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Reconstructing high-resolution flow fields from sparse measurements is a major challenge
in fluid dynamics. Existing methods often vectorize the flow by stacking different spatial
directions on top of each other, hence confounding the information encoded in different
dimensions. Here, we introduce a tensor-based sensor placement and flow reconstruction
method which retains and exploits the inherent multidimensionality of the flow. We derive
estimates for the flow reconstruction error, storage requirements and computational cost
of our method. We show, with examples, that our tensor-based method is significantly
more accurate than similar vectorized methods. Furthermore, the variance of the error is
smaller when using our tensor-based method. While the computational cost of our method
is comparable to similar vectorized methods, it reduces the storage cost by several orders of
magnitude. The reduced storage cost becomes even more pronounced as the dimension of
the flow increases. We demonstrate the efficacy of our method on three examples: a chaotic
Kolmogorov flow, in situ and satellite measurements of the global sea surface temperature
and three-dimensional unsteady simulated flow around a marine research vessel.
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1. Introduction

Numerical simulations of fluid flows are carried out with ever growing spatial resolution.
In contrast, observational data are limited to relatively coarse sensor measurements. This
dichotomy inhibits efficient integration of experimental data with existing high-fidelity
computational methods to enable detailed and accurate flow analysis or prediction.

As we review in § 1.1, several methods have been developed to address this disconnect.
In particular, flow reconstruction methods seek to leverage offline high-resolution
simulations to estimate the entire flow field from coarse online observations. All existing
methods vectorize the simulation data by stacking different spatial dimensions on top
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of each other. Vectorization is convenient since it enables one to use familiar linear
algebra techniques. However, this approach inevitably leads to loss of information encoded
in the inherent multidimensional structure of the flow.

Here, we propose a tensor-based sensor placement and flow reconstruction method
which retains and exploits the multidimensional structure of the flow. Our method
significantly increases the accuracy of the reconstruction compared with similar vectorized
methods. We quantify this accuracy by deriving an upper bound for the reconstruction
error and show that the resulting approximation exactly interpolates the flow at the sensor
locations (assuming the measurements are noise free). Additionally, the proposed method
has a smaller memory footprint compared with the similar vectorized methods, and is
scalable to large data sets using randomized techniques. We demonstrate the efficacy of our
method on three examples: direct numerical simulation of a turbulent Kolmogorov flow, in

situ and satellite sea surface temperature (SST) data and three-dimensional (3-D) unsteady
simulated flow around a marine research vessel. We emphasize that our focus here is only
on flow reconstruction and not temporal prediction; nonetheless, the reconstructed flow
can be subsequently used as input to high-fidelity or reduced-order predictive models.

1.1. Related work

Due to the broad applications of flow estimation from sparse measurements, there is an
expansive body of work on this subject (see Callaham, Maeda & Brunton (2019) for a
thorough review). Here, we focus on the so-called library-based methods. These methods
seek to reconstruct the flow field by leveraging the sparse observational measurements to
interpolate a pre-computed data library comprising high-fidelity numerical simulations.
More specifically, consider a scalar quantity g(x, t) which we would like to reconstruct
from its spatially sparse measurements. For instance, this quantity may be a velocity
component, a vorticity component, pressure or temperature. The data library is a matrix
Φ ∈ R

N×T whose columns are formed from vectorized high-resolution simulations. Here,
N denotes the number of collocation points used in the simulations. The columns of Φ

may coincide with the quantity of interest g or be derived from this quantity, e.g. through
proper orthogonal decomposition (POD) or dynamic mode decomposition (DMD). The
observational data y ∈ R

r form a vector containing r measurements of the quantity g at
a particular time. Library-based methods seek to find a map F : R

N×T × R
r → R

N such
that g � F(Φ, y). Here, g ∈ R

N is a vector obtained by stacking the quantity of interest
g(x, t) at the collocation points.

Library-based methods differ in their choice of the data matrix Φ and the methodology
for finding the map F. A common choice for the columns of the data matrix is the POD
modes (Bui-Thanh, Damodaran & Willcox 2004; Willcox 2006), although DMD modes
(Kramer et al. 2017; Dang, Nasreen & Zhang 2021) and flow snapshots (Clark, Brunton
& Kutz 2021) have also been used. Bui-Thanh et al. (2004) use the gappy POD algorithm
of Everson & Sirovich (1995) to reconstruct the flow. They obtain the map F by solving a
least squares problem which seeks to minimize the discrepancy between the observations
y and the reconstructed flow F(Φ, y) at the sensor locations (also see Willcox 2006).

