = I, D*
𝜎Φ𝜎 = −I,

we are able to obtain D*𝜎 from (26). Finally, the remaining Jacobians are given by

D*
𝑛Φ𝑛+1 = 𝛼30I + 𝛽30∆𝑡A, D*

1Φ𝑛+1 = 𝛼31I + 𝛽31∆𝑡A, D*
2Φ𝑛+1 = 𝛼32I + 𝛽32∆𝑡A,

D*
𝜎Φ𝑛+1 = −∆𝑡A

2∑︁
𝑖=0

𝛽3𝑖, D*
𝑛+1Φ𝑛+1 = ∆𝑡A

2∑︁
𝑖=0

𝛽3𝑖 − I

with
∑︀2

𝑖=0 𝛽3𝑖 > 0, so that we are now in the position to compute Dg(y*) using (25). As all the matrices
occurring within the expressions of the Jacobians above are either the identity matrix I or the system matrix
A from (4), the stability function for the third order SSPMPRK scheme can easily be computed by calculating
Dg(y*) and substituting ∆𝑡A by ∆𝑡𝜆 = 𝑧, so that we end up with the stability function 𝑅(∆𝑡𝜆) = 𝑅(𝑧) that
reads

𝑅(𝑧) =
1

1 − 𝑧
∑︀2

𝑖=0 𝛽3𝑖

(︃
𝛼30 + 𝛽30𝑧 +

𝛼31 + 𝛽31𝑧

1 − 𝛽10𝑧
+ (𝛼32 + 𝛽32𝑧)𝑃 (𝑧)

− 𝑧

2∑︁
𝑖=0

𝛽3𝑖

(︃
𝜁 + 𝜁𝑃 (𝑧) − 𝜁

(︂
−𝑛2 +

𝑛1 + 2𝑛2

1 − 𝛽10𝑧

)︂
+

1
1 − (𝜂3 + 𝜂4)𝑧

(︃
𝜂1 + (𝜂1 + 𝜂2)𝑧

(︁
(𝑠 − 1)(𝜂3 + 𝜂4) + 𝜂3

)︁
+

𝜂2 + (𝜂1 + 𝜂2)𝑧
(︀
−𝑠(𝜂3 + 𝜂4) + 𝜂4

)︀
1 − 𝛽10𝑧

)︃)︃)︃
,

where

𝑃 (𝑧) =
1

1 − (𝛽20 + 𝛽21)𝑧

(︃
𝛼20 + 𝛽20𝑧 +

𝛼21 + 𝛽21𝑧

1 − 𝛽10𝑧
− (𝛽20 + 𝛽21)𝑧

(︂
−𝑛2 +

𝑛1 + 2𝑛2

1 − 𝛽10𝑧

)︂)︃
·

Before a detailed investigation of the stability function 𝑅, we summarize the above derived results by means of
the following proposition.

Proposition 3.5. Let g : R𝑁
>0 → R𝑁

>0 be given by the application of SSPMPRK3(𝜂2) to the differential equation
(4) with 1 ∈ ker(A𝑇 ). Then any y* ∈ ker(A)∩R𝑁

>0 is a fixed point of g and g ∈ 𝒞2(R𝑁
>0, R𝑁

>0), whereby the first
derivatives of g are Lipschitz continuous in an appropriate neighborhood of y*. Moreover, all linear invariants
are conserved and an eigenvalue 𝜆 of A corresponds to the eigenvalue 𝑅(∆𝑡𝜆) of the Jacobian of g where

𝑅(𝑧) =
1

1 − 𝑧
∑︀2

𝑖=0 𝛽3𝑖

(︃
𝛼30 + 𝛽30𝑧 +

𝛼31 + 𝛽31𝑧

1 − 𝛽10𝑧
+ (𝛼32 + 𝛽32𝑧)𝑃 (𝑧)
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− 𝑧
2∑︁

