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ABSTRACT: When strands of DNA encapsulate silver clusters, supramolecular optical
chromophores develop. However, how a particular structure endows a specific spectrum remains
poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-
emitting fluorophore with a “Big Dipper” arrangement of silvers. The DNA host has two
substructures with distinct protonation patterns. Three cytosines from each strand collectively
chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The
twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The
adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers
via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly
basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the
electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8
suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of
these nanoscale chromophores.

S trands of DNA are templates for molecularly sized silver
clusters with ∼10 atoms, and such DNA−cluster

complexes are chromophores that are more akin to organic
dyes than metal nanomaterials.1,2 The clusters have sparsely
organized valence electronic states that favor radiative
electronic relaxation, as their excited states efficiently emit
with ≲90% quantum yields and ≲10 ns lifetimes.3−5 Alone,
such metallic clusters are unstable but can be encapsulated and
thus protected by oligonucleotides, and the now robust
conjugates survive in aqueous buffers and biological media.6,7

These composite chromophores are functional optical
reporters because a DNA not only protects but also tunes its
cluster adduct. The DNA sequence controls the cluster size
and shape and thereby encodes the cluster spectra, which span
the violet to near-infrared window.8,9 Furthermore, the DNA
secondary structure can be switched between single- and
double-stranded forms to toggle the cluster brightness over an
∼2000-fold range.10,11 On the basis of this spectral and
intensity control, DNA-based silver clusters have been
developed as fluorescent labels and sensors for a wide range
of biological and chemical targets.12−14

The structure of nanoscale silver complexes guides the
rational synthesis of specific chromophores.15−17 For the
DNA−silver chromophores (A2C4)2-Ag8 and (CACCTGC-
GA)2-Ag16, three types of bonds have been identified via
atomic resolution structures:18−20 (1) Silvers coalesce into
clusters, with metal-like bond distances of 2.6−2.9 Å.21,22

Their loosely bound 5s valence electrons are responsible for
the spectra and chemical reactivity of these clusters.23−25 (2)
The electron-rich heteroatoms in the DNA nucleobases
coordinate both Ag0 and Ag+, and the collective set of

nucleobases in a strand define the binding site for a specific
cluster.5,26,27 (3) The nucleobase heteroatoms are not only
Lewis bases that bind silvers but also Brønsted−Lowry acids
and bases.28 Proximal nucleobases can hydrogen bond, thereby
joining and folding the DNA host. Hydrogen ions, which are
the smallest structural element in these complexes, are not
observed in cryogenic X-ray crystallography studies, but
protonation in DNA-bound silver clusters is intimately linked
with silver cluster spectra.29,30

Here, we combine neutron and X-ray diffraction to map the
network of hydrogen bonds within the green fluorescent
DNA−silver cluster complex (A2C4)2-Ag8. Earlier X-ray
diffraction studies at cryogenic temperatures showed that the
two strands line up with parallel 5′ → 3′ orientations to form a
[AACCCC]2 duplex, and two binding sites develop for the 8
silvers, arranged like the stars in the Big Dipper asterism
(Figure 1A). The lagging three cytosines in each strand arrange
the remaining three silvers into an extended, handle-like shape.
The two leading adenines and their neighboring cytosine
together bind five of the silvers with a trapezoidal, dipper-like
shape and metal-like bonds. In these studies, complementary
room-temperature X-ray and neutron diffraction studies
distinguish protonation patterns in the handle and dipper
substructures of the (A2C4)2-Ag8 fluorophore. More broadly,
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our study suggests how a network of bonds controls the
spectra of these supramolecular chromophores.
(A2C4)2-Ag8 crystals were grown to sizes of ∼0.8 × ∼0.5 ×

∼0.5 mm3, and diffraction was measured on the Macro-
molecular Neutron Diffractometer.31 Within the parallel
[A(1)A(2)C(3)C(4)C(5)C(6)]2 duplex, two substructures
organize the 8 silvers identically in the cryogenic and room
temperature X-ray diffraction studies (Figures 1A,B). We first
consider the matched set of [C(4)C(5)C(6)]2 nucleobases.
Opposing cytosines are cross-linked by silvers that bind to the
N3 sites, which are Lewis bases that are deprotonated at
neutral pH and bind silver (Figure 1C).29,32 The cytosines in
this duplex are arranged so that hydrogen bonds also develop
between proximal functional groups. As observed with other
parallel duplexes, opposing cytosines are configured with trans
N1−glycosidic bonds, and the approximate mirror-image
symmetry of the cytosines yields neighboring C4−NH2 and
C2−O groups (Figure 1E).26 Because the cytosines are twisted
with respect to each other, inter- vs intrabase pair hydrogen
bonds can develop (Figure 1F). On the basis of inferred
hydrogen positions in the X-ray diffraction data, the measured
N−H/O bond distances of 1.9−2.5 Å are consistent with
hydrogen bonds.33 To directly identify these hydrogens,
isotope exchange with D2O was used because deuterium
scatters neutrons more efficiently than hydrogen.34 Neutron
scattering length density (NSLD) maps show that the former
exocyclic amines are fully protonated/deuterated and thus
capable of hydrogen bonding (Figure 1C). The combination of
both silver and hydrogen bonds supports a metal-mediated
sub-duplex within the overall (A2C4)2-Ag8 complex.35