The discrete empirical interpolation method (DEIM) takes a similar approach, but the
map F is a suitable oblique projection on the linear subspace spanned by the columns of Φ.
DEIM was first developed by Chaturantabut & Sorensen (2010) for efficient reduced-order
modelling of nonlinear systems and was later used for flow reconstruction (Drmač &
Gugercin 2016; Wang et al. 2021). Several subsequent modifications to DEIM have been
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Tensor-based flow reconstruction

proposed, e.g. to lower its computational cost (Peherstorfer et al. 2014) and to generalize
it for use with weighted inner products (Drmač & Saibaba 2018).

It is well known that both gappy POD and DEIM suffer from overfitting (Peherstorfer,
Drmač & Gugercin 2020). Consequently, if the sensor data y are corrupted by significant
observational noise, the reconstruction error will be large. Callaham et al. (2019) use
sparsity promoting techniques from image recognition to overcome this problem (also
see Chu & Farazmand 2021). Their reconstruction map F is obtained by solving a
sparsity-promoting optimization problem with the constraint that the reconstruction error
is below a prescribed threshold. The resulting method is robust to observational noise.
However, unlike gappy POD and DEIM, the reconstruction map F cannot be expressed
explicitly in terms of the training data Φ.

Yet another flow reconstruction method is to represent the map F with a neural network
which is trained using the observations y and the data matrix Φ. For instance, Yu &
Hesthaven (2019) use an autoencoder to represent the reconstruction map F (also see
Carlberg et al. 2019; Fukami, Fukagata & Taira 2019; Erichson et al. 2020). Unlike DEIM,
where the reconstruction map F is a linear combination of modes, neural networks can
construct nonlinear maps from the observations y and the library Φ. These machine
learning methods have shown great promise; however, the resulting reconstructions are not
explicit, or even interpretable, since they are only available as a complex neural network.

With the notable exception of convolutional neural networks (Carlberg et al. 2019;
Fukami et al. 2019), almost all existing methods treat the data as a vector by stacking
different spatial dimensions on top of each other. This inevitably leads to loss of
information encoded in the inherent multidimensionality of the flow. Here, we propose
a tensor-based method which retains and exploits this multidimensional structure. Our
method is similar to the tensor-based DEIM which was recently proposed by Kirsten
(2022) for model reduction; but we use it for flow reconstructions which is the focus of this
paper. Numerical experiments show that the resulting reconstructions are more accurate
compared with similar vectorized methods, because of our method’s ability to capture
and exploit the inherent multidimensional nature of the data. The computational cost of
our tensor-based method is comparable to the vectorized methods and can be further
accelerated using randomized methods. Furthermore, the tensor-based method requires
much less storage compared with the vectorized methods. This is especially important
in large-scale 3-D flows where the storage costs can be substantial (Gelss et al. 2019).
Although our method is a tensorized version of DEIM, a similar tensor-based approach can
be applied to other flow reconstruction methods such as gappy POD, sparsity-promoting
methods and autoencoders.

2. Tensor-based flow reconstruction

2.1. Set-up and preliminaries

Let g(x, t) denote the quantity of interest at time t that we would like to reconstruct. This
quantity may, for instance, be a velocity component, a vorticity component, pressure or
temperature. The spatial variable is denoted by x ∈ Ω ⊂ R

d, where Ω is the flow domain
with d = 2 or d = 3 for 2-D and 3-D flows, respectively. In numerical simulations, the
quantity of interest g is discretized on a spatial grid of size N1 × N2 × · · · × Nd and saved
as a tensor G ∈ R

N1×···×Nd .
We denote entries of G by gi1,...,id where 1 ≤ in ≤ Nn and 1 ≤ n ≤ d. There are d

different matrix unfoldings of G, also called matricizations, which we denote by G(n) ∈

R
Nn×(

∏

j /= n Nj). The mode-n product of a tensor G with a matrix M ∈ R
R×Nn is denoted as
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Figure 1. Schematic representation of the workflow in vector-DEIM and tensor-DEIM. The horizontal and
vertical black bars mark the entries that are used for sensor placement (black circles). In tensor-DEIM, some
sensors may fall on land and will be discarded (e.g. the one marked by the red circle).