𝑖=0

𝛽3𝑖

(︃
𝜁 + 𝜁𝑃 (𝑧) − 𝜁

(︂
−𝑛2 +

𝑛1 + 2𝑛2

1 − 𝛽10𝑧

)︂

+
1

1 − (𝜂3 + 𝜂4)𝑧

(︃
𝜂1 + (𝜂1 + 𝜂2)𝑧

(︁
(𝑠 − 1)(𝜂3 + 𝜂4) + 𝜂3

)︁
+

𝜂2 + (𝜂1 + 𝜂2)𝑧
(︀
−𝑠(𝜂3 + 𝜂4) + 𝜂4

)︀
1 − 𝛽10𝑧

)︃)︃)︃
,

𝑃 (𝑧) =
1

1 − (𝛽20 + 𝛽21)𝑧

(︃
𝛼20 + 𝛽20𝑧 +

𝛼21 + 𝛽21𝑧

1 − 𝛽10𝑧
− (𝛽20 + 𝛽21)𝑧

(︂
−𝑛2 +

𝑛1 + 2𝑛2

1 − 𝛽10𝑧

)︂)︃
, (28)

and the parameters are given in (23).

Next, we will prove that the third order SSPMPRK scheme possesses stable fixed points for all 𝜂2 ∈ [0, 𝑟1]
when applied to the test equation.

Proposition 3.6. The stability function 𝑅(𝑧) of the third order SSPMPRK scheme satisfies 𝑅(0) = 1 and
|𝑅(𝑧)| < 1 for all 𝑧 ∈ C− ∖ {0} up to double precision.

Proof. It is straightforward to see that 𝑅(0) = 𝛼30 + 𝛼31 + 𝛼32(𝛼20 + 𝛼21) holds true. Up to double precision,
we obtain 𝛼20 + 𝛼21 = 1 and 𝛼30 + 𝛼31 + 𝛼32 = 1, so that 𝑅(0) = 1. Also, as 𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝜂3 + 𝜂4 > 0, see (23), no
poles of 𝑅 are located in C−. Furthermore, by a technical calculation we can rewrite 𝑅 to receive

𝑅(𝑧) =

∑︀4
𝑗=0 𝑎𝑗𝑧

𝑗∑︀4
𝑗=0 𝑏𝑗𝑧𝑗

,

where, for 𝜂2 ∈ [0, 𝑟1] ⊆ [0, 1
2 ) the coefficients are given by

𝑎0 =
0.47620819268131705757𝜂2 − 1.0537480911094115481

0.47620819268131703𝜂2 − 1.0537480911094114871
,

𝑎1 =
−3.1507612671062001337𝜂2 + 3.9798736646158920698 + 0.61107641837494959323𝜂2

2

0.47620819268131703𝜂2 − 1.0537480911094114871
,

𝑎2 =
2.4343280828365809236𝜂2 − 2.5818776483048969774 − 0.57282016379130601724𝜂2

2

0.47620819268131703𝜂2 − 1.0537480911094114871
,

𝑎3 =
0.6536869584417787153𝜂2 − 0.81355615989342266462 − 0.1292603911580354457𝜂2

2

0.47620819268131703𝜂2 − 1.0537480911094114871
,

𝑎4 =
−0.59499575916146815582𝜂2 + 0.63887056198975790458 + 0.1384128438067575936𝜂2

2

0.47620819268131703𝜂2 − 1.0537480911094114871
,

𝑏0 = 1,

𝑏1 = −4.7768739020212929733 + 1.2832127371313151768𝜂2,

𝑏2 = 6.7270587897458664634 − 2.4860903284764154151𝜂2,

𝑏3 = −3.7332290665687486456 + 1.5730472371819288192𝜂2,

𝑏4 = 0.71670702950202557445 − 0.32389312216150656420𝜂2,

where 𝑎0 = 1 at double precision, see [12]. We want to mention here, that these values were computed with
Maple 2021 and Digits = 20, which means that 20 digits were used when making calculations with software
floating-point numbers.