Collective interactions of silvers and hydrogens with
nucleobases have also be identified in related complexes
using mass spectrometry, spectroscopic, and calorimetry/
structural studies.36,37 For example, cytosine strands form
duplexes whose strands are linked via both Ag+ with inter- and
intranucleobase hydrogen bonds.38,39 These interactions open
new paths to DNA nanostructures and nanomachines.40

This sub-duplex shares key structural features with other
DNA complexes with oxidized silvers: Ag+−DNA bond lengths
of 2.1−2.2 Å, N−Ag+−N bond angles of 164°−176°, and base
pairs twisted by 30°−60°.41−44 Here, we consider thermody-
namic similarities by reacting Ag+ with a A2C4 duplex and
measuring the Ag+ stoichiometry and affinity using isothermal
titration calorimetry. This reaction was considered because
silver cluster chromophores, such as the green emitting Ag10

6+

and the near-infrared emitting Ag30
18+, can be significantly

oxidized.26,45−47 We consider that the Ag+ and Ag0 may be
distinct components within a DNA−cluster complex.48 To
mimic the (A2C4)2 duplex observed in the crystal structure,
two A2C4 strands were covalently linked via an inert triethylene
glycol (see the inset in Figure 2). To match the structure in the

Figure 1. Arrangement of Ag and H atoms in (A2C4)2-Ag8. (A, B) Two views of the silver organization in the (A2C4)2-Ag8 complex. In (A), the Big
Dipper arrangement of the silvers is shown with a 3 Ag handle and a 5 Ag dipper (adapted from ref 16). In (B), silver atoms are represented by gray
spheres. The electron density Fo − Fc omit map for the silver atoms is displayed in green at a 3σ cutoff. (C) Representation of the protonation
states for the cytosine C4-NH2 groups for the C(4)C(5)C(6) nucleobases in strands A and B. The cytosine−cytosine base pairs are propeller
twisted by ∼60°, as indicated by the curved arrows. (D) Representation of the protonation states for A(1)A(2)C(3) in strand A and
A(1)*A(2)C(3) in strand B, where A(1)* is from a neighboring, symmetry-related strand. The neutron scattering length density Fo − Fc is
displayed in magenta at a 3σ cutoff, and the atoms are colored as follows: carbon, green; nitrogen, blue; oxygen, red; hydrogen, white; deuterium,
cyan; silver, gray.57 (E) Two-dimensional view of a cytosine-Ag+ base pair with a trans configuration of the N1−glycosidic bonds.

Figure 2. Binding isotherm from the titration of 1 mM Ag+ into 5 μM
of the (A2C4)2 dimer at 20 °C. The fit in red describes a single site
model that yielded the stoichiometry, affinity, and enthalpy change.
The inset shows the structure of (A2C4)-teg-(iA2iC4) with the
triethylene glycol represented by the loop between the A2C4-A2-iC4T
strands. This structure assumes that the symmetry-related A(1)B in
the crystal structure can be replaced by A* in this dimer. The flipped
arrow and the “i” show that the polarity of these nucleobases is the
reversed 3′ → 5′ polarity.
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crystal, backbone polarities were synthetically reversed, with
the leading A2C4 having the normal 5′ → 3′ direction and the
lagging A2C4 having the opposite 3′ → 5′ direction.25,49 This
structure assumes that A(1)B* is an artifact of crystallization
and can be substituted with the corresponding adenine within
a single dimer (see Figure 1D and insert in Figure 2). This
composite strand was reacted with Ag+, and the significant
exothermic heat release was used to measure the Ag+-DNA
enthalpy change, stoichiometry, and affinity (Figure 2). The
stoichiometry of 5.0 ± 0.2 Ag+/(A2C4)2 duplex is larger than
the 12 nucleobases in this strand, so we propose that the
duplex folds and is cross-linked by Ag+ adducts, as observed in
the crystal structure and in other complexes (Figure 1C).36,37

The affinity of (5.0 ± 0.2) × 106 M(Ag+)−1 and ΔH = −15.5 ±

1.3 kJ/mol Ag+ are consistent with the stability of other Ag+−
cytosine complexes.50,51 The ΔS = −26.4 ± 3.3 J/K·mol Ag+

may reflect the assembly of the duplex, but other factors may
contribute to this change.51 Because both thermodynamic and
structural parameters parallel other C−Ag+−C base pairs, we
suggest that the 3 handle-like silvers in the [C(4)C(5)C(6)]2
sub-duplex are Ag+. The other 2 Ag+ may be part of the
neighboring substructure of this complex.
Relative to its [C(4)C(5)C(6)]2 neighbor, the [A(1)A(2)-

C(3)]2 substructure in (A2C4)2-Ag8 has a distinct protonation
pattern. These nucleobases chelate a trapezoidal set of five
silvers, whose 2.9 Å silver bond distances support a metal-like
cluster with loosely held valence electrons. This binding pocket
is framed by two heteroatoms in each nucleobase: the N1 and
C6-NH2 from the adenines and the N3 and C4-NH2 from the
cytosines. The 2.1 Å nitrogen−silver bond lengths match those
observed with other DNA−silver complexes, thus supporting a
stable complex.52,53 These coordination sites can also bind H+,
which in this environment are not supporting but competing.
The adenine N1 and cytosine N3 should be deprotonated at
neutral pH because of their respective pKa values of ∼3.9 and
∼4.6; thus, these sites will be open Lewis bases for silvers. In
contrast, the exocyclic C6-NH2 of adenine and the C4-NH2 of
cytosine are expected to be poor Lewis bases for two reasons.54

