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A coarse-grained simulation model for colloidal
self-assembly via explicit mobile binders†
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Colloidal particles with mobile binding molecules constitute a powerful platform for probing the physics

of self-assembly. Binding molecules are free to diffuse and rearrange on the surface, giving rise to

spontaneous control over the number of droplet–droplet bonds, i.e., valence, as a function of the

concentration of binders. This type of valence control has been realized experimentally by tuning the

interaction strength between DNA-coated emulsion droplets. Optimizing for valence two yields droplet

polymer chains, termed ‘colloidomers’, which have recently been used to probe the physics of folding.

To understand the underlying self-assembly mechanisms, here we present a coarse-grained molecular

dynamics (CGMD) model to study the self-assembly of this class of systems using explicit representations

of mobile binding sites. We explore how valence of assembled structures can be tuned through kinetic

control in the strong binding limit. More specifically, we optimize experimental control parameters to

obtain the highest yield of long linear colloidomer chains. Subsequently tuning the dynamics of binding

and unbinding via a temperature-dependent model allows us to observe a heptamer chain collapse into

all possible rigid structures, in good agreement with recent folding experiments. Our CGMD platform and

dynamic bonding model (implemented as an open-source custom plugin to HOOMD-Blue) reveal the

molecular features governing the binding patch size and valence control, and opens the study of

pathways in colloidomer folding. This model can therefore guide programmable design in experiments.

1 Introduction
Self-assembly of colloidal materials can create non-trivial and
programmable structures with wide-ranging and tunable mate-
rial properties. The spatio-temporal visualization of colloids
renders them as useful model systems for probing the underlying
physics behind assembly processes of molecular systems.1–4

The synthesis of colloidal particles with chemically or physically
patterned solid surfaces—‘‘patches’’—has been an active area of
research due to the desire to control the bond valence and
orientation, going beyond what can be achieved through isotro-
pic interactions.4–7 For example, a long-desired target is a dia-
mond lattice, with an open structure that is difficult to achieve
without an imposed tetrahedral symmetry.8

The most common approach to engineering specific inter-
actions between patches is to use complementary strands of
DNA, whose interaction strength can be tuned by the length
and specific sequence of nucleotides.2,9–13 Each DNA duplex
has an associated melting temperature (Tmelt) and it is possible
to employ multiple sets of complementary strands exhibiting
different Tmelt to control the types of bonds present during an
annealing protocol.14

Self-assembly of patchy particles can be studied in simula-
tions using short-range directional non-bonded interactions15

or using only pairwise interactions in combination with specific
geometric constraints that prevent multiple bonding to the same
patch.6,16–18 Interactions due to many DNAs on a colloidal surface
can also be computed using more detailed MD simulations,19 or
through a mean-field approach.20 An alternative strategy to
modeling explicit patches is to develop pair-potentials from
inverse design principles, which have been successfully leveraged
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to produce systems that assemble with low valence, such as
dimers or chains.21,22

An intriguing alternative to patchy particles of fixed valence
is a system of particles coated with mobile adhesion molecules.
In this case, it is possible for particles to ‘‘choose’’ their valence
based on the number of available neighbors with complementary
binding molecules, minimizing the total free energy of the
system. Experimentally, using oil droplets in water provides a
mobile interface on which the DNA linkers segregate into patches
by diffusion to give rise to e.g., dimers when all the DNA is
recruited into a single patch or droplet chains at higher concen-
trations of DNA where two patches per droplet are favored.23

Colloids with mobile binders can also be formed by coating solid
particles with fluid lipid bilayers,24,25 or by directly functionaliz-
ing liposomes or giant unilamellar vesicles.26–29 The mobility of
the linkers broadens the melting temperature window of the
DNA, facilitating equilibrium self-assembly.2,30 Particles with
mobile binders can also serve as a physical mimic for biological
adhesion, where cells use a variety of dynamic binding
molecules to stick to each other and to surfaces.31 To this
end, biomimetic emulsion droplets have been successfully
functionalized with adhesive mobile proteins, such as biotin–
streptavidin complexes,32,33 cadherin ectodomains,34 or other
ligand-binder pairs relevant for immunotherapy.35 Early theore-
tical work expanding on the model of ref. 20 predicts that such
particles could have an equilibrium valence that depends on the
number of available neighboring particles in the system.36