Y = G ×n M with entries

yii,...,j,...,iN =

R
∑

k=1

gi1,...,k,...,iN mjk 1 ≤ j ≤ R. (2.1)

In terms of matrix unfoldings, it can be expressed as Y (n) = MG(n). For matrices A
and B of compatible dimensions G ×m A ×n B = G ×n B ×m A if m /= n and G ×n A ×n

B = G ×n BA. Associated with every tensor G is a multirank (R1, . . . , Rd) where Rn =

rank(G(n)). The Frobenius norm of a tensor is ‖G‖2
F =

∑

i1,...,id
g2

i1,...,id
. We refer to Kolda

& Bader (2009) for a detailed review of tensor operations.

2.2. Vectorized POD-DEIM

We first review the vectorized form of POD-DEIM from which our tensor-based method
is derived. We refer to this method as vector-DEIM, for short. In vector-DEIM approach
for sensor placement (Clark et al. 2018; Manohar et al. 2018), the training data are
constructed as the snapshot matrix, G = [g1 · · · gT ] ∈ R

N×T , where each column gj ∈

R
N represents a vectorized snapshot of the quantity of interest g(x, tj). We assume that

the vectors are centred, which means that the mean is subtracted from each column. We
would like to pick r ≤ min{N, T} number of sensor locations at which to collect data (see
figure 1).

We first compute the truncated singular value decomposition (SVD) G ≈ U rΣ rV
	
r ,

where the columns of U r ∈ R
N×r coincide with the POD modes. In DEIM, we compute

the column-pivoted QR factorization (Golub & Van Loan 2013, § 5.4.2) of U r; that is,

we compute U	
r [P1 P2] = Q1[R11 R12], where Q1 ∈ R

r×r is orthogonal, R11 ∈ R
r×r

is upper triangular and R12 ∈ R
r×N . The matrix P = [P1 P2] is a permutation matrix.

Suppose we have P1 = [I(:, i1) · · · I(:, ir)], where I is the N × N identity matrix.

962 A27-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Tensor-based flow reconstruction

Then, the matrix P1 ∈ R
N×r contains columns from the identity matrix indexed by the

set I = {i1, . . . , ir}. The spatial locations corresponding to the index set I are used as the
optimal sensor locations, which may not be uniquely determined.

Suppose we want to reconstruct the flow field corresponding to the vector f ∈ R
N . We

collect measurements at the indices corresponding to I, given by the vector f (I). In other
words, f (I) is the available sensor measurements of the vector f . To reconstruct the full
flow field f , we use the approximation

f ≈ U rU r(I, :)−1f (I) = U r(S
	U r)

−1S	f , (2.2)

where S = P1. This approximation provides insight into how the indices I should be
selected. Since U r has rank r, it is guaranteed to have r linearly independent rows and
S	P1 is invertible. The index set I is chosen in such a way that the corresponding rows of
U r are well conditioned.

The error in the training set takes the form

‖G − U rU r(I, :)−1G(I, :)‖F ≤ ‖(S	U r)
−1‖2

⎛

⎝

min{N,T}
∑

j=r+1

σ 2
j (G)

⎞

⎠

1/2

, (2.3)

where σj(G) represents the singular values of G. In the above expression for the error,

(
∑min{N,T}

j=r+1 σ 2
j (G))1/2 = ‖G − U rU

	
r G‖F represents the error in the POD approximation

due to the truncated singular values, which is amplified by the factor ‖(S	U r)
−1‖2 which

arises due to the DEIM approximation. The error in the test data set can be obtained using
Lemma 3.2 of Chaturantabut & Sorensen (2010).

2.3. Tensor-based POD-DEIM

In vector-DEIM, the snapshots are treated as vectors meaning that the inherent
multidimensional structure of the flow is lost. In order to fully exploit this
multidimensional structure, we use tensor-based methods. We refer to the resulting
tensorized version of POD-DEIM as tensor-DEIM, for short. We consider the collection
of snapshots in the form of a tensor G ∈ R

N1×···×Nd×T of order d + 1, where d represents
the number of spatial dimensions and

∏d
j=1 Nj = N is the total number of grid points (see

figure 1). With this notation, the snapshot matrix G in vector-DEIM can be expressed as
G	

(d+1); that is the transpose of the mode-(d + 1) unfolding.