First, their lone pairs are delocalized into the aromatic
nucleobases, as these amines are sp2 hybridized with short,
double-bond C−N bond lengths and planar NH2 geo-
metries.55,56 Second, these groups are expected to be fully
protonated at neutral pH because their pKa ∼ 18.57,58 Despite
these impediments, X-ray diffraction shows that the silvers are
anchored at these sites (Figure 1D). Most importantly, NSLD
maps suggest that the C6-NH2 and C4-NH2 coordinate silvers
because they are singly deprotonated (see Table 1 and the
Supporting Information).

These exocyclic amines may be deprotonated because their
nucleobases are electronically perturbed. For example,
protonating or alkylating the N1 in adenine and the N3 and
cytosine drops the pKa of the ortho exocyclic amines by from
∼18 to ∼9, a 108 acidification.59 Transition metals also acidify
amines, and platinum has received the most attention because
it is a cancer therapeutic. Platinum complexes with the N1 of
adenine and the N3 of cytosine lower the pKa of their
respective exocyclic amines by 4−5 units.60,61 Ruthenium
complexes produce pKa ∼ 8 for the C6-NH2 in adenine, thus
approaching the pH of neutral solutions.62 A number of factors
control this shift in acidity, such as the metal and its charge, the
site of coordination in the nucleobases, and neighboring
nucleobases that stabilize the conjugate base.60,63 We consider
how silver might perturb the adenine/cytosine charge
distributions. Neutral silver atoms bind weakly with DNA
with little charge redistribution, so we suggest that Ag+ adducts
could acidify the C6-NH2 and C4-NH2 groups.32 Our
calorimetry studies suggest that 5 of the 8 silvers in (A2C4)2-
Ag8 may be Ag+, consistent with other oxidized clusters such as
Ag6

4+, Ag10
6+, Ag17

9+, and Ag30
18+.26,45−47 Thus, we expect Ag+

in a partially oxidized Ag8 cluster could acidify the adenines
and cytosines.
Our studies focused on protonation states of nucleotides

because H+ controls DNA−silver cluster fluorescence. For
example, acidic solutions protonate dC12 and quench red
emission from the conjugated cluster, while basic solutions
deprotonate thymine oligonucleotides to turn on green
emitting clusters.29,30 Nucleobases are also protonated when
they pair with their canonical partner, and the resulting DNA
duplex boosts emission by changing the cluster
shape.10,11,26,64−66 With both pH and hybridization, the
spectral changes of the clusters are reversible, suggesting that
protons and silvers competitively bind to the same
heteroatoms.67,68 These studies suggest that DNA is plastic
ligand that is changed by its silver cluster adduct. Under-
standing these bonding interactions may help us better
understand the spectra of these supramolecular chromophores.
In conclusion, neutron and X-ray diffraction identifies the

hydrogens/deuteriums in the (A2C4)2-Ag8 complex and reveals
both cooperative and competitive bonds with hydrogen ions.
Interbase hydrogen bonds within the C(4)C(5)C(6) sub-
duplex cooperatively form around and may reinforce the
silver−cytosine contacts. Exocyclic amines in the A(1)A(2)-
C(3) region are deprotonated, and the open binding sites
suggest that ancillary silvers acidify this site. These studies
suggest that H+ and pH can be a tool that exogenously tunes
the binding sites of DNA-bound silver clusters.
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Experimental Methods:  Crystal Growth

An ~1.5 mole sample of desalted AACCCC (Integrated DNA Technologies) was diluted to 15 
mL with water and then concentrated to ~5 mM using dialysis at 8 oC (Vivaspin 15R, 2000 
MWCO).  Crystals were grown using sitting drop vapor diffusion.  The drops with a volume of 
40 L containing 0.9 mM A2C4, 6.5 equivalents of AgNO3, and 375 mM cacodylate buffer at pH 
= 6.5 were equilibrated against a 750-L reservoir composed of 34 or 36 % MPD.  The crystals 
grew at 29 oC to sizes of ~0.8 x ~0.5 x ~0.5 mm in ~2 days.  Crystals were mounted in capillaries 
for room temperature data collection as described by Schröder and Meilleur.17  Quartz capillaries 
(1.0 mm id, 1.2 mm od, VitroCom), shortened to a length of ~5 cm, were loaded with ~10 L of 
the crystallization buffer at one end. Crystals were harvested using a microloop and transferred 
to the crystallization solution in the quartz capillaries. Gravity was used to position the crystal in 
the middle of the capillary. The hydrogenated solution was then dried out using absorbent paper. 
Plugs of crystallization buffer prepared in D2O (99.9% D, Cambridge Isotopes) were inserted 
into both ends of the capillary.  The capillary ends were then sealed with beeswax. The crystals 
were left to equilibrate for more than two months to exchange the hydrogen to deuterium via 
vapor exchange prior to neutron data collection.  High D2O purity and extended vapor exchange 
period are important to achieve high H/D exchange level.