Our previous work shows that monodisperse PDMS oil
droplets functionalized with different flavors of single-stranded
DNA on the surface can self-assemble into structures of tunable
valence.23,25,37–40 Under conditions where DNA bonds are reversi-
ble at room temperature, these systems achieve their equilibrium
valence configuration. These results are predicted by a free-energy
functional that takes into account the molecular properties of the
system, including DNA binding strength, flexibility, steric repul-
sion, and concentration.41 Optimizing for valence two, the self-
assembly of complementary DNA-coated droplets yields linear
colloidomer chains.23 Further programming the secondary inter-
actions along the chains offers a physical model system to
probe the energy landscape of biopolymer folding, and for
building small ‘foldamer’ structures that can serve as the basis
for larger scale assemblies.42–44 A complementary work demon-
strated the formation of reconfigurable colloidal molecules
using polydisperse droplets surrounded by ligands.45 It has
also been shown previously through both experiments and
simulation studies that anisotropic interactions between
polymer-grafted nanoparticles (NPs)46–49 can result in self-
assembly of sheets and string-like structures. The graft density
of the polymers and the relative size of the graft to the NP can
play a crucial role in determining the kind of structures
observed during self-assembly, quite analogous to how the
density of the mobile DNA binders on the surface of oil droplets
can be used to tune the droplet valence.

Motivated by these experimental studies, our work develops a
coarse-grained molecular dynamics (CGMD) simulation model
and framework to study the self-assembly of these colloidal chains

with mobile binders, and their subsequent folding. The crucial
feature of our model is the use of explicit mobile linkers with
bonds between complementary binding partners. Prior work on
these types of systems used implicit models of binding between
neighboring droplets via the formation of adhesion patches,
and some models included approximations to account for the
dynamics of adhesion.26,36,50–53 The use of explicit mobile
binders allows us to test the underlying assumptions in a more
realistic model, albeit at the cost of additional complexity. For
example, our model explicitly shows how steric repulsion
between binders (designed to mimic electrostatic repulsion
between DNA strands) affects the adhesion patch size and the
concentration of binders therein. These results in turn explain
the overall valence distribution that results from the assembly
process. To demonstrate the capabilities of our model,
we describe the parameters that optimize the formation of
colloidal chains under kinetic control, and show that it exhibits
the folding behavior of two-dimensional colloidal chains
commensurate with what has been recently demonstrated
experimentally.44 Our scheme lays the groundwork for studying
the mechano-sensitive effects of mobile binders at interfaces,
including the role of catch bonds, lateral interactions, or
cooperativity in strengthening adhesions.34,54

2 Description of the model
2.1 Coarse-grained model for colloidal particles with explicit
mobile binders

The central unit of our simulation model is a droplet, as shown
in Fig. 1a. Each droplet consists of a central spherical particle of
radius R (type A) with Nb binders distributed on the surface.
Each binder is composed of two particles – the outer particle
(type C or D) is responsible for binding complementary partners,
while the inner one (type B) is used to modulate excluded volume
between binders. The positions of the binders are initialized in a
‘‘Fibonacci’’ arrangement to prevent overlap between any adjacent
binders in the initial configurations.55 This pair of particles
mimics the combination of the double-stranded tether and the
single-stranded sticky-end DNA used in experiments23 (Fig. 1a).
This configuration also allows us to apply an angular term to tune
the propensity of the binder to stand vertically from the surface.
The binders diffuse on the surface25 due to a harmonic bond
between the center of the droplet and that of the inner binder
particle with a spring constant kAB and rest length l0

AB.
The inner and outer particles in the binder are similarly held

together by a harmonic bond with spring constant kBC and
lBC = rB + rC, the sum of their radii. To have the binder stick
outward from the droplet, the two binder particles are forced to
align along the radial vector from the center of the droplet, by
introducing a harmonic angular potential between the triplet of
particles with parameters kABC and rest angle y0

ABC = 1801. In
each case, the spring constants are chosen such that the

thermal standard deviation s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k

p
(where kB is the

Boltzmann’s constant) is a small fraction of the rest length or
angle (see Table S5, ESI†). As a trade-off between enforcing rigid
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bonds and using an infinitesimal MD time step, we chose to
use spring constants where the standard deviation is 1–2%.

