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Abstract

Thermal percolation in polymer nanocomposites — the rapid increase in thermal transport
due to the formation of networks among fillers — is the subject of great interest in thermal
management ranging from general utility in multifunctional nanocomposites to high conductivity
applications such as thermal interface materials. It remains, however, a challenging subject
encompassing both experimental and modelling hurdles. Successful reports of thermal percolation
are exclusively found in high aspect ratios, conductive fillers such as graphene, albeit at filler
loadings significantly higher than the electrical percolation threshold. This anomaly was attributed
to the lower filler-matrix thermal conductivity contrast ratio kyk, ~10* compared to electrical
conductivity ~10!2-10'¢, In a randomly dispersed composite, the effect of low contrast ratio is
further accentuated by uncertainties on the morphology of the percolating network and presence
of other phases such as disconnected aggregates and colloidal dispersions. Thus, the general
properties of percolating networks are convoluted as they lack defined structure. In contrast, a
prototypical system with controllable nanofiller placement enables the elucidation of structure-
property relations such as filler size, loading and assembly. Using self-assembled nanocomposites
with controlled 1,2,3-dimension nanoparticle (NP) arrangement, we demonstrate that thermal
percolation can be achieved in spite of using spherical, non-conductive fillers (k/k,~60) at low
volume fraction (9 vol%). We observe that the effects of volume fraction, interfacial thermal
resistance and filler conductivity on thermal conductivity depart from effective medium
approximations. Most notably, contrast ratio plays a minor role in thermal percolation above
ky/k,~60—a common range for semiconducting nanoparticles/polymer ratio. Our findings bring
new perspective and insights to thermal percolation in nanocomposites, where the limits in contrast

ratio, interfacial thermal conductance and filler size are established.
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Introduction

Multi-functional polymer nanocomposites have garnered considerable attention due to its
alluring properties and potential tunability.!-* Furthermore, the assembly of nanofillers dispersed
in the polymer matrix serves as an additional design handle that could potentially unlock emergent
properties such as plasmonic resonance, high strength composites and supercapacitors for energy
storage.*% More recently, interest in the thermal transport properties of nanocomposites’ have
dramatically increased due to the importance of thermal management across various fields such as
microelectronics'?, insulation!' and thermoelectrics.!>!3> While the subject has been rigorously
studied, only few reports can be found on thermal percolation—the formation of networks among
fillers followed by substantial increase in thermal conductivity. In fact, the very existence of
thermal percolation in nanocomposites is a subject of debate, highlighted by conflicting reports on
the absence and presence of thermal percolation in nanofillers.'*!> Furthermore, thermal
percolation has only been observed in highly conductive fillers such as graphene and hexagonal
boron nitride (hBN) where the thermal conductivity ratio (contrast) between filler and matrix 1is
relatively high (k¢k,~10%), albeit insignificant compared to electrical conductivity ratio
(k¢/ky~10"3, in graphere fillers) where percolation effects has been widely observed.!6-!® The
reported thermal percolating threshold varies between 17-30 vol%, which is unusually large for
such high aspect ratio fillers. Electrical thresholds on the other hand, occur between 5-10 vol%.
We hypothesize that the randomly dispersed composites have insufficient percolating networks to
significantly boost thermal transport despite surpassing the electrical threshold. Furthermore,
effective thermal conductivity becomes convoluted by the mixture of phases including filler

networks, disconnected aggregates, and colloidal dispersions. Unlike their electrical counterpart,
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the contribution of each phase to heat transfer is non-negligible. As a result, the lack of uniform
morphology renders structure-property relationships including the effect of contact resistance
challenging to resolve in percolating composites.!* 2° Moreover, thermal percolation is becoming
relevant in the general case—moderately conductive and spherical fillers—with the advent of
multifunctional composites.

