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Abstract. In this paper, we discuss the Fourier collocation and Chebyshev collocation

schemes coupled with two specific high order explicit-implicit-null (EIN) time-marching

methods for solving the convection-diffusion and convection-dispersion equations. The

basic idea of the EIN method discussed in this paper is to add and subtract an appropri-

ate large linear highest derivative term on one side of the considered equation, and then

apply the implicit-explicit time-marching method to the equivalent equation. The EIN

method so designed does not need any nonlinear iterative solver, and the severe time

step restriction for explicit methods can be removed. We give stability analysis for the

proposed EIN Fourier collocation schemes on simplified linear equations by the aid of

the Fourier method. We show rigorously that the resulting schemes are stable with par-

ticular emphasis on the use of large time steps if appropriate stabilization parameters

are chosen. Even though the analysis is only performed on the EIN Fourier collocation

schemes, numerical results show that the stability criteria can also be extended to the

EIN Chebyshev collocation schemes. Numerical experiments are given to demonstrate

the stability, accuracy and performance of the EIN schemes for both one-dimensional

and two-dimensional linear and nonlinear equations.
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1. Introduction

In this paper, we will discuss the Fourier collocation and Chebyshev collocation meth-

ods coupled with two different explicit-implicit-null (EIN) time-marching methods for the
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convection-diffusion and convection-dispersion equations, respectively, with an eye to basic

questions of accuracy and stability of the schemes. We restrict the description to problems

in one dimension for symbolic simplicity, although the conclusions are verified to hold also

for two-dimensional equations in the numerical experiment sections.

The convection-diffusion equation

Ut + f (U)x −D(U)x x = 0, D(U) =
∫ U

d(s)ds, (1.1)

where d(s) ≥ 0 is smooth and bounded, has been used in many areas of science and tech-

nology; e.g., fluid dynamics, heat transfer and environmental protection. For an extensive

literature devoted to the above equation let us mention the papers [21,40], and the refer-

ences therein. Here and below, we use the capital letter U to denote the exact solution of

the considered equation.

The convection-dispersion equation

Ut + f (U)x +G (Ux)x x = 0 (1.2)

is a special KdV-type equation typified by the Korteweg-de Vries (KdV) equation [27] and

its generalizations. The KdV-type equations, whose travelling-wave solutions called solitary

waves play an important role in the long-term evolution of initial data [6], have especially

important applications as a widely used model of nonlinear dispersion in fluid dynamics

and plasma physics.

For the above two equations, the Fourier collocation method is a popular numerical

method, which grants the use of the fast Fourier transform. However, a disadvantage

of the use of the Fourier basis is the confinement to periodic boundary condition. In

some situations, one may want to consider problems involving non-periodic boundary

conditions. In this case, we can turn to the pseudo-spectral Chebyshev method, i.e., a

collocation method at the Chebyshev Gauss nodes. There is an extensive body of bibli-

ography [1, 7, 8, 13, 23, 34] on the numerical simulation and analysis of the convection-

diffusion and convection-dispersion equations in conjunction with the Fourier collocation

or Chebyshev collocation method for spatial discretization. We refer to [1, 13, 34] for

the convection-dispersion equation, and to [7,8,23] for the convection-diffusion equation.

Limited by the time-marching method, to our knowledge, no high order numerical schemes

can efficiently simulate the above two kinds of time-dependent equations with nonlinear

highest derivative terms at large time steps whilst keeping stability, especially when the

Chebyshev collocation method is used for spatial discretization.

Time discretization is a very important issue for time-dependent partial differential

equations (PDE). The explicit time-marching methods are easy to implement, however,

they become unfeasible with growing spatial order due to the worsening stiffness of the

high order derivative terms. For example, for the convection-dispersion equation with the

Chebyshev collocation method for spatial discretization, the explicit method may suffer

from τ = O(N−6) for stability, where τ is the time step and N is the number of the Cheby-

shev collocation points. Stable implicit methods exist for virtually any order and they are
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usually free of time step restriction [24]. However, they are cumbersome for nonlinear

equations, since a nonlinear algebraic system must be solved at each time step. Usually,

the nonlinear system can be linearized by the Newton-type method or by construction, as

in the case of Rosenbrock-type Runge-Kutta methods [5]. However, the resulting linear sys-

tem requires a great deal of computation and storage of the exact or approximate Jacobian

of the nonlinear operator, which are typically non-symmetric and often ill-conditioned. In

addition, the fast solution of the system usually depends on an efficient preconditioner,

which may be hard to get. These difficulties diminish the benefits of implicit methods con-

siderably. The implicit-explicit (IMEX) methods [2, 3, 9, 10], which treat the stiffer terms

implicitly and the rest of the terms explicitly, can not only alleviate time step restriction,

but also reduce the difficulty of solving the algebraic equations especially when the high

order derivative terms of the equation are linear. However, for the equations with nonlin-

ear highest derivative terms, the method is still too expensive to use. To resolve this issue,

the explicit-implicit-null method has been proposed and analyzed.

Here we give a brief introduction to the EIN method considered in this paper. The basic

idea of the method is to add and subtract an appropriately large linear term, which needs

to have the same scale in wavenumber as the most stiff term, on one side of the equation

and then apply the IMEX method to the equivalent equation. In a recent study, Duchemin

and Eggers [18] proposed to call this procedure the “explicit-implicit-null method", or EIN

method for short, since the piece added to the equation is then subtracted, seemingly

adding zero. In this paper, an equal highest derivative term with constant coefficient is

added to and subtracted from one side of the equation. Taking the convection-diffusion

equation (1.2) as an example, we add and subtract a term with constant diffusion coeffi-

cient a1Ux x at the left-hand side of the considered PDE

Ut + f (U)x + a1Ux x −D(U)x x
︸ ︷︷ ︸

T1

− a1Ux x
︸ ︷︷ ︸

T2

= 0, a1 = a0 ×max
U

d(U), (1.3)

where D(U) =
∫ U

d(s)ds and d(U) ≥ 0 is smooth and bounded, and then treat T1 and

T2 separately. Here, a0 > 0 is a constant yet to be determined. The hope is that the

damping term T2 is large enough to suppress the unstable high wavenumber modes in T1

such that T1 is either not stiff, or less stiff and less dissipative compared to T2, thus it can

be treated explicitly, and T2 is stiff and dissipative, thus will be discretized implicitly. The

explicit treatment of T1 and the implicit discretization of the linear term T2 lead to a linear

system, which is relatively easy to solve by many direct or iterative methods. This offers

an enormous advantage over the pure IMEX method.

The EIN method has been implemented previously by a number of authors on a case-

by-case basis. As far as we could tell, the EIN method was first proposed and adopted

by Douglas and Dupont [17] to assure the stability for nonlinear diffusion equations in

conjunction with an alternating direction Galerkin method for spatial discretization. Sub-

sequently, it was used to stabilize the viscous free-surface dynamics of two liquid drops

during coalescence [19], and the coarsening kinetics of interconnected two-phase mix-

tures [44]. In addition, the method has also been applied with success to, for example,
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the level set equations for mean curvature flow and motion by surface diffusion [38],

the continuum models for the evolution of the molecular beam epitaxy growth [43], the

Boltzmann kinetic equations and related problems with nonlinear stiff sources [22], the

Cahn-Hilliard equations [37], the diffusion equations [41] with the local discontinuous

Galerkin (LDG) method for spatial discretization, etc. These papers provide a clean de-

scription on the size of the constant a0, which is closely related to the equations discussed,

the IMEX time-marching methods adopted and the auxiliary term added to and subtracted

from the equation. However, the discussion of the method in these papers is limited to

the first and second order in time. In a recent work [39], the third order EIN schemes

coupled with the finite difference and LDG methods for the high order dissipative and

dispersive equations were considered, and stability analysis was performed on the linear

equations with the highest derivative terms. The EIN method is similar to the stabilization

method [14, 15, 25, 28–30] in the stabilization mechanism. Roughly speaking, for a p-th

order scheme, the basic idea of the the stabilization method is to add an additional O(τp)

well-chosen stabilizing term of the form

a1τ
p−1B(un+1 − un) (1.4)

to the numerical scheme, where B is a general operator and un is the numerical solution

at the n-th time level. One example is B = ∂x x for the convection-diffusion equation. The

O(τp) term vanishes as τ → 0 and the numerical solution is expected to converge to the

true PDE solution. When a simple low order IMEX time-marching method is adopted, the

EIN method sometimes can also be viewed as the stabilization method since the stabilizing

term generated by the implicit and explicit time-marching of the auxiliary term added to

and subtracted from the equation is consistent with (1.4). However, this is not the case

for the high order IMEX time-marching methods, because the stabilizing term introduced

by the EIN method is much more complex than the one introduced by the stabilization

method.

Although the EIN methods have been developed in many literatures, to the best of

our knowledge, there are very few applications and analyses of the EIN methods for the

convection-diffusion and convection-dispersion equations in conjunction with the Fourier

collocation or Chebyshev collocation method for spatial discretization, especially with the

Chebyshev collocation method. In this paper we discuss the Fourier collocation and Cheby-

shev collocation schemes coupled with two carefully tailored EIN time discretizations for

the convection-diffusion and convection-dispersion equations, respectively. One is a sec-

ond order EIN multi-step method (EIN-MS2), the other is a third order EIN Runge-Kutta

method (EIN-RK3). We provide stability analysis for the EIN schemes with pseudo-spectral

Fourier spatial discretization by the aid of the Fourier method. Our main contribution

is to show rigorously that the resulting EIN Fourier collocation schemes are stable with

particular emphasis on the use of large time steps if appropriate stabilization parameters

a0 are chosen. Even though the analysis is only performed on the simplified linear equa-

tions, numerical experiments show that the proposed schemes are stable and can achieve

optimal orders of accuracy for both one-dimensional and two-dimensional linear and non-

linear equations. In addition, the EIN schemes with pseudo-spectral Chebyshev spatial



Stability of Spectral Collocation Schemes with EIN Method for High Order PDEs 5

discretization are shown to be stable as long as the values of a0 are consistent with those

of the EIN Fourier collocation schemes. In Table 1.1, we summarize the stability conditions

of the EIN schemes with the Fourier collocation and Chebyshev collocation methods for

the convection-diffusion and convection-dispersion equations, where τ0 is a constant, C is

the Courant number and N is the number of the collocation points. Notice that the specific

choices of the temporal and spatial discretizations may change the values of C and τ0, but

not the generic types of the time step constraints listed in this table.