2.2 Non-bonded interactions

To prevent overlap between particles, we use a soft repulsion
given by

Usoft rð Þ ¼
esoft 1$ r

rcut

" #4
" #

if ro rcut

0 if r % rcut

8
>><

>>:
; (1)

a smoothed version of which (Section A1) is applied between all
particle types except between pairs of outer binder particles of
complementary types (otherwise repulsion can prevent
binding). Here, esoft is the strength of the interaction potential
(in units of kBT) and rcut is the cut-off distance, as shown by the
dotted green curve in Fig. 8. By tuning the effective diameter of B
particles, we tune the steric repulsion between adjacent binders,
which corresponds to the case of altering the screening of the
electrostatic interactions between DNA strands on the surface.41

Our CGMD model can be used to study droplet interactions
in three dimensions, but we add an optional confining potential
for comparison with recent experiments where droplets are

found in a plane due to the effect of gravity. To replicate a
quasi two-dimensional arrangement in our system, we use a
force-shifted Lennard-Jones wall potential56 on each droplet,
between a fixed z-position and the center of the droplet A
particle. The origins of the walls are given by (0,0,2.5R) and
(0,0, $2.5R).

2.3 Dynamic bonding model

We model interactions between binders through covalent
bonds. To do so, we develop a plugin to HOOMD-Blue57,58 that
builds upon a model for epoxy binding developed in ref. 59.
Adhesive bonds form only between complementary outer binder
particles of respective droplets, as shown in Fig. 1b. In the simplest
case, we have a mixture of droplets containing outer binder
particles that are 100% of types C and D, respectively. The model
allows for individual droplets to contain mixtures of binder types,
and there may be many more than two types, as designated by the
user. In this study, harmonic bonds are added with spring con-
stant kdyn and length ldyn = rC + rD, the sum of the radii of particles
forming a bond. Here, we choose harmonic bonds, but any form of
bond implemented in HOOMD-Blue could be used, since our
algorithm only changes the bond table within the MD simulation,
and does not compute or apply forces.‡

In our approach, we enforce that each binder can only partici-
pate in one possible binding reaction at a time, such that all binding
events are independent. In this case, each reaction can be char-
acterized as a two-state reaction, where the effective free energy
difference between a bound and an unbound state is given by

DG ¼ kBT ln
kon
koff

" #
& e (2)

Here, kon and koff are the rate constants for binding and unbinding,
respectively. Below, we tune e to modulate the affinity between
individual binders.

In Section A2 we describe details of the algorithm for
binding and unbinding, satisfying detailed balance. Addition-
ally, in Section A3 we describe how the binding and unbinding
rates are made temperature dependent in such a way that the
fraction of bound pairs at the equilibrium distance tends
smoothly to zero at high T, with 50% bound pairs at a specified
melting temperature Tmelt (Fig. 9).

2.4 Comparison of model and experiment geometry

While this CGMD model is generic, Fig. 10 shows how the
geometry can be compared to the experimental setup in ref. 23.
The radius of one binder sphere corresponds to the sticky end of
length B5.1 nm, which is our reduced unit of length. Therefore,
a droplet radius of R = 300 corresponds to the droplet size of
B1530 nm used in ref. 23. Smaller particle sizes studied in
Section 4 are also used in experiments.