To systematically study thermal percolation in polymer nanocomposites, a self-assembling
matrix that could uniformly direct spatial distribution of the nanoparticles (NP) is required. Block
copolymer-based supramolecular nanocomposites have been extensively investigated to gain
control over NP assemblies. They serve as ideal model systems for developing structure-property
relations. Well-defined assembly of nanofillers in 1,2 and 3 dimensions have been demonstrated
in the bulk and thin films of supramolecular nanocomposites.?!-??> The interface between NPs and
polymer matrix can be mediated by small molecules hydrogen bonded to the chain side groups or
dispersed in each microdomain to render chemical compatibility. Furthermore, the overall
structure of the nanocomposite can be modulated by varying the supramolecule morphology and
kinetic control via solvent annealing condition.?3->

Here, we demonstrate thermal percolation in nanocomposites with spherical, non-
conductive NPs (Fe;04) and low filler loading—below theoretical limit for spherical fillers—using
a bottom-up fabrication approach. Laser induced transient thermal grating (TTG) was employed
to study the interactions between NP size, loading and assembly on the thermal percolation
behavior of supramolecular nanocomposite thin films fabricated on quartz wafers (Figure 1).
Interestingly, effective medium approximation (EMA) models were unable to describe the thermal
transport behavior beyond the percolating threshold despite accounting for size/interfacial effects.

Instead, thermal circuit analysis, which are designed for ideal systems successfully explained the
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trends observed. Furthermore, the effects of volume fraction, interfacial thermal resistance, and
filler conductivity on thermal transport deviate from traditional EMA-bound composites. Most
notably, filler size effects play a more significant role in percolating nanocomposites as it scales
directly with the number of filler-filler interfaces within each network compared to a randomly

dispersion.
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Figure 1. Schematic of bottom-up assembled block copolymer-based supramolecular
nanocomposite. The supramolecule self-assembles into a cylindrical morphology isolating the

nanoparticles (NP) to form a percolating network within the PAVP(PDP) domain.

Results and discussion

Thin films of well-defined nanocomposites were fabricated by spin coating a mixture of
the iron oxide nanoparticles (NP) capped with oleic acid ligands and the supramolecular matrix,
and subjected to solvent vapor annealing. The supramolecule consist of polystyrene-block-poly(4-

vinylpyridine), PS-b-P4VP and 3-pentadecylphenol, PDP at a molar ratio of 1.7:1 with the pyridine
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groups. Majority of the PDP occupies the pyridine sites in solution via hydrogen bonding while
the remaining excess acts as a plasticizer that facilitates self-assembly.?627 PS(19,000 Da)-
P4VP(5,200 Da)(PDP), ; (Lateral periodicity, L = 30nm)?*> was selected as the self-assembling
matrix owing to its extensive structural diversity where morphological control of NPs ranging from
5-25 nm has been demonstrated.?3-2* 28 Iron oxide nanoparticles (NP) were used as non-conductive
nanofillers to leverage their absorption at wavelengths below 560 nm to facilitate the formation of
thermal gratings used for TTG measurements.?’ Furthermore, these particles have been
incorporated into block copolymer matrices to fabricate superparamagnetic thin films.3? Despite
local heat generation at the NPs, these processes occur on the order of ps while the decay of thermal
gratings used for thermal diffusivity calculation are tracked on the order of ps. Furthermore, the
stable and clear thermal decay of these gratings indicate that the initial non-uniform heat
distribution is negligible in these measurements (Figure S9).

Here, nanocomposites were confined to a filler volume percent, ¢ between 3-12 vol% in
order to: 1) achieve 3D NP assembly and ii) prevent kinetically trapped states caused by NP
jamming.?* The thin films were solvent annealed in chloroform vapor to aid self-assembly by
boosting mobility of the supramolecule matrix. The extend of annealing is quantified through the
change in thickness of the film, hence, the volume of solvent uptake.”> The volume fraction of
solvent, f(Details of calculation provided in the supporting information section S2) for this dataset
was fixed at 0.62 to ensure equilibrated morphologies are obtained and the NPs are selectively
incorporated in the P4VP(PDP) microdomains.>?> Atomic force microscopy (AFM) was used to
study the morphological evolution of the films. The bright spheres represent NPs while dark and
lighter matrix phases are PAVP(PDP) and PS domains, respectively (Figure 2a-d). As ¢ increased,