Table 1.1: The stability conditions of the EIN schemes with the Fourier collocation and Chebyshev
collocation methods for the convection-diffusion and convection-dispersion equations.

equation convection-diffusion convection-dispersion

method Fourier collocation Chebyshev collocation Fourier collocation Chebyshev collocation

EIN-MS2
a1 > 0.5 maxU d(U) a1 > 0.5 maxU d(U) a1 > 0.5 maxUx

|G ′(Ux)| a1 > 0.5 maxUx
|G ′(Ux)|

τ ≤ CN−1 τ≤ CN−2 τ≤max{CN−1,τ0} τ≤ CN−2

EIN-RK3
a1 ≥ 0.54 maxU d(U) a1 ≥ 0.54 maxU d(U) a1 ≥ 0.54 maxUx

|G ′(Ux)| a1 ≥ 0.54 maxUx
|G ′(Ux)|

τ≤max{CN−1,τ0} τ≤ CN−2 τ≤max{CN−1,τ0} τ≤ CN−2

Our work is organized in the following way. In Section 2, we present the spatial dis-

cretizations and the time-marching methods for the convection-diffusion equation. The

standard Fourier techniques are used to analyze the stability of the schemes in the linear

case. In Section 3, we provide a series of numerical tests to examine the stability and

performance of the proposed schemes for both one-dimensional and two-dimensional lin-

ear and nonlinear problems. Section 4 is similar to Section 2, and Section 5 is similar to

Section 3, but they are for the convection-dispersion equations. Finally, the concluding

remarks are presented in Section 6.

2. Convection-diffusion equations

In this section, we present the Fourier collocation method, the Chebyshev collocation

method and the time-marching methods for the convection-diffusion equation. The stan-

dard Fourier techniques are used to analyze the stability of the schemes in the linear case.

2.1. The spatial discretizations

2.1.1. The Fourier collocation method

In this subsection, we use the Fourier collocation method to numerically solve the convection-

diffusion equation (1.3) subject to periodic boundary condition and the initial condition

U(x , 0) = U0(x), x ∈ Ω. (2.1)

Now we recall some basic results about the Fourier collocation method which will be used

throughout the paper. For ease of presentation, the spatial period Ω is normalized to
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[0,2π]. For any integer N > 0, denote SN = span{eikx ,−N ≤ k ≤ N − 1}, where i2 = −1.

Consider the set of points

x j =
π j

N
, j = 0,1, ..., 2N − 1, (2.2)

referred to as Fourier collocation nodes. The discrete Fourier coefficients of a function u in

[0,2π] with respect to these points are

ũk =
1

2N

2N−1∑

j=0

u(x j)e
−ikx j , −N ≤ k ≤ N − 1. (2.3)

Due to the orthogonality relation

1

2N

2N−1∑

j=0

eiℓx j =

(

1, ℓ= 2N m, m = 0,±1,±2, ...

0, otherwise
, (2.4)

we have the inversion formula

u(x j) =

N−1∑

k=−N

ũkeikx j , j = 0,1, ..., 2N − 1.

For a function u(x) ∈ C0(0,2π), we define a trigonometric interpolation operator IN at the

Fourier collocation nodes

IN u(x j) = u(x j), j = 0,1, ..., 2N − 1.

From (2.4), we have

IN u(x) =
N−1∑

k=−N

ũkeikx .

The semi-discrete Fourier collocation approximation for the above periodic initial value

problem can be defined as follows: find uN (t) ∈ SN , such that for all j = 0,1, ..., 2N − 1,

we have

uN (x , 0) = IN U0,
n

(uN )t + [IN f (uN )]x − [IND(uN )]x x + a1(uN )x x
︸ ︷︷ ︸

T1

o

(x j, t) = a1(uN )x x
︸ ︷︷ ︸

T2

(x j, t),

where D(uN ) =
∫ uN d(s)ds, a1 = a0 ×maxuN

d(uN ), a0 is a constant to be determined.
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2.1.2. The Chebyshev collocation method

After a suitable mapping normalization, we can assume that the problem is set in the refer-

ence space interval [−1,1]. In this subsection, we use the Chebyshev collocation method

to numerically solve the convection-diffusion equation (1.3) with the initial condition (2.1)

and the Dirichlet-Dirichlet boundary conditions

U(−1, t) = g1(t), U(1, t) = g2(t), 0≤ t ≤ T, (2.5)

where T is the final computing time. For other types of boundary conditions we refer the

readers to [11,12,32] and the references therein.

Now we summarize the notations regarding the Chebyshev collocation method used in

this paper. For an overview of the method the readers are referred to [12]. For any integer

N > 0, let PN be the space of algebraic polynomials of degree less than or equal to N in

[−1,1]. We denote by

x̃ j = − cos

�
π j

N

�

, j = 0, ..., N , (2.6)

the nodes of the Gauss-Lobatto integration formula relative to the Chebyshev weight w(x) =
(1− x2)−1/2, −1 < x < 1. The Chebyshev collocation approximation for the convection-

diffusion equation (1.3) augmented with the initial condition (2.1) and the Dirichlet-

Dirichlet boundary conditions (2.5) can be defined as follows: seek for a solution ūN (x , t) ∈
PN such that for x̃ j, j = 1,2, ..., N − 1 we have

n

(ūN )t + [ĨN f (ūN )]x − [ĨND(ūN )]x x + a1(ūN )x x
︸ ︷︷ ︸

T1

o

( x̃ j, t)− a1(ūN )x x
︸ ︷︷ ︸

T2

( x̃ j, t) = 0

and

ūN (x , 0) = ĨN U0(x),

ūN ( x̃0, t) = g1(t), ūN ( x̃N , t) = g2(t),

where D(ūN ) =
∫ ūN d(s)ds, a1 = a0×maxūN

d(ūN ), a0 is a constant to be determined and

ĨN is an interpolation operator defined at the points (2.6).

2.2. The temporal discretizations

Let {tn = nτ ∈ [0, T]}Mn=0 be the time at the n-th time step, in which τ is the time

step and T is the final computing time. To give a brief introduction of the time-marching

method discussed in this paper, let us consider the following system of ordinary differential

equations
du

dt
=L (t,u) +N (t,u),

where L (t,u) is derived from the T2 term and is treated implicitly, and N (t,u) arises

from the spatial discretization of the T1 term and is dealt with an explicit way. Given un,
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we would like to find the numerical solution at the next time level tn+1. A second order

IMEX multi-step method and a third order IMEX Runge-Kutta method will be considered

in this paper. We have also considered other IMEX methods, but we will not state them

here to save space.

2.2.1. The second order IMEX multi-step method

Because no multi-step methods of order greater than two can be A-stable, the high order

multi-step methods might not be a good choice for matching very high order spatial dis-

cretizations and for the high order equations. Therefore, we just consider the second order

Crank-Nicolson/Leap-Frog (CN/LF) method

un+1 − un−1

2τ
=N (tn,un) +

L (tn−1,un−1) +L (tn+1,un+1)

2
, (2.7)

which is preferred in applications. This scheme uses the Leap-Frog method for the explicit

part and a Crank-Nicolson type method for the implicit part. It has been noted [3] that the

CN/LF method has a smaller truncation error and a larger stability region compared with

some other second order methods.

2.2.2. The third order IMEX Runge-Kutta method

The IMEX Runge-Kutta method we consider [2] consists of a four-stage, third order, L-

stable, stiffly-accurate, singly diagonally implicit Runge-Kutta method and a four-stage,

third order explicit Runge-Kutta method. We present it in the following form













un,1 = un

un,s = un +τ

s∑

l=1

ãslL (tn
l ,un,l) +τ

s−1∑

l=1

âslN (tn
l ,un,l)

un+1 = un+τ

5∑

l=1

b̃lL (tn
l ,un,l) +τ

5∑

l=1

b̂lN (tn
l ,un,l)

, 2≤ s ≤ 5 , (2.8)

where

tn
l = tn + c̃lτ, c̃s =

s∑

l=2

ãsl =

s−1∑

l=1

âsl . (2.9)

Denote Ã = (ãsl), Â = (âsl) ∈ R5×5, b̃T = [ b̃1, ..., b̃5] and b̂T = [ b̂1, ..., b̂5]. Then we can

express the time-marching method as the following Butcher tableau

ãsl

0 0 0 0 0 0 0 0 0 0

âsl

0 1

2
0 0 0 1

2
0 0 0 0

0 1

6

1

2
0 0 11

18

1

18
0 0 0

0 −1

2

1

2

1

2
0 5

6
−5

6

1

2
0 0

0 3

2
−3

2

1

2

1

2

1

4

7

4

3

4
−7

4
0

b̃l 0 3

2
−3

2

1

2

1

2

1

4

7

4

3

4
−7

4
0 b̂l

(2.10)
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of which the left half lists ãsl and b̃l , with the five rows from top to bottom corresponding

to s = 1, ..., 5, and the columns from left to right corresponding to l = 1, ..., 5. Similarly, the

right half lists âsl and b̂l . With the above Butcher coefficients, we then get a third order

IMEX Runge-Kutta method.

To identify the EIN methods considered in this paper, if we add and subtract an ap-

propriately large linear term at one side of the equation, and then apply the second order

IMEX multi-step method (2.7) to the equivalent equation, then it will be referred to as

the EIN-MS2 method. In addition, if we apply the third order IMEX Runge-Kutta method

(2.8) to the equivalent equation, then it will be referred to as the EIN-RK3 method. To

identify the schemes derived in this paper, the EIN-MS2 scheme coupled with the Fourier

collocation method will be referred to as the EIN-MS2-FC scheme. When we mention

the EIN-RK3-FC scheme without further clarification, it will be referring to the EIN-RK3

scheme coupled with the Fourier collocation method. In addition, if we replace the Fourier

collocation method with the Chebyshev collocation method, we replace the letter “FC" with

“CC" accordingly. For example, the EIN-MS2 scheme coupled with the Chebyshev colloca-

tion method will be referred to as the EIN-MS2-CC scheme. Sometimes for convenience,

we also use the EIN Fourier collocation schemes to refer to both the EIN-MS2-FC and the

EIN-RK3-FC schemes. Meanwhile, we use the EIN Chebyshev collocation schemes to refer

to both the EIN-MS2-CC and the EIN-RK3-CC schemes.

2.3. Stability analysis

In this subsection we attempt to give stability analysis for the proposed EIN-RK3-FC and

EIN-MS2-FC schemes by the aid of the Fourier method. We would like to investigate how

to choose a0 such that the schemes can be stable under the relaxed time step restrictions.

The stability analysis of the EIN-RK3-CC and EIN-MS2-CC schemes requires some more

complex analytical techniques such as the energy method and will not be presented here.

The numerical results obtained in Section 3 indicate that the EIN-RK3-CC and EIN-MS2-

CC schemes are also stable provided that the values of a0 are the same as those for the

EIN-RK3-FC and EIN-MS2-FC schemes, respectively.