Suppose we wanted to collect data at r =
∏d

n=1 rn sensor locations. In tensor-DEIM, we
first compute the truncated SVD of the first d mode unfoldings. That is, we compute G(n) ≈

U (n)
r Σ

(n)
r (V (n)

r )	 where U (n)
r ∈ R

Nn×rn . For ease of notation, we define Φn := U (n)
r . Next,

we compute the column-pivoted QR factorization of Φn as

Φ
	
n

[

P
(n)
1 P

(n)
2

]

= Q
(n)
1

[

R
(n)
11 R

(n)
12

]

1 ≤ n ≤ d. (2.4)

Here, [P(n)
1 P

(n)
2 ] is a permutation matrix. Once again, for ease of notation, we set Sn :=

P
(n)
1 ; this matrix contains the columns from the Nn × Nn identity matrix corresponding

to the indices In = {i
(n)
1 , . . . , i

(n)
rn }. Then the sensors can be placed at the spatial locations

corresponding to the index set I1 × · · · × Id. Note that when d = 1 tensor-DEIM reduces
to vector-DEIM.
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Given new data F ∈ R
N1×···×Nd , such that f = vec(F), we only need to collect data

at the indices corresponding to I1 × · · · × Id, that is, we measure F(I1, . . . , Id). To
reconstruct the flow field from these measurements, we compute

F ≈ F(I1, . . . , Id) ×d
n=1 Φn(S

	
n Φn)

−1 = F ×d
n=1 Φn(S

	
n Φn)

−1S	
n . (2.5)

The second expression, while equivalent to the first, is more convenient for the
forthcoming error analysis. The approximation just derived satisfies the interpolation
property; that is, the approximation exactly matches the function F at the sensor locations
assuming the measurements are noise free. To see this, denote FTDEIM := F ×d

n=1
Φn(S

	
n Φn)

−1S	
n . Then

FTDEIM(I1, . . . , Id) = FTDEIM ×d
n=1 S	

n = F ×d
n=1 S	

n Φn(S
	
n Φn)

−1S	
n

= F ×d
n=1 S	

n = F(I1, . . . , Id). (2.6)

The following theorem provides an expression for the error in the approximation as
applied to the training data set.

THEOREM 1. Suppose Φn ∈ R
Nn×rn is computed from the truncated rank-rn SVD of the

mode unfolding G(n) and Sn is obtained by computing column-pivoted QR of Φ
	
n such that

S	
n Φn is invertible for 1 ≤ n ≤ d. Define Πn := Φn(S

	
n Φn)

−1S	
n and assume 1 ≤ rn <

Nn for 1 ≤ n ≤ d. Then

‖G − G ×d
n=1 Πn‖F ≤

(

d
∏

n=1

‖(S	
n Φn)

−1‖2

)

⎛

⎝

d
∑

n=1

∑

k>rn

σ 2
k (G(n))

⎞

⎠

1/2

. (2.7)

The proof of this theorem is given in Appendix A. The interpretation of this theorem is

as follows: the term (
∑d

n=1

∑

k>rn
σ 2

k (G(n)))
1/2 represents the error due to the truncated

SVD in each mode, and (
∏d

n=1 ‖(S	
n Φn)

−1‖2) represents the amplification due to the
selection operator across each mode. The upper bound (2.7) is similar to the upper bound
(2.3) for vector-DEIM. However, it is difficult to establish which bound is tighter a priori.
As will be shown in § 3, numerical evidence strongly suggests that the error due to
tensor-DEIM is much lower than vector-DEIM.