the interparticle distance within P4AVP(PDP) decreases and the population of particles visible on
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the surface concomitantly multiplied. At 9 vol%, the NPs begin to form a chain-like network
(Figure 2c), consistent with previous observations.?® This observation is paired with a plateau in
both interparticle distance (~20 nm) and NP surface coverage, indicating a saturation of NPs
(Figure 2e). Details of image processing are provided in the supporting information section S2. At
12 vol% the nanocomposite becomes kinetically trapped?*, thus, exhibits a distorted network
morphology (Figure 2d). With the addition of nanoparticles, the effective periodicity appears to be
~45 nm. Detailed studies on the structure of the nanocomposite have been reported previously.?>
31-33

Thermal transport measurements were conducted using TTG, where thermal diffusivity of
the sample is extrapolated from the decay curve of a laser induced temperature grating over time.?’
Thermal conductivity, k is then obtained by multiplying diffusivity with volumetric heat capacity.
Atlow ¢ (3-6 vol%), k plateaued at 0.55-0.56 W/m K (+0.02). We note that these values are larger
than previous reports on iron oxide composites with similar ¢ (0.3-0.4 W/m K).34-33 The disparities
might arise from uncertainties in the heat capacity of the system and substrate effects in thin
films.3¢ After taking into account the substrate contribution, k& of the sample could be
approximately half of the reported value, making it comparable to literature. Despite the difference
in absolute values, the offset is systematic and the trend across different samples stays the same.
The detailed analysis on the contribution of substrate effect to the thermal conductivity is shown
in the supporting information section S6. A transition occurs at ¢=6-9 vol%, whereby a step
increase from 0.56 to 0.81 W/m-K (£0.02) was observed. In conjunction with the chain-like
assembly of NPs (Figure 2c¢), this behavior further suggests a classical percolation of fillers where

the composite exhibits rapid increase in k at the critical threshold volume, ¢* (Figure 2f).37-38
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The same behavior was observed for both 10.7 nm and 20.4 nm NPs with similar
morphology, albeit with the latter exhibiting a greater enhancement in thermal conductivity (Figure
S2). A larger number of interparticle interfaces in 10.7 nm NPs could dampen the effects of thermal
percolation due to interfacial thermal resistance. Similarly, phonon boundary scattering could play
a role at such dimensions, however, this is unlikely the case considering the mean free path of
Fe;04 is ~1 nm (estimated from kinetic theory). In contrast to random polymer composites,® 3°
percolation in supramolecular nanocomposites is organized into a uniform morphology throughout
the film and occurs at a significantly lower ¢ due to matrix-guided assembly of the NPs.?*

Since we are most interested in the trend of the thermal conductivity change, normalized
thermal conductivities were used with respect to 3 vol%, and the data was compared to EMA
models such as Maxwell-Garnett and Hasselman-Johnson model, which is an extended EMA that
accounts for filler size effects and interfacial thermal conductance, 4.4 The general EMA
developed by Nan et al.*! reduces to the Hasselman-Johnson model in the case of spherical fillers.
Thermal conductivity of the supramolecular matrix was not used in normalization because it is
transparent to the excitation beam. We observe that both models corroborate with the data at low
concentration (¢=3-6 vol%) but substantially under predicts above the ¢* (Figure 2g). Agreement
with the model suggests that heat transfer was initially matrix dominated as expected for non-
percolating systems.

At the critical concentration, the NPs packs within the comb-block to form a network,
which acts as thermal shortcuts in a parallel circuit. The percolating threshold, ¢* of spherical
fillers in a well-defined nanocomposite reported in this work occurs at significantly lower
concentrations (9 vol%) compared to a randomly distributed composite (39-47 vol%).*> Note that

the theoretical minimum for randomly dispersed spherical fillers to achieve percolation is 16
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vol%.37 Interestingly, the Lewis-Nielsen model, which was successful in describing percolation in
randomly dispersed graphene nanocomposites,!” similarly underpredicts the thermal conductivity
of the self-assembled nanocomposite (Figure 2g). This is because the model was derived for

percolation in random dispersions, which occur at much higher ¢* as described above.
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Figure 2. Morphology and thermal conductivity of a percolating nanocomposite through self-
assembly. a-d) AFM images of nanocomposites with 20.4 nm NPs at various concentrations.
Nanocomposite lateral periodicity, L =45nm (Scale bar=200nm). E) Average interparticle distance
and NP surface coverage from image processing of AFM images, and f) thermal conductivity as a
function of NP concentration. g) Normalized thermal conductivity with respect to 3 vol%

compared to effective medium approximation by Maxwell-Garnett and the inclusion size corrected

Hasselman-Johnson model. Solid lines are drawn as a guide to the eye.

In order to demonstrate that percolation occurs throughout the film, the morphology of

supramolecular nanocomposite was modulated at constant composition by leveraging kinetically
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trapped states during solvent annealing.?® Maintaining NP concentration at 9 vol% (above
percolating threshold), nanocomposites annealed at different solvent fraction, /', were fabricated
to reveal the effect of NP surface coverage on thermal conductivity (Figure 3a-b, Figure S3).
During solvent annealing, NPs diffuse to the surface of the film due to entropic penalties associated
with limited chain conformations at the matrix-filler interface.?® This dataset is compared to the
previous dataset where changes in surface coverage was observed due to ¢ with fixed annealing,
f=0.62 (Figure 2e). The samples at fixed ¢ (9 vol%) showed substantial decrease in NP surface
coverage at lower f'(blue trace, Figure 3b), however, only modest change in thermal conductivity.
On the other hand, lowering ¢ with fixed f similarly decreased surface coverage (red trace, Figure
3b) but demonstrate significant reduction in thermal conductivity. The sensitivity to concentration
rather than surface coverage verifies that percolation effect is not a consequence of NP
accumulation at the surface. Note that TTG measurements in the transmission geometry, as
performed in this study, account for the entire cross-section of the film. Furthermore, the relatively
high thermal conductivity of nanocomposites despite having low surface coverage (blue trace,
Figure 3b) confirms that the NPs assembly in 3 dimensions.

The inability of established EMA methods in describing the system in question has
motivated us to develop a model using ideal constructs such as the thermal resistance circuits
(Figure 3c). The nanocomposite is divided into two blocks connected in parallel, which consist of
the PS and P4VP(PDP) blocks. In the latter block, a series circuit is embedded between the NPs
and P4VP(PDP) matrix. Assuming heat transfer along both parallel and perpendicular to the two
blocks, the overall thermal resistance of the composite can be described as a series embedded into
a parallel circuit (SEP). The effective thermal conductivity, k. is given as a mixture of parallel

and series circuit between NP embedded comb-block, kyp 51, and the surrounding polymer-block,
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kawix biock (Equation 1, Derived in the supporting information Section S3). Kyp pcr cOmprises of
several components including the NP core, k., ligand, k;, PS-b-P4VP(PDP) polymer matrix, &,
and the thermal conductance at both interfaces, /y; and 4;,, (Details on each variable is provided
in the supporting information Section S3). Note that bulk & values were used for the NP core, thus,
size effects were not considered as it was previously demonstrated that the interface dominates
conductivity at these length scales.®3 4 is the volume fraction of the NP block and is taken as the
point where percolation occurs, which in this case 9 vol%. This corroborates with the assemblies
previously observed on this matrix.?* Equation 1 can be written in terms of interparticle distance,
Dyp by assuming NPs to be cylindrical in shape (solely for the purpose of converting ¢ to Dyp).
Thus, volume fraction within the NP block can be expressed as @ = DLNP where / is the characteristic
length of the component (Equation 2).