For simplicity of analysis, we consider the simplified linear equation

Ut + cUx = dUx x , (2.11)

where d > 0 and c ∈ R. Adding and subtracting a term with constant diffusion coeffi-

cient a1Ux x at the left-hand side of the considered PDE and using the Fourier collocation

method to discretize the equation spatially, we can obtain the following system of ordinary

differential equations

(ũk)t =
�
(a1− d)k2− ick

�
ũk − a1k2ũk, −N ≤ k ≤ N − 1, (2.12)

where ũk is given by (2.3), a1 = a0 × d and i2 = −1. Coupled with the time-marching

methods, in which the term
�
(a1 − d)k2 − ick

�
ũk is taken as N and the term a1k2ũk is

taken as L , we then obtain the fully discrete EIN schemes. Note that if we let a0 = 1, then

the EIN scheme will degenerate to the general IMEX scheme.
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2.3.1. The EIN-MS2-FC scheme

Coupled with the EIN-MS2 method (2.7), we can obtain the following characteristic poly-

nomial

(1+ a1τk2)z2 + 2τ
�

ick+ (d − a1)k
2
�

z − (1− a1τk2). (2.13)

The stability properties of the scheme are determined by the location of the roots of

the characteristic polynomial. Because the L2 norm of the exact solution to the linear

convection-diffusion equation (2.11) does not increase in time, the necessary and suffi-

cient stability condition of the EIN-MS2-FC scheme is given by the following lemma.

Lemma 2.1. The EIN-MS2-FC scheme is stable if and only if its characteristic polynomial has
multiple roots z with |z| < 1 and simple roots with |z| ≤ 1.

Generally, polynomials satisfying the above condition are also called simple von Neu-

mann polynomials. We can reduce the characteristic polynomial to a polynomial of lower

degree and use the theory, which originates from Schur [36] and is exposed by Miller

in [31], to help us simplify the algebra needed to determine the conditions under which

the characteristic polynomial is a simple von Neumann polynomial.

Given a polynomial ψ(z) =
∑s

j=0 b jz
j of degree s with b0, bs 6= 0, we can obtain a

polynomial φ(z) of degree s− 1

φ(z) =
ϕ(0)ψ(z)−ψ(0)ϕ(z)

z

by introducing ϕ(z) =
∑s

j=0 b̄s− jz
j , where b̄s− j denotes the complex conjugate of b j. There

are two theorems which help us with the stability analysis.

Theorem 2.1. ψ(z) is a simple von Neumann polynomial if and only if either |ϕ(0)|> |ψ(0)|
and φ(z) is a simple von Neumann polynomial or φ(z) ≡ 0 and dψ(z)

dz
is a Schur polynomial.

Theorem 2.2. ψ(z) is a Schur polynomial, which has only roots z with |z| < 1, if and only if
|ϕ(0)|> |ψ(0)| and φ(z) is a Schur polynomial.

We useψ(z) to refer to the characteristic polynomial (2.13) of the EIN-MS2-FC scheme

and apply the above two theorems to the scheme. Because |ϕ(0)|> |ψ(0)|,ψ(z) is a simple

von Neumann polynomial if and only if φ(z) is, and φ(z) is given by

φ(z) = 4a1τk2z + 4(d − a1)τk2+ 4ica1τ
2k3.

Therefore, the scheme is stable if and only if

(1− 2a0) + c2a2
0k2τ2 ≤ 0.

By analyzing the above inequality, we can summarize the results in the following proposi-

tion.
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Proposition 2.1. For the linear periodic initial value problem

Ut + cUx = dUx x , (x , t) ∈ Ω× [0,∞), (2.14a)

U(x , 0) = U0(x), x ∈ Ω, (2.14b)

U(x + 2π, t) = U(x , t), (x , t) ∈ R× [0,∞), (2.14c)

where d > 0, c ∈ R, Ω = [0,2π], the EIN-MS2-FC scheme is stable provided that
(1) if c = 0 and a0 ≥ 1/2, then there are no restrictions on τ;

(2) if c 6= 0 and a0 > 1/2, then 0< τ ≤
p

2a0− 1
�
(a0|c|N).

Note that the upper-bound of the time step is not explicitly dependent on the diffusion

coefficient d and is related to the size of a0 in the case of a0 >
1

2
, c 6= 0, d > 0. In addition,

the time step reaches its maximum 1

|c|N when a0 = 1.

Remark 2.1. Note that for the pure convection equation Ut + cUx = 0, c ∈ R, the Fourier

collocation scheme coupled with the Leap-Frog method (the explicit part of the IMEX-MS2

method (2.7)) is stable [26] for τ < 1

|c|N . That is, the upper-bound of the time step of the

EIN-MS2-FC scheme is less than that of the explicit part of the scheme if a0 6= 1.

2.3.2. The EIN-RK3-FC scheme

In this subsection, we analyze the stability of the EIN-RK3-FC scheme for the linear convection-

diffusion equation (2.11). We would like to investigate how to choose a0 such that the

scheme can be stable under a relaxed time step restriction. Utilization of the EIN-RK3

method (2.8) to the semi-discrete scheme (2.12) leads to a recurrence relation involving

ũn
k and ũn+1

k

ũn+1
k = Gũn

k,

where the amplification factor G is a scalar function of variables τ, k, c, d , a0 and is given

by

G = 1+ GN
5∑

l=1

b̂l Ml + GL
5∑

l=1

b̃l Ml , (2.15)

where

M1 = 1,

Ms =

 

1+ GN
s−1∑

l=1

âsl Ml + GL
s−1∑

l=1

ãsl Ml

!

��
1− ãssGL
�

, 2≤ s ≤ 5,

GL = −a0dk2τ, GN = (a0 − 1)dk2τ− ickτ.

The specific formulae of ãsl , âsl , b̃l , b̂l can be found in (2.10). Because the L2 norm of the

exact solution to the linear convection-diffusion equation (2.11) does not increase in time,
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the von Neumann stability requires that the magnitude of the amplification factor to be

less than or equal to 1, i.e.,

|G| ≤ 1. (2.16)

The detailed stability analysis of the EIN-RK3-FC scheme is quite complex. Considering the

complexity, we get the stability constraints on τ and a0 numerically.

We analyze the two cases: c = 0 and c 6= 0. In the case that c = 0, we would like to find

the minimum and maximum (if it exists) values of a0 to assure that the scheme is stable

under a relaxed time step restriction. It is preferable that the stability is assured regardless

of the time step. On this basis, we then analyze the case of c 6= 0, because we usually

cannot expect the stability of the scheme to be better after adding the convection term to

the equation.

Taking c = 0, the amplification factor G can be simply regarded as a scalar function of

the two variables, a0 and λ = dk2τ. We define the stability region to be a region of the

positive real (a0, λ)-plane such that |G| lies within the unit circle. Theoretically, for any

fixed a0, we can find a maximum λ that makes the scheme stable. We record it as λ0. Since

G is a continuous function of a0 and λ, λ0 will lie on the boundary of the stability region.

Therefore, to determine the boundary locus of the stability region, we set a0 = 10θ , where

θ is a series of discrete values in steps of 0.01 from −10 to 10, and find a range of λ0 for

which |G| ≤ 1. The set of points (a0, λ0) constitute the boundary of the stability domain.

If we record the boundary locus of the stability region as Γ, then the stability region is

the area surrounded by Γ and the a0, λ coordinate axes. We plot the stability region of

the EIN-RK3-FC scheme with c = 0 in Fig. 2.1 to give an indication of the stability of the

scheme. We find that the scheme is unconditionally stable provided that

a0 ≥ 0.54,

otherwise, the scheme is subject to a strict time step restriction τ = O(N−2) for stability.

Next, we analyze the case of c 6= 0. For the convection-diffusion equation (2.11),

we know that when the local discontinuous Galerkin method is adopted for spatial dis-

cretization, the pure IMEX schemes [40] are shown to be stable as long as the time step is

upper-bounded by a constant, which depends on the ratio of the diffusion and the square

of the convection coefficients and is independent of the mesh size. For the EIN-RK3-FC

scheme, we expect to obtain similar stability, that is, the scheme could be stable under the

condition τ ≤ τ0, where τ0 is a positive constant depending on the diffusion coefficient d ,

the convection coefficient c and possibly the stabilization parameter a0. Next, we would

like to explore whether the scheme would allow us to achieve such stability by the Fourier

analysis numerically.

During the search for τ0 we take a sufficiently large integer N in the code. For any

fixed a0, d , c, the values of |G| are computed. By checking whether the inequality (2.16) is

satisfied for all k, we can get a range of time step, where k is the frequency and −N ≤ k ≤
N − 1. The maximum value of the range is recorded as τ0. Fig. 2.2 shows the maximum

time step τ0 for some choices of a0. We can see that for any fixed a0, the scheme is stable

as long as the time step is upper-bounded by a positive constant which is proportional to
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Figure 2.1: The stability region of the EIN-RK3-FC scheme corresponding to a0 and λ for the linear
convection-diffusion equation (2.11) with c = 0. The scheme is stable when a0 and λ are in the black
region.

d/c2, when d/c2 is relatively small. The approximately linear relationship between τ0 and

d/c2 can be described as

τ0 ≈










0.628 d/c2, a0 = 0.54,

3.185 d/c2, a0 = 0.8,

3.893 d/c2, a0 = 1,

6.35 d/c2, a0 = 10.

When d/c2 is large, τ0 is no longer proportional to d/c2, and when d/c2 is large enough,

the scheme can even be unconditionally stable, which is not shown in the figures. We have

calculated the maximum time step of the scheme for a large number of choices of a0. In

general, the gradient of the fitting line increases with the increase of a0. As a result, the

sufficient condition for the stability of the scheme is given by

τ ≤ τ0 ≈ 0.628 d/c2.

Note that when d/c2 is very small or even zero, τ0 would be too small to be the true

bound for stability, because the scheme can also be stable under the standard CFL condition

Nτ≤ C , (2.17)

if the diffusion term is not considered. Next, we would like to further find the possible

CFL-like stability condition for the scheme. Similarly, we obtain the Courant number C in

(2.17) numerically. When d = 0, we find that no matter what the value of the convection

coefficient c is, the scheme is stable for the convection equation Ut+ cUx = 0 provided that

Nτ ≤ 1.56/|c|. (2.18)
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Figure 2.2: The maximum time step τ0 of the EIN-RK3-FC scheme corresponding to the diffusion
coefficient d, the convection coefficient c and the stabilization parameter a0 for the linear convection-
diffusion equation (2.11).
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For each set of d > 0, c ∈ R, the stability of the EIN-RK3-FC scheme for the convection-

diffusion equation (2.11) is investigated under the time step (2.18) while a0 ranges from

0.54 to 1000 in increment of 10−2. The result shows that the scheme can always be stable

under the time step (2.18) regardless of the value of a0. Below we summarize the stability

results of the scheme in the following proposition.

Proposition 2.2. For the linear periodic initial value problem (2.14), the EIN-RK3-FC scheme
is stable provided that
(1) if c = 0 and a0 ≥ 0.54, then there are no restrictions on τ;
(2) if c 6= 0 and a0 ≥ 0.54, then 0 < τ ≤ max

�
1.56
�
(|c|N), τ0

	
, where τ0 ≈ 0.628 d/c2 is

a constant and d , c are the diffusion and convection coefficients, respectively.