Practically, our simulations are computationally limited to
hundreds of binders per droplet. Therefore, we equate the scale

Fig. 1 (a) The initial configuration of a droplet with binders adhered to its
surface, arrayed in their initial ‘‘Fibonacci’’ structure. As shown in the inset,
each binder consists of two constituent particles, which in the case of
DNA corresponds to a spacer double-stranded sequence and a single
stranded sequence which is available to bind to a complementary strand.
(b) A schematic showing dynamic binding between the outer binder
particles of two droplets. Different particle types used in our python
framework are schematically labeled A–D, with C and D representing a
pair of complementary binders.

‡ The Metropolis criterion employed for binding/unbinding described later
requires knowing the energy of adding or removing a bond. At this time only a
harmonic interaction is supported, but this can be trivially extended.
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of the simulations to experiments by matching the excluded
volume of all binders to that of DNA surface coverage in the
experiment. More specifically, the surface coverage, p is defined as

p ¼ 4prB2Nb

4pR2
¼ Nb

rB
R

$ %2
: (3)

In the experiment, for droplets of radius R = 1530 nm, an
effective repulsive radius of DNA of 1.5 nm,41,60,61 and an
estimated 1'103–2'104 DNA strands,23,41 p ranges from
B0.001–0.02 or 0.1–2% coverage. For many simulations below,
we use rB = 1, R = 50, and Nb = 100, in which case p = 0.04. From
this perspective, each binder plays the collective role of hun-
dreds of DNA.

3 Simulation methods
MD simulations62 of droplets coated with mobile binders were
performed using HOOMD-blue version 2.9.6.57,58,63 The Lange-
vin integrator64 was used to integrate all particles forward in
time. Two different values of the drag coefficient g were used:
one for the droplets (gA) and the other for the binders (gbinder).

The equation of motion for each particle i in Langevin
dynamics65 is given by:

mi
€~ri tð Þ ¼ ~Fi $ gi _~ri tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gikBT

p
~Z tð Þ (4)

where, mi is the mass of the particle, kB is the Boltzmann

constant, gi is the drag coefficient, _~riðtÞ is the velocity of the

particle, ~Fi ¼ $rUi is the force on particle i derived from the
total potential energy function of the system, and Z(t) is the
delta-correlated random white noise, with zero mean and unit
variance. We use the tree neighbor list66,67 to accelerate non-
bonded calculations, and in the construction of our list of
possible pairs to bond as described above.

4 Results and discussion
4.1 Main objectives

In this section, we optimize simulation conditions to robustly
self-assemble long colloidomers, without branched structures. We
explore both the molecular properties of the system (droplet radius,
binder concentration, and binder interaction strength), and the
experimental conditions for assembly (particle concentration and

solution viscosity). The detailed parameters used for our MD
simulations are listed in Tables S5–S8 (ESI†). Our results indicate
that kinetic factors can be rationally employed to target the desired
outcome with high yield and fidelity for fixed-time experiments. We
subsequently show that our model allows us to study the folding
process for colloidomer chains.

4.2 Adhesion patch formation is a two-stage process for high
bond strengths

The formation of chains requires that each droplet has two
contacting neighbors. Monomers first form dimers, after which
they either combine with monomers to make trimers, or with
other dimers to make tetramers. We therefore first probe the
physical processes involved in forming a patch in a dimer or trimer
configuration, and then consider de novo assembly in Section 4.5.

Simulations of patch formation begin with dimers and
trimers in an initial configuration with a single bond already
formed between the droplets. Subsequently, the patches pro-
gressively grow until they reach steady-state. We find that patch
formation (at intermediate and high binding affinities, around
e4 13) happens in two stages, as illustrated in Fig. 2 (see Fig. S1,
ESI†). Fitting the fraction of unbound binders versus time with a
double exponential function reveals two time scales, as shown in
Section S1.1 (ESI†). Initially, the fast time scale of recruitment of
binders describes the formation of a stable adhesion patch (t1),
while the saturation of the patch is captured by a 1–2 orders of
magnitude slower timescale (t2). Table S1 (ESI†) reports values of
t1 and t2 for some of these conditions. Slowing binder motion by
increasing gbinder or slowing binding by decