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Abstract: Modern macroeconometrics often relies on time series models for which it is time-consuming
to evaluate the likelihood function. We demonstrate how Bayesian computations for such models can be
drastically accelerated by reweighting and mutating posterior draws from an approximating model that
allows for fast likelihood evaluations, into posterior draws from the model of interest, using a sequential
Monte Carlo (SMC) algorithm. We apply the technique to the estimation of a vector autoregression
with stochastic volatility and two nonlinear dynamic stochastic general equilibrium models. The runtime
reductions we obtain range from 27% to 88%.
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1 Introduction
Modern macroeconometrics often relies on time series models for which it is time-consuming to evaluate
the likelihood function, either because it takes a long time to solve the underlying structural model, or the
likelihood evaluation requires to integrate out latent state variables. In this paper we demonstrate how
Bayesian computations for such models can be accelerated by reweighting and mutating posterior draws
from an approximating model that allows for fast likelihood evaluations. We show that a sequential Monte
Carlo (SMC) algorithm that starts out with draws from the posterior distribution of an approximating model
instead of the prior distribution of the target model can drastically speed up the posterior computations.

SMC methods have been traditionally used to solve nonlinear filtering problems, an example being the
bootstrap particle filter of Gordon et al. (1993). Subsequently, Chopin (2002) showed how to adapt particle
filtering techniques to conduct posterior inference for a static parameter vector. SMC methods are widely
used in statistics; see Dai et al. (2022) for a recent review. They also have emerged in certain branches
of the econometrics literature. The first paper that applied SMC techniques to posterior inference for the
parameters of a (small-scale) DSGE model was Creal (2007). Subsequent work by Herbst and Schorfheide
(2014, 2015) fine-tuned the algorithm so that it could be used for the estimation of medium- and large-scale
models. Durham and Geweke (2014) show how to parallelize a flexible and self-tuning SMC algorithm for
the estimation of time series models on graphical processing units (GPU).

In general, SMC algorithms approximate a target posterior distribution by creating intermediate
approximations to a sequence of bridge distributions, indexed in this paper by 𝑛. At each stage, the current
bridge distribution is represented by a swarm of so-called particles. Each particle is composed of a value and
a weight. Weighted averages of the particle values converge to expectations under the stage-𝑛 distribution.
The transition from stage 𝑛− 1 to 𝑛 involves changing the particle weights and values (mutation) so that
the swarm adapts to the new distribution. Typically, these bridge distributions are constructed by either
using the full-sample likelihood (likelihood tempering, LT)—generated by raising this likelihood function
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to the power of 𝜑𝑛, where 𝜑𝑛 increases from zero to one—or by sequentially adding observations to the
likelihood function (data tempering, DT).

In this paper we propose a model tempering approach that takes a geometric average with weights 𝜑𝑛 and
1 − 𝜑𝑛 of the likelihood functions associated with the target model, denoted by 𝑀1, and an approximating
model 𝑀0. We document the achievable runtime reductions in various applications. In one of the applications
𝑀1 and 𝑀0 are vector autoregressions (VARs) with and without stochastic volatility (SV). In another
application we consider a nonlinear and a linearized version of a DSGE model. In the econometrics literature
Doppelt and O’Hara (2020) used a version of model tempering to estimate a fractionally-integrated VAR
based on an approximate and an exact likelihood function. However, the paper does not study the runtime
and accuracy properties in detail and the initialization is based on Markov chain Monte Carlo (MCMC)
instead of SMC draws, which complicates the theoretical analysis of the algorithm considerably. Cai et al.
(2021) discuss potential benefits of model tempering without implementing it, and Acharya et al. (2021)
discuss model tempering as a strategy to estimate a heterogeneous agent New Keynesian model, starting
from a simpler representative agent model.

In general, model tempering is an attractive computational strategy for applications in which the
likelihood evaluation for the target model is computationally costly and there is an approximating model for
which the likelihood evaluation is fast and generates a posterior that is not too different from the posterior
of the target model. We envision the approximating model to be a simplified version of the target model for
which posterior computations are also implemented via SMC, in this case with likelihood tempering.1

We propose two important refinements to a general model tempering approach that may improve the
performance in practice and broaden its applicability. First, the 𝑀0 likelihood tempering can be terminated
before the weight on the likelihood function has reached the value one. We denote the terminal weight on
the 𝑀0 likelihood by 𝜓* ∈ (0, 1]. The early termination will lead to a more diffuse 𝑀0 posterior, draws from
which might be more easily mutable into draws from the 𝑀1 posterior in the subsequent model tempering
steps. This feature introduces additional flexibility into the model tempering algorithm. A desirable degree
of 𝑀0 tempering can be assessed ex ante by examining the variance of importance weights that are required
to convert 𝑀0 draws into 𝑀1 draws. Second, our algorithm can handle applications in which the parameter
spaces for 𝑀0 and 𝑀1 are not exactly identical.

Building on earlier work in the statistics literature, e.g., Jasra et al. (2011), Del Moral et al. (2012),
Schäfer and Chopin (2013), Geweke and Frischknecht (2014), and Zhou et al. (2015), and work in the DSGE
model literature, e.g., Herbst and Schorfheide (2019) and Cai et al. (2021), we choose the tempering schedule
defined through the 𝜑𝑛 sequence adaptively. Our adaptive schedules are calibrated by a single tuning
parameter that controls the desired variance of the particle weights. The smaller the discrepancy between
the posterior distribution of the approximating and the original model, the fewer bridge distributions are
being used, and the faster the posterior analysis.

We provide a formula for the runtime reduction achievable by model tempering that depends on the
number of stages as a function of 𝜓* used for the 𝑀0 and 𝑀1 SMC runs, respectively, and the relative time
it takes to evaluate the likelihood functions of the two models, denoted by the ratio 𝜏0/𝜏1. Note that the
user can evaluate 𝜏0/𝜏1 before running the entire algorithm. We show that the runtime reduction profile is
convergent as 𝜏0/𝜏1 −→ 0. In the limit, the runtime reduction is determined just by the number of 𝑀0 and
𝑀1 SMC stages, which in turn depends on the alignment of the 𝜓*-tempered 𝑀0 posterior and the target
𝑀1 posterior, relative to the alignment of the prior and the 𝑀1 posterior. To assess the potential gains
of model tempering ex ante, we recommend that the researcher computes the variance of the importance
sampling weights, that would be needed to reweight the draws from the 𝜓*-tempered 𝑀0 posterior to
approximate the target 𝑀1 posterior, for various choices of 𝜓*. If there is a 𝜓* for which this variance is
small relative to the number of SMC particles, then the gains from model tempering are potentially large.

1 Even in the absence of a model tempering strategy, estimating approximating models is desirable as part of the
modeling and code debugging that ultimately leads to the target model.
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We consider several numerical illustrations of model tempering. In the first illustration, both target and
approximating densities are univariate Normal. We illustrate how the distance between the densities affects
the number of stages (and computational time) required to convert draws from the approximating density
into draws from the target density. In the second illustration we consider the estimation of a VAR with
SV, using a homoskedastic VAR as approximating model. In our illustration, model tempering is able to
reduce the computational time by 79%. At last we consider the estimation of two dynamic stochastic general
equilibrium (DSGE) models. We take 𝑀1 as a version of the model that is solved with a second-order
perturbation around the steady state and for which the likelihood function is evaluated with a bootstrap
particle filter (BSPF). The approximating model is a log-linearized version for which the likelihood function
can be evaluated quickly using the Kalman filter. In our application to the estimation of a real business
cycle (RBC) model, model tempering can reduce the runtime of our JULIA code from 655 to 80 minutes.

The idea of using an approximating model as part of a Monte Carlo strategy is, of course, an old one.
In fact, classic importance sampling as in Kloek and van Dijk (1978) is based on the notion that there is
an alternative distribution available, possibly from an approximating model, from which one can sample
directly and then reweight the draws. Unfortunately, in many applications it is difficult to construct an
approximating density that mimics the target density which leads to inaccurate Monte Carlo approximations.
SMC constructs the approximating density sequentially using a tempering strategy. As an alternative,
Hoogerheide et al. (2012) proposed to approximate the target density by a mixture of Student-𝑡 distribution.
Here the challenge is to compute the appropriate mixture weights.

Approximating models have also been used in Metropolis-Hastings algorithms to create surrogate
transitions or delayed acceptances. The basic idea is to first evaluate a sequence of proposed draws under an
approximating model that allows for a fast likelihood computation to increase the probability that the final
proposal, evaluated under the target posterior, will be accepted; see, for instance, Liu (2001) and Christen
and Fox (2005) for general approaches, and Smith (2011) for an adaption to the estimation of DSGE
models. Bon et al. (2021) incorporate the delayed acceptance into the mutation step of an SMC sampler.
Finally, approximating models are also often used in particle filters to construct proposal distributions that
are adapted to next period’s observation, e.g., Kim et al. (1998) and, in the DSGE model context, the
approximately conditionally optimal proposals discussed in Herbst and Schorfheide (2015).

The remainder of this paper is organized as follows. Section 2 describes the proposed model tempering
SMC algorithm. Section 3 considers the simple example based on univariate Gaussian posterior distributions.
In Section 4 we use model tempering to estimate the VAR with SV. In Section 5 we implement our
algorithm to estimate two nonlinear DSGE model: an RBC model and a New Keynesian DSGE model
with asymmetric price and wage adjustment costs. Section 6 concludes. An Online Appendix contains
supplemental information on the methodology and further details and results for the numerical illustrations.
Replication codes and instructions of how to adapt these codes to other models are provided at Marko
Mlikota’s github site https://github.com/markomlikota/SMC-MT.

2 Bayesian Inference, SMC, and Model Tempering
VARs, DSGE models, and other time series models are often estimated using Bayesian inference for several
reasons. First, the Bayesian framework provides a powerful toolkit to handle the presence of latent variables
in state-space models. Second, uncertainty about parameters, shocks, and unobserved state variables is
treated identically which makes it conceptually straightforward to form predictive distributions that reflect
all sources of uncertainty. Third, prior distributions can be used to regularize the estimation of high-
dimensional models (e.g., VARs) or to incorporate additional information not contained in the estimation
sample (DSGE model estimation).
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Fig. 1: Evolution of Bridge Distributions

Notes: The sequence of bridge distributions for a scalar parameter 𝜃 is shown along the y-axis.

Bayesian inference combines a prior distribution 𝑝(𝜃) with a likelihood function 𝑝(𝑌 |𝜃) to form a
posterior distribution 𝑝(𝜃|𝑌 ), which is given by

𝜋(𝜃) ≡ 𝑝(𝜃|𝑌 ) = 𝑝(𝑌 |𝜃)𝑝(𝜃)
𝑝(𝑌 ) , 𝑝(𝑌 ) =

∫︁
𝑝(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃, (1)

where 𝑌 = 𝑌1:𝑇 = {𝑦1, 𝑦2, ..., 𝑦𝑇 } and the normalization constant 𝑝(𝑌 ) is called the marginal data density
(MDD). In most applications, the posterior distribution 𝑝(𝜃|𝑌 ) does not belong to a family of distributions
for which moments and percentiles can be easily calculated or draws can be obtained by direct sampling.
In this paper we use an SMC algorithm to sample from the posterior distribution 𝑝(𝜃|𝑌 ). The algorithm
combines insights from importance sampling and Markov chain Monte Carlo (MCMC) techniques. Two of its
key advantages are that it is able to provide accurate approximations of non-regular posterior distributions2

and that it can be easily parallelized, unlike MCMC algorithms. In Section 2.1 we describe a generic SMC
algorithm to sample from the posterior distribution of 𝜃. The section draws heavily from the more detailed
exposition in Herbst and Schorfheide (2014, 2015). Model tempering, which is the focus of our paper, is
introduced in Section 2.2 and implementation details are discussed in Section 2.3. In Section 2.4 we assess
potential runtime reductions.

2.1 A Generic SMC Algorithm

In order to draw from 𝜋(𝜃), the SMC algorithm uses a sequence of bridge posterior distributions {𝜋𝑛(𝜃)}𝑁𝜑

𝑛=0,
illustrated in Figure 1, where the last one in the sequence equals the posterior distribution – 𝜋𝑁𝜑

(𝜃) = 𝜋(𝜃)
– and where each 𝜋𝑛−1(𝜃) is used as the proposal density for 𝜋𝑛(𝜃). The bridge posteriors are constructed

2 Herbst and Schorfheide (2014) document empirically in the context of the Smets and Wouters (2007) model with a
diffuse prior, that the SMC algorithm is able to capture the multimodality of the posterior distribution much better
than a Metropolis-Hastings algorithm. Mathews and Schmidler (2022) show theoretically through finite-sample accuracy
bounds that when target distributions are multimodal, global mixing of the Markov kernel may be slow and SMC is
preferable over MCMC.
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from stage 𝑛 likelihood functions 𝑝𝑛(𝑌 |𝜃) and defined as

𝜋𝑛(𝜃) = 𝑝𝑛(𝑌 |𝜃)𝑝(𝜃)∫︀
𝑝𝑛(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃

. (2)

Each density 𝜋𝑛(𝜃) is represented by a particle approximation {𝜃𝑖𝑛,𝑊 𝑖
𝑛}𝑁𝑖=1. Thus, at stage 𝑛 the algorithm

propagates the particles {𝜃𝑖𝑛−1,𝑊
𝑖
𝑛−1}𝑁𝑖=1 so that they come to represent the target density 𝜋𝑛(𝜃). Formally,

the algorithm proceeds in the following steps:

Algorithm 1 (Generic SMC Algorithm).
1. Initialization. (𝑛 = 0 and 𝜑0 = 0.) Draw the initial particles from 𝜋0(𝜃): 𝜃𝑖1 ∼ 𝜋0(𝜃) and 𝑊 𝑖

1 = 1,
𝑖 = 1, . . . , 𝑁 .

2. Recursion. For 𝑛 = 1, . . . , 𝑁𝜑,
(a) Correction. Reweight the particles from stage 𝑛− 1 by defining the incremental weights

𝑤̃𝑖𝑛 =
𝑝𝑛(𝑌 |𝜃𝑖𝑛−1)
𝑝𝑛−1(𝑌 |𝜃𝑖𝑛−1)

(3)

and the normalized weights

𝑊̃ 𝑖
𝑛 =

𝑤̃𝑖𝑛𝑊
𝑖
𝑛−1

1
𝑁

∑︀𝑁
𝑖=1 𝑤̃

𝑖
𝑛𝑊

𝑖
𝑛−1

, 𝑖 = 1, . . . , 𝑁. (4)

(b) Selection (Optional). Resample the swarm of particles, {𝜃𝑖𝑛−1, 𝑊̃
𝑖
𝑛}𝑁𝑖=1, and denote resampled

particles by {𝜃𝑖𝑛,𝑊 𝑖
𝑛}𝑁𝑖=1, where 𝑊 𝑖

𝑛 = 1 for all 𝑖.
(c) Mutation. Starting from 𝜃𝑖𝑛, propagate the particles {𝜃𝑖𝑛,𝑊 𝑖

𝑛} via 𝑁𝑀𝐻 steps of a Metropolis-
Hastings (MH) algorithm with transition density 𝐾𝑛(𝜃|𝜃; 𝜁𝑛) and stationary distribution 𝜋𝑛(𝜃).
Note that the weights are unchanged, and denote the mutated particles by {𝜃𝑖𝑛,𝑊 𝑖

𝑛}𝑁𝑖=1.

An approximation of E𝜋𝑛 [ℎ(𝜃)] is given by

ℎ̄𝑛,𝑁 = 1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝜃𝑖𝑛)𝑊 𝑖
𝑛. (5)

3. For 𝑛 = 𝑁𝜑 (𝜑𝑁𝜑
= 1) the final importance sampling approximation of E𝜋[ℎ(𝜃)] is given by:

ℎ̄𝑁𝜑,𝑁 =
𝑁∑︁
𝑖=1

ℎ(𝜃𝑖𝑁𝜑
)𝑊 𝑖

𝑁𝜑
. (6)

The correction step is a classic importance sampling step, in which the particle weights are updated to
reflect the stage 𝑛 distribution 𝜋𝑛(𝜃). The selection step is optional. On the one hand, resampling adds
noise to the Monte Carlo approximation, which is undesirable. On the other hand, it equalizes the particle
weights, which increases the accuracy of subsequent importance sampling approximations. The decision of
whether or not to resample is typically based on a threshold rule for the variance of the particle weights
which can be transformed into an effective particle sample size (ESS):

𝐸𝑆𝑆𝑛 = 𝑁
⧸︀(︃ 1

𝑁

𝑁∑︁
𝑖=1

(𝑊̃ 𝑖
𝑛)2

)︃
. (7)

If the particles have equal weights, then 𝐸𝑆𝑆𝑛 = 𝑁 . If one particle has weight 𝑁 and all other particles
have weight 0, then 𝐸𝑆𝑆𝑛 = 1. These are the upper and lower bounds for the effective sample size. To
balance the trade-off between adding noise and equalizing particle weights, we execute the resampling step
if 𝐸𝑆𝑆𝑛 falls below 𝑁/2 using a systematic resampling algorithm.

The mutation step changes the particle values. In the absence of the mutation step, the particle values
would be restricted to the set of values drawn in the initial stage from the prior distribution. This would



6 M. Mlikota et al., SMC With Model Tempering

clearly be inefficient, because the prior distribution is typically a poor proposal distribution for the posterior
in an importance sampling algorithm. As the algorithm cycles through the 𝑁𝜑 stages, the particle values
successively adapt to the shape of the posterior distribution. This is the key difference between SMC and
classic importance sampling. The transition kernel 𝐾𝑛(𝜃|𝜃; 𝜁𝑛) is designed to have the following invariance
property:

𝜋𝑛(𝜃𝑛) =
∫︁
𝐾𝑛(𝜃𝑛|𝜃𝑛; 𝜁𝑛)𝜋𝑛(𝜃𝑛)𝑑𝜃𝑛. (8)

Thus, if 𝜃𝑖𝑛 is a draw from 𝜋𝑛, then so is 𝜃𝑖𝑛. The mutation step can be implemented by using one or
more steps of a MH algorithm. The probability of mutating the particles can be increased by blocking the
elements of the parameter vector 𝜃 or by iterating the MH algorithm over multiple steps. The vector 𝜁𝑛
summarizes the tuning parameters of the MH algorithm.

2.2 Model Tempering

Up to now we imposed minimal conditions on the sequence of bridge posterior distributions. To initialize
the algorithm, we implicitly required that it is possible to sample from the initial distribution 𝜋0(𝜃), which
is typically the prior 𝑝(𝜃) under likelihood or data tempering, and we required that the stage 𝑁𝜑 posterior
is equal to the target posterior distribution: 𝜋𝑁𝜑

(𝜃) = 𝜋(𝜃). While previous applications of Algorithm 1
in econometrics focused on either data or likelihood tempering, the contribution of our paper is to assess
the performance of the model tempering approach. Under model tempering the bridge distributions are
constructed as follows. Let 𝑀1 be the target model with likelihood function 𝑝(𝑌 |𝜃,𝑀1) and let 𝑀0 be an
approximating model with likelihood function 𝑝(𝑌 |𝜃,𝑀0). We define the bridge likelihood functions that
are used in Steps 2(a) and 2(c) of Algorithm 1 as:

𝑝𝑛(𝑌 |𝜃) = 𝑝(𝑌 |𝜃,𝑀1)𝜑𝑛𝑝(𝑌 |𝜃,𝑀0)1−𝜑𝑛 , 𝜑0 = 0, 𝜑𝑁𝜑
= 1, 𝜑𝑛 ↑ 1. (9)

It can be easily seen that 𝜋𝑁𝜑
(𝜃) = 𝑝(𝜃|𝑌,𝑀1), as required, and that the algorithm is initialized with draws

from the 𝑀0 posterior 𝜋0(𝜃) = 𝑝(𝜃|𝑌,𝑀0). The intermediate distributions are obtained by shifting the
weight gradually from the 𝑀0 posterior to the posterior of the target model 𝑀1.

Model tempering distinguishes itself from the two most widely-used tempering schemes, likelihood
tempering and data tempering, neither of which involve an approximating model 𝑀0. Under likelihood
tempering (e.g., Herbst and Schorfheide (2014)) the stage 𝑛 posterior is constructed from a tempered version
of the full-sample likelihood function:

𝑝𝑛(𝑌 |𝜃) = 𝑝(𝑌 |𝜃,𝑀1)𝜑𝑛 .

Under data tempering (e.g., Durham and Geweke (2014)) the bridge distributions are obtained from a
fraction of the sample observations 𝜋𝑛(𝜃) ∝ 𝑝(𝑌1:⌊𝜑𝑛𝑇⌋|𝜃,𝑀1)𝑝(𝜃) or, as in Cai et al. (2021), by gradually
shifting the weight from a short-sample likelihood to a full-sample likelihood:

𝑝𝑛(𝑌 |𝜃) = 𝑝(𝑌1:𝑇 |𝜃,𝑀1)𝜑𝑛𝑝(𝑌1:𝑇0 |𝜃,𝑀1)1−𝜑𝑛 , 𝑇0 < 𝑇.

Model tempering is a computationally efficient alternative under two conditions. First, the likelihood
evaluation of the target model 𝑀1 is computationally costly, whereas the likelihood evaluation of the
approximating model 𝑀0 is, in relative terms, fast. Second, the likelihood functions of the target and the
approximating model have to be sufficiently close such that only a modest number of intermediate stages
are required to convert draws from the 𝑀0 posterior into draws from the 𝑀1 posterior. We provide a more
detailed discussion in Section 2.4 below.