3. Numerical experiments

In this section, we will numerically validate the orders of accuracy and performance

of the proposed EIN Fourier collocation and EIN Chebyshev collocation schemes for the

convection-diffusion equations in one and two space dimensions. In addition, we would

like to verify the stability of the proposed numerical schemes in terms of the constant a1

given in the analysis. The generalization of the Fourier collocation and the Chebyshev

collocation method to the two-dimensional equation is straightforward. In the tests, if

we use the Fourier collocation method for spatial discretization, the periodic boundary

condition is considered, otherwise we consider the Dirichlet-Dirichlet boundary conditions

(2.5) given by the exact solution. In the implementation of the EIN-MS2-FC (or the EIN-

MS2-CC) scheme, we adopt the EIN-RK3-FC (or the EIN-RK3-CC) scheme to compute the

solutions at the first several time levels. The eigenvalues of the Chebyshev collocation

operator associated with the convection term grow like O(N2), thus, from a stability point

of view, we take τ= O(N−2) for all the EIN Chebyshev collocation schemes. As for the EIN

Fourier collocation schemes, we take the time steps given in the stability analysis.

3.1. The linear numerical test in one dimension

We consider the linear convection-diffusion equation

Ut + cUx − dUx x + a1Ux x
︸ ︷︷ ︸

T1

− a1Ux x
︸ ︷︷ ︸

T2

= 0, x ∈ (0,2π) (3.1)

augmented with the initial condition U(x , 0) = sin(x). The problem has an exact solution

U(x , t) = e−d t sin(x − ct). (3.2)

We compute to T = 1 with the parameter a1 = a0×d and the coefficients c = 1, d = 1. The

L2 errors and orders of the EIN-MS2 and EIN-RK3 schemes in conjunction with the Fourier

collocation and Chebyshev collocation methods for this problem are listed in Tables 3.1

and 3.2, respectively. In each table, we display the numerical results of the schemes with

different a0.
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From the experiments we can see that all the EIN Fourier collocation schemes are

stable and can preserve very nice temporal convergence rates if a0 is greater than or equal

to the stability threshold, while the errors of all the schemes blow up as N increases if a0

is smaller than the stability threshold. This verifies the stability results produced by our

analysis. Please refer to Table 1.1 for the stability threshold of each scheme. We also note

that larger a0 causes larger error. It is normal for this to happen, because the auxiliary term

a1Ux x , a1 = d×a0 we add to and subtract from the equation are treated in different ways,

i.e., one is treated explicitly and the other is treated implicitly. The two different time-

stepping methods bring a certain error to the scheme, which increases with the increase of

a0. For this reason, too large a0 is not recommended.

As illustrated in Table 3.2, the EIN-MS2-CC scheme is stable and can achieve the op-

timal second order temporal convergence rate if a0 is greater than the stability threshold,

while the errors of all the EIN Chebyshev collocation schemes blow up as N increases

if a0 is smaller than the stability threshold. Since the time step of the EIN Chebyshev

collocation schemes is O(N−2), compared with the EIN Fourier collocation schemes, the

errors of the schemes can easily achieve the machine error with fewer collocation points,

and are less sensitive to a0. In addition, order reduction is observed for the EIN-RK3-CC

scheme, that is, the third order temporal convergence rate is not attained and the order

of convergence is rather governed by the stage order of the time-marching method (2.8),

no matter how dense the mesh grid is. Note that the stage order of the time-marching

method (2.8) is 2. Such an order reduction phenomenon results from wrong specifications

of intermediate-stage boundary conditions, i.e., we view each intermediate value un,s in

(2.8) as an approximation to u(tn + c̃sτ), and forces the physical boundary condition at

time tn + c̃sτ

un,s( x̃0) = g1(t
n + c̃sτ), un,s( x̃N ) = g2(t

n + c̃sτ), 2≤ s ≤ 5.

The specific formulae of c̃s, 2≤ s ≤ 5 can be found in (2.9). For more information about or-

der reduction, please refer to [33,35,42]. We adopt a strategy of boundary treatment [42]

in Appendix A to help recover the third order convergence rate of the EIN-RK3-CC scheme.

The strategy was first proposed to avoid the order reduction when third order IMEX Runge-

Kutta time discretization is used together with the local discontinuous Galerkin spatial dis-

cretization for solving the convection-diffusion problems with time-dependent Dirichlet-

Dirichlet boundary conditions. The results of the EIN-RK3-CC scheme with the boundary

treatment (A.3) for the problem (3.1) with Dirichlet-Dirichlet boundary conditions are

listed in Table 3.3. As we can see, the smallest a0 to ensure the stability of the scheme

is 0.54. When a0 = 10, the errors are larger in comparison with the results of a0 = 0.54

and a0 = 1. In addition, the optimal order of accuracy can be observed if a0 ≥ 0.54. It

further proves the usefulness of the boundary treatment method in retaining the original

high order accuracy of the scheme. For convenience, when we mention the EIN-RK3-CC

scheme below without further clarification, it will be referring to the EIN-RK3-CC scheme

with the boundary treatment (A.3).
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Table 3.1: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (3.1) with
periodic boundary condition.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.49 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-FC
p
|2a0−1|
a0N

64 1.63E+04 1.83E-06 4.54E-05 1.15E-04

128 1.88E+29 -83.25 4.58E-07 2.00 1.16E-05 1.97 2.89E-05 1.99

256 1.52E+83 -179.08 1.15E-07 2.00 2.93E-06 1.98 7.26E-06 1.99

512 NaN NaN 2.88E-08 2.00 7.36E-07 1.99 1.82E-06 2.00

1024 NaN NaN 7.19E-09 2.00 1.84E-07 2.00 4.55E-07 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-FC 1.56

N

64 3.40E-07 3.32E-07 2.95E-07 3.44E-04

128 4.40E-08 2.95 4.30E-08 2.95 3.82E-08 2.95 5.26E-05 2.71

256 5.59E-09 2.98 5.46E-09 2.98 4.86E-09 2.98 7.30E-06 2.85

512 1.23E+00 -27.71 6.88E-10 2.99 6.12E-10 2.99 9.62E-07 2.92

1024 2.68E+20 -67.57 8.64E-11 2.99 7.68E-11 2.99 1.24E-07 2.96

Table 3.2: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (3.1) with
Dirichlet-Dirichlet boundary conditions.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.49 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-CC
p
|2a0−1|
a0N 2

16 1.05E-07 1.86E-07 2.34E-06 5.18E-06

32 5.96E+36 -72.67 1.18E-08 1.99 1.49E-07 1.98 3.29E-07 1.99

64 NaN NaN 7.46E-10 1.99 9.43E-09 1.99 2.08E-08 1.99

128 NaN NaN 4.70E-11 1.99 5.92E-10 2.00 1.30E-09 2.00

256 NaN NaN 2.65E-12 2.07 3.70E-11 2.00 8.16E-11 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-CC 1.56

N 2

16 5.43E-08 5.60E-08 6.10E-08 9.92E-06

32 2.59E-09 2.20 2.78E-09 2.17 3.34E-09 2.10 3.39E-07 2.44

64 1.34E-10 2.14 1.41E-10 2.15 1.66E-10 2.17 1.56E-08 2.22

128 7.10E-12 2.12 7.46E-12 2.12 8.69E-12 2.13 7.98E-10 2.14

256 NaN NaN 4.62E-13 2.01 5.23E-13 2.03 4.16E-11 2.13

Table 3.3: The errors and orders of the EIN-RK3-CC scheme with the boundary treatment (A.3) for
Example (3.1) with Dirichlet-Dirichlet boundary conditions.

τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

1.56

N 2

16 5.31E-09 5.23E-09 4.80E-09 6.34E-06

32 8.59E-11 2.97 8.47E-11 2.97 7.99E-11 2.95 1.12E-07 2.91

64 1.36E-12 2.99 1.34E-12 2.99 1.30E-12 2.97 1.83E-09 2.97

128 1.69E-13 1.50 2.11E-14 2.99 2.01E-14 3.01 2.92E-11 2.99

256 NaN NaN 3.29E-16 3.00 3.14E-16 3.00 3.61E-13 3.17
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3.2. The nonlinear numerical test in one dimension

We consider the nonlinear convection-diffusion equation

Ut +
1

2
(U2)x − (d(U)Ux)x + a1Ux x − s(x , t)
︸ ︷︷ ︸

T1

= a1Ux x
︸ ︷︷ ︸

T2

, x ∈ (0,2π) (3.3)

augmented with the diffusion coefficient

d(U) = 1+σU2, (3.4)

the initial condition U(x , 0) = sin(x) and the source term

s(x , t) = sin(x+ t)− 2σ cos2(x + t) sin(x + t)+σ sin3(x + t)+ cos(x + t)(1+ sin(x + t)).

The problem has an exact solution

U(x , t) = sin(x + t).

We compute to T = 1 with the stabilization parameter a1 = a0 ×maxun d(un).

First, we test the stability of the proposed schemes for the nonlinear equation in terms

of the constant a0. Tables 3.4 and 3.5 list the L2 errors and orders of the schemes for (3.3)

with the diffusion coefficient σ = 1. From the experiment we find that the smallest a0 to

ensure the stability of the EIN-MS2-FC and EIN-MS2-CC schemes is 0.51, and the smallest

a0 to ensure the stability of the EIN-RK3-FC scheme is 0.54, which illustrates the sharpness

of the threshold values shown in Table 1.1. When a0 = 0.53, although the results of the

EIN-RK3-CC scheme do not show any instability phenomenon under the existing mesh, as

long as we increase N or decrease the time step, the errors of the scheme will explode.

From the numerical results we can also find that larger a0 may cause larger errors.