Neutron and X-ray crystallographic data collection and structure refinement

Initial white beam neutron diffraction tests were performed on the IMAGINE beamline at the 
High Flux Isotope Reactor (HFIR).16-20  Neutron time-of-flight diffraction data were collected at 
room temperature on the MaNDi instrument at the Spallation Neutron Source (SNS).21-22  An 
incident neutron wavelength range of 2 Å to 4 Å was used. A total of 9 diffraction images were 
collected with a  of 10 between frames and an average exposure of 24 hours per image. The 
neutron diffraction data extended to a resolution of 2.1 Å. Following neutron diffraction data 
collection, an X-ray dataset was collected on the same crystal at room temperature on a 
microfocus rotating anode X-ray diffractometer. The X-ray diffraction data extended to a 
resolution of 1.8 Å.
The neutron dataset was reduced using the Mantid package23 and integrated using three 
dimensional profile fitting.24  The data were wavelength normalized using LAUENORM from the 
LAUEGEN suite25-27 and further scaled using SCALA from the CCP4 suite.28-29  The X-ray data 
were indexed, integrated using CrysAlis PRO (Rigaku, Woodlands, Texas, USA) and scaled and 
merged with AIMLESS in the CCP4 suite.30  The data reduction statics are presented in Table 1. 
We use an “X-ray then Neutron” refinement strategy whereby a model was first refined against 
the X-ray data alone prior to refining a second model, including hydrogen/deuterium atoms, 
against the neutron data alone. This strategy is preferred for complex containing metal centers 



because they are prone to  X-ray induced photoreduction and we previously observed 
photoreduction.15  In contrast, neutron radiation do not perturb metal scenters.31-32 
The 100K X-ray structure (PDB ID 6NIZ) was used to phase the room temperature X-ray data. 
Water molecules and Ag atoms were stripped from the initial model. Rigid body refinement was 
first performed followed by positional and individual B-factor refinement using phenix.refine in 
the Phenix suite.33  Water molecules and Ag atoms were built manually in Coot. Hydrogen and 
deuterium atoms were added to the final room temperature model using phenix.ready_set at 
nonexchangeable and exchangeable positions, respectively. This model was used to phase the 
neutron data. Positional, B-factor and occupancy refinements were performed using 
phenix.refine. 
       Initially, we added deuterium and hydrogen atoms to the model refined against the X-ray 
data using phenix.ready_set. Phenix.ready set uses the program REDUCE (Word, et al.(1999). J. 
Mol. Biol. 285, 1735-1747) to add hydrogen/deuterium atoms in standardized geometry. The 
model generated contained H and D atoms in 0.5:0.5 ratio and was refined against the neutron 
data. The NSLD maps and the refined H:D exchange ratios were then inspected. This approach 
led to two types of H/D sites: type 1) H/D atom pointing away from the Ag atoms with these 
positions having high D occupancy; and type 2) H/D atoms positioned between the exocyclic N6 
or N4 and the Ag atoms with refined H:D ratio of ~0.65:0.35. While this later ratio is 
experimentally possible, it most often signals an absence of H/D atoms at the concerned position 
(i.e. deprotonation) because the scattering length of H (-3.74 fm) and the scattering length of D 
(+6.67 fm) cancel each other at that specific ratio.  To avoid the uncertainty arising from H:D 
ratios in the model, we then generated only deuterium atoms at all the exchangeable position. 
Neutron scattering length density (NSLD) Polder maps were calculated for all exocyclic amino 
groups to determine the protonation state of the nitrogen atoms.34 The nuclear density supported 
modeling of deuterium atoms with 100% occupancy at all the predicted position (Fig. 1)  except 
for the exocyclic group of A(2) from strand B which was best modeled as 75%H/25%D. As 
discussed above, this ratio does not allow us to fully rule out that the C6-NH2 A(2) from strand B 
is doubly deprotonated. However, there is no chemical rational to explain a fully deprotonated 
C6-NH2 and therefore we conclude that exchange is limited at this site and that this N is singly 
deprotonated.  Using this approach, no residual nuclear density was left, indicating that there was 
no deuterium between the N6 or N4 and the Ag atoms.   In the crystal structure presented here, 
we observed the exocyclic amine group of A(1) of strand B to be singly deprotonated. This 
protonation state is likely due to the crystal packing which positions an Ag atom between this 
group and the N1 atom of a A(1) of symmetry related molecule.  Refinement statistics for the X-
ray and neutron models are shown in Table S1. The neutron model was deposited in the Protein 
Data Bank (ID: 8DYK).           



Table S1.  Data collection and refinement statistics.

X-ray Neutron

Data collection

Wavelength (Å) 1.54 2-4
Resolution range (Å) 16.78  - 1.8 (1.864  - 1.8) 11.67  - 2.1 (2.175  - 2.1)
Space group P 41 21 2 P 41 21 2
Unit cell
a, b, c (Å)
, ,  ()

33.57, 33.57, 63.74
90, 90, 90

33.57, 33.57, 63.74
90, 90, 90

Total reflections 39596 (2755) 14260 (1216)
Unique reflections 3715 (362) 2308 (216)
Multiplicity 10.7 (7.6) 6.2 (5.6)
Completeness (%) 99.4 (98.1) 96.5 (95.2)
Mean I/sigma(I) 27.9 (7.5) 10.5 (3.8)
Wilson B-factor (Å2) 12.8 13.1
R-merge 0.133 (0.345) 0.146 (0.264)
R-meas 0.140 (0.373) 0.159 (0.290)
R-pim 0.042 (0.135) 0.060 (0.115)
CC1/2 0.974 (0.880) 0.991 (0.328)
CC* 0.993 (0.968) 0.998 (0.703)
Refinement and model quality