2.3 Implementation Details

Adaptive Tempering Schedule. Under the adaptive tempering schedule used in Cai et al. (2021) 𝜑𝑛 is
chosen to target a desired level of the ESS defined in (7). Emphasizing the dependence of the incremental
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weights on the current tempering coefficient 𝜑, write 𝑤̃𝑖𝑛 in (3) as

𝑤̃𝑖(𝜑) =
𝑝(𝑌 |𝜃𝑖𝑛−1,𝑀1)𝜑𝑝(𝑌 |𝜃𝑖𝑛−1,𝑀0)1−𝜑

𝑝(𝑌 |𝜃𝑖𝑛−1,𝑀1)𝜑𝑛−1𝑝(𝑌 |𝜃𝑖𝑛−1,𝑀0)1−𝜑𝑛−1

and define
𝑓(𝜑) = 𝐸𝑆𝑆𝑛(𝜑) − 𝛼𝐸𝑆𝑆

*
𝑛−1, 0 < 𝛼 ≤ 𝛼 < 1,

where 𝐸𝑆𝑆
*
𝑛−1 = 𝐸𝑆𝑆𝑛−1 if the stage 𝑛− 1 selection step (resampling) was executed and 𝐸𝑆𝑆

*
𝑛−1 = 𝑁

otherwise. Let 𝜑*
𝑛 satisfy 𝑓(𝜑*

𝑛) = 0 and define 𝜑𝑛 = min{𝜑*
𝑛, 1}.

The parameter 𝛼, to be specified by the user, is the targeted reduction in ESS. It can be shown that for
𝜑 > 𝜑𝑛−1 the ESS satisfies the inequality 𝐸𝑆𝑆𝑛(𝜑) < 𝐸𝑆𝑆

*
𝑛−1. Moreover, 𝐸𝑆𝑆𝑛(𝜑) is a strictly decreasing

function of 𝜑 such that 𝑓(𝜑) = 0 has a unique solution. The adaptive algorithm chooses the tempering
schedule to control the deterioration of the ESS statistic. The smaller the slope of the function 𝐸𝑆𝑆𝑛(𝜑),
the larger the increments in the tempering schedule. The number of stages 𝑁𝜑 and runtime are then
endogenously determined by the closeness of 𝜋0(𝜃) and 𝜋(𝜃). The number of stages is equal to the stage 𝑛
at which 𝜑𝑛 = 1.
Model-Specific Parameters. It might be the case that not all of the parameters that appear in 𝑀1 also
affect 𝑀0, or vice versa. For instance, in one of our illustrations, 𝑀1 is a VAR with SV, whereas 𝑀0 is
a homoskedastic VAR. Thus, the 𝑀1 parameter vector contains additional parameters that govern the
dynamics of the SV processes. Partition 𝜃′ = [𝜃′

𝑐, 𝜃
′
0, 𝜃

′
1], where 𝜃𝑐 is the vector of common parameters and

𝜃𝑗 are parameters specific to model 𝑀𝑗 . The likelihood functions are given by

𝑝(𝑌 |𝜃,𝑀𝑗) = 𝑝(𝑌 |𝜃𝑐, 𝜃𝑗 ,𝑀𝑗), 𝑗 = 0, 1

and
𝑝𝑛(𝑌 |𝜃) = 𝑝(𝑌 |𝜃𝑐, 𝜃1,𝑀1)𝜑𝑛𝑝(𝑌 |𝜃𝑐, 𝜃0,𝑀0)1−𝜑𝑛 . (10)

Consider stage 𝑛 = 0 with 𝜑0 = 0. Because 𝜃1 does not enter the 𝑀0 likelihood function, its distribution
does not get updated in view of the data 𝑌 and we can factorize the 𝑀0 posterior as follows.

𝜋0(𝜃) = 𝑝(𝜃|𝑌,𝑀0) = 𝑝(𝜃𝑐, 𝜃0|𝑌,𝑀0)𝑝(𝜃1).

Thus, the model tempering SMC algorithm starts from posterior draws of (𝜃𝑐, 𝜃0) and prior draws from 𝜃1.
The use of prior draws for 𝜃1 in the absence from any information through 𝑀0 is both natural and desirable.

At stage 𝑛 = 𝑁𝜑 the SMC algorithm approximates the 𝑀1 posterior which, on the enlarged parameter
space, is given by

𝜋𝑁𝜑
(𝜃) = 𝑝(𝜃|𝑌,𝑀1) = 𝑝(𝜃𝑐, 𝜃1|𝑌,𝑀1)𝑝(𝜃0).

The ultimate object of interest is, in slight abuse of notation, the marginal posterior

𝑝(𝜃𝑐, 𝜃1|𝑌,𝑀1) =
∫︁
𝜋𝑁𝜑

(𝜃𝑐, 𝜃0, 𝜃1)𝑑𝜃0.

While the SMC sampler generates draws from the joint posterior of (𝜃𝑐, 𝜃0, 𝜃1), draws from the marginal
posterior can be obtained by simply dropping the 𝜃0 draws. A potential disadvantage of including 𝜃0 into
the definition of 𝜃 is that the SMC algorithm has to turn 𝜃0 draws from a potentially highly concentrated
posterior 𝑝(𝜃0|𝑌,𝑀0) into draws from a more diffuse prior 𝑝(𝜃0), which may require an undesirably large
number of steps. Thus, we recommend to simply fix 𝜃0 at a reasonable value, e.g., the posterior mean or
mode from a preliminary estimation of 𝑀0, and then drop it from the definition of 𝜃.
Marginal Data Density Ratio. The SMC algorithm produces as a by-product an approximation of the
marginal likelihood ratio 𝑝(𝑌 |𝑀1)/𝑝(𝑌 |𝑀0). Note that

1
𝑁

𝑁∑︁
𝑖=1

𝑤̃𝑖𝑛𝑊̃
𝑖
𝑛−1 ≈

∫︁
𝑝𝑛(𝑌 |𝜃)
𝑝𝑛−1(𝑌 |𝜃)

[︂
𝑝𝑛−1(𝑌 |𝜃)𝑝(𝜃)∫︀
𝑝𝑛−1(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃

]︂
𝑑𝜃 =

∫︀
𝑝𝑛(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃∫︀
𝑝𝑛−1(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃

, (11)
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where ∫︁
𝑝0(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃 =

∫︁
𝑝(𝑌 |𝜃,𝑀0)𝑝(𝜃)𝑑𝜃 = 𝑝(𝑌 |𝑀0)∫︁

𝑝𝑁𝜑
(𝑌 |𝜃)𝑝(𝜃)𝑑𝜃 =

∫︁
𝑝(𝑌 |𝜃,𝑀1)𝑝(𝜃)𝑑𝜃 = 𝑝(𝑌 |𝑀1).

In turn, it can be shown that

𝑁𝜑∏︁
𝑛=1

(︃
1
𝑁

𝑁∑︁
𝑖=1

𝑤̃𝑖𝑛𝑊
𝑖
𝑛−1

)︃
a.s.−→ 𝑝(𝑌 |𝑀1)

𝑝(𝑌 |𝑀0) (12)

as the number of particles 𝑁 −→ ∞; see, for instance, Herbst and Schorfheide (2014).
Tempered 𝑀0 Posterior. Rather than using the full-information posterior under 𝑀0 as the proposal
density, one can choose to incorporate only a fraction of the information embodied in the posterior under
model 𝑀0. Suppose that the draws from 𝑀0 are generated through an SMC algorithm with likelihood
tempering, which is what we are doing in the illustrations in Sections 4 and 5. Then we can define

𝑝𝑛(𝑌 |𝜃) = 𝑝(𝑌 |𝜃,𝑀1)𝜑𝑛
[︀
𝑝(𝑌 |𝜃,𝑀0)𝜓*

]︀1−𝜑𝑛
, 𝜓* ∈ [0, 1) , (13)

which leads to the initialization
𝜋0(𝜃;𝜓*) ∝ 𝑝(𝑌 |𝜃,𝑀0)𝜓*𝑝(𝜃) . (14)

The density 𝜋0(𝜃;𝜓*) represents the posterior obtained from the tempered 𝑀0 likelihood function. Thus,
the posterior sampling for the approximating model is terminated at 𝜑𝑁𝜑

= 𝜓* < 1 instead of 𝜑𝑁𝜑
= 1.

The advantage of this strategy is that for 𝜓* < 1 the density 𝜋0(𝜃;𝜓*) is more diffuse than the full 𝑀0
posterior and may exhibit a greater overlap with the target posterior in applications in which 𝑀0 and
𝑀1 posteriors differ substantially. Note that for 𝜓* = 0 the model 𝑀1 would be estimated by standard
likelihood tempering instead of model tempering.

2.4 Computational Gains

To formalize the discussion of the computational advantage of model tempering we begin by introducing
some additional notation. Let 𝑁̃0(𝜓*) = 𝑁0

𝜑(𝜓*) + 1 be the number of 𝑀0 SMC stages to obtain a particle
swarm that approximates 𝜋0(𝜃;𝜓*) in (14), including the initial stage, which draws from the prior 𝑝(𝜃).
For the subsequent 𝑀1 model tempering we write the number of stages as 𝑁̃1(𝜓*) = 𝑁1

𝜑(𝜓*) + 1, again to
emphasize the dependence on 𝜓*. We regard 𝜓* = 0 as 𝑀1 likelihood tempering and adopt the convention
that 𝑁̃0(0) = 0.

In the typical VAR and DSGE model applications for which the model tempering procedure is developed,
the runtime of the SMC algorithm is predominantly determined by the time it takes to evaluate the likelihood
function of the underlying models. Let 𝑁* be the number of likelihood evaluations per SMC stage. It is given
by 𝑁* = 𝑁 ·𝑁𝑀𝐻 ·𝑁𝑏𝑙𝑜𝑐𝑘𝑠, where 𝑁 is the number of particles, 𝑁𝑀𝐻 is the number of Metropolis-Hastings
(MH) steps during the mutation phase, and 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 is the number of parameter blocks used in each MH
step. Moreover, let 𝜏𝑗 be the time it takes to evaluate the likelihood function of model 𝑀𝑗 , 𝑗 = 0, 1. Then
the total runtime is given by

𝒯 (𝜓*, 𝜏1, 𝜏0) = 𝑁*
[︀
𝑁̃1(𝜓*)𝜏1 + I{𝜓* > 0}(𝑁̃1(𝜓*) + 𝑁̃0(𝜓*))𝜏0

]︀
, (15)

where I{𝑥 > 𝑎} is the indicator function that is equal to one if 𝑥 > 𝑎 and equal to zero otherwise. Under
likelihood tempering, i.e., 𝜓* = 0, the likelihood function of 𝑀1 has to be evaluated 𝑁*𝑁̃1(0) times and
there is no need to evaluate the 𝑀0 likelihood. Under model tempering with 𝜓* > 0, the likelihood function
of 𝑀1 has to be evaluated 𝑁̃1(𝜓*) times and the likelihood of 𝑀0 needs to be evaluated during the 𝑀0
SMC run and the 𝑀1 SMC run.
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Fig. 2: Example: Theoretical Runtime Reductions

SMC Stages ℛ(𝜓*, 𝜏0/𝜏1)

Notes: The left panel shows the functions 𝑁̃0(𝜓*) and 𝑁̃1(𝜓*), obtained from DGP 1 of Illustration 2 in Section 4. The
right panel depicts ℛ(𝜓*, 𝜏0/𝜏1) in (16).

As mentioned in Section 2.2, we are concerned with the case in which the use of the (tempered) 𝑀0
posterior reduces the number stages for the 𝑀1 SMC and the 𝑀1 likelihood evaluation is substantially
faster than the 𝑀0 evaluation:

𝑁̃1(𝜓*) < 𝑁̃1(0) for 𝜓* > 0 and 𝜏0 < 𝜏1.