Substituting 𝑧 = i𝑦 with 𝑦 ∈ R ∖ {0}, we find

|𝑅(i𝑦)|2 =

(︀
𝑦4𝑎4 − 𝑦2𝑎2 + 𝑎0

)︀2 +
(︀
−𝑦3𝑎3 + 𝑦𝑎1

)︀2
(𝑦4𝑏4 − 𝑦2𝑏2 + 1)2 + (−𝑦3𝑏3 + 𝑦𝑏1)2

,
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so that |𝑅(i𝑦)| < 1 is equivalent to(︀
𝑦4𝑎4 − 𝑦2𝑎2 + 𝑎0

)︀2
+
(︀
−𝑦3𝑎3 + 𝑦𝑎1

)︀2 − (︁(︀𝑦4𝑏4 − 𝑦2𝑏2 + 1
)︀2

+
(︀
−𝑦3𝑏3 + 𝑦𝑏1

)︀2)︁
< 0.

Collecting powers of 𝑦, one can rewrite the above inequality in the form(︀
𝑎2
4 − 𝑏2

4

)︀
𝑦8 +

(︀
−2𝑎2𝑎4 + 𝑎2

3 + 2𝑏2𝑏4 − 𝑏2
3

)︀
𝑦6 +

(︀
2𝑎0𝑎4 − 2𝑎1𝑎3 + 𝑎2

2 + 2𝑏1𝑏3 − 𝑏2
2 − 2𝑏4

)︀
𝑦4

+
(︀
−2𝑎0𝑎2 + 𝑎2

1 − 𝑏2
1 + 2𝑏2

)︀
𝑦2 + 𝑎2

0 − 1 < 0.

At double precision, we obtain 𝑎0 = 1, so that 𝑎2
0 − 1 = 0. Next, our strategy is to prove that all nonzero

coefficients of 𝑦𝑘, in the following denoted by 𝑐𝑘, for 𝑘 = 2, 4, 6, 8 are negative.
For 𝜂2 ≤ 𝑟1 < 1

2 , it suffices for our argument to round to three decimal places in the following expressions,
which can be reproduced using the Maple repository [12] and read

𝑐8 ≈
4.410

(︀
−0.168𝜂2

2 + 0.271𝜂2 + 0.046𝜂3
2 − 0.162 − 0.005𝜂4

2

)︀
(𝜂2 − 2.213)2

,

𝑐6 ≈
4.410

(︀
−0.790𝜂2

2 + 1.310𝜂2 + 0.210𝜂3
2 − 0.808 − 0.021𝜂4

2

)︀
(𝜂2 − 2.213)2

,

𝑐4 ≈
4.410

(︀
0.556𝜂2 − 0.442 + 0.032𝜂3

2 − 0.232𝜂2
2

)︀
(𝜂2 − 2.231)2

,

1014𝑐2 ≈
𝜂2

(︀
𝜂2 − 1 − 0.2𝜂2

2 + 0.03𝜂3
2

)︀
(0.476𝜂2 − 1.054)2

·

First of all, the denominators occurring in any of the above 𝑐𝑘 are positive. Also, positive terms in the numerator
are multiplied with powers of 𝜂2 < 1

2 and thus are smaller than the absolute value of the corresponding constant,
which is always negative. This holds true even if the rounding error is taken into account, i.e., after adding 10−2

to positive terms and subtracting it from negative expressions. This proves that 𝑐𝑘 < 0, and thus, |𝑅(i𝑦)| < 1
for all 𝑦 ∈ R ∖ {0}.

Finally, we can perform the same steps as in the proof of Proposition 3.2 to conclude even |𝑅(𝑧)| < 1 for all
𝑧 ∈ C− ∖ {0} by applying the Phragmén–Lindelöf principle for the union of the origin and the interior of C−,
as well as the maximum modulus principle. �

As an immediate consequence of this proposition in combination with Theorems 2.2 and 2.3, we obtain the
following results.

Corollary 3.7. Let y* be a positive steady state of the differential equation (4). Then y* is a stable fixed point
of the SSPMPRK3(𝜂2) scheme for all ∆𝑡 > 0 and 𝜂2 ∈ [0, 𝑟1].

Corollary 3.8. Let the unique steady state y* of the initial value problem (4), (5) be positive. Then the iterates
of SSPMPRK3(𝜂2) locally converge towards y* for all ∆𝑡 > 0 and 𝜂2 ∈ [0, 𝑟1].