Second, we numerically validate the stability and efficiency of the schemes for the

nonlinear equation (3.3) with different σ. Since the time step of the EIN-MS2-FC scheme

for the linear convection-diffusion equation (2.11) reaches its maximum when a0 = 1,

we take a0 = 1 for the EIN-MS2-FC and EIN-MS2-CC schemes in the test. For the EIN-

RK3-FC and EIN-RK3-CC schemes, we take a0 = 0.54. Tables 3.6 and 3.7 list the L2

errors and orders of the schemes for (3.3) with four different diffusion coefficients σ =

−1, 0, 10, 100. It is observed that, all the schemes are stable and the EIN-MS2-FC and

EIN-MS2-CC schemes can preserve very nice second order temporal convergence rates

with a refined mesh grid regardless of the values of σ. The numerical orders of the EIN-

RK3-FC scheme settle down towards the asymptotic value slowly with mesh refinements

if σ is large. In addition, larger σ means larger a1, and it causes larger error. Compared

with the EIN-MS2-FC scheme, σ has a more significant impact on the errors of the EIN-

RK3-FC scheme. For the EIN-RK3-CC scheme, the expected order of convergence (in time)

is obtained, which confirms the usefulness of the strategy of boundary treatment (A.3) in

retaining the original high order accuracy of the scheme.
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Table 3.4: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (3.3) with
periodic boundary condition.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.49 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-FC
p
|2a0−1|
a0N

64 4.20E-02 3.30E-06 8.04E-05 1.53E-04

128 4.71E-02 -0.17 8.29E-07 1.99 2.02E-05 1.99 3.82E-05 2.00

256 NaN NaN 2.07E-07 2.00 5.06E-06 2.00 9.57E-06 2.00

512 NaN NaN 5.18E-08 2.00 1.27E-06 2.00 2.39E-06 2.00

1024 NaN NaN 1.30E-08 2.00 3.17E-07 2.00 5.99E-07 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-FC 1.56

N

64 6.95E-07 7.23E-07 3.27E-06 2.64E-03

128 8.75E-08 2.99 9.13E-08 2.99 4.42E-07 2.89 4.55E-04 2.53

256 1.10E-08 2.99 1.15E-08 2.99 5.77E-08 2.94 6.80E-05 2.74

512 3.67E-06 -8.38 1.44E-09 2.99 7.39E-09 2.97 9.35E-06 2.86

1024 NaN NaN 1.81E-10 3.00 9.35E-10 2.98 1.23E-06 2.93

Table 3.5: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (3.3) with
Dirichlet-Dirichlet boundary conditions.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.49 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-CC
p
|2a0−1|
a0N 2

16 5.46E-06 5.47E-06 6.32E-06 8.28E-06

32 8.55E-09 4.83 8.20E-09 4.86 2.10E-07 2.55 4.14E-07 2.24

64 5.69E-10 1.99 5.46E-10 1.99 1.40E-08 1.99 2.76E-08 1.99

128 3.12E-02 -12.99 3.57E-11 1.99 9.03E-10 2.00 1.78E-09 2.00

256 4.69E-02 -0.30 2.16E-12 2.04 5.78E-11 1.99 1.12E-10 2.01

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-CC 1.56

N 2

16 7.07E-05 7.07E-05 7.07E-05 1.21E-04

32 1.60E-10 9.38 1.68E-10 9.34 8.48E-10 8.17 1.17E-06 3.35

64 2.51E-12 3.00 2.66E-12 2.99 1.34E-11 2.99 1.90E-08 2.97

128 3.87E-14 3.01 4.17E-14 3.00 2.07E-13 3.01 2.99E-10 2.99

256 5.83E-16 3.03 5.94E-16 3.07 3.19E-15 3.01 3.81E-12 3.15
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Table 3.6: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (3.3) with
periodic boundary condition.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

σ = −1 σ = 0 σ = 10 σ = 100

EIN-MS2-FC 1

N

64 8.81E-05 5.37E-05 1.58E-04 4.19E-04

128 2.25E-05 1.97 1.35E-05 1.99 3.94E-05 2.01 8.83E-05 2.25

256 5.65E-06 1.99 3.40E-06 1.99 9.85E-06 2.00 1.87E-05 2.24

512 1.42E-06 2.00 8.51E-07 2.00 2.46E-06 2.00 4.39E-06 2.09

1024 3.54E-07 2.00 2.13E-07 2.00 6.15E-07 2.00 1.09E-06 2.01

τ N σ = −1 σ = 0 σ = 10 σ = 100

EIN-RK3-FC 1.56

N

64 2.34E-06 2.87E-07 1.33E-04 1.17E-02

128 3.36E-07 2.80 3.60E-08 3.00 2.14E-05 2.64 3.44E-03 1.77

256 4.57E-08 2.88 4.50E-09 3.00 3.14E-06 2.77 8.03E-04 2.10

512 6.02E-09 2.92 5.63E-10 3.00 4.34E-07 2.86 1.56E-04 2.36

1024 7.76E-10 2.95 7.04E-11 3.00 5.74E-08 2.92 2.64E-05 2.57

Table 3.7: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (3.3) with
Dirichlet-Dirichlet boundary conditions.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

σ = −1 σ = 0 σ = 10 σ = 100

EIN-MS2-CC
1

N 2

16 7.59E-05 6.32E-06 1.75E-05 NaN

32 2.42E-07 4.30 2.10E-07 2.55 6.31E-07 2.49 6.91E-06 NaN

64 1.64E-08 1.98 1.40E-08 1.99 4.20E-08 1.99 3.01E-07 2.31

128 1.07E-09 1.99 9.03E-10 2.00 2.72E-09 2.00 1.99E-08 1.98

256 6.86E-11 1.99 5.78E-11 1.99 1.73E-10 2.00 1.27E-09 2.00

τ N σ = −1 σ = 0 σ = 10 σ = 100

EIN-RK3-CC 1.56

N 2

16 1.16E-04 2.37E-07 5.73E-04 3.66E-01

32 4.53E-10 8.98 5.74E-11 6.00 4.96E-08 6.75 1.80E-05 7.16

64 8.75E-12 2.85 9.41E-13 2.97 8.25E-10 2.95 5.40E-07 2.53

128 1.45E-13 2.96 1.49E-14 2.99 1.30E-11 2.99 8.74E-09 2.97

256 2.29E-15 2.99 2.27E-16 3.02 2.03E-13 3.00 1.41E-10 2.98
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3.3. The nonlinear numerical test in two dimension

We consider the nonlinear convection-diffusion equation in two-dimension

Ut +
1

2

�
�
U2
�

x +
�
U2
�

y

�

−∇ · (d(U)∇U)− s(x , y, t) + a1(Ux x + Uy y)
︸ ︷︷ ︸

T1

= a1(Ux x + Uy y )
︸ ︷︷ ︸

T2

(3.5)

augmented with the diffusion coefficient (3.4), the initial condition U(x , y, 0) = sin(x +
y), (x , y) ∈ (0,2π)2 and the source term

s(x , y, t) = cos(x + y + t) + 2 sin(x + y + t)− 4σ cos2(x + y + t) sin(x + y + t)

+ 2σ sin3(x + y + t) + sin
�
2(x + y + t)
�
.

The exact solution to the problem is given by

U(x , y, t) = sin(x + y + t). (3.6)

We compute to T = 1 with the diffusion coefficient σ = 1 and the stabilization parameter

a1 = a0 ×maxun d(un). Tables 3.8 and 3.9 list the L2 errors and orders of the schemes

for (3.5) with different a0. From the experiment we find that the smallest a0 to ensure

the stability of the EIN-MS2-FC and EIN-MS2-CC schemes is 0.51. This time, since the

meshes we have used are not refined enough, the results of the EIN-RK3-FC and EIN-RK3-

CC schemes have not shown signs of stability deterioration when a0 = 0.53. In addition,

for the EIN-RK3-FC scheme, when a0 = 1 and a0 = 10, the errors are larger and the

numerical orders of accuracy settle down towards the asymptotic value slower with mesh

refinements, in comparison with the results of a0 = 0.54.

Table 3.8: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (3.5) with
periodic boundary condition.

scheme τ Nx , Ny
L2 error order L2 error order L2 error order L2 error order

a0 = 0.49 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-FC
p
|2a0−1|
a0Nx

10 1.58E-04 1.51E-04 3.87E-03 7.57E-03

20 1.07E-04 0.56 3.82E-05 1.99 9.69E-04 2.00 1.86E-03 2.03

40 7.93E-03 -6.22 9.60E-06 1.99 2.43E-04 2.00 4.63E-04 2.00

80 4.93E-03 0.69 2.41E-06 2.00 6.08E-05 2.00 1.16E-04 2.00

100 4.42E-03 0.48 1.54E-06 2.00 3.89E-05 2.00 7.42E-05 2.00

τ Nx , Ny a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-FC
1.56

Nx

10 5.98E-04 6.09E-04 1.47E-03 1.22E-01

20 7.90E-05 2.92 8.12E-05 2.91 2.68E-04 2.46 6.00E-02 1.02

40 1.01E-05 2.97 1.04E-05 2.96 4.37E-05 2.61 2.07E-02 1.54

80 1.27E-06 2.98 1.33E-06 2.98 6.54E-06 2.74 5.22E-03 1.99

100 6.53E-07 2.99 6.81E-07 2.98 3.49E-06 2.81 3.16E-03 2.25
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Table 3.9: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (3.5) with
Dirichlet-Dirichlet boundary conditions.

scheme τ Nx , Ny
L2 error order L2 error order L2 error order L2 error order

a0 = 0.49 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-CC
p
|2a0−1|
a0N 2

x

10 6.31E-03 6.32E-03 6.20E-03 6.33E-03

20 2.40E-04 2.53 8.27E-08 8.69 1.41E-06 6.48 2.67E-06 6.01

30 1.91E-03 -2.66 1.17E-08 2.52 2.93E-07 2.02 5.52E-07 2.02

40 1.51E-03 0.43 3.78E-09 2.02 9.49E-08 2.01 1.79E-07 2.02

50 7.85E-04 1.49 1.57E-09 2.01 3.94E-08 2.01 7.44E-08 2.01

τ Nx , Ny a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-CC
1.56

N 2
x

10 7.61E-03 7.61E-03 7.61E-03 8.15E-03

20 9.58E-08 8.72 9.57E-08 8.73 1.03E-07 8.67 6.66E-05 3.72

30 7.40E-10 6.24 7.76E-10 6.18 4.59E-09 4.00 7.20E-06 2.86

40 1.38E-10 3.00 1.45E-10 3.00 8.65E-10 2.98 1.40E-06 2.92

50 3.74E-11 3.00 3.92E-11 3.00 2.35E-10 2.99 3.87E-07 2.95

4. Convection-dispersion equation

Consider the convection-dispersion equation (1.2). For such equation, in order to guar-

antee stability and convergence, the sign of the auxiliary term a1Ux x x we add to both sides

of the equation needs to be adjusted according to the sign of G ′(Ux). For example, if

G ′(Ux) > 0 within the whole area Ω, then we should add two equal term with negative

dispersion coefficient−a1Ux x x , a1 > 0 to both sides of the considered equation. Otherwise,

the sign of the auxiliary term a1Ux x x needs to be positive. We only consider the case where

the sign of G ′(Ux) is fixed. The discussion of the convection-dispersion equation with the

sign of G ′(Ux) varying in space and time is beyond the scope of this work. Assume that

G ′(Ux) > 0, we add two equal term with constant dispersion coefficient −a1Ux x x to both

sides of the considered equation and get

Ut + f (U)x +G (Ux)x x − a1Ux x x
︸ ︷︷ ︸

T1

= − a1Ux x x
︸ ︷︷ ︸

T2

, (4.1)

where a1 = a0×maxUx
|G ′(Ux)| and a0 > 0 is a constant to be determined. In this section,

we present the Fourier collocation and Chebyshev collocation methods for the convection-

diffusion equation (4.1). We still consider the time-marching methods shown in Section

2.2. The Fourier analysis is adopted to explore the stability of the proposed schemes in the

linear case.