The error in the test sample can be determined using Proposition 1 from Kirsten (2022),
which gives

‖F − F ×d
n=1 Πn‖F ≤

(

d
∏

n=1

‖(S	
n Φn)

−1‖2

)

‖F − F ×d
n=1 ΦnΦ

	
n ‖F. (2.8)

If strong rank-revealing QR algorithm (Gu & Eisenstat 1996, Algorithm 4) with parameter
f = 2 is used to compute the selection operators Sn, then the bound in Theorem 1
simplifies to

‖G − G ×d
n=1 Πn‖F ≤

(

d
∏

n=1

√

1 + 4rn(Nn − rn)

)

⎛

⎝

d
∑

n=1

∑

k>rn

σ 2
k (G(n))

⎞

⎠

1/2

. (2.9)

See Drmač & Saibaba (2018, Lemma 2.1) for details.
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Tensor-based flow reconstruction

2.3.1. Storage cost

We only need to store the bases Φn ∈ R
Nn×rd , which costs

∑d
n=1 Nnrn entries. Compare

this with vector-DEIM, which requires r
∏d

n=1 Nn = rN entries. Assuming N1 = · · · = Nd

and r1 = · · · = rd, the ratio of storage cost of tensor-DEIM to that of vector-DEIM is

ratiostor :=

d
∑

n=1

rnNn

rN
=

dr1N1

rd
1Nd

1

=
d

rd−1
1 Nd−1

1

. (2.10)

Therefore, the compression available using tensors can be substantial when the dimension
d, the grid size N1, and/or the number of sensors r1 are large. As an illustration in
three spatial dimensions, d = 3, let N1 = N2 = N3 = 1024 grid points, and the target rank
r1 = r2 = r3 = 25; the fraction of the storage cost of tensor-DEIM bases, compared with
vector-DEIM, is 3/(252 × 10242) × 100 % ≈ 4.6 × 10−7%. Similar savings in terms of
storage costs were also reported in Gelss et al. (2019) who used tensor-based methods for
data-driven discovery of governing equations.

2.3.2. Computational cost

The cost of vector-DEIM is essentially the cost of computing an SVD on a N × T matrix,
which is O(NT2) floating point operations (flops) assuming T ≤ N. The cost of computing
the tensor-DEIM bases is O(T

∏d
j=1 Nj

∑d
n=1 Nn) flops. Tensor-DEIM is slightly more

expensive since it has to compute d different SVDs compared with vector-DEIM. This
computational cost can be amortized by using the sequentially truncated higher-order SVD
of Vannieuwenhoven, Vandebril & Meerbergen (2012). The cost of computing the indices
that determine the sensor locations is O(

∑d
n=1 Nnr2

n) flops for tensor-DEIM which is much
cheaper than vector-DEIM which costs O(Nr2) flops.

When the training data set is large, computing the truncated SVD approximation can
be expensive. One way to accelerate this computation is to use randomized methods as
in Minster, Saibaba & Kilmer (2020). Suppose the randomized higher-order SVD is used,

then the computational cost is O(T
∏d

j=1 Nj

∑d
n=1 rn) flops. This cost is substantially less

than the cost of both vector-DEIM and tensor-DEIM.

3. Results and discussion

In the numerical experiments, we use QR with column pivoting as implemented in
MATLAB for both vector-DEIM and tensor-DEIM.

3.1. Kolmogorov flow

Kolmogorov flow refers to a turbulent flow with periodic boundary conditions and a
sinusoidal forcing. Here, we consider the 2-D Kolmogorov flow

∂tω + u · ∇ω = ν∆ω − n cos(ny), (3.1)

where u = (∂yψ, −∂xψ) is the fluid velocity field with the streamfunction ψ(x, y, t) and
ω = −∆ψ is the vorticity field. We consider a 2-D domain x = (x, y) ∈ [0, 2π] × [0, 2π]
with periodic boundary conditions. The forcing wavenumber is n = 4 and ν = Re−1 is the
inverse of the Reynolds number Re.
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Figure 2. Comparing vector-DEIM and tensor-DEIM for the Kolmogorov flow; RE denotes the relative error
of the reconstruction.

We numerically solve (3.1) using a standard pseudo-spectral method with 128 × 128
modes and 2/3 dealiasing. The temporal integration is carried out with the embedded
Runge–Kutta scheme of Dormand & Prince (1980). The initial condition is random and
is evolved long enough to ensure that the initial transients have died out before any data
collection is performed. Then 103 vorticity snapshots are saved, each ∆t = 5 time units
apart. The time increment ∆t is approximately 10 times the eddy turnover time τe � 0.5
of the flow, ensuring that the snapshots are not strongly correlated. First 75 % of the data
are used for training. The remaining 25 % are used for testing. The training data form the
data tensor G ∈ R

128×128×750.
We have verified that 103 snapshots are adequate for the results to have converged. For

instance, changing the number of snapshots to 800 did not significantly alter the results
reported below. Furthermore, choosing the training snapshots at random, instead of the
first 75 %, did not affect the reported results.

Figure 2 compares reconstruction results using the conventional vector-DEIM and our
tensor-based DEIM. These reconstructions are performed for a vorticity field in the testing
data set. As the number of sensors increases, both reconstructions improve. For the same
number of sensors, our tensor-based method always returns a more accurate reconstruction
compared with vector-DEIM. Furthermore, the storage cost for tensor-DEIM is much
lower. For instance, for reconstruction from 400 sensors, storing the tensor bases only
requires 0.07 % of the memory required by vector-DEIM. Figure 3 compares the location
of sensors used in vector-DEIM and tensor-DEIM. For relatively small number of 25
sensors, the optimal sensor locations corresponding to vector-DEIM and tensor-DEIM
are significantly different. However, as the number of sensors increases the difference
diminishes.

Figure 4 shows the relative reconstruction error as a function of the number of sensors.
For each snapshot in the testing data set, we compute this error separately. The symbols
in figure 4 mark the mean relative error taken over the 250 snapshots in this data set.
The error bars show one standard deviation of the error. In every case, tensor-DEIM
outperforms its vectorized counterpart as assessed by the mean relative error. In addition,
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Figure 3. Optimal sensor locations obtained by vector-DEIM (blue circles) and tensor-DEIM (red circles) for
the Kolmogorov flow. The number of sensors are (a) 25, (b) 100 and (c) 400 as in figure 2.
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Figure 4. Relative flow reconstruction error for the Kolmogorov flow. The number of sensors is denoted
by ns.

the standard deviation of the relative error is smaller when using tensor-DEIM as compared
with vector-DEIM.

3.2. Sea surface temperature

As the second test case, we consider the reconstruction of global ocean surface
temperature. The data set is publicly available at NOAA Optimum Interpolation SST
V2, noaa.oisst.v2 (Reynolds et al. 2002). The temperature distribution is affected by the
complex ocean flow dynamics resulting in seasonal variations. This data set is in the form
of a time series in which a snapshot is recorded every week in the span of 1990–2016 and
data are available at a resolution of 1◦ × 1◦. In total there are 1688 snapshots, which we
split into a training set of 1200 (roughly 71 %) and a testing set of 488 snapshots.

Figure 5 shows the reconstruction using tensor-DEIM and vector-DEIM compared with
the ground truth. The tensor-DEIM places sensors in a rectangular array and some sensors
may fall within the land surface. These sensors are discarded, and only the ones on the
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Figure 5. Comparing vector-DEIM and tensor-DEIM for the sea surface temperature data set on 3 March 2013.
The white dots indicate sensor locations and RE represents relative error. The colour bar represents temperature
in degrees centigrade.
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Figure 6. Comparing the contributions to the error in vector-DEIM and tensor-DEIM on a training set with
first 71 % of the data. (a) Projection error normalized by the norm of the snapshot, (b) amplification factor,
(c) overall relative error.

ocean surface are retained. In this problem instance, there are 764 sensors. To measure
the accuracy of the reconstruction, we use the relative error of the fields centred around
the mean SST. As is seen from the figure, the reconstruction error from tensor-DEIM
is superior to that of vector-DEIM. Storing the tensor bases only requires 0.04 % of the
memory footprint required by vector-DEIM.

Figure 6 shows the relative error as a function of the number of sensors. As in the
previous experiment, we compute the error over each snapshot in the test data set and
display the mean over the 488 snapshots with the error bars indicating one standard
deviation of the error. As can be seen, once again tensor-DEIM outperforms its vectorized
counterpart both in terms of having a lower mean and standard deviation. The superiority
of tensor-DEIM becomes more and more pronounced as the number of sensors increases.
Note that the error in both methods does not decrease monotonically with more sensors.
This is because the error has two contributions: the approximation of the snapshot by
the basis and the amplification factor due to the interpolation; see (2.7). While the first
contribution is non-increasing, the second contribution may increase with an increasing
number of sensors; hence the overall error may increase.

To explain why the interpolation error for vector-DEIM gets worse with an increasing
number of sensors, we plot the two different contributions to the error. By Lemma 3.2 of
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Figure 7. Comparing the contributions to the error in vector-DEIM and tensor-DEIM on a randomly selected
training set. (a) Projection error normalized by the norm of the snapshot, (b) amplification factor, (c) overall
relative error.