Reflections used in refinement 3705 (358) 2307 (216)
Reflections used for R-free 371 (36) 232 (20)
R-work 0.093 (0.127) 0.229 (0.295)
R-free 0.109 (0.143) 0.288 (0.330)
CC (work) 0.972 (0.949) 0.959 (0.464)
CC (free) 0.983 (0.833) 0.870 (0.486)
Number of non-hydrogen atoms 262 265
Number of hydrogen/Deuterium 
atoms

0 166

Ligands Ag: 12 Ag: 12
  Water molecules O: 20 O: 6

DOD: 18
R.M.S.D. bonds (Å) 0.019 0.084
R.M.S.D. angles () 2.15 0.80
Clashscore 8.00 7.96



Average B-factor (Å2)
  Macromolecules 18.21 18.74
  Ligands 14.81 10.92
  Solvent 23.34 22.12

Statistics for the highest-resolution shell are shown in parentheses.

Calorimetry

     Calorimetry studies used the covalently linked dimer (AACCCC)-teg-(iAiAiCiCiCiC) in 
which two A2C4 strands were linked via a triethylene glycol (teg).  The two A2C4 strands are 
distinguished by the polarities of their phosphodiester backbones, which run 5’→3’ for C1-A6 
and switches to 3’→5’ for iC7-iC10 using a 3’-3’ internucleotide linkage, where the nucleobase 
numbers represent their positions in the strand.41-43  The teg linker does not bind silvers and does 
not disrupt the cluster binding site.44  Calorimetry studies were conducted using a Microcal VP-
ITC instrument (Northhampton, MA) controlled by the Origin 7.0 software.45  Following 
degassing, a solution of AgNO3 was titrated into a 5 M oligonucleotide solution. Heat changes 
associated with the titration were determined by integrating the power required to maintain 
reference and sample cells at the same temperature. Heat changes associated with dilution of Ag+ 
were subtracted after saturation of the binding sites. The single site binding model in the 
manufacturer software was appropriate for fitting the binding isotherms to determine the 
enthalpy and free energy changes and the adduct stoichiometry. Entropy changes were derived 
from the free energy and enthalpy changes. Uncertainties were derived from three experiments 
on separate samples. 
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Reviewer 1: 

Reviewer Comment 1.  The authors used isothermal titration calorimetry to measure the Ag+ 

stoichiometry and affinity, and concluded that three handle-like silvers in the [C(4)C(5)C(6)]2 subduplex 

are Ag+, with the other 2 Ag+ in the neighbouring sub-structure, How can the authors clearly state the 

exact location of Ag+ only via titration results? 

Author Reply:  The motivation for studying the reaction of oxidized Ag+ with DNA is explained. 

Revision (see Page 6):  This sub-duplex shares key structural features with other DNA complexes with 
oxidized silvers: Ag+-DNA bond lengths of 2.1 – 2.2 Å, N-Ag+-N bond angles of 164-176o, and base pairs 
twisted by 30o-60o.40-43  Here, we consider thermodynamic similarities by reacting Ag+ with a A2C4 
duplex and measuring the Ag+ stoichiometry and affinity using isothermal titration calorimetry.  This 
reaction was considered because silver cluster chromophores, such as the green emitting Ag10

6+ and the 
near infrared emitting Ag30

18+, can be significantly oxidized.26,45-47  We consider that the Ag+ and Ag0 may 
be distinct components within a DNA-cluster complex.48  
_____________________________________________________________________________________ 

Reviewer Comment 2:  The author has problems with inconsistencies in all units in the manuscript and SI 

writing, for instance. kcal/mole Ag+ and cal/K mole Ag+ , please corrected. 

Author Reply:  The paper now uses that format for the thermodynamic parameters used in References 49-
50. 

Revision (see Page 7):     The affinity of 5.0 (± 0.2) x 106 M(Ag+)-1 and H = -15.5 (± 1.3) kJ/mole Ag+ 
are consistent with the stability of other Ag+-cytosine complexes.49-50  The S = -26.4 (± 3.3) J/K mole 
Ag+ may reflect the assembly of the duplex, but other factors may contribute to this change.50  
____________________________________________________________________________________ 

Reviewer Comment 3.  The silver salts should be detailed in the experimental section, as the reader 

cannot confirm whether the Ag+ species in the crystal growth section is the same as that used in the 

titration experiments. 

Author Reply:  This change is made.  

Revision (see Page 2, Supplemental File): The drops with a volume of 40 L containing 0.9 mM A2C4, 
6.5 equivalents of AgNO3, and 375 mM cacodylate buffer at pH = 6.5 were equilibrated against a 750-L 
reservoir composed of 34 or 36 % MPD. 
_____________________________________________________________________________________ 
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Reviewer Comment 4:  The author used isotope exchange with D2O to make the deuterium scatters 

neutrons more efficiently than hydrogen, is there any incomplete substitution in above experiment due to 

the purity of D2O, which may affect the conclusions from the NSLD? 

Author Reply:   Our detailed procedure is described in the Supplemental Material. 

Revision (see Page 8 and Pages 2 and 3, Supplemental Material):       

Page 8, Manuscript:  Most importantly, NSLD maps suggest that the C6-NH2 and C4-NH2 coordinate 
silvers because they are singly deprotonated (Table 1 and Supplemental Material). 

Page 2, Supplemental:  Plugs of crystallization buffer prepared in D2O (99.9% D, Cambridge 
Isotopes) were inserted into both ends of the capillary.  The capillary ends were then sealed with 
beeswax. The crystals were left to equilibrate for more than two months to exchange the 
hydrogen to deuterium via vapor exchange prior to neutron data collection.  High D2O purity and 
extended vapor exchange period are important to achieve high H/D exchange level. 

Page 3, Supplemental:  Initially, we added deuterium and hydrogen atoms to the model refined 
against the X-ray data using phenix.ready_set. Phenix.ready set uses the program REDUCE 
(Word, et al.(1999). J. Mol. Biol. 285, 1735-1747) to add hydrogen/deuterium atoms in 
standardized geometry. The model generated contained H and D atoms in 0.5:0.5 ratio and was 
refined against the neutron data. The NSLD maps and the refined H:D exchange ratios were then 
inspected. This approach led to two types of H/D sites: type 1) H/D atom pointing away from the 
Ag atoms with these positions having high D occupancy; and type 2) H/D atoms positioned 
between the exocyclic N6 or N4 and the Ag atoms with refined H:D ratio of ~0.65:0.35. While 
this later ratio is experimentally possible, it most often signals an absence of H/D atoms at the 
concerned position (i.e. deprotonation) because the scattering length of H (-3.74 fm) and the 
scattering length of D (+6.67 fm) cancel each other at that specific ratio.  To avoid the 
uncertainty arising from H:D ratios in the model, we then generated only deuterium atoms at all 
the exchangeable position. Neutron scattering length density (NSLD) Polder maps were 
calculated for all exocyclic amino groups to determine the protonation state of the nitrogen 
atoms.1 The nuclear density supported modeling of deuterium atoms with 100% occupancy at all 
the predicted position (Fig. 1)  except for the exocyclic group of A(2) from strand B which was 
best modeled as 75%H/25%D. As discussed above, this ratio does not allow us to fully rule out 
that the C6-NH2 A(2) from strand B is doubly deprotonated. However, there is no chemical 
rational to explain a fully deprotonated C6-NH2 and therefore we conclude that exchange is 
limited at this site and that this N is singly deprotonated.  Using this approach, no residual 
nuclear density was left, indicating that there was no deuterium between the N6 or N4 and the 
Ag atoms.   In the crystal structure presented here, we observed the exocyclic amine group of 
A(1) of strand B to be singly deprotonated. This protonation state is likely due to the crystal 
packing which positions an Ag atom between this group and the N1 atom of a A(1) of symmetry 
related molecule.  Refinement statistics for the X-ray and neutron models are shown in Table S1. 
The neutron model was deposited in the Protein Data Bank (ID: 8DYK). 

_____________________________________________________________________________________ 
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Reviewer Comment 5:  Some silver nanoclusters should be noted in revised version such as ACS Nano 

2019, 13, 5753; J. Am. Chem. Soc. 2022, 144, 18305; Angew. Chem. Int. Ed., 61, (2022), e202200823 

Author Reply:  The structure and fluorescence of other silver complexes is discussed.  The suggested 
references are cited.   

Revision (see Page 3): The structure of nanoscale silver complexes guides the rational synthesis of 
specific chromophores.15-17  For the DNA-silver chromophores (A2C4)2-Ag8 and (CACCTGCGA)2-Ag16, 
three types of bonds have been identified via atomic resolution structures.18-20  

Reviewer 2: 

Reviewer Comment 1:  In the crystal state, the silver 8 cluster presented in this paper is stabilized by 

three DNA strands. This is not clearly enough discussed in the manuscript and can only be indirectly 

inferred from the * in Figure 1D (and even there the meaning of the * is not given).  It should be clearly 

discussed in the manuscript that A(1)*B is not from the two main dimer strands that are wrapped around 

the cluster. This adenine is responsible for interactions with two of the five trapezoidal atoms, which is a 

significant amount. 

Author Reply: A(1)B* is defined. 

Revision (see Page 6, Figure 2 Caption):  (D) Representation of the protonation states for A(1)A(2)C(3) 
in strand A and A(1)*A(2)C(3) in strand B, where A(1)* is from a neighboring, symmetry-related strand.  
And (Page 7, top): “This structure assumes that A(1)B* is an artifact of crystallization and can be 
substituted with the corresponding adenine within a single dimer (see Figure 1D and insert in Figure 2)”. 
_____________________________________________________________________________________ 

Reviewer Comment 2:  Related to the previous comment, how do the authors envision that this translate 

to the solution phase and the experiments with (A2C4)-teg-(iA2iC4). Would in this case  A(1)B take over 

the role of A(1)*B? 

Author Reply:  The role of the A(1)B* in the synthetic dimer is discussed. 

Revision (see Page 7):  This structure assumes that the shared A(1)B* in the crystal structure can be 
substituted with the corresponding adenine in the dimer (see Figure 1D and insert in Figure 2).  
_____________________________________________________________________________________ 
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Reviewer Comment 3: “Most importantly, NSLD maps suggest that the C6-NH2 and C4-NH2 coordinate 

silvers because they are singly deprotonated (Table 1).” It is not clear how the authors determined this. Is 

there a difference in intensity of the magenta spheres in Figure 1D? Or is this based on common sense 

that there is no space for a hydrogen at these positions? Please provide some information on how you 

came to this conclusion. 

 
Author Response: Our detailed procedure is described in the Supplemental Material.   
 
Revision (see Page 8 and Page 3, Supplemental Material):   
Page 8, Manuscript:  Most importantly, NSLD maps suggest that the C6-NH2 and C4-NH2 coordinate 
silvers because they are singly deprotonated (Table 1 and Supplemental Material). 
 
Page 3, Supplemental:  Initially, we added deuterium and hydrogen atoms to the model refined 
against the X-ray data using phenix.ready_set. Phenix.ready set uses the program REDUCE 
(Word, et al.(1999). J. Mol. Biol. 285, 1735-1747) to add hydrogen/deuterium atoms in 
standardized geometry. The model generated contained H and D atoms in 0.5:0.5 ratio and was 
refined against the neutron data. The NSLD maps and the refined H:D exchange ratios were then 
inspected. This approach led to two types of H/D sites: type 1) H/D atom pointing away from the 
Ag atoms with these positions having high D occupancy; and type 2) H/D atoms positioned 
between the exocyclic N6 or N4 and the Ag atoms with refined H:D ratio of ~0.65:0.35. While 
this later ratio is experimentally possible, it most often signals an absence of H/D atoms at the 
concerned position (i.e. deprotonation) because the scattering length of H (-3.74 fm) and the 
scattering length of D (+6.67 fm) cancel each other at that specific ratio.  To avoid the 
uncertainty arising from H:D ratios in the model, we then generated only deuterium atoms at all 
the exchangeable position. Neutron scattering length density (NSLD) Polder maps were 
calculated for all exocyclic amino groups to determine the protonation state of the nitrogen 
atoms.1 The nuclear density supported modeling of deuterium atoms with 100% occupancy at all 
the predicted position (Fig. 1)  except for the exocyclic group of A(2) from strand B which was 
best modeled as 75%H/25%D. As discussed above, this ratio does not allow us to fully rule out 
that the C6-NH2 A(2) from strand B is doubly deprotonated. However, there is no chemical 
rational to explain a fully deprotonated C6-NH2 and therefore we conclude that exchange is 
limited at this site and that this N is singly deprotonated.  Using this approach, no residual 
nuclear density was left, indicating that there was no deuterium between the N6 or N4 and the 
Ag atoms.   In the crystal structure presented here, we observed the exocyclic amine group of 
A(1) of strand B to be singly deprotonated. This protonation state is likely due to the crystal 
packing which positions an Ag atom between this group and the N1 atom of a A(1) of symmetry 
related molecule.   
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Reviewer 3: 
 
Reviewer Comment 1:  Pg. 5 paragraph 1: Others have reported evidence of novel hydrogen bonding in 

DNA-silver duplexes beyond crystallographic studies, of relevance to the (A2C4)2-Ag8 studied here, and 

the reviewer recommends referencing these previous studies in 2017 and 2018. Chen, et al. reported 

evidence of such hydrogen bonds in cytosine-Ag+-cytosine duplexes ( DOI 10.1021/acsomega.7b01089), 

and Swasey, et al, reported evidence of novel hydrogen bonds in guanine-Ag+-guanine duplexes and 

possibly also cytosine-Ag+-cytosine duplexes (DOI 10.1021/acs.jpclett.8b02851). It would be helpful to 

readers to comment on how these additional past studies compare with the authors’ findings. 
 
Author Reply:  Silver and hydrogen bonding in other DNA-silver complexes is discussed. 
 
Revision (see Page 5):  Collective interactions of silvers and hydrogens with nucleobases have also be 
identified in related complexes using mass spectrometry, spectroscopic, and calorimetry/structural 
studies.36-37  For example, cytosine strands form duplexes whose strands are linked via both Ag+ with 
inter- and intra-nucleobase hydrogen bonds.38-39  These interactions open new paths to DNA 
nanostructures and nanomachines.40  
 
_____________________________________________________________________________________ 
 
Reviewer Comment 2:  Figure 1F: the reviewer notes that it is very difficult to intuit the 60° twist of the 

base pairs from this figure, which appears to show more planar base pairs than in Fig. 1C, D. 

 
Author Reply:  The propeller twisting is now indicated in the 3-d model in Figure 1C.    
 
Revision (see Page 6):  Figure 1 has been modified. 
_____________________________________________________________________________________ 
 
Reviewer Comment 3: Pg 6: The authors state that the stoichiometry of 5 Ag+ per DNA duplex is 

relatively low, but this seems to agree well with past studies of DNA duplication by Ag+ by Swasey, et al 

(2014, DOI: 10.1038/srep10163 ). They reported that Ag+ mediated duplexes of cytosine homobase 

strands and that adenine homobase strands did not form silver-mediated duplexes but did associated with 

a few silvers. Could such adenine-silver association be responsible for some of the silver stoichiometry 

that the authors find by ITC, with the majority of the silvers mediating cytosine base pairs? 

 
Author Response:  Nucleobase crosslinking in other complexes is discussed.  Ag+ association with the 
adenines in the neighboring substructure is discussed. 
 