4.1. The spatial discretizations

4.1.1. The Fourier collocation method

For ease of presentation the spatial period Ω is normalized to [0,2π]. Following the nota-

tions in Section 2.1.1, the semi-discrete Fourier collocation approximation to the convection-

dispersion equation (4.1) with the initial condition (2.1) and periodic boundary condition
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can be described as follows: find uN (t) ∈ SN , such that for x j, j = 0,1, ..., 2N − 1 defined

by (2.2), we have

uN (x , 0) = IN U0(x),
n

(uN )t + [IN f (uN )]x + {ING [(uN )x]}x x − a1(uN )x x x
︸ ︷︷ ︸

T1

o

(x j, t) = − a1(uN )x x x
︸ ︷︷ ︸

T2

(x j, t),

where IN is a trigonometric interpolation operator and IN U0 ∈ SN denotes a trigonometric

interpolant of U0(x) at the Fourier collocation nodes (2.2).

4.1.2. The Chebyshev collocation method

After a suitable mapping normalization, we can assume that the problem is set in the refer-

ence space interval [−1,1]. Following the notations in Section 2.1.2, we use the Chebyshev

collocation method to numerically solve the convection-dispersion equation (4.1) with the

initial condition (2.1) and the Dirichlet-Dirichlet-Neumann boundary conditions

U(−1, t) = g1(t), U(1, t) = g2(t), Ux (1, t) = g3(t), 0≤ t ≤ T. (4.2)

Other sets of boundary conditions can be referred to [6,16,34]. The semi-discrete Cheby-

shev collocation scheme can be defined as follows: seek for a solution ūN+1(x , t) ∈ PN+1

such that

n

(ūN+1)t + [I
⋆
N+1 f (ūN+1)]x + {I⋆N+1G [(ūN+1)x]}x x − a1(ūN+1)x x x
︸ ︷︷ ︸

T1

o

( x̃ j, t)

= − a1(ūN+1)x x x
︸ ︷︷ ︸

T2

( x̃ j, t), j = 1, ..., N − 1,

and

ūN+1(x , 0) = I⋆N+1U0(x),

ūN+1(−1, t) = g1(t), ūN+1(1, t) = g2(t), (ūN+1)x(1, t) = g3(t),

where x̃ j is defined by (2.6). Here, PN+1 is the space of algebraic polynomials of degree

less than or equal to N + 1 in [−1,1], and I⋆N+1 is an interpolation operator satisfying the

following conditions

I⋆N+1U( x̃ j) = U( x̃ j), j = 0,1, ..., N ,

[I⋆N+1U( x̃N )]x = Ux ( x̃N).

The same approach has been also used by Pavoni [34] for the normalized KdV equation.
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4.2. Stability analysis

In this subsection we attempt to give stability analysis for the proposed EIN-RK3-FC

and EIN-MS2-FC schemes by the aid of the Fourier method. We would like to investi-

gate how to choose a0 such that the schemes can be stable under the relaxed time step

restrictions. The stability analysis of the EIN-RK3-CC and EIN-MS2-CC schemes for the

convection-dispersion equation requires some more complex analytical techniques such as

the energy method and will not be presented here. The numerical results obtained in Sec-

tion 5 indicate that the EIN-RK3-CC and EIN-MS2-CC schemes are also stable provided

that the values of a0 are same with those for the EIN-RK3-FC and EIN-MS2-FC schemes,

respectively. Recall that the naming convention of the schemes is given in Section 2.2.2.

For simplicity of analysis, we consider the linear convection-dispersion equation

Ut + cUx + dUx x x = 0, (4.3)

where d > 0, c ∈ R. Adding two equal term with constant dispersion coefficient −a1Ux x x

to both sides of (4.3) and adopting the Fourier collocation method to the equivalent equa-

tion, we can obtain the following system of ordinary differential equations

(ũk)t =
�

i(d − a1)k
3− ick
�

ũk + ia1k3ũk, −N ≤ k ≤ N − 1, (4.4)

where ũk is given by (2.3), a1 = a0 × d and i2 = −1. Coupled with the time-marching

methods shown in Section 2.2, in which the term
�

i(d − a1)k
3 − ick
�

ũk is taken as N
and the term ia1k3ũk is taken as L , we then obtain the fully discrete schemes. Note that

a1 = d × a0, and if we let a0 = 1, the EIN scheme will degenerate to the general IMEX

scheme.

4.2.1. The EIN-MS2-FC scheme

Coupled with the EIN-MS2 method (2.7), we can obtain the following characteristic poly-

nomial

ψ(z) = (1− ia0dτk3)z2 + 2iτ
�

ck− d(1− a0)k
3
�

z − (1+ ia0dτk3).

Because the L2 norm of the exact solution to the linear convection-dispersion equation

(4.3) does not increase in time, stability requires the characteristic polynomial to be a

simple von Neumann polynomial, which has no roots z with |z| > 1 and only simple roots

with |z| = 1. Considering the theorems 2.1 and 2.2, because |ϕ(0)|= |ψ(0)| and φ(z) ≡ 0,

ψ(z) is a simple von Neumann polynomial if and only if
dψ(z)

dz
is a Schur polynomial, which

demands that

k2τ2
�

c2 − 2cd(1− a0)k
2 + d2(1− 2a0)k

4
�

< 1, −N ≤ k ≤ N − 1.

The above inequality is trivially satisfied for k = 0, so that we only need to consider the

inequality for |k|= 1 to |k| = N . By analyzing the above inequality, we can summarize the

results in the following proposition.
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Proposition 4.1. For the linear periodic initial value problem

Ut + cUx + dUx x x = 0, (x , t) ∈ Ω× [0,∞), (4.5a)

U(x , 0) = U0(x), x ∈ Ω, (4.5b)

U(x + 2π, t) = U(x , t), (x , t) ∈ R× [0,∞), (4.5c)

where Ω = [0,2π], d > 0, c ∈ R, the EIN-MS2-FC scheme is stable provided that

1. for the case of a0 < 1/2,

(a) if d(1− 2a0)N
2 < 2c(1− a0), then |c|Nτ≤ 1;

(b) if d(1− 2a0)N
2 ≥ 2c(1− a0), then

τ2N2
�

d2(1− 2a0)N
4− 2cd(1− a0)N

2 + c2
�
< 1;

2. for the case of a0 = 1/2,

(a) if c < 0, then τ2N2(c2 − dcN2)< 1;

(b) if 0≤ c ≤ d, then there are no restrictions on τ;

(c) if c > d, then τ2c
�

c2 − dc
�≤ d;

3. for the case of a0 > 1/2,

(a) if c = 0, then there are no restrictions on τ;

(b) if
�

c(1− a0)− |c|a0

� ≤ d(1− 2a0), then τ2N2(c2 − dcN2)< 1;

(c) if
�

c(1− a0)− |c|a0

�
> d(1− 2a0) and c(1− a0)≥ 0, then

τ2
�

d2(1− 2a0)− 2dc(1− a0) + c2
��

c(1− a0)− |c|a0

� ≤ d(1− 2a0);

(d) if
�

c(1− a0)− |c|a0

�
> d(1− 2a0) and c(1− a0)< 0, then

τ2a2
0c2
�|c|a0 − c(1− a0)

�≤ d(2a0− 1)2.

The result shows that the EIN-MS2-FC scheme will be subject to a strict time step

O(N−2) for stability, if a0 =
1

2
and c < 0. When a0 >

1

2
, the EIN-MS2-FC scheme can

always be stable for the linear convection-dispersion equation (4.3) as long as the time

step is upper-bounded by a positive constant, which depends on the dispersion coefficient

d , the convection coefficient c and the stabilization parameter a0. It is a much weaker

condition than the standard CFL condition. Also, note that for the pure convection equation

Ut + cUx = 0, c ∈ R, the Fourier collocation scheme coupled with the Leap-Frog method

(the explicit part of the IMEX-MS2 method (2.7)) is stable [26] for τ < 1

|c|N .
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4.2.2. The EIN-RK3-FC scheme

In this subsection, we analyze the stability of the EIN-RK3-FC scheme for the linear convection-

dispersion equation (4.3). We would like to investigate how to choose a0 such that the

scheme can be stable under a relaxed time step restriction. Utilization of the EIN-RK3

method (2.8) to the semi-discrete scheme (4.4) leads to an amplification factor G of the

form (2.15), where

GL = ia0dk3τ, GN = id(1− a0)k
3τ− ickτ.

Because the L2 norm of the exact solution to the linear convection-dispersion equation

(4.3) does not increase in time, the von Neumann stability requires the amplification factor

to meet the condition (2.16). The detailed stability analysis of the scheme is quite complex.

Considering the complexity, similar stability analysis method of the EIN-RK3-FC scheme

for the linear convection-diffusion equation (2.11) can be applied to analyze the EIN-RK3-

FC scheme for the linear convection-dispersion equation (4.3). We omit the full analysis

process because of the similarity and summarize the stability results of the scheme in the

following proposition.

Proposition 4.2. For the linear periodic initial value problem (4.5), the EIN-RK3-FC scheme
is stable provided that
(1) if c = 0 and a0 ≥ 0.54, then there are no restrictions on τ;
(2) if c 6= 0 and a0 ≥ 0.54, then 0 < τ ≤ max

�
1.56
�
(|c|N), τ0

	
, where τ0 is a constant

depending on a0, d , c.

The result shows that the stability criteria of the EIN-RK3-FC scheme for the linear

convection-dispersion equation (4.3) are almost the same as those of the EIN-RK3-FC

scheme for the linear convection-diffusion equation (2.11). It is worth mentioning that

for the linear convection-dispersion equation (4.3), the linear dependency between τ0 and

d/c2 does not hold any more when a0 is fixed. We have calculated the maximum time step

of the scheme for a large number of choices of a0, d , c, however, we cannot generalize the

relationship between the constant τ0 and a0, d , c with expressions.

5. Numerical experiments

In this section, we will numerically validate the orders of accuracy and performance

of the proposed EIN Fourier collocation and EIN Chebyshev collocation schemes for the

convection-dispersion equations in one and two space dimensions. In addition, we would

like to verify the stability of the proposed schemes in terms of the constant a1 given in

the analysis. The generalization of the Fourier collocation and the Chebyshev collocation

method to the two-dimensional equation is straightforward. In the tests, if we use the

Fourier collocation method for spatial discretization, the periodic boundary condition will

be considered, otherwise we consider the Dirichlet-Dirichlet-Neumann boundary condi-

tions (4.2) given by the exact solution. For the EIN-RK3-CC scheme, we use the strategy
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of boundary treatment (A.3) to deal with the Dirichlet-Dirichlet-Neumann boundary con-

ditions, unless otherwise stated. In the implementation of the EIN-MS2-FC (or the EIN-

MS2-CC) scheme, we adopt the EIN-RK3-FC (or the EIN-RK3-CC) scheme to compute the

solutions at the first several time levels. Since the eigenvalues of the Chebyshev colloca-

tion operator associated with the convection term grow like O(N2), from a stability point

of view, we take τ= O(N−2) for all the EIN Chebyshev collocation schemes. As for the EIN

Fourier collocation schemes, we take the time steps given by the stability analysis.

5.1. The linear numerical test in one dimension

First we compute the linear convection-dispersion equation

Ut + cUx + dUx x x − a1Ux x x
︸ ︷︷ ︸

T1

+ a1Ux x x
︸ ︷︷ ︸

T2

= 0, x ∈ (0,2π) (5.1)

augmented with the initial condition U(x , 0) = sin(x). The exact solution is given by

U(x , t) = sin
�

x + (d − c)t
�
.

The numerical errors and orders of accuracy are measured at T = π with the stabilization

parameter a1 = a0×d and the coefficients d = 2, c = −1. In Tables 5.1 and 5.2, we list the

numerical results of the EIN-MS2 and EIN-RK3 schemes in conjunction with the Fourier

collocation and Chebyshev collocation methods for this example with different a0. From

these two tables we can see that the smallest a0 to ensure the stability of the EIN-MS2-FC

and EIN-MS2-CC schemes is 0.51, and the smallest a0 to ensure the stability of the EIN-

RK3-FC and EIN-RK3-CC scheme is 0.54, which illustrates the sharpness of the threshold

values shown in Table 1.1. From the results we can also find that larger a0 may cause larger

error. In addition, owing to the time step of O(N−2), the errors of the EIN Chebyshev

collocation schemes can easily achieve the machine error with fewer collocation points,

and are less sensitive to a0 compared with the EIN Fourier collocation schemes.

5.2. The nonlinear numerical test in one dimension

We consider the nonlinear convection-dispersion equation

Ut + (
U2

2
)x + Ux x x +σ(U

3
x )x x − a1Ux x x − s(x , t)

︸ ︷︷ ︸

T1

+ a1Ux x x
︸ ︷︷ ︸

T2

= 0, x ∈ (0,2π) (5.2)

augmented with the initial condition U(x , 0) = cos(x) and the source term

s(x , t) = −1

2
(3σ+ 2 cos(x + t) + 9σ cos(2(x + t))) sin(x + t).

The exact solution to the problem is defined by

U(x , t) = cos (x + t) .
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Table 5.1: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (5.1) with
periodic boundary condition.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-FC 1

N

64 4.31E-05 4.84E-05 2.43E-03 4.54E-02

128 1.27E+00 -14.85 1.21E-05 2.00 6.07E-04 2.00 1.15E-02 1.98

256 6.40E+06 -22.26 3.04E-06 2.00 1.52E-04 2.00 2.89E-03 1.99

512 2.20E+16 -31.68 7.61E-07 2.00 3.81E-05 2.00 7.23E-04 2.00

1024 4.22E+29 -44.13 1.90E-07 2.00 9.52E-06 2.00 1.81E-04 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-FC 1.56

N

64 4.39E-05 4.29E-05 3.23E-05 5.89E-02

128 1.53E+01 -18.42 5.43E-06 2.98 4.09E-06 2.98 7.77E-03 2.92

256 4.89E+16 -51.50 6.83E-07 2.99 5.15E-07 2.99 9.91E-04 2.97

512 1.31E+48 -104.40 8.57E-08 2.99 6.46E-08 2.99 1.25E-04 2.99

1024 1.34E+111 -209.31 1.07E-08 3.00 8.09E-09 3.00 1.56E-05 3.00

Table 5.2: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (5.1) with
Dirichlet-Dirichlet-Neumann boundary conditions.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-CC
1

N 2

16 3.12E+00 2.75E-07 1.38E-05 2.62E-04

32 1.90E+03 -4.62 1.70E-08 2.01 8.49E-07 2.01 1.61E-05 2.01

64 2.57E+31 -46.72 1.05E-09 2.01 5.26E-08 2.01 1.00E-06 2.01

128 2.36E+93 -102.92 6.56E-11 2.00 3.28E-09 2.00 6.23E-08 2.00

256 NaN NaN 4.41E-12 1.95 2.04E-10 2.00 3.88E-09 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-CC 1.56

N 2

16 1.20E-07 1.11E-07 8.65E-08 1.77E-04

32 2.04E+106 -188.07 1.70E-09 3.01 1.36E-09 3.00 3.44E-06 2.84

64 NaN NaN 2.59E-11 3.02 2.08E-11 3.01 5.81E-08 2.94

128 NaN NaN 4.02E-13 3.00 3.23E-13 3.00 9.49E-10 2.97

256 NaN NaN 6.27E-15 3.00 4.99E-15 3.01 1.49E-11 3.00
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First, we test the stability of the proposed schemes for the nonlinear equation in terms

of the constant a0. We compute to T = π with the coefficient σ = 1 and the stabilization

parameter a1 = a0 × (1+ 3 maxun(un)2). Tables 5.3 and 5.4 list the L2 errors and orders

of the schemes for (5.2) with different a0. From the numerical results we can find that the

the EIN-MS2-FC and EIN-MS2-CC schemes remain stable as always if a0 ≥ 0.51, and the

smallest a0 to ensure the stability of the EIN-RK3-FC and EIN-RK3-CC schemes is 0.54. For

the EIN-RK3-CC scheme, the expected order of convergence (in time) is obtained, which

confirms the usefulness of the strategy of boundary treatment in retaining the original high

order accuracy of the scheme.

Second, we numerically validate the stability and efficiency of the schemes for the

nonlinear equation (5.2) with different dispersion coefficients. In the test, we take a1 =

(1+ 3σmaxun
x
(un

x)
2) for the EIN-MS2-FC and EIN-MS2-CC schemes. For the EIN-RK3-FC

and EIN-RK3-CC schemes, we take a1 = 0.54(1+ 3σmaxun
x
(un

x )
2). We compute to T = 1

with four different dispersion coefficients σ = −0.33, 0, 1, 10. Tables 5.5 and 5.6 list the

L2 errors and orders of the schemes for (5.2) with different σ. It is observed that, all

the schemes are stable and the EIN-MS2-FC and EIN-MS2-CC schemes can preserve very

nice second order temporal convergence rates as N increases regardless of the values of σ.

Larger σ also means larger a1, and it will bring larger error. Thus, when σ = 10, the errors

of the EIN-RK3-FC scheme are much larger and the numerical orders of accuracy settle

down towards the asymptotic value much slower with mesh refinements, in comparison

with the results of σ = 0 and σ = 1.

Table 5.3: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (5.2) with
periodic boundary condition.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-FC 1

N

64 1.54E-04 1.61E-04 3.38E-04 3.68E-03

128 3.79E-05 2.03 3.83E-05 2.07 8.34E-05 2.02 9.11E-04 2.02

256 9.49E-06 2.00 9.65E-06 1.99 2.09E-05 2.00 2.27E-04 2.01

512 2.37E-06 2.00 2.42E-06 1.99 5.22E-06 2.00 5.65E-05 2.00

1024 5.94E-07 2.00 6.07E-07 2.00 1.31E-06 2.00 1.41E-05 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-FC 1.56

N

64 4.86E-05 4.96E-05 1.48E-04 5.27E-02

128 4.87E-05 0.00 7.28E-06 2.77 3.06E-05 2.27 2.75E-02 0.94

256 4.70E-05 0.05 9.71E-07 2.91 5.17E-06 2.57 4.57E-03 2.59

512 3.60E-05 0.38 1.29E-07 2.92 7.11E-07 2.86 6.21E-04 2.88

1024 2.79E-05 0.37 1.64E-08 2.97 9.17E-08 2.96 8.13E-05 2.93
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Table 5.4: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (5.2) with
Dirichlet-Dirichlet-Neumann boundary conditions.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-CC 1

N 2

16 8.78E+01 4.01E+02 5.13E-01 1.48E-04

32 3.83E-07 13.89 3.93E-07 14.96 8.42E-07 9.61 9.11E-06 2.01

64 2.38E-08 2.00 2.43E-08 2.01 5.23E-08 2.00 5.66E-07 2.00

128 1.48E-09 2.00 1.52E-09 2.00 3.26E-09 2.00 3.52E-08 2.00

256 9.25E-11 2.00 9.47E-11 2.00 2.03E-10 2.00 2.20E-09 2.00

τ N a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-CC 1.56

N 2

16 5.55E-07 5.57E-07 1.23E-06 7.62E-04

32 4.19E-09 3.52 4.41E-09 3.49 2.39E-08 2.85 1.73E-05 2.73

64 2.66E-07 -3.00 7.17E-11 2.97 3.94E-10 2.96 3.19E-07 2.88

128 4.14E-07 -0.32 1.10E-12 3.01 6.04E-12 3.01 5.30E-09 2.96

256 1.26E-06 -0.80 1.71E-14 3.00 9.57E-14 2.99 8.81E-11 2.96

Table 5.5: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (5.2) with
periodic boundary condition.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

σ =−0.33 σ = 0 σ = 1 σ = 10

EIN-MS2-FC
1

N

64 5.81E-05 5.58E-05 2.71E-04 3.41E-04

128 1.56E-05 1.89 1.42E-05 1.98 6.91E-05 1.97 6.43E-05 2.41

256 4.13E-06 1.92 3.57E-06 1.99 1.74E-05 1.99 1.00E-05 2.68

512 1.04E-06 1.99 8.96E-07 1.99 4.38E-06 1.99 2.03E-06 2.30

1024 2.60E-07 2.00 2.24E-07 2.00 1.10E-06 2.00 4.68E-07 2.11

τ N σ =−0.33 σ = 0 σ = 1 σ = 10

EIN-RK3-FC 1.56

N

64 3.96E-07 9.08E-08 1.64E-05 2.62E-04

128 6.72E-08 2.56 1.12E-08 3.02 2.22E-06 2.88 5.67E-05 2.21

256 1.05E-08 2.68 1.40E-09 3.00 2.90E-07 2.94 9.43E-06 2.59

512 1.50E-09 2.80 1.74E-10 3.00 3.76E-08 2.95 1.72E-06 2.45

1024 2.01E-10 2.90 2.18E-11 3.00 4.72E-09 3.00 2.62E-07 2.71
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Table 5.6: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (5.2) with
Dirichlet-Dirichlet-Neumann boundary conditions.

scheme τ N
L2 error order L2 error order L2 error order L2 error order

σ =−0.33 σ = 0 σ = 1 σ = 10

EIN-MS2-CC 1

N 2

16 3.99E-06 4.73E-07 3.90E-05 3.41E-05

32 NaN NaN 2.92E-08 2.01 4.26E-07 3.26 2.13E-06 2.00

64 1.20E-04 NaN 1.81E-09 2.00 2.65E-08 2.00 1.32E-07 2.00

128 4.21E-06 2.41 1.13E-10 2.00 1.65E-09 2.00 8.25E-09 2.00

256 1.03E-08 4.34 7.21E-12 1.98 1.03E-10 2.00 5.14E-10 2.00

τ N σ =−0.33 σ = 0 σ = 1 σ = 10

EIN-RK3-CC 1.56

N 2

16 1.61E-06 2.71E-09 9.55E-07 2.64E-05

32 1.84E-10 6.55 2.82E-11 3.29 2.34E-09 4.34 1.02E-06 2.34

64 3.02E-12 2.96 4.13E-13 3.05 3.90E-11 2.95 2.87E-08 2.58

128 4.80E-14 2.99 6.45E-15 3.00 6.16E-13 2.99 5.50E-10 2.85

256 7.49E-16 3.00 9.89E-17 3.01 9.75E-15 2.99 8.92E-12 2.97

5.3. The nonlinear numerical test in two dimension

We solve the Zakharov-Kuznetsov (ZK) equation [20] in two-dimension

Ut +
�U2

2

�

x + Ux x x + Ux y y − a1

�

Ux x x + Ux y y

�

− s(x , y, t)
︸ ︷︷ ︸

T1

+ a1

�

Ux x x + Ux y y

�

︸ ︷︷ ︸

T2

= 0

(5.3)

augmented with the initial condition U(x , y, 0) = sin(x + y), (x , y) ∈ (0,2π)2 and the

source term

s(x , y, t) = cos(x + y + t)
�−1+ sin(x + y + t)

�
.

The exact solution is given by (3.6). To avoid ambiguity, we give the Dirichlet-Dirichlet-

Neumann boundary conditions as follows:

U(0, y, t) = sin(y + t), U(2π, y, t) = sin(2π+ y + t),

Ux(2π, y, t) = cos(2π+ y + t), U(x , 0, t) = sin(x + t),

U(x , 2π, t) = sin(x + 2π+ t).

The numerical errors and orders of accuracy are measured at T = π with the stabilization

parameter a1 = a0. In Tables 5.7 and 5.8, we present the numerical results of the schemes

with different a0. As one can see, all the schemes remain stable as always if a0 is greater

than or equal to the stability threshold, while the simulation of the schemes deteriorates

significantly with mesh refinements if a0 is smaller than the stability threshold shown in

Table 1.1. Also, larger a0 brings larger errors. Owing to the time step of O(N−2), the

deterioration of the errors of the EIN Chebyshev collocation schemes is less severe than

that of the EIN Fourier collocation schemes with the same a0. The numerical results are in

good agreement with the theory.
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Table 5.7: The errors and orders of the EIN-MS2-FC and EIN-RK3-FC schemes for Example (5.3) with
periodic boundary condition.

scheme τ Nx , Ny
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-FC
1

Nx

20 3.80E-03 1.26E-03 3.04E-03 3.63E-02

40 5.82E-03 -0.62 3.14E-04 2.00 7.64E-04 1.99 8.95E-03 2.02

60 1.11E-02 -1.60 1.40E-04 1.99 3.39E-04 2.00 4.02E-03 1.98

80 2.24E-02 -2.43 7.86E-05 2.01 1.91E-04 2.00 2.25E-03 2.01

100 2.55E-01 -10.91 5.04E-05 1.99 1.22E-04 2.00 1.44E-03 2.01

τ Nx , Ny a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-FC
1.56

Nx

20 5.91E-05 6.13E-05 1.47E-04 1.57E-01

40 7.46E-06 2.99 7.73E-06 2.99 1.78E-05 3.04 5.50E-02 1.52

60 2.23E-06 2.98 2.30E-06 2.99 5.22E-06 3.02 1.89E-02 2.64

80 7.43E-05 -12.19 9.71E-07 2.99 2.19E-06 3.02 8.34E-03 2.84

100 4.43E-02 -28.63 4.97E-07 3.00 1.12E-06 3.01 4.35E-03 2.91

Table 5.8: The errors and orders of the EIN-MS2-CC and EIN-RK3-CC schemes for Example (5.3) with
Dirichlet-Dirichlet-Neumann boundary conditions.

scheme τ Nx , Ny
L2 error order L2 error order L2 error order L2 error order

a0 = 0.5 a0 = 0.51 a0 = 1 a0 = 10

EIN-MS2-CC
1

N 2
x

10 4.43E-01 3.50E-04 2.53E-04 6.43E-04

20 NaN NaN 1.18E-06 4.11 2.86E-06 3.23 3.38E-05 2.13

30 NaN NaN 2.29E-07 2.02 5.55E-07 2.02 6.55E-06 2.02

40 NaN NaN 7.17E-08 2.02 1.74E-07 2.02 2.05E-06 2.02

50 NaN NaN 2.92E-08 2.01 7.09E-08 2.01 8.37E-07 2.01

τ Nx , Ny a0 = 0.53 a0 = 0.54 a0 = 1 a0 = 10

EIN-RK3-CC
1.56

N 2
x

10 2.44E-04 2.44E-04 2.44E-04 1.13E-03

20 1.15E+00 -6.10 2.39E-09 8.32 5.83E-09 7.68 1.97E-05 2.92

30 NaN NaN 2.09E-10 3.01 5.12E-10 3.00 1.78E-06 2.96

40 NaN NaN 3.71E-11 3.00 9.15E-11 2.99 3.22E-07 2.97

50 NaN NaN 9.73E-12 3.00 2.39E-11 3.01 8.51E-08 2.98
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6. Concluding remarks

We have considered the Fourier collocation and Chebyshev collocation schemes cou-

pled with two specific high order explicit-implicit-null time-marching methods for solving

the convection-diffusion and convection-dispersion equations in one and two space dimen-

sions. We have presented the stability analysis of the proposed EIN Fourier collocation

schemes for the one-dimensional simplified linear equations, and through the analysis we

show that the resulting schemes are stable with particular emphasis on the use of large

time steps if appropriate stabilization parameters a1 are chosen. To verify the correctness

of the result, a number of numerical tests including one-dimensional and two-dimensional

linear and nonlinear problems have been considered. Numerical experiments show that

the schemes are stable and can achieve optimal orders of accuracy if the constraints pre-

sented in Table 1.1 are satisfied, while the simulation results deteriorate significantly if the

constraints are violated. Even though the analysis is only performed on the EIN Fourier

collocation schemes, numerical experiments show that the stability criteria can also be ex-

tended to the EIN Chebyshev collocation schemes. In the future, we would like to explore

the stability of the variable coefficient EIN schemes coupled with the local discontinuous

Galerkin methods for the high order dissipative and dispersive equations.
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Appendix A

Strategy of boundary treatment

For simplicity, we consider the linear convection-diffusion equation

Ut = dUx x − a1Ux x − cUx
︸ ︷︷ ︸

T1

+ a1Ux x
︸ ︷︷ ︸

T2

with boundary condition

U |∂Ω = g(t).
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where c ∈ R and d > 0 are the convection and diffusion coefficients, respectively, and a1

is the stabilization parameter. We define two operatorsA andB such that

A un = dun
x x − a1un

x x − cun
x ,

Bun = a1un
x x .

Then the third order IMEX Runge-Kutta scheme (2.8) implemented in interior reads

un,1 =un, (A.1a)

un,2 =un +τ
1

2
A un,1 +τ

1

2
Bun,2, (A.1b)

un,3 =un +τA
�11

18
un,1 +

1

18
un,2
�

+τB
�1

6
un,2 +

1

2
un,3
�

, (A.1c)

un,4 =un +τA
�

− 1

2
un,1 +

1

2
un,2 +

1

2
un,3
�

+τB
�5

6
un,2 − 5

6
un,3 +

1

2
un,4
�

, (A.1d)

un,5 =un +τA
�

− 1

4
un,1 +

7

4
un,2 +

3

4
un,3 − 7

4
un,4
�

+ (A.1e)

τB
�3

2
un,2− 3

2
un,3 +

1

2
un,4 +

1

2
un,5
�

.

We take the second stage as an example to show the idea. Note that

un,2
t =A un,2 +Bun,2,

so from (A.1b) we have

un,2 =un+τ
1

2
A un,2 +τ

1

2
Bun,2 +τ

1

2
A �un,1 − un,2
�

=un+τ
1

2
un,2

t +τ
1

2
A �un,1 − un,2
�
.

Applying the operator A on both sides of (A.1b) we get

A un,2 =A un +τ
1

2
A 2un,1+τ

1

2
ABun,2

=A un +τ
1

2
A 2un,1+τ

1

2
ABun,1 +O(τ2).

Therefore,

un,2 = un +τ
1

2
un,2

t −τ2
1

4

�A 2un,1 +ABun,1
�
+O(τ3). (A.2a)

Similarly,

un,3 =un +τ
1

6

�
un,2

t + 3un,3
t

�−τ2
7

18

�A 2un,1 +ABun,1
�
+O(τ3), (A.2b)

un,4 =un +τ
1

2

�− un,2
t + un,3

t + un,4
t

�−τ2
5

12

�A 2un,1 +ABun,1
�
+O(τ3), (A.2c)

un,5 =un +τ
1

2

�
3un,2

t − 3un,3
t + un,4

t + un,5
t

�
+O(τ3). (A.2d)
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From (A.1), we get un,s
t = ut(t

n
s ) + O(τ2), s = 2, ..., 5 by Taylor expansion, where tn

s =

tn + c̃sτ is defined by (2.9). Replacing un,s
t with ut(t

n
s ) and extending the above scheme

(A.2) up to boundary, we get the strategy of boundary treatment at intermediate stages

g̃n,2 =gn+τ
1

2
gt(t

n,2)−τ2
1

4

�A 2un,1 +ABun,1
�|∂Ω, (A.3a)

g̃n,3 =gn+τ
1

6

�
gt(t

n,2)+ 3gt(t
n,3)
�−τ2

7

18

�A 2un,1 +ABun,1
�|∂Ω, (A.3b)

g̃n,4 =gn+τ
1

2

�− gt(t
n,2) + gt(t

n,3) + gt(t
n,4)
�−τ2

5

12

�A 2un,1 +ABun,1
�|∂Ω, (A.3c)

g̃n,5 =gn+τ
1

2

�
3gt(t

n,2)− 3gt(t
n,3) + gt(t

n,4)+ gt(t
n,5)
�

. (A.3d)

Obviously,

g̃n,s = gn,s +O(τ3),

where gn,s is the corresponding reference boundary condition. It is easy to obtain that

A 2un = (d − a1)
2un

x x x x + 2(a1c − dc)un
x x x + c2un

x x ,

ABun = a1(d − a1)u
n
x x x x − ca1un

x x x .

The generalization of the strategy to the nonlinear and two-dimensional convection-diffusion

and convection-dispersion equations is straightforward.