4. Numerical experiments

In order to verify the stability properties of the second and third order SSPMPRK schemes as stated in the
Corollaries 3.3, 3.4, 3.7 and 3.8, we consider three linear positive and conservative PDS test cases introduced in
[14].

All systems matrices have an eigenvalue 𝜆 = 0, since the test problems are conservative. Furthermore, the
following test cases are chosen in such a way that all nonzero eigenvalues either lie in R− or in C−∖R−. Moreover,
as we proved that the SSPMPRK schemes conserve all linear invariants when applied to a linear system, we
also consider a test problem with two linear invariants.
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Figure 3. Exact solution (30) of the initial value problem (29) and the linear invariant 1𝑇 y.

Test problem with exclusively real eigenvalues

The linear initial value problem

y′ = 100

⎛⎜⎝−2 1 1
1 −4 1
1 3 −2

⎞⎟⎠y, y(0) =

⎛⎜⎝1
9
5

⎞⎟⎠. (29)

contains a system matrix, which has only positive off-diagonal elements and is therefore a so-called Metzler
matrix. Due to the positive initial values, this ensures that each component of the solution of the initial value
problem is positive for all times. By a straightforward calculation of the eigenvalues 𝜆1 = 0, 𝜆2 = −300 and
𝜆3 = −500 of the system matrix as well as their associated eigenvectors, the solution reads

y(𝑡) = 𝑐1

⎛⎝5
3
7

⎞⎠+ 𝑐2𝑒
−300𝑡

⎛⎝−1
0
1

⎞⎠+ 𝑐3𝑒
−500𝑡

⎛⎝ 0
−1
1

⎞⎠ (30)

with coefficients 𝑐1 = 1, 𝑐2 = 4 and 𝑐3 = −6 determined by the initial condition. Since only non-positive
eigenvalues are present and the absolute values of the negative eigenvalues are large, there is a fast convergence
to the equilibrium state

y* = lim
𝑡→∞

y(𝑡) =

⎛⎜⎝5
3
7

⎞⎟⎠
as depicted in Figure 3. Furthermore the zero eigenvalue is simple, and hence there exists exactly one linear
invariant, which is given by 1𝑇 y due to the fact that the sum of the elements in each column of the system
matrix is always vanishing. This so-called conservativity can also be observed in Figure 3.
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Figure 4. The exact solution (32) of the initial value problem (31) and the linear invariant 1𝑇 y.

Test problem with complex eigenvalues

As the second test case, we consider the conservative system

y′ = 100

⎛⎜⎝−4 3 1
2 −4 3
2 1 −4

⎞⎟⎠y, y(0) =

⎛⎜⎝ 9
20
8

⎞⎟⎠. (31)

Again, the system matrix is a Metzler matrix, so that the solution of the initial value problem is always positive
due to the positive initial conditions. Considering the eigenvalues 𝜆1 = 0 , 𝜆2 = 100(−6 + i) and 𝜆3 = 𝜆2 as well
as the corresponding eigenvectors of the system matrix, the solution can be written in the form

y(𝑡) =

⎛⎝13
14
10

⎞⎠− 2𝑒−600𝑡

⎛⎝cos(100𝑡)

⎛⎝−1
0
1

⎞⎠− sin(100𝑡)

⎛⎝ 1
−1
0

⎞⎠⎞⎠
− 6𝑒−600𝑡

⎛⎝cos(100𝑡)

⎛⎝ 1
−1
0

⎞⎠+ sin(100𝑡)

⎛⎝−1
0
1

⎞⎠⎞⎠.

(32)

The nonzero complex eigenvalues have a negative real part with a large absolute value. Hence, one can expect
a rapid convergence of the solution to the steady state given by

y* = lim
𝑡→∞

y(𝑡) =

⎛⎜⎝13
14
10

⎞⎟⎠.

Analogous to the first test case, the only linear invariant is 1𝑇 y, which is presented together with the exact
solution in Figure 4.
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Test problem with double zero eigenvalue

Considering the linear initial value problem

y′ = 100

⎛⎜⎜⎜⎝
−2 0 0 1

0 −4 3 0
0 4 −3 0
2 0 0 −1

⎞⎟⎟⎟⎠y, y(0) =

⎛⎜⎜⎜⎝
4
1
9
1

⎞⎟⎟⎟⎠, (33)

we are faced with a Metzler matrix including a double zero eigenvalue 𝜆1 = 𝜆2 = 0. Therefore, besides 1𝑇 y, a
second linear invariant n𝑇 y with n = (1, 2, 2, 1)𝑇 is present. Due to the remaining eigenvalues 𝜆3 = −300 and
𝜆3 = −700 and the associated eigenvectors of all eigenvalues, the solution of the initial value problem writes

y(𝑡) = 𝑐1

⎛⎜⎜⎜⎝
0
1
4
3

0

⎞⎟⎟⎟⎠+ 𝑐2

⎛⎜⎜⎜⎝
1
0
0
2

⎞⎟⎟⎟⎠+ 𝑐3𝑒
−700𝑡

⎛⎜⎜⎜⎝
0
1

−1
0

⎞⎟⎟⎟⎠+ 𝑐4𝑒
−300𝑡

⎛⎜⎜⎜⎝
1
0
0

−1

⎞⎟⎟⎟⎠ (34)

with coefficients

𝑐1 =
30
7

, 𝑐2 =
5
3
, 𝑐3 = −23

7
and 𝑐4 =

7
3
·

Once again, a fast convergence to the equilibrium state

y* = lim
𝑡→∞

y(𝑡) = 𝑐1

⎛⎜⎜⎜⎝
0
1
4
3

0

⎞⎟⎟⎟⎠+ 𝑐2

⎛⎜⎜⎜⎝
1
0
0
2

⎞⎟⎟⎟⎠ =
1
21

⎛⎜⎜⎜⎝
7

90
120
70

⎞⎟⎟⎟⎠
takes place. The course of the solution together with the two linear invariants are shown in Figure 5.

At this point we want to note that the presented test cases represent stiff problems due to the occurence
of large absolute values of the corresponding eigenvalues. Hence, it is not surprising that the exact solution
satisfies the inequality ‖y(𝑡) − y*‖ < 2 × 10−2 at time 𝑡 = 0.02.

Hereafter, we confirm numerically that SSPMPRK schemes are stable as claimed in Corollaries 3.3 and 3.7.
Furthermore, we investigate the local convergence to the steady state solution as stated in Corollaries 3.4 and 3.8
by choosing y0 = y(0) for all initial value problems above together with a comparably large time step size
of ∆𝑡 = 5 for all examples, if not stated otherwise. However, choosing such a large step size or even a ∆𝑡
corresponding to a point inside the stability region but close to its boundary, the numerical approximation does
not converge monotonically towards the steady state. For an insight into this topic we refer to [28], where a
linear system of two differential equations is analyzed. Also, note that the statements of Corollaries 3.4 and 3.8
only imply the local convergence of the iterates towards the steady states, however, in all experiments below
the convergence can be observed even for y0 = y(0).

In particular, we are interested in the properties of SSPMPRK3( 1
3 ) which is the preferred scheme presented

in [11]. Moreover, we investigate SSPMPRK2(𝛼, 𝛽) for three different pairs (𝛼, 𝛽) covering all cases depicted
in Figure 1. For the case 𝛼 > 1

2𝛽 we choose the lower left vertex of the red rectangular from Figure 1, i.e.,
(𝛼, 𝛽) = (0.2, 3). In this case, we choose different time steps to demonstrate that the computed stability regions
are correct. At this point we want to note that the eigenvalues of the system matrices from the test problems lie
on the red or blue line depicted in Figure 6. We scale the time step size ∆𝑡 in such a way that ∆𝑡𝜌(Dg(y*)) = 𝑧𝑖

for 𝑖 ∈ {1, 2, 3, 4}, respectively, so that for all test cases we consider the cases of stable as well as unstable fixed
points.
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Figure 5. The exact solution (34) of the initial value problem (33) and the associated two
linear invariants 1𝑇 y and n𝑇 y.

Figure 6. The stability region for the second order SSPMPRK scheme is depicted for the
values (𝛼, 𝛽) = (0.2, 3). The red line is the set {𝑥 + i𝑦 ∈ C− | 𝑥 + 6𝑦 = 0, 𝑥, 𝑦 ∈ R} containing
numbers of the form 𝑎(−6 + i) with 𝑎 ≤ 0. In particular, the red marked complex numbers are
𝑧1 = 2(−6 + i) and 𝑧2 = 11

6 (−6 + i). The blue line is the set R−. In particular, the blue marked
numbers are 𝑧3 = −12.5 and 𝑧4 = −11.5.



ON THE STABILITY OF SSPMPRK SCHEMES 1081

Figure 7. Numerical approximations of (29), (31) and (33) using SSPMPRK3( 1
3 ) schemes. The

dashed lines indicate the exact solutions (30), (32) and (34), where n1 = 1 and n2 = (1, 2, 2, 1)𝑇 .
(a) Approximation of (29). (b) Approximation of (31). (c) Approximation of (33).

As a representative for the case 𝛼 = 1
2𝛽 we use (𝛼, 𝛽) = ( 1

2 , 1) which is the preferred choice presented in [10].
Finally, we choose (𝛼, 𝛽) = (0.1, 1) satisfying 𝛼 < 1

2𝛽 .
In the following figures, we plot the numerical approximations over different time intervals resulting in different

numbers of total iterations 𝑁𝑇 , whereby ‖y* − y𝑁𝑇 ‖ < 2 · 10−2 is satisfied. With a time step size of ∆𝑡 = 5,
the third order SSPMPRK schemes satisfy this relation for 18 ≤ 𝑁𝑇 ≤ 25 iterations with respect to all three
test cases. Analyzing the second order SSPMPRK schemes with parameters (𝛼, 𝛽) = (0.1, 1) we find 𝑁𝑇 ≈ 10,
and in the case of (𝛼, 𝛽) = ( 1

2 , 1) we have 𝑁𝑇 ≈ 5000. The investigation for (𝛼, 𝛽) = (0.2, 3) is more delicate, as
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Figure 8. Numerical approximations of (29) using the second order SSPMPRK scheme. The
dashed lines indicate the exact solution (30). In Figure 8d, y0 = y* +10−5(1,−2, 1)𝑇 is chosen.
(a) (𝛼, 𝛽) = ( 1

2 , 1), ∆𝑡 = 5. (b) (𝛼, 𝛽) = (0.1, 1), ∆𝑡 = 5. (c) (𝛼, 𝛽) = (0.2, 3), ∆𝑡 ≈ 0.023. (d)
(𝛼, 𝛽) = (0.2, 3), ∆𝑡 ≈ 0.025.

this pair is associated with a bounded stability domain. Nevertheless, choosing ∆𝑡 corresponding to the values
𝑧2 and 𝑧4 from Figure 6, we can observe that 𝑁𝑇 ≈ 300 holds.

In Figure 7, the SSPMPRK3(𝜂2) scheme is used to integrate the three test problems. The numerical experi-
ments support the theoretical claims, i.e., the fixed points seem to be stable and locally attracting. Moreover,
all linear invariants are conserved by the method.
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Figure 9. Numerical approximations of (31) using the second order SSPMPRK scheme. The
dashed lines indicate the exact solution (32). In Figure 9d, y0 = y* +10−5(1,−2, 1)𝑇 is chosen.
(a) (𝛼, 𝛽) = ( 1

2 , 1), ∆𝑡 = 5. (b) (𝛼, 𝛽) = (0.1, 1), ∆𝑡 = 5. (c) (𝛼, 𝛽) = (0.2, 3), ∆𝑡 ≈ 0.018. (d)
(𝛼, 𝛽) = (0.2, 3), ∆𝑡 ≈ 0.020.