1 1
kefr = 34

+ (1 — A)kmatrix block Equation 1

Ovp 9L Om Onp Pm

—rtrt ettt i
keore © kL Ky ' hynpinp T hpminp

1 1
kefr = 24

1 . (1 — Akmatrix block Equation 2

Inp I + Im + +
kcorePnp ki Dyp * kmDyp © hniDyp T hpmlnpPyp

Using the SEP model, thermal conductivity can be calculated as function of interparticle
distance rather than volume fraction, which narrows the dependence of effective thermal
conductivity, k.5 down to NP distance, Dyp. The interfacial thermal conductance hy_;, (NP-ligand,
140 MW/m?2 K)*® along with k.. (6.05 W/mK)*, kpanic (0.1 W/mK)** and k; (0.22 W/mK)* was
obtained from literature while hy . (Ligand-matrix, 11 MW/m?K) was attained by fitting the data
to the SEP model. Hy \; was found to be in excellent agreement with colloidal CNTs in polymer
surfactants.*> SEP, based on the phonon particle picture, works well for the nanocomposites likely

because of weak coupling between the filler and matrix suppresses phonon coherence.*®
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The effect of contrast ratio, k/k,, was investigated by varying k.. and keeping k,, constant
(Figure 3d). Surprisingly, the model predicts that enhancements from thermal percolation at k/k,,
= 60.5 (Fe;0,) is comparable to 10* (equivalent of graphene). This result contradicts the long-
standing view that high contrast ratio is required for thermal percolation to occur, largely due to
the use of random composites. Nevertheless, the effects of percolation indeed tail off at k/k,, ~10,
confirming the significance of contrast ratio, albeit several orders of magnitude lower than
previously predicted.'* A significant difference between the model presented here and literature
lies in the treatment of interfacial thermal conductance, which features two interfaces:
nanoparticle-ligand, hy.p and ligand-matrix, h; . At the percolating threshold, hy .y is eliminated
reducing the interface to hy_ since the ligand-ligand interface between NPs form excellent thermal
contacts.*® Hence, corroboration between the data and model also highlights the role of ligands in
mitigating filler-filler contact resistance—an artifact known to suppress thermal percolation.4”-48

The chemical compatibility between oleic acid ligands and P4VP(PDP) matrix facilitates
the selective localization of NPs into a single microdomain. Interestingly, despite their chemical
similarity, hy .y is significantly lower than the NP-ligand and ligand-ligand interface. To gain
further insight into the hy ., interface, we turn to vibrational energy coupling, which facilitates
phonon transfer between heterogeneous surfaces.*-4% 4% We analyzed each chemical component
present in the NP-P4VP(PDP) interface (Figure 3¢) and generated their vibrational energy spectra
through lattice dynamics calculations (Figure 3f, Details of the calculations are provided in the
Supporting Information Section S4). At room temperature (25 meV), significant overlap among
the accessible vibrational energies was observed between oleic acid (OA, NP ligand) and PDP, as
expected from their analogous chemical structures. Similarly, the vibrational energy band of iron

oxide (Fe;0,) peaks around this energy range.’° In contrast, few active states are present in P4VP
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repeat units because aromatic hydrocarbons tend to resonate at higher energies.’! Given the
complexity of the ligand-polymer interface where the number of PDP-oleic acid contacts are
limited by steric hindrance from the P4VP chains, the 4VP units could play a significant role at
the boundary. Therefore, we attribute the poor conductance (hy.y) to insufficient coupling of

vibrational energy states at room temperature.
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Figure 3. Structure-derived model and insights into the thermal conductivity contrast ratio k/k,, on
thermal percolation. a) AFM image of nanocomposite with 20.4 nm NPs annealed to /=0.2. Inset
shows a cross-section TEM the nanocomposite annealed to f=0.62. (Scale bar=200nm,
Inset=100nm). b) Thermal conductivity as a function of NP surface coverage induced by solvent
annealing (blue) and increasing NP concentration (red). Solid lines are drawn as a guide to the eye.
c¢) Schematic representation of the series embedded parallel (SEP) model. d) Normalized thermal

conductivity as a function of interparticle distance of the 20.4 nm nanocomposite and fitted SEP
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model based on contrast ratio of Fe;O4 (60.5). The contrast ratio of fillers is varied assuming the
same structure and interfacial conductance, 4 obtained from the fit. €) Schematic and f) vibrational
energy spectrum of the components separating NPs in the comb block from lattice dynamics

calculations. Red highlight represents active states at room temperature.