Chaturantabut & Sorensen (2010), the testing error of vector-DEIM is bounded as

‖f − U r(S
	U r)

−1S	f ‖2 ≤ ‖(S	U r)
−1‖2‖f − U rU

	
r f ‖2. (3.2)

The error bound has two contributions: ‖ f − U rU
	
r f ‖2 which we call the projection

error, and ‖(S	U r)
−1‖2 which we call the amplification factor. A similar classification

can be done for the error due to tensor-DEIM, using (2.8). Figure 6(a) shows the projection
error normalized by ‖ f ‖2 and (b) shows the amplification factor. We see that, while
the projection error decreases with an increasing number of sensors, the amplification
factor increases, resulting in an overall increased error on average. On the other hand, for
tensor-DEIM the projection error is higher compared with vector-DEIM. However, the
amplification factor is nearly constant, and the overall error for tensor-DEIM decreases
with an increasing number of sensors.

To explore this further, we repeat the experiment but with a randomly generated training
and testing split; more precisely, we randomly choose ∼71 % of the data to be the training
set and the remaining to be the test set. The results are shown in figure 7. Similar to figure 6,
we plot the contributions to the error in the panels (a) and (b) and the overall error in (c).
Qualitatively, we see a similar trend as in the previous experiment. However, one major
difference is that the overall mean error of vector-DEIM is now much closer to that of
tensor-DEIM. But tensor-DEIM still has a lower mean error and a much smaller standard
deviation.

Note that this is in contrast with the Kolmogorov flow data, where randomization had
no significant effect on the results. We attribute this to the fact that the Kolmogorov data
contain a large and well-separated set of snapshots. Hence, the splitting of the data into
training and test subsets does not play a major role on the sampling of the attractor.

Finally, we turn to the problem of El Niño-Southern Oscillation (ENSO), i.e. cycles
of warm (El Niño) and cold (La Niña) water temperature in the Pacific ocean near the
equator. It is known that reconstructing ENSO features from sparse measurements is
challenging (Manohar et al. 2018; Maulik et al. 2020). Here, we focus on the El Niño
event of the winter of 1997–1998, which is well known for its intensity off the coast of
Peru. In particular, figure 8(a) shows the SST in December 1997. This snapshot lies in the
test data set when the sets are chosen at random as opposed to sequentially. We see that
the overall reconstruction error using vector-DEIM is larger compared with tensor-DEIM.
More importantly, the spatial error near the El Niño oscillation is significantly larger
when using vector-DEIM. Therefore, tensor-DEIM more successfully reconstructs the
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Figure 8. Comparing the spatial distributions of the error. (a) True SST from December 1997. (b) Spatial
distribution of error (reconstructed SST minus true SST) for vector-DEIM. (c) Spatial distribution of error for
tensor-DEIM.

El Niño patterns. This is quite counter-intuitive since vector-DEIM tends to place more
sensors in the El Niño region (see figure 5(c) off the coast of Peru).

3.3. Three-dimensional unsteady flow

We consider a data set obtained by the simulation of an incompressible 3-D flow around a
CAD model of the research vessel Tangaroa (Popinet, Smith & Stevens 2004). This data set
is obtained by large-eddy simulation using the Gerris flow solver (Popinet 2004). The flow
variables are resampled onto a regular grid in the spatial region of interest, [−0.35, 0.65] ×

[−0.3, 0.3] × [−0.5, −0.3]. The reported spatial variables are dimensionless, normalized
with the characteristic length scale L = 276 m, four times the ship length. Flow velocity is
normalized by the inflow velocity U = 1 m s−1. We consider only the u component of the
velocity (u, v, w) and subsampled the data to consider a grid size 150 × 90 × 60. We split
the available 201 snapshots into a training data set with 150 snapshots (∼75 %) and a test
data set with 61 snapshots.

Due to the enormous size of the resulting tensor, we used randomized SVD to compute
the factor matrices Φn for 1 ≤ n ≤ 3 via the MATLAB command svdsketch. We choose
5 × 5 × 5 = 125 sensors to reconstruct the flow field. The true u-velocity for a snapshot in
the test data set is plotted in figure 9(a). The reconstruction using tensor-DEIM is displayed
in panel (b) of the same figure. The relative error in the reconstruction is around 9 %
suggesting that tensor-DEIM is adequately reconstructing the snapshot. The corresponding
error for the same number of sensors using vector-DEIM is 20.08 %. As in the previous
examples, it is seen that tensor-DEIM is far more accurate than vector-DEIM for the
same number of sensors. The average relative error over the entire test data is 9.07 % for
tensor-DEIM and 41.79 % for vector-DEIM. For some snapshots, the error in vector-DEIM
is as high as 75 % and the error appears to increase for the later snapshots. Finally, the
cost of storing the tensor-DEIM factor matrices is 0.0015 % of the cost of storing the
vector-DEIM basis. Once again, tensor-DEIM proves to be more accurate and far more
storage efficient compared with vector-DEIM.

4. Conclusions

Our results make a strong case for using tensor-based methods for sensor placement
and flow reconstruction. In particular, our tensor-based method significantly increases the
reconstruction accuracy and reduces its storage cost. Our numerical examples show that
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Figure 9. (a) The true u-velocity from the test data set. (b) Reconstruction using tensor-DEIM with 125
sensors. Black dots indicate the position of the sensors; RE denotes the relative error.

the relative reconstruction errors are comparable to vectorized methods when the number
of sensors is small. However, as the number of sensors increases, our tensor-based method
is 2–3 times more accurate than its vectorized counterpart. The improvements in terms of
the storage cost are even more striking: tensor-DEIM requires only 0.0015 %–0.07 % of
the memory required by vector-DEIM.

Future work could include the application of the method to reacting flows. In such
flows, the multidimensional nature of our tensor-based method allows for separate optimal
sensor placement for the flow field and each chemical species. Although our method
is a tensorized version of DEIM, a similar tensor-based approach can be applied to
other flow reconstruction methods such as gappy POD, sparsity-promoting methods, and
autoencoders.
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Appendix A. Proof of Theorem 1

We will need the following notation for the proof. We express Y = G ×1 A1 · · · × Ad in
terms of unfoldings as Yd = AdY (d)(Ad−1 ⊗ · · · ⊗ A1)

	. Here, we use ⊗ to denote the
Kronecker product of two matrices.

The proof is similar to Kirsten (2022, Proposition 1). Using the properties of matrix
unfoldings and Kronecker products, we can write an equivalent expression for the error:

‖G − G ×d
n=1 Πn‖F = ‖(I − ⊗1

n=dΠn)G
	
(d+1)‖F. (A1)
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From ΠnΦnΦ
	
n = ΦnΦ

	
n , we get (I − ⊗1

n=dΠn)(I − ⊗1
n=dΦnΦ

	
n ) = I − ⊗1

n=dΠn.
Using this result and submultiplicativity,

‖(I − ⊗1
n=dΠn)G

	
(d+1)‖F = ‖(I − ⊗1

n=dΠn)(I − ⊗1
n=dΦnΦ

	
n )G	

(d+1)‖F

≤ ‖(I − ⊗1
n=dΠn)‖2‖(I − ⊗1

n=dΦnΦ
	
n )G	

(d+1)‖F. (A2)

Since Πn is an oblique projector, so are ⊗d
j=1Πn and I − ⊗d

j=1Πn. By Szyld (2006,

Theorem 2.1), which applies since ⊗d
j=1Πn is neither zero nor the identity, ‖I −

⊗d
j=1Πn‖2 = ‖ ⊗d

j=1 Πn‖2 =
∏d

n=1 ‖Πn‖2. In the last step, we have used the fact that the
largest singular value of a Kronecker product is the product of the largest singular values.
Therefore,

‖(I − ⊗1
n=dΠn)G

	
(d+1)‖F ≤

(

d
∏

n=1

‖Πn‖2

)

‖(I − ⊗1
n=dΦnΦ

	
n )G	

(d+1)‖F

=

(

d
∏

n=1

‖(S	
n Φn)

−1‖2

)

‖G − G ×d
n=1 ΦnΦ

	
n ‖F, (A3)

since Φn and Sn have orthonormal columns, so ‖Πn‖2 = ‖(S	
n Φn)

−1‖2. The result
follows from Vannieuwenhoven et al. (2012, Corollary 5.2).
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