In the numerical illustrations in Sections 4 and 5 we report runtimes of model tempering relative to likelihood
tempering:3

ℛ(𝜓*, 𝜏0/𝜏1) = 𝒯 (𝜓*, 𝜏1, 𝜏0)
𝒯 (0, 𝜏1, 𝜏0) = 𝑁̃1(𝜓*)

𝑁̃1(0)
+ I{𝜓* > 0} 𝑁̃1(𝜓*) + 𝑁̃0(𝜓*)

𝑁̃1(0)
𝜏0
𝜏1
. (16)

The first ratio on the right-hand side of (16) captures the effect of reducing the number of 𝑀1 SMC stages
needed to reach the target posterior by starting from the tempered 𝑀0 posterior 𝜋0(𝜃;𝜓*) instead of the
prior 𝑝(𝜃). It does not depend on the relative runtime of the 𝑀1 and 𝑀0 likelihood evaluations. The second
term captures the relative costs of having to evaluate the 𝑀0 likelihood function. If 𝑁̃1(𝜓*)+𝑁̃0(𝜓*) ≈ const
as a function of 𝜓*, then the second term generates a level shift of ℛ(𝜓*, 𝜏0/𝜏1). As the likelihood evaluation
of 𝑀0 becomes costless relative to the 𝑀1 likelihood evaluation,

lim
(𝜏0/𝜏1)−→0

ℛ(𝜓*, 𝜏0/𝜏1) = 𝑁̃1(𝜓*)
𝑁̃1(0)

. (17)

In the limit, the time it takes to estimate 𝑀0 becomes irrelevant and the reduction is purely driven by the
reduction in the number of SMC stages resulting from using an initial distribution that is closer to the
target posterior.

In Figure 2 we provide a numerical example for the runtime reduction. In the left panel, we plot
functions 𝑁̃0(𝜓*) and 𝑁̃1(𝜓*) which are obtained from DGP 1 of the VAR-SV illustration in Section 4. The
functions are evaluated at 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. As 𝜓* increases, the number of stages used in the
𝑀0 SMC, denoted by 𝑁̃0(𝜓*), rises, whereas the number stages in the 𝑀1, 𝑁̃1(𝜓*), falls. The total number
of stages required to reach the target posterior stays approximately constant.

The right panel of Figure 2 depicts ℛ(𝜓*, 𝜏0/𝜏1) for various choices of 𝜏0/𝜏1. In this example the most
runtime drastic reduction occurs by moving from likelihood tempering to 𝜓* = 0.2. For 𝜓* ≥ 0.6 the
function is essentially flat. In the VAR illustration 𝜏0/𝜏1 = 1/9. We reduce the likelihood-evaluation ratio

3 We found that this formula approximates the actual runtime reductions well.
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all the way to 0. The figure indicates that the reduction in the ratio creates a modest downward shift of the
level because the sum 𝑁̃1(𝜓*) + 𝑁̃0(𝜓*) is fairly insensitive to 𝜓*.

Thus far, we have provided an ex post evaluation of computational gains that relied on knowing how
the number of SMC stages depends on 𝜓 through the functions 𝑁̃1(𝜓*) and 𝑁̃0(𝜓*). To conduct an ex
ante assessment, we recommend the researcher first assesses the times 𝜏𝑗 it takes to evaluate the likelihood
function of the two models. Moreover, we recommend for several values of 𝜓* to compute the variance
(across 𝑖) of the importance sampling weights

𝑊̃ 𝑖(𝜓*) = 𝑤̃𝑖(𝜓*)
1
𝑁

∑︀𝑁
𝑖=1 𝑤̃

𝑖(𝜓*)
, 𝑤̃𝑖(𝜓*) = 𝑝(𝑌 |𝜃𝑖,𝑀1)

𝑝(𝑌 |𝜃𝑖,𝑀0)𝜓*
, (18)

where the 𝜃𝑖’s are draws from 𝜋0(𝜃) ∝ 𝑝(𝑌 |𝜃,𝑀0)𝜓*𝑝(𝜃). If there is a 𝜓* > 0 for which this variance is
considerably smaller than for the 𝜓* = 0 (prior) weights, then there is potential for a substantial runtime
reduction. We further explore the relationship between importance sample and runtime reductions in the
context of the VAR and DSGE illustrations in Sections 4.3 and 5.3.

3 Illustration 1: Univariate Normal Posteriors
In the first numerical illustration, we consider an environment in which we can directly control the discrepancy
between the approximate posterior and the target posterior. We examine the performance of the model
tempering approach as a function of the discrepancy between the posteriors. Starting points are “posterior”
densities 𝑝(𝜃|𝑌,𝑀0) (approximate) and 𝑝(𝜃|𝑌,𝑀1) (target). We assume that 𝜃 is scalar and approximate
and target density are both Normal. In particular, we hold the target density fixed at 𝑝(𝜃|𝑌,𝑀1) ∼ 𝑁(0, 1)
and consider a family of approximating densities 𝑝(𝜃|𝑌,𝑀1) ∼ 𝑁(𝜇, 𝜎2), where 𝜇 ranges from -3 to 0 in 0.5
increments and 𝜎 ranges from 0.2 to 2 in 0.2 increments.

Because in this example we do not construct the posterior density explicitly from a prior distribution
and a likelihood function, we let4

𝑝𝑛(𝜃|𝑌 ) = 𝑝(𝜃|𝑌,𝑀1)𝜑𝑛𝑝(𝜃|𝑌,𝑀0)1−𝜑𝑛

and define the incremental weight 𝑤̃𝑖𝑛 in (3) as

𝑤̃𝑖𝑛 =
𝑝𝑛(𝜃𝑖𝑛−1|𝑌 )
𝑝𝑛−1(𝜃𝑖𝑛−1|𝑌 )

.

We run the SMC Algorithm 1 with 𝑁 = 1, 000 particles, 𝛼 = 0.95, and use 𝑁𝑀𝐻 = 1 iteration of a
single-block random walk Metropolis-Hastings (RWMH) algorithm in the mutation step with 𝑐0 = 0.5,
targeting an acceptance probability of 0.25. The implementation of the mutation step is described in more
detail in the Online Appendix.

Figure 3 illustrates how the particle swarm moves from an approximate posterior to the target posterior,
despite very little overlap between the two densities. We overlay the target posterior density, 𝑁(0, 1), an
approximate density that is used in this example to initialize the algorithm, 𝑁(−3, 0.2), and a histogram
constructed from the stage 𝑛 particle swarm. For 𝑛 = 0 (left panel) the particle swarm represents the
approximate posterior 𝑝(𝜃|𝑌,𝑀0), and for 𝑛 = 𝑁𝜑 = 71 (right panel) it represents the target posterior
density 𝑝(𝜃|𝑌,𝑀1). In the center panel of the figure we consider the value of 𝑛 = 40 for which the particle
swarm represents a weighted geometric mean of the two densities with 𝜑40 = 0.9.

In Figure 4 we illustrate the performance of the SMC algorithm across 𝑁𝑟𝑢𝑛 = 100 runs for the different
choices of the approximate posterior. To graphically present the results, we mapped (𝜇, 𝜎) into a discrepancy
measure. In principle one could use the variance of the importance weights defined in (18). However, it turns

4 This is a slight abuse of notation because 𝑝𝑛(𝜃|𝑌 ) is not a properly normalized density of 𝜃.
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Fig. 3: From Approximate to Target Posterior: 𝑝𝑛(𝜃|𝑌 )

𝑛 = 0, 𝜑0 = 0 𝑛 = 40, 𝜑40 = 0.90 𝑛 = 71, 𝜑71 = 1

Notes: Target density is 𝑁(0, 1) and approximate density is 𝑁(−3, 0.2).

Fig. 4: Performance of SMC Algorithm

(1,1) Average Number of Stages 𝑁𝜑 (1,2) Tempering Schedule, 𝜇 = −1

(2,1) Average Runtime [s] (2,2) Standard Deviation of ̂︀E[𝜃|𝑌,𝑀1]

Notes: Target density is 𝑁(0, 1) and approximate densities are 𝑁(𝜇, 𝜎2) where 𝜇 ranges from -3 to 0 in 0.5 increments
and 𝜎 ranges from 0.2 to 2 in 0.2 increments. The statistics panels (1,1) and (2,1) are averaged across 𝑁𝑟𝑢𝑛 = 100 runs
of the SMC algorithm. The standard deviation of the target posterior mean in (2,2) is also computed across multiple
runs of the SMC algorithm. In Panel (1,2) we plot the tempering schedules for a single SMC run. Shades of blue indicate
different 𝜎 values.

out that we consider fairly large discrepancies between 𝑀0 and 𝑀1 for which the population variance of the
importance weights is infinite. Thus, in this section we use an alternative discrepancy measure defined as
one minus the area under the minimum of the two densities:

𝒟(𝑀0,𝑀1) = 1 −
∫︁

min
{︀
𝑝(𝜃|𝑌,𝑀0), 𝑝(𝜃|𝑌,𝑀1)

}︀
𝑑𝜃.
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By construction 0 ≤ 𝒟(𝑀0,𝑀1) ≤ 1.
Panel (1,1) shows the average number of stages, 𝑁𝜑, as a function of 𝒟. In general, the smaller the

discrepancy 𝒟(𝑀0,𝑀1), the lower 𝑁𝜑. Because multiple combinations of (𝜇, 𝜎) can lead to the same
𝒟(𝑀0,𝑀1), the graph associates multiple 𝑁𝜑 values with particular values of the discrepancy. For the same
level of overlap, approximate densities with a larger standard deviation require fewer stages. This observation
provides a justification to start the SMC algorithm from a tempered posterior of the approximating model
rather than the full posterior.5

In Panel (1,2) we depict the tempering schedules for 𝜇 = −1 and various values of 𝜎. Because the
mean of the approximating density is different from the mean of the target density, increasing the standard
deviation 𝜎 from 0.2 to 2.0 increases the overlap of the two densities, decreases 𝒟(𝑀0,𝑀1), and leads to a
steeper tempering schedule. The runtime pattern in Panel (2,1) mirrors the pattern of the average number
of stages, because the runtime increases linearly in the number of stages. Finally, we show the standard
deviation of the Monte Carlo approximation of E[𝜃|𝑌,𝑀1] as a function of 𝒟(𝑀0,𝑀1) in Panel (2,2). Here
no clear relationship with the discrepancy between approximate and target posterior emerges. Because the
tempering schedule is chosen adaptively, the accuracy can be as good for large mismatches as it can be for
small discrepancies, but it takes more time in the former case.

We deduce from this example that (i) the speed of the model tempering approach depends on the
discrepancy between the approximating and the target density. (ii) Except for the additional runtime, the
algorithm still works for fairly large discrepancies between the two densities. (iii) It might be desirable to
start from a tempered rather than the full posterior of the approximating model.

4 Illustration 2: A VAR with Stochastic Volatility
This section demonstrates the benefits of model tempering in the context of a VAR with SV. The illustration
is based on the VAR analysis in Aruoba et al. (2022), except that we do not include a censored endogenous
variable. The VAR model that is used as data generating process (DGP) and then estimated based on
simulated data is presented in Section 4.1. The parameterization of the VAR and the tuning of the SMC
algorithm are summarized in Section 4.2. The numerical results are discussed in Section 4.3.