NP size is known to affect a multitude of properties such as band gap, mechanical strength
and surface plasmon resonance.>?* Percolated composites, however, is not well understood
because of challenges in controlling structure of the nanocomposite. Studies have shown that filler
size could shift percolating thresholds,>> which convolutes the effect of size with volume fraction.
Thus, only computational methods have produced general relationships between size and thermal
percolation.>®37 Supramolecular nanocomposites can accommodate different NP sizes?* while
maintaining selective placement into a single domain, serving as a model system for studying
nanocomposite size effects. In general, filler size has two levels affecting thermal conductivity, 1)
interface density that amplifies interfacial resistance and i1) phonon boundary scattering when its
mean free path, A is comparable to the filler size. The latter is important in highly conductive
fillers such as graphene as thermal conductivity scales with A. Hence, the effects of boundary
scattering are negligible here since the NP sizes sampled in this work maintains above the A of
Fe;04 (~1 nm from kinetic theory).

We fabricated nanocomposites with NP sizes, d between 5.6-25.7 nm with equal loading
(9 vol%) and examined their morphology in AFM. At 5 nm, the nanocomposite exhibited similar
morphology to the native supramolecule (Figure 4a-b). Systematic characterization of this
hexagonal close packed (HCP) cylinder forming thin film revealed that NPs in this size regime

reside within interstitial sites as they are significantly smaller than the BCP periodicity, L.?> %
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Nanocomposites with 10.7 and 24.7 nm particles appeared more distorted (Figure 4c-d) similar to
20.4 nm (Figure 2¢) because of size-induced entropic penalty at d/L > 0.3.585% Similarly, the more
pronounced disorder observed at 10.7 nm compared to larger NPs likely stem from its position at
d/L~0.33, which is at the boundary of the morphological transition. Normalized thermal
conductivity of the films were evaluated with EMA (Hasselman-Johnson) and SEP model (Figure
4e). The data showed excellent agreement with the SEP model between 10.7-25.7 nm, verifying
that the nanocomposites at various filler sizes retain their percolating networks. The increase in
thermal conductivity with size is a result of reduced number of interfaces and increasing fraction
of the inorganic core along the percolating network. This is verified by the decay in interfacial
resistivity with increasing NP size (Figure S7). The 5.6 nm composite, however, consists of more
ordered chains, which can significantly improve the transmission of acoustic phonons due to larger
mean free path and reduced scattering centers.%9-%3 Furthermore, the tortuosity of the percolating
networks in the 5.6 nm nanocomposite is significantly decreased through the formation of ordered
grains. In general, the size-modified EMA underpredicts the effect of size on normalized thermal
conductivity. This observation implies that percolated systems are more sensitive to NP size
compared to randomly dispersed composites.

As discussed above, filler-filler interface scales with NP size and thus, plays a dominant
role on heat transport along percolating networks. We further applied the SEP model to study the
effects of interfacial thermal conductance (ITC), hy.p and thermal conductivity contrast ratio, k¢/k,,
with respect to NP size (Figure 4f-g). At low ITC (10MW/m2K), thermal transport becomes
insensitive to NP size (Figure 4f). This result has significant implications as van der Waals bonded
matrix-filler interfaces, which represent the most common type of polymer composite fall into

under this regime.* % Hence, despite the formation of networks, thermal percolation is unlikely
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to occur when the filler is weakly bonded to the organic phase. Simulations have shown, however,
that enhancing intermolecular interactions with hydrogens bonds could significantly improve
thermal conductivity.53-6¢

At high contrast ratios, thermal conductivity increases linearly with NP size, which is a
direct result of depleting interfaces (Figure 4g). We begin to observe saturated enhancements at
ki/k,=60.5 (Fe;0,) albeit maintaining a substantial increase in thermal conductivity with size, once
again highlighting that thermal percolation is not exclusive to highly conductive fillers such as
graphene (k¢/k,,=10°). Furthermore, common semiconducting NPs such as PbS and CdSe also fall

into k¢k,;=60.5, making percolating networks a viable solution for thermal management in NP

based devices.
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Figure 4. Effect of nanoparticle, NP size on thermal percolation. a) AFM images of the native

supramolecule and b-d) 9% nanocomposite with varying NP size. e) Normalized thermal

conductivity as a function of NP size, d and d to BCP periodicity, L ratio. The data is normalized
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with respect to 10.7 nm given the distinctive morphology in the 5.6 nm nanocomposite. f-g) Impact
of NP-ligand interfacial thermal conductance, /y.; and contrast ratio on the size dependence of

thermal conductivity (Parameters for the Fe;O4 NPs used: ITC=140 W/m K, k/k,= 60.5).