In the subsequent figures, SSPMPRK2(𝛼, 𝛽) schemes are used to solve the test problems. In all three Fig-
ures 8–10, we can observe the same qualitative behavior. In the upper left plot, the value of 𝑁𝑇 is by far the
biggest so that the preferred choice of (𝛼, 𝛽) = ( 1

2 , 1) seems to be the least damping scheme. Changing the value
of 𝛼 to 0.1 results in a faster convergence towards the steady state solution, even for a time step size of ∆𝑡 = 5.

In the lower two figures in Figures 8–10, the pair (𝛼, 𝛽) lies in the critical region where the stability domain
is bounded. If ∆𝑡 is chosen in such a way that ∆𝑡𝜌(Dg(y*)) = 𝑧𝑖 for 𝑖 = 2 or 𝑖 = 4, respectively, see Figure 6,
the numerical approximations behave as expected converging towards the corresponding steady state which is a
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Figure 10. Numerical approximations of (33) using the second order SSPMPRK scheme. The
dashed lines indicate the exact solution (34), where n1 = 1 and n2 = (1, 2, 2, 1)𝑇 . In Figure 10d,
we used y0 = y*+10−5(1,−1, 1,−1)𝑇 . (a) (𝛼, 𝛽) = ( 1

2 , 1), ∆𝑡 = 5. (b) (𝛼, 𝛽) = (0.1, 1), ∆𝑡 = 5.
(c) (𝛼, 𝛽) = (0.2, 3), ∆𝑡 ≈ 0.016. (d) (𝛼, 𝛽) = (0.2, 3), ∆𝑡 ≈ 0.018.

stable fixed point of the method. However, increasing ∆𝑡 by approximately 2 ·10−3, we find that ∆𝑡𝜌(Dg(y*)) =
𝑧𝑖 for 𝑖 = 1 or 𝑖 = 3, respectively. As a result, even when we modify the starting vector to be y0 = y* + 10−5v
with v = (1,−2, 1)𝑇 in Figures 8 and 9, or v = (1,−1, 1,−1)𝑇 in Figure 10, the numerical approximation
diverges from the steady state as predicted by the presented theory.

Altogether, the numerical experiments support very well the theoretical results from Section 3.
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5. Summary and outlook

We have performed a stability analysis for a class of second and third order accurate strong-stability-preserving
modified Patankar–Runge–Kutta (SSPMPRK) schemes which are unconditionally positivity-preserving. This
analysis allows us to identify the range of free parameters in these SSPMPRK schemes in order to ensure
stability. In particular, we have proven that the second order SSPMPRK family depending on two parameters 𝛼
and 𝛽 possesses a bounded stability region for 𝛼 > 1

2𝛽 . Furthermore, we were able to prove that the third order
family of SSPMPRK schemes with parameter 𝜂2 has stable fixed points for any time step size and any possible
choice of 𝜂2. Additionally, we concluded that the stable fixed points are even locally attracting in the sense that
the iterates from the numerical approximation locally converge towards it. Finally, numerical experiments are
provided to demonstrate the validity of the analysis.

Here, we mention some possible future works, on applying such SSPMPRK schemes to problems containing
both convection and stiff source terms. The convection terms can be discretized by conservative, high resolution,
essentially non-oscillatory techniques, resulting in a very large ODE system to be discretized in time by the
SSPMPRK schemes. The first interesting topic is to absorb the numerical fluxes from the convection terms
into the production-destruction terms and then apply the SSPMPRK directly. Thus, the numerical fluxes are
essentially multiplied by a factor, which may not be one, but should be close to one in smooth regions. The
scheme should be positivity-preserving by design and should be high order accurate (with the worst scenario of
losing at most one order because of the division by the spatial mesh size to the flux differences), but its effect on
shock resolutions should be carefully assessed numerically and compared with the approach in [10,11] in which
the convection terms were treated by the standard high resolution schemes with SSP RK. The second future
work would be the extension of the stability analysis in this paper to the semi-discrete schemes arising from
the multispecies reactive Euler equations. The difficulty is the increased complexity when the size of the ODE
systems gets larger with spatial mesh refinements. These topics constitute our ongoing work.
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