4.1 VAR Specification

Model 𝑀1 is taken to be a bivariate VAR(1) with stochastic volatility:

𝑦𝑡 = Φ1𝑦𝑡−1 + Φ𝑐 + chol(Σ)𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, 𝐷𝑡), 𝐷𝑡 = diag(𝑑𝑡), (19)

where Σ is a symmetric positive definite matrix and chol(·) is the lower-triangular Cholesky factor. Let
𝑑𝑡 = [𝑑1,𝑡, 𝑑2,𝑡]′ and assume that its elements evolve according to

ln 𝑑𝑖𝑡 = 𝜌𝑖 ln 𝑑𝑖𝑡−1 + 𝜉𝑖𝜂
𝑖
𝑡, 𝜂𝑖𝑡 ∼ 𝑁(0, 1), 𝑖 = 1, 2. (20)

The presence of stochastic volatility renders this model nonlinear. However, the conditional linearity
makes the likelihood evaluation relatively straightforward. We use a Bootstrap Particle Filter (BSPF) with
𝑀𝑏𝑠𝑝𝑓 = 100 particles, as outlined in the Online Appendix, to sequentially integrate out the latent volatility
states. The BSPF likelihood evaluation can be conveniently integrated into the SMC sampler described
in Algorithm 1.6 Moreover, this computational strategy is very similar to a Bayesian estimation approach
widely-used for the estimation of nonlinear DSGE models. We will use the BSPF also in Section 5.

5 This observation is related to the well-known importance sampling result that the proposal density should have fatter
tails than the target density; see, e.g., Geweke (1989).
6 The use of a particle filter to evaluate the likelihood in the SMC posterior sampler results in a SMC2 algorithm, as
discussed in Chopin et al. (2013).
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Tab. 1: Parameterizations of the SV Processes

𝜌1 𝜌2 𝜉1 𝜉2

DGP 1 0.50 0.90 0.20 0.20
DGP 2 0.20 0.60 0.80 0.90
DGP 3 0.50 0.90 0.80 0.90

The approximating model 𝑀0 is identical to 𝑀1 except that it ignores stochastic volatility. It is given
by the homoskedastic VAR

𝑦𝑡 = Φ1𝑦𝑡−1 + Φ𝑐 + 𝑢𝑡, 𝑢𝑡 ∼ 𝑁(0,Σ). (21)

In other words, 𝑀0 is obtained by setting 𝜉𝑖 = 0 ∀ 𝑖. This restriction renders (𝜌𝑖, 𝜉𝑖) non-identified. One
obtains the standard analytical expression for the likelihood of a VAR, which as a result can be evaluated
instantaneously. Thus, one important condition that makes model tempering attractive is satisfied: the
evaluation of the likelihood function for the approximating model is considerably faster than the evaluation
of the target model’s likelihood.

We use a version of the Minnesota prior for (Φ1,Φ𝑐,Σ). The (marginal) prior for each 𝜌𝑖 is a Uniform
distribution, while that for 𝜉𝑖 is an inverse Gamma distribution. Further details on the prior are provided in
the Online Appendix. The prior specification is the same for all DGP parameterizations.

4.2 Parameterization of DGP and Tuning of Algorithm

Estimation is conducted on 𝑇 = 100 observations simulated from model 𝑀1. We use the following
parameterization for (Φ1,Φ𝑐,Σ):

Φ1 =
[︂
0.6 0.3
0.0 0.4

]︂
, Φ𝑐 =

[︂
0.0
0.0

]︂
, Σ =

[︂
1.0 0.0
0.7 1.0

]︂
·
[︂
1.0 0.7
0.0 1.0

]︂
=
[︂
1.00 0.70
0.70 1.49

]︂
.

The closeness of the posteriors under the target model (VAR with SV) and the approximating model
(homoskedastic VAR) depends on the parameterization of the stochastic volatility processes. We consider
three different parameterizations which are summarized in Table 1. Under DGP 1 (baseline) the standard
deviations of the log volatility innovations are relatively small. This implies that the ln 𝑑𝑖𝑡s only exhibit
modest time variation and the homoskedastic specification provides a good approximation. Under DGP 2
the volatility innovations have larger standard deviations but the log volatility processes are less persistent,
implying large yet short-lived swings in volatility. Finally, DGP 3 combines the baseline values for 𝜌𝑖 with
the large values of 𝜉𝑖 also considered under DGP 2, implying the largest distance between the approximating
model and the target model. This is confirmed in Figure 5. The panels in the top row show the volatility
paths, 𝑑1𝑡 and 𝑑2𝑡, and the bottom row illustrates the resulting discrepancy between the 𝑀0 and 𝑀1
posteriors, using the parameter Φ1,21 as an example.

We use an adaptive tempering schedule with 𝛼 = 0.95, as described in Section 2.3, to ensure that the
number of SMC stages and hence the computational time adjust endogenously to the distance between the
proposal and the target density. We initialize the SMC algorithm based on the following set of tempered
𝑀0 posteriors:

𝜋0(𝜃) ∝ 𝑝(𝑌 |𝜃,𝑀0)𝜓*𝑝(𝜃), 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0},

where 𝜓* = 0 corresponds to likelihood tempering, i.e., estimation of 𝑀1 without using information from
model 𝑀0. Higher values for 𝜓* increasingly tilt the proposal density away from the prior distribution
towards the posterior under the proxy model 𝑀0. For 𝜑* = 1, the proposal density coincides with the
posterior under 𝑀0. This is illustrated in Figure 6 which shows along with the 𝑀1 target posterior the
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Fig. 5: Stochastic Volatility Paths and 𝑀0 vs. 𝑀1 Posteriors

DGP 1 DGP 2 DGP 3

Notes: Top row: simulated volatility paths 𝑑1𝑡. Middle row: simulated volatility paths 𝑑2𝑡. Bottom row: 𝑀0 (dashed
black) versus 𝑀1 (solid blue) posterior densities for Φ1,21. Dotted vertical line indicates true value.

Fig. 6: Approximate Distributions for Φ1,21, DGP 2

Notes: The approximating posterior densities obtained from the tempered 𝑀0 likelihood function for 𝜓* ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1 posterior is depicted
in blue.

sequence of approximating posterior distributions for Φ1,21 under DGP 2 obtained from the 𝜓*-tempered
𝑀0 likelihood function.

The number of particles in the SMC sampler is set to 𝑁 = 500. For each DGP and 𝜋0(𝜃) we run the
SMC algorithm 𝑁𝑟𝑢𝑛 = 200 times. We subsequently report averages across the 𝑁𝑟𝑢𝑛 runs and assess the
variance of the Monte Carlo approximations across runs.

4.3 Results

The left panel of Figure 7 plots average (across multiple SMC runs) Monte Carlo approximates of the log
MDD of model 𝑀1, ln 𝑝(𝑌 |𝑀1), under DGP 1 as a function of 𝜓*, i.e. as a function of the degree of model
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Fig. 7: Log MDD and Precision

Mean (DGP 1, 𝑁 = 500) Standard Deviation

Notes: The left panel depicts the mean and 90% credible bands based on 𝑁𝑟𝑢𝑛 = 200 runs for DGP 1 with 𝑁 = 500
particles. The right panel shows the standard deviation of log MDD across the runs for all considered setups.

Fig. 8: VAR-SV: Computational Times and Initial Variance of Particle Weights

Runtime Relative to LT Importance Weight Variance

Notes: The left panel plots the computational time relative to LT (𝜑𝑁𝜑
(𝑀0) = 0) for the three DGPs (all with 𝑁 = 500).

The right panel depicts the variance of particle weights 𝑊̃ 𝑖(𝜓*) defined in (18). In both panels we depict averages across
the 𝑁𝑟𝑢𝑛 = 200 runs.

tempering used in the construction of 𝜋0(𝜃;𝜓*). The flat line confirms that the Monte Carlo approximations
are the same regardless of 𝜋0(𝜃;𝜓*), as we are numerically approximating the same object regardless of 𝜓*.
The shaded area is a 95% credible band for the log MDD. Figure A-4 in the Online Appendix confirms
that the Monte Carlo approximations for posterior mean, variance, 5th and 95th percentiles of the VAR
parameters are also invariant to 𝜓*. Moreover, the result holds not just under DGP 1, but also the other
two DGPs (not shown in the figures).

The right panel of Figure 7 shows the standard deviation of the Monte Carlo approximation of the log
MDD as a function of 𝜓* for the three different DGPs. For DGP 1 and DGP 3 the standard deviations
are weakly decreasing in 𝜓. The biggest drop occurs between 𝜓* = 0 and 𝜓* = 0.2. For DGP 2 the
profile is approximately flat, that is, based on the discrepancy between approximating density and target
density, the algorithm adjusts the number of stages to keep the accuracy of the Monte Carlo approximation
approximately constant.

We now proceed by examining how 𝜓* affects the runtime of the SMC algorithm. The main result is
presented in Figure 8. The left panel compares the runtime profiles (normalized by the LT runtime) across
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the three DGPs. Incorporating information from model 𝑀0 in the construction of the proposal density
drastically reduces the runtime. The ratio of likelihood evaluation times for 𝑀0 and 𝑀1 is 𝜏0/𝜏1 = 9.14. For
DGP 1 the runtime monotonically decreases as the proposal is increasingly tilted towards the posterior of
the approximate model 𝑀0, with the largest reduction of close to 80% obtained for 𝜓* ∈ {0.6, 0.8, 1.0}. The
runtime reduction is largest for DGP 1, followed by DGP 2, while DGP 3 is associated with the smallest
reduction.

The steepest decrease in runtime occurs at 𝜓* = 0.2, which means that incorporating just a bit of
information from the approximate model 𝑀0 when constructing the proposal density for the posterior of
model 𝑀1 goes a long way in reducing the runtime. Adding more information helps little at best and might
be even counterproductive, as is the case for DGP 3. In principle, for an even larger distance between the
posteriors under the two models, it is conceivable that there is no runtime reduction at all. In this case, the
second condition stated in Section 2.2 would be violated.

The runtime benefits of model tempering decrease with the distance between the posteriors under the
target model 𝑀1 and the approximate model 𝑀0.7 In our VAR application, this distance increases with the
nonlinearities generated by the SV specification, which are strongest for DGP 3. This distance is visualized
in Figures A-1, A-2 and A-3 in the Online Appendix. While for DGP 1 all marginal posteriors align very
well for the two models, for DGP 3 there are some parameters for which there is little overlap of probability
mass between the two distributions.

We discussed in Section 2.4 that this distance could be assessed ex ante, without having completed
the SMC run for 𝑀1, by computing the variance of the importance sampling weights defined in (18). The
variances as a function of 𝜓* for the three DGPs are depicted in the right panel of Figure 8. The variance
profiles look very similar to the runtime profiles in the left panel. For 𝜓* = 0 the variance is approximately
equal to the number of particles minus one, 𝑁 − 1, which means that one of the particles has weight 𝑁 and
the remaining particles have weight zero. For 𝜓* = 0.2 the variance is considerably lower: it is 75 for DGP 1
and 357 for DGP 3.

To summarize, in this VAR-SV application model tempering is able to reduce the relative runtime by
between 27% (DGP 3) and 79% (DGP 1) and increase the precision of Monte Carlo approximations (DGP 1
and 3).

5 Illustration 3: Two Nonlinear DSGE Models
Finally, we consider the estimation of two nonlinear DSGE models, which are computationally demanding
for two reasons: first, the model needs to be solved and, second, the evaluation of the likelihood function
requires a nonlinear filter. For the latter task, we will use a particle filter similar to the one used to estimate
the VAR with SV in Section 4. Most of this section focuses on a small RBC model with asymmetric quadratic
capital adjustment costs. The adjustment cost parameters let us control the degree of nonlinearity. The
model economy is described in Section 5.1, the configuration of the simulation experiment is summarized in
Section 5.2, and the simulation results are presented in Section 5.3. In Section 5.4 we repeat the analysis
with a larger New Keynesian DSGE model that features asymmetric wage and price rigidities of Aruoba
et al. (2017), henceforth ABS.

7 The runtime for DGP 3 also exhibits the most variation across multiple runs; see Figure A-5 in the Online Appendix.
Depending on the run, there could be many or only very few particles in the small area to which both posteriors assign
some positive probability mass.
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5.1 Model Specification

The model economy consists of a representative household and a representative firm. The household consumes
𝐶, supplies labor in the amount of 𝐿, and owns the capital stock 𝐾. The firm hires labor and rents capital
to produce a single good that can be used for consumption and investment. The model dynamics can be
described as the solution to the following social planner problem:

𝑉 (𝐾,𝑆) = max
𝐶,𝐿,𝐾′

𝐶1−𝜏 − 1
1 − 𝜏

−𝐵
𝐿1+1/𝜈

1 + 1/𝜈 + 𝛽E𝑆′|𝑆 [𝑉 (𝐾′, 𝑆′)] (22)

s.t. 𝐶 + 𝐼 +𝐾Φ(𝐾′/𝐾) = 𝑌,

𝑌 = 𝑍𝐾𝛼𝐿1−𝛼,

𝐼 = 𝐾′ − (1 − 𝛿)𝐾.

Households derive utility from consumption and disutility from labor. The parameter 𝛽 is the discount
factor, 𝜏 determines the risk aversion, and 𝜈 is the Frisch labor supply elasticity. The parameter 𝛼 is the
capital share parameter, and 𝛿 the depreciation rate. Total factor productivity 𝑍 and the preference process
𝐵 evolve exogenously according to AR(1) laws of motion:

𝑍 = 𝑍*𝑒
𝑧 , 𝑧′ = 𝜌𝑧𝑧 + 𝜎𝑧𝜀

′
𝑧 , (23)

𝐵 = 𝐵*𝑒
𝑏̂, 𝑏̂′ = 𝜌𝑏𝑏̂+ 𝜎𝑏𝜀

′
𝑏 .

Thus, 𝜀′
𝑧 can be thought of as a supply and 𝜀′

𝑥 as a demand shock. Here we adopt the convention that for a
variable 𝑋, 𝑋* denotes the steady state and 𝑥̂ denote log deviations from the steady state.

For the adjustment cost function we use a linex function which is asymmetric:

Φ(𝐾′/𝐾) = 𝜑1

(︂
exp(−𝜑2(𝐾′/𝐾 − 1)) + 𝜑2(𝐾′/𝐾 − 1) − 1

𝜑2
2

)︂
. (24)

The parameter 𝜑1 controls the overall level of adjustment costs and 𝜑2 determines the asymmetry. Notice
that as 𝜑2 −→ 0 the adjustment costs become quadratic around the replacement investment level at which
𝐾′/𝐾 = 1. If 𝜑2 > 0, then it is more costly to reduce the capital stock than it is to augment the capital
stock.

Model 𝑀1 refers to a nonlinear solution of the RBC growth model, obtained using a second-order
perturbation around the steady state. The approximate model 𝑀0 is obtained by conducting a first-order
linearization. The models are estimated based on observations for output, investment, and hours worked.
We denote the observed variables by an o-superscript. The measurement equations, now with 𝑡 subscripts,
take the form:

ln 𝑌 𝑜𝑡 = ln 𝑌𝑡 + 𝜂𝑌,𝑡, 𝜂𝑌,𝑡 ∼ 𝑁(0, 𝜎2
𝑌 ), (25)

ln 𝐼𝑜𝑡 = ln 𝐼𝑡 + 𝜂𝐼,𝑡, 𝜂𝐼,𝑡 ∼ 𝑁(0, 𝜎2
𝐼 ),

ln𝐿𝑜𝑡 = ln𝐿𝑡 + 𝜂𝐿,𝑡, 𝜂𝐿,𝑡 ∼ 𝑁(0, 𝜎2
𝐿),

where ln 𝑌𝑡, ln 𝐼𝑡, and ln𝐿𝑡 are the model-implied series and the 𝜂𝑡s are measurement errors. The measurement
errors facilitate the use of a particle filter in combination with the nonlinear DSGE model solution. Moreover,
they help to overcome the singularity problem generated by fitting a DSGE model with two shocks to
three observables. We include the measurement errors in both data generation and estimation and fix their
standard deviations such that the variance of the measurement error is approximately 5% of the variation
of the series ln 𝑌𝑡, ln 𝐼𝑡, and ln𝐿𝑡, respectively.8

8 The values that we use are 𝜎𝑌 = .006, 𝜎𝐼 = .004, and 𝜎𝐿 = .004.
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Tab. 2: DGP and Prior

True Prior Distribution
Value Density P(1) P(2) HPD Low HPD High

𝑟 3.00 fixed at 3.00
𝛿 0.08 fixed at 0.08
𝜏 2.00 𝒢 1.00 1.00 .0005 2.27
𝜈 1.00 𝒢 0.50 0.30 0.07 0.87
𝛼 0.35 ℬ 0.35 0.05 0.27 0.43
𝜑1 50.0 𝒢 30.0 15.0 8.47 50.8
𝜑2 200 𝒩 0 75.0 -123 116
𝜌𝑧 0.95 ℬ 0.6 0.15 0.35 0.80
𝜌𝑏 0.90 ℬ 0.6 0.15 0.38 0.82
100𝜎𝑧 2.00 ℐ𝒢 1.50 5.00 0.45 2.27
100𝜎𝑏 1.60 ℐ𝒢 1.50 5.00 0.53 2.35

Notes: We set 𝑌* = 𝐿* = 1 and we define 𝑟 = 400(1/𝛽−1). 𝒢 is Gamma distribution; ℬ is Beta distribution; ℐ𝒢 is Inverse
Gamma distribution; and 𝒩 is Normal distribution, and 𝒰 is Uniform distribution. P(1) and P(2) are mean and standard
deviations for ℬ, 𝒢, and 𝒩 distributions. The 𝒰 distribution is parameterized in terms of lower and upper bound. The ℐ𝒢
distribution is parameterized as scaled inverse 𝜒2 distribution with density 𝑝(𝜎2|𝑠2, 𝜈) ∝ (𝜎2)−𝜈/2−1 exp[−𝜈𝑠2/(2𝜎2)],
where P(1) is

√
𝑠2 and P(2) is 𝜈. The density of 𝜎 is obtained by the change of variables 𝜎 =

√
𝜎2. HPD(Low,High)

refers to the boundaries of 90% highest prior density intervals.

5.2 Model Parameterization and Tuning of Algorithm

To facilitate the estimation, we reparameterize the model as follows. First, we express the discount factor
𝛽 as a function of an annualized real interest rate (in percentages) 𝑟 = 400(1/𝛽 − 1). Second, instead of
parameterizing the model in terms of steady states of the exogenous processes (𝑍*, 𝐵*), we use the steady
states of output and labor, (𝑌*, 𝐿*), which we set equal to one for both data generation and estimation.
Because our observations ln 𝑌 𝑜𝑡 , ln 𝐼𝑜𝑡 , and ln𝐿𝑜𝑡 do not contain direct information on the steady state
interest rate and the amount of investment necessary to replace depreciating capital stock, we fix 𝑟 and 𝛿 at
their true values. We collect the parameters that are being estimated in the vector 𝜃:

𝜃 = [𝜏, 𝜈, 𝛼, 𝜑1, 𝜑2, 𝜌𝑧 , 𝜌𝑏, 100𝜎𝑧 , 100𝜎𝑏]′.

As in Section 4, the estimation is conducted using data simulated from model 𝑀1. The parameterization
of the DGP is summarized in Table 2. Most of the parameter values are similar to values commonly found
in the DSGE model literature, except that we scale up the shock standard deviations and use fairly large
asymmetric adjustment costs by setting 𝜑1 = 50 and 𝜑2 = 200. We plot simulated sample paths in the
Online Appendix. The length of the estimation sample is 𝑇 = 80. The remaining columns of Table 2 describe
the prior distribution for the Bayesian estimation.

In the SMC algorithm we use 𝑁 = 1, 000 particles to represent the distribution of 𝜃, 𝑁𝑀𝐻 = 2
Metropolis-Hastings steps in the mutation, and an adaptive tempering schedule with 𝛼 = 0.95. While the
likelihood function associated with 𝑀0 can be evaluated with the Kalman filter, a nonlinear filter is required
to compute the likelihood function of 𝑀1. We use the same BSPF that was used in Section 4 for the VAR
estimation with 𝑀𝑏𝑠𝑝𝑓 = 2, 000 particles.

5.3 Results

As before, we consider 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, where 𝜓* = 0 corresponds to 𝑀1 likelihood tempering.
The relative time it takes to evaluate the 𝑀0 and 𝑀1 likelihood functions is 𝜏0/𝜏1 ≈ 1/109. This ratio
depends on the number of particles 𝑀𝑏𝑠𝑝𝑓 used in the BSPF. Doubling 𝑀𝑏𝑠𝑝𝑓 would approximately double
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Fig. 9: Results from the RBC Model

(1,1) Log MDD (1,2) Tempering Schedules

(2,1) Runtime Relative to LT (2,2) Importance Weight Variance

Notes: Results are based on a single run (𝑁𝑟𝑢𝑛 = 1). Panel (1,1) plots the log MDD as a function of the tempering
parameter 𝜓*, panel (1,2) shows the tempering schedules for different 𝜓*, panel (2,1) plots the computational time
relative to LT (𝜑𝑁𝜑

(𝑀0) = 0), and panel (2,2) depicts the variance of particle weights 𝑊̃ 𝑖(𝜓*) defined in (18).

𝜏1 and cut the ratio in half. The numerical results from a single 𝑁𝑟𝑢𝑛 = 1 run of the model tempering SMC
algorithm for the various values of 𝜓* are presented in Figure 9. The top left (1,1) panel shows the log MDD
approximation, which is approximately constant as a function of 𝜓*. This plot confirms that regardless of
𝜓* the SMC algorithm delivers the same approximations of the posterior distribution.