Conclusion

In conclusion, we reveal the general properties of thermal percolated nanocomposites using
a self-assembled matrix as a model system with a well-defined morphology. This work
demonstrates that thermal percolation is not limited to high contrast ratio, k¢k,, systems such as
CNT and graphene. In fact, k¢k,,, plays a minor role above 60.5, which is the common range for
NP-based semiconductors, highlighting thermal percolation as a feasible route for thermal
management in nanocomposite devices. Furthermore, the effect of percolation is strongly governed
by the filler-filler interfaces. Thermal transport is compromised when the fillers are weakly bonded
to the organic phase within the networks because of low interfacial thermal conductance. Finally,
thermal conductivity increases with filler size in when k¢/k,,,>60 due to depleting interfaces. While
at k¢'k,, ~10, the lack of contrast renders thermal conductivity insensitive to filler size. This work
provides new insight into the limits of thermal percolation in nanocomposites where this method
of thermal management could be extended to general fillers relevant to semiconducting and other

multifunctional devices.
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19 Figure 1. Schematic of bottom-up assembled block copolymer-based supramolecular nanocomposite. The
20 supramolecule self-assembles into a cylindrical morphology isolating the nanoparticles (NP) to form a
21 percolating network within the P4VP(PDP) domain.
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Figure 2. Morphology and thermal conductivity of a percolating nanocomposite through self-assembly. a-d)
AFM images of nanocomposites with 20.4 nm NPs at various concentrations. Nanocomposite lateral
periodicity, L = 45nm (Scale bar=200nm). E) Average interparticle distance and NP surface coverage from
image processing of AFM images, and f) thermal conductivity as a function of NP concentration. g)
Normalized thermal conductivity with respect to 3 vol% compared to effective medium approximation by
Maxwell-Garnett and the inclusion size corrected Hasselman-Johnson model. Solid lines are drawn as a
guide to the eye.
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Figure 3. Structure-derived model and insights into the thermal conductivity contrast ratio ki/km on thermal
percolation. a) AFM image of nanocomposite with 20.4 nm NPs annealed to f=0.2. Inset shows a cross-
section TEM the nanocomposite annealed to f=0.62. (Scale bar=200nm, Inset=100nm). b) Thermal
conductivity as a function of NP surface coverage induced by solvent annealing (blue) and increasing NP
concentration (red). Solid lines are drawn as a guide to the eye. c) Schematic representation of the series
embedded parallel (SEP) model. d) Normalized thermal conductivity as a function of interparticle distance of

the 20.4 nm nanocomposite and fitted SEP model based on contrast ratio of Fe304 (60.5). The contrast ratio
of fillers is varied assuming the same structure and interfacial conductance, h obtained from the fit. e)
Schematic and f) vibrational energy spectrum of the components separating NPs in the comb block from
lattice dynamics calculations. Red highlight represents active states at room temperature.
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Figure 4. Effect of nanoparticle, NP size on thermal percolation. a) AFM images of the native supramolecule
and b-d) 9% nanocomposite with varying NP size. e) Normalized thermal conductivity as a function of NP
size, d and d to BCP periodicity, L ratio. The data is normalized with respect to 10.7 nm given the distinctive

morphology in the 5.6 nm nanocomposite. f-g) Impact of NP-ligand interfacial thermal conductance, hy-1
and contrast ratio on the size dependence of thermal conductivity (Parameters for the Fe304 NPs used:
ITC=140 W/m.K, kf/km= 60.5).
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