Revision (see Page 7): The stoichiometry of 5.0 ± 0.2 Ag+/(A2C4)2 duplex is larger than the 12 nucleobases 
in this strand, so we propose that the duplex folds and is crosslinked by Ag+ adducts, as observed in the 
crystal structure and in other complexes (Figures 1A/B).36-37   
 

The other 2 Ag+ may be part of the neighboring sub-structure of this complex.   
_____________________________________________________________________________________ 
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Reviewer Comment 4: Pg 6: DNA-stabilized silver nanoclusters are typically formed by borohydride 

reduction of DNA-silver salt mixtures (as developed by the corresponding author of this manuscript). The 

ITC experiments are, of course, just measuring the association of silver cations and DNA, which is not 

the nanocluster itself. It would be interesting and helpful to remind the readers that these Ag+-DNA 

mixtures are precursors to the nanocluster and to comment on how similar the stoichiometry of the Ag+-

DNA complexes is expected to be as compared to the reduced nanocluster. (Some readers may 

misunderstand that the ITC experiments are not performed on the nanocluster formation process.) 

Author Response:  The motivation for studying the reaction of oxidized Ag+ with DNA is explained. 

Revision (see Page 6):  This sub-duplex shares key structural features with other DNA complexes with 
oxidized silvers: Ag+-DNA bond lengths of 2.1 – 2.2 Å, N-Ag+-N bond angles of 164-176o, and base pairs 
twisted by 30o-60o.40-43  Here, we consider thermodynamic similarities by reacting Ag+ with a A2C4 
duplex and measuring the Ag+ stoichiometry and affinity using isothermal titration calorimetry.  This 
reaction was considered because silver cluster chromophores, such as the green emitting Ag10

6+ and the 
near infrared emitting Ag30

18+, can be significantly oxidized.26,45-47  We consider that the Ag+ and Ag0 may 
be distinct components within a DNA-cluster complex.48  

_____________________________________________________________________________________ 

Reviewer Comment 5: pg. 7: Can the authors comment on how the protonation state of the crystallized 

DNA-stabilized silver nanocluster is expected to compare to the solvated nanocluster? Does some 

protonation occur during crystallization to promote charge neutralization? Placing this question in 

context of what is known about other biomolecules’ protonation states before and after the crystallization 
process would enhance this paper’s impact. 

Author Response: The pH at which crystals are grown rather than the process of crystallization itself 
impacts the observed protonation states in crystallographic structures. We further discuss interfacial 
factors in the Supplemental Material.   

Revision (see Pages 2 and 3, Supplemental Material): 

Page 2, Supplemental:  Plugs of crystallization buffer prepared in D2O (99.9% D, Cambridge Isotopes) 
were inserted into both ends of the capillary.  The capillary ends were then sealed with beeswax. The 
crystals were left to equilibrate for more than two months to exchange the hydrogen to deuterium via 
vapor exchange prior to neutron data collection.  High D2O purity and extended vapor exchange period 
are important to achieve high H/D exchange level. 

Page 3, Supplemental:  This protonation state is likely due to the crystal packing which positions an Ag 
atom between this group and the N1 atom of a A(1) of symmetry related molecule 

______________________________________________________________________________________________________ 
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Reviewer Comment 6: pg 8-9: Again, the authors use calorimetry to estimate the oxidation state of the 

nanocluster, but DNA-stabilized silver nanoclusters are typically formed by borohydride reduction. The 

reviewer again brings up the question in Comment #4 - how relevant are the unreduced complexes for the 

composition of the formed nanoclusters? 

Author Response:  The motivation for studying the reaction of oxidized Ag+ with DNA is explained. 

Revision (see Page 6):  This sub-duplex shares key structural features with other DNA complexes with 
oxidized silvers: Ag+-DNA bond lengths of 2.1 – 2.2 Å, N-Ag+-N bond angles of 164-176o, and base pairs 
twisted by 30o-60o.40-43  Here, we consider thermodynamic similarities by reacting Ag+ with a A2C4 
duplex and measuring the Ag+ stoichiometry and affinity using isothermal titration calorimetry.  This 
reaction was considered because silver cluster chromophores, such as the green emitting Ag10

6+ and the 
near infrared emitting Ag30

18+, can be significantly oxidized.26,45-47  We consider that the Ag+ and Ag0 may 
be distinct components within a DNA-cluster complex.48  

Editorial Office 
Comment 1: Please include country in all of the author affiliations in the publication file(s). 

Author Reply:  These changes have been made on Pages 1.   
_____________________________________________________________________________________ 

Comment 2: Please add full header at top of page of the Supporting Information file, which includes: Title 
(in title case), Full Author List, and Author affiliations (exactly as they appear in the manuscript). 

Author Reply:  These changes have been made on Page 1 of the revised Supplemental File.   
____________________________________________________________________________________ 

Comment 3:  In both the main file and the supporting information, fix the style of all references to use 
JPCL formatting (check all references carefully). ***JPC Letters reference formatting requires that 
journal references should contain: () around numbers, author names, article title (titles entirely in title case 
or entirely in lower case), abbreviated journal title (italicized), year (bolded), volume (italicized), and 
pages (first-last). Book references should contain author names, book title (in the same pattern), publisher, 
city, and year. Websites must include date of access. 

Author Reply:  These changes have been made in the References. 
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