The tempering schedules are plotted in Panel (1,2). Starting from a (tempered) 𝑀0 posterior drastically
reduces the number of stages needed to reach the target posterior. This is consistent with the information
provided by the importance weight variance in Panel (2,2). Reweighting draws from the prior 𝑝(𝜃) (𝜓* = 0)
to target the 𝑀1 posterior would lead to a degenerate distribution of weights, whereby the weight of one
draw is equal to one and all other weights are equal to zero. Starting with draws from the 𝜓* = 0.2 tempered
𝑀0 posterior reduces the importance weight variance from 𝑁 − 1 = 999 to 37. Raising 𝜓* toward one,
lowers the variance further.

Panel (2,1) depicts the runtime of the model-tempered SMC relative to the 𝑀1 likelihood-tempered
SMC. The biggest drop, from 1.0 to 0.3 occurs by raising 𝜓* from 0.0 to 0.2. Subsequent gains are smaller
and the curve essentially turns flat from 0.8 onwards, converging to 0.12. In terms of absolute runtimes, on
a Windows workstation with Intel(R) Xeon(R) CPU E5-2687 at 3.10GHz using 8 out of 10 cores model
tempering with 𝜓* = 1 reduces the runtime of our JULIA code from 655 to 80 minutes. In the Online
Appendix we plot the target and approximate (marginal) posterior densities for the DSGE model parameters.
Despite the large 𝜑1 and 𝜑2 values, the nonlinearity generated by the DSGE model is not particularly
strong and 𝑀0 and 𝑀1 posterior distributions are quite similar. Thus, when starting from 𝜓* = 0.8 or
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𝜓* = 1 only minimal adjustments are required to turn the 𝑀0 posterior draws into 𝑀1 posterior draws
which leads to substantial computational gains.

5.4 A New Keynesian DSGE Model

As a second DSGE model illustration we consider a New Keynesian DSGE model in which asymmetric price
and wage adjustment costs generate nonlinear dynamics. The model is taken from ABS. It consists of final
goods producing firms, a continuum of intermediate goods producing firms, a representative household, and
monetary and fiscal authorities. The model replaces Rotemberg-style quadratic adjustment cost functions
for wages and prices by linex adjustment cost functions, which can capture downward (as well as upward)
nominal rigidities. The model abstracts from capital accumulation. We simulate a sample of length 𝑇 = 92
from the DSGE model using the posterior mean estimates for the period 1984:Q1-2007:Q4 reported in Table
3 of ABS and conduct Bayesian estimation based on the prior distribution summarized in the same Table.

As before, we use 𝑁 = 1, 000 particles, set 𝛼 = 0.95, and 𝑁𝑀𝐻 = 2 (no blocking). The likelihood
function of the nonlinear version of the DSGE model is evaluated with the BSPF using 𝑀𝑏𝑠𝑝𝑓 = 25, 000.
We increase the number of particles for the filter to ensure that the likelihood approximation is sufficiently
accurate to be usable for parameter estimation. We start the model tempering from the full posterior, setting
𝜓* = 1. In this environment, the relative time to evaluate the likelihood functions drops to 𝜏0/𝜏1 ≈ .00004.
This reflects the increases number of particles in the BSPF as well as more costly BSPF runs due to a
larger-dimensional state space in this model. Conducting a single run of the algorithm we find that model
tempering instead of likelihood tempering reduces the runtime by approximately 80%, which is similar to
the reduction in the RBC model application. Because 𝜏0/𝜏1 is close to zero, we deduce from (17) that the
runtime reduction is driven by the reduction in the number of stages achieved by model tempering relative
to likelihood tempering, 𝑁̃(1)/𝑁̃(0).

6 Conclusion
The implementation of posterior samplers for Bayesian inference often requires the explicit evaluation
of likelihood functions. Likelihood calculations for macroeconometric models can be computationally
demanding, because it may take a long time to solve the underlying structural model or it may be time-
consuming to integrate out latent state variables. In this paper we documented how an SMC algorithm
with model tempering can speed up posterior sampling for a VAR with stochastic volatility and a nonlinear
DSGE model. The method is suitable for applications in which the likelihood evaluation for the target
model is computationally costly and there is an approximating model for which the likelihood evaluation is
fast and that generates a posterior that is not too different from the posterior of the target model.
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Online Appendix: Sequential Monte Carlo with Model Tempering
Marko Mlikota and Frank Schorfheide

This Appendix consists of the following sections:
A. Computational Details
B. Illustration 2: VAR with Stochastic Volatility
C. Illustration 3: A Nonlinear DSGE Model

A Computational Details
The presentations of the mutation algorithm in Section A.1 and the BSPF in in Section A.2 are based on
Herbst and Schorfheide (2015).

A.1 SMC Particle Mutation

Algorithm 2 (Particle Mutation).
In Step 2(c) in iteration 𝑛 of Algorithm 1:
1. Compute an importance sampling approximation Σ̃𝑛 of V𝜋𝑛 [𝜃] based on the particles {𝜃𝑖𝑛−1, 𝑊̃

𝑖
𝑛}𝑁𝑖=1.

2. Compute the average empirical rejection rate 𝑅̂𝑛−1(𝜁𝑛−1), based on the Mutation step in iteration 𝑛− 1.
The average is computed across the 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 blocks.

3. Let 𝑐1 = 𝑐* and for 𝑛 > 2 adjust the scaling factor according to

𝑐𝑛 = 𝑐𝑛−1𝑓
(︀
1 − 𝑅̂𝑛−1(𝜁𝑛−1)

)︀
,

where
𝑓(𝑥) = 0.95 + 0.10 𝑒16(𝑥−0.25)

1 + 𝑒16(𝑥−0.25) .

4. Define 𝜁𝑛 =
[︀
𝑐𝑛, 𝑣𝑒𝑐ℎ(Σ̃𝑛)′]︀′.

5. For each particle 𝑖, run 𝑁𝑀𝐻 steps of a Random Walk Metropolis-Hastings Algorithm using the proposal
density

𝜗𝑖,𝑚𝑛 |𝜁𝑛 ∼ 𝑁

(︂
𝜃𝑖,𝑚−1
𝑛 , 𝑐2

𝑛Σ̃𝑛
)︂
. (A.1)

A.2 (Particle) Filtering

We use a bootstrap particle filter (BSPF) to approximate the likelihood function in the model with stochastic
volatility. In the description of the filter we denote the latent state by 𝑠𝑡.

Algorithm 3 (Bootstrap Particle Filter).
1. Initialization. Draw the initial particles from the distribution 𝑠𝑗0

𝑖𝑖𝑑∼ 𝑝(𝑠0|𝜃) and set 𝑊 𝑗
0 = 1, 𝑗 =

1, . . . ,𝑀 .
2. Recursion. For 𝑡 = 1, . . . , 𝑇 :

(a) Forecasting 𝑠𝑡. Draw 𝑠𝑗𝑡 from the state-transition density 𝑝(𝑠𝑡|𝑠𝑗𝑡−1, 𝜃).
(b) Forecasting 𝑦𝑡. Define the incremental weights

𝑤̃𝑗𝑡 = 𝑝(𝑦𝑡|𝑠𝑗𝑡 , 𝑌1:𝑡−1, 𝜃) (A.2)

The predictive density 𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜃) can be approximated by

𝑝(𝑦𝑡|𝑌1:𝑡−1, 𝜃) = 1
𝑀

𝑀∑︁
𝑗=1

𝑤̃𝑗𝑡𝑊
𝑗
𝑡−1. (A.3)



A.2 M. Mlikota et al., SMC With Model Tempering

(c) Define the normalized weights

𝑊̃ 𝑗
𝑡 = 𝑤̃𝑗𝑡𝑊

𝑗
𝑡−1

⧸︂
1
𝑀

𝑀∑︁
𝑗=1

𝑤̃𝑗𝑡𝑊
𝑗
𝑡−1. (A.4)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let {𝑠𝑗𝑡}𝑀𝑗=1 de-
note 𝑀 iid draws from a multinomial distribution characterized by support points and weights
{𝑠𝑗𝑡 , 𝑊̃

𝑗
𝑡 } and set 𝑊 𝑗

𝑡 = 1 for 𝑗 =, 1 . . . ,𝑀 . An approximation of E[ℎ(𝑠𝑡)|𝑌1:𝑡, 𝜃] is given by
ℎ̄𝑡,𝑀 = 1

𝑀

∑︀𝑀
𝑗=1 ℎ(𝑠𝑗𝑡 )𝑊

𝑗
𝑡 .

3. Likelihood Approximation. The approximation of the log-likelihood function is given by

ln 𝑝(𝑌1:𝑇 |𝜃) =
𝑇∑︁
𝑡=1

ln

⎛⎝ 1
𝑀

𝑀∑︁
𝑗=1

𝑤̃𝑗𝑡𝑊
𝑗
𝑡−1

⎞⎠ . (A.5)

B Illustration 2: A VAR with Stochastic Volatility

B.1 Prior Specification

Prior for (Φ1,Φ2,Σ). We use a Minnesota-type prior for the reduced-form VAR coefficients that appear in
the homoskedastic version of the VAR in (21). The specification of the Minnesota prior follows Del Negro
and Schorfheide (2012). The prior is indexed by hyperparameters 𝜆1, 𝜆2, and 𝜆3, and is implemented
through dummy observations stacked into (𝑌 *, 𝑋*). We use three sets of dummy observations, written as
𝑌 *
𝑗 = 𝑋*

𝑗 Φ + 𝑈𝑗 : [︂
𝜆1s1 0

0 𝜆1s2

]︂
=

[︂
𝜆1s1 0 0

0 𝜆1s2 0

]︂
Φ +

[︂
𝑢11 𝑢12
𝑢21 𝑢22

]︂
,

[︀
𝜆2y1 𝜆2y2

]︀
=

[︀
𝜆2y1 𝜆2y2 𝜆2

]︀
Φ +

[︂
𝑢11 𝑢12
𝑢21 𝑢22

]︂
,[︂

s1 0
0 s2

]︂
=

[︂
0 0 0
0 0 0

]︂
Φ +

[︂
𝑢11 𝑢12
𝑢21 𝑢22

]︂
,

where y𝑖 and s𝑖 are the mean and standard deviation of 𝑦𝑖. The first set of dummy observations implies
that the VAR coefficients are centered at univariate unit-root representations. The second set of dummy
observations implies that if the lagged value 𝑦𝑡−1 take the value 𝑦, then the current value 𝑦𝑡 will be close to
𝑦. The third set of dummy observations induces a prior for the covariance matrix of 𝑢𝑡 and is repeated 𝜆3
times. The dummy observations induce a conjugate MNIW prior for (Φ,Σ):

Σ ∼ 𝐼𝑊 (𝑆, 𝜈) , Φ|Σ ∼ 𝑀𝑁(𝜇,Σ ⊗ 𝑃−1) ,

with
𝜈 = 𝑇 * − 𝑘 , 𝑆 = 𝑆* , 𝜇 = Φ* , 𝑃 = 𝑋*′𝑋* ,

where Φ* = (𝑋*′𝑋*)−1𝑋*′𝑌 * and 𝑆* = (𝑌 * −𝑋*Φ*)′(𝑌 * −𝑋*Φ*). We set 𝜆1 = 1, 𝜆2 = 1, and 𝜆3 = 3.
Prior for 𝜌𝑖. The prior for each 𝜌𝑖 is Uniform on [0, 1].
Prior for 𝜉𝑖. The prior of 𝜉𝑖 is specified as an inverse Gamma distribution. It is parameterized as scaled
inverse 𝜒2 distribution with density 𝑝(𝜉2|𝑠2, 𝜈) ∝ (𝜉2)−𝜈/2−1 exp[−𝜈𝑠2/(2𝜉2)], where

√
𝑠2 is 0.3 and 𝜈 is

2.0. The density of 𝜉𝑖 is obtained by the change of variables 𝜉 =
√︀
𝜉2.
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B.2 Further Results for the VAR-SV

Fig. A-1: VAR-SV: Target and Approximate Posterior Densities for DGP 1

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue. The stochastic volatility parameters 𝜌𝑖, 𝜉𝑖, 𝑖 = 1, 2 are not displayed because model 𝑀0 is
uninformative for them.
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Fig. A-2: VAR-SV: Target and Approximate Posterior Densities for DGP 2

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue. The stochastic volatility parameters 𝜌𝑖, 𝜉𝑖, 𝑖 = 1, 2 are not displayed because model 𝑀0 is
uninformative for them.
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Fig. A-3: VAR-SV: Target and Approximate Posterior Densities for DGP 3

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue. The stochastic volatility parameters 𝜌𝑖, 𝜉𝑖, 𝑖 = 1, 2 are not displayed because model 𝑀0 is
uninformative for them.
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Fig. A-4: VAR-SV: Monte Carlo Approximations of Posterior Statistics for DGP 1

Notes: Each panel shows the Monte Carlo approximation of the respective posterior statistic as a function of the
tempering parameter 𝜓* for the approximating model. Depicted are means across 𝑁𝑟𝑢𝑛 = 200 runs.
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Fig. A-5: VAR-SV: Runtime and Tempering Schedule
D

G
P

1

Runtime [minutes] Tempering Schedules

D
G

P
2

D
G

P
3

Notes: The left panel shows the mean runtime and 90% confidence interval across 𝑁𝑟𝑢𝑛 = 200 runs. The right panel
illustrates the evolution of the tempering schedule by plotting the median value of the tempering parameter at each
stage 𝑛.
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C Illustration 3: A Nonlinear DSGE Model

C.1 Equilibrium Conditions, Steady State, and Log-linearization

We write the social planner’s problem stated in the main text as

𝑉 (𝐾,𝑆) = max
𝐶,𝐿,𝐾′

𝑢(𝐵,𝐶,𝐿) + 𝛽E𝑆′|𝑆 [𝑉 (𝐾′, 𝑆′)]

s.t. 𝐶 + 𝐼 +𝐾Φ(𝐾′/𝐾) = 𝑌, (A.6)
𝑌 = 𝑓(𝑍,𝐾,𝐿), (A.7)
𝐼 = 𝐾′ − (1 − 𝛿)𝐾 . (A.8)

We use the following functional forms:

𝑢(𝐵,𝐶,𝐿) = 𝐶1−𝜏 − 1
1 − 𝜏

−𝐵
𝐿1+1/𝜈

1 + 1/𝜈 ,

𝑓(𝑍,𝐾,𝐿) = 𝑍𝐾𝛼𝐿1−𝛼,

Φ(𝐾′/𝐾) = 𝜑1

(︂
exp(−𝜑2(𝐾′/𝐾 − 1)) + 𝜑2(𝐾′/𝐾 − 1) − 1

𝜑2
2

)︂
.

The exogenous processes evolve according to:

𝑍 = 𝑍*𝑒
𝑧 , 𝑧′ = 𝜌𝑧𝑧 + 𝜎𝑧𝜀

′
𝑧 ,

𝐵 = 𝐵*𝑒
𝑏̂, 𝑏̂′ = 𝜌𝑏𝑏̂+ 𝜎𝑏𝜀

′
𝑏 .

Throughout this section we use 𝑓𝑖(·) to denote the derivative of a function 𝑓(·) with respect to its 𝑖’th
argument.

C.1.1 First-Order Conditions (FOCs)

Substitute (A.7) and (A.8) into (A.6) and then take FOCs with respect to 𝐿 and 𝐾′. The FOC for 𝐿 takes
the form

𝑢2(𝐵,𝐶,𝐿)𝑓3(𝑍,𝐾,𝐿) + 𝑢3(𝐵,𝐶,𝐿) = 0.

Using the functional forms, this leads to

(1 − 𝛼)𝑌
𝐿

= 𝐵𝐶𝜏𝐿1/𝜈 . (A.9)

Now write
𝐶 = 𝑍𝐾𝛼𝐿1−𝛼 −𝐾′ + (1 − 𝛿)𝐾 −𝐾Φ(𝐾′/𝐾).

The FOC for 𝐾′ takes the form:

−𝑢2(𝐵,𝐶,𝐿)
[︀
1 + Φ1(𝐾′/𝐾)

]︀
+ 𝛽E

[︀
𝑉1(𝐾′, 𝑆′)

]︀
= 0.

Plugging in the expressions for 𝑢2(·) and 𝑉1(·) we obtain

𝐶−𝜏 [︀1 + Φ1(𝐾′/𝐾)
]︀

(A.10)

= 𝛽E
[︂
𝐶′−𝜏

(︂
𝛼
𝑌 ′

𝐾′ + 1 − 𝛿 − Φ(𝐾′′/𝐾′) + Φ1(𝐾′′/𝐾′)𝐾
′′

𝐾′

)︂]︂
,

where
Φ1(𝑥) = 𝜑1

𝜑2
[1 − exp{−𝜑2(𝑥− 1)}] . (A.11)
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C.1.2 Steady State

Rather than taking (𝑍*, 𝐵*) as given and solving for (𝑌*, 𝐿*) and the remaining steady states, we proceed
in the other direction and solve for (𝑍*, 𝐵*) as a function of (𝑌*, 𝐿*). Notice that the adjustment costs are
zero in steady state because Φ(1) = 0. Moreover, Φ1(1) = 0. We deduce from (A.10) that

1
𝛽

= 𝛼
𝑌*
𝐾*

+ (1 − 𝛿),

which implies that
𝐾* = 𝛼

1/𝛽 − (1 − 𝛿)𝑌*. (A.12)

The capital accumulation equation implies that

𝐼* = 𝛿𝐾* = 𝛼𝛿

1/𝛽 − (1 − 𝛿)𝑌*. (A.13)

The aggregate resource constraint implies that

𝐶* = 𝑌* − 𝐼* =
(︂

1 − 𝛼𝛿

1/𝛽 − (1 − 𝛿)

)︂
𝑌*. (A.14)

The production function can be solved for 𝑍*:

𝑍* = 𝑌*

𝐾𝛼
* 𝐿

1−𝛼
*

=
(︂

1/𝛽 − (1 − 𝛿)
𝛼

)︂𝛼(︂
𝑌*
𝐿*

)︂1−𝛼
. (A.15)

Finally, we solve (A.9) for 𝐵 to obtain 𝐵*:

𝐵* = (1 − 𝛼) 𝑌*
𝐿*
𝐶−𝜏

* 𝐿
−1/𝜈
* .

In the numerical illustration we set 𝑌* = 𝐿* = 1.

C.1.3 Log-Linearization

Log-linearizing Equations (A.6), (A.7), (A.8), and (A.9) yields:

𝑦 = 𝐶*
𝑌*
𝑐+ 𝐼*

𝑌*
𝑖̂ (A.16)

𝑦 = 𝑧 + 𝛼𝑘 + (1 − 𝛼)𝑙̂ (A.17)
𝛿𝑖̂ = 𝑘′ − (1 − 𝛿)𝑘 (A.18)

(1 + 1/𝜈)𝑙̂ = 𝑦 − 𝑏̂− 𝜏𝑐. (A.19)

We proceed with the log-linearization of Φ1(𝑥) in (A.11). Differentiating with respect to the argument
yields

Φ11(𝑥) = 𝜑1 exp{−𝜑2(𝑥− 1)}.

Log-linearizing around 𝑥 = exp(𝑧) = 1 leads to the approximation:

Φ1
(︀

exp(𝑧)
)︀

≈ Φ1(1) + Φ11(1) · 1 · (𝑧 − 0).

In turn, we can write
Φ1(𝐾′/𝐾) ≈ 𝜑1(𝑘′ − 𝑘),

which shows that the linex adjustment cost function is equivalent, up to second order, to a quadratic
adjustment cost function

Φ(𝐾′/𝐾) ≈ 𝜑1
2
(︀
𝐾′/𝐾 − 1

)︀2
.
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We now turn to the log-linearization of (A.10) using the observation that Φ1(1) = 0:

−𝜏𝐶−𝜏
* 𝑐+ 𝐶−𝜏

* 𝜑1(𝑘′ − 𝑘)

= −𝜏𝛽𝐶−𝜏
* (𝛼𝑌*/𝐾* + 1 − 𝛿)E[𝑐′] + 𝛼𝛽𝐶−𝜏

*
𝑌*
𝐾*

E[𝑦′ − 𝑘′] + 𝜑1𝛽𝐶
−𝜏
* E[𝑘′′ − 𝑘′].

Multiplying by 𝐶𝜏* , using (A.12), and noting that 𝑘′ is in the information for the conditional expectation
E[·] yields the simplified equation:

−𝜏𝑐+ 𝜑1(𝑘′ − 𝑘) = −𝜏E[𝑐′] +
(︀
1 − 𝛽(1 − 𝛿)

)︀(︀
E[𝑦′] − 𝑘′)︀+ 𝜑1𝛽

(︀
E[𝑘′′] − 𝑘′)︀. (A.20)

Equations (A.16) to (A.20) and the laws of motion for 𝑧 and 𝑏̂ form a linear rational expectations system
that determines the dynamics of the model.

After setting 𝑌* = 𝐿* = 1, the measurement equations in (25) can be written as

ln 𝑌 𝑜 = 𝑦 + 𝜂𝑌 , ln 𝐼𝑜 = ln
(︂

𝛼𝛿

1/𝛽 − (1 − 𝛿)

)︂
+ 𝑖̂+ 𝜂𝐼 , ln𝐿𝑜 = 𝑙̂ + 𝜂𝑙. (A.21)

C.2 Model Solution, and Computational Details

While the approximate model 𝑀0 refers to a first-order linearization around the steady state and is described
in Section C.1 above, we obtain 𝑀1 as a second-order linearization around the steady state, computed
following Schmitt-Grohé and Uribe (2004). To implement it in Julia, we use the package SolveDSGE,
developed by Richard Dennis and available at https://github.com/RJDennis.

C.3 Further Results for the RBC Model

Fig. A-6: RBC Model: Simulated Data
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Fig. A-7: RBC Model: Target and Approximate Posterior Densities

Notes: Each plot refers to a different parameter. The approximating posterior densities obtained from the tempered 𝑀0

likelihood function for 𝜓* ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are plotted in shades (the larger 𝜓* the darker) of gray. The 𝑀1

posterior is depicted in blue.

Fig. A-8: RBC Model: Absolute Runtimes

Notes: Absolute runtime as a function of 𝜓* based on a single run (𝑁𝑟𝑢𝑛 = 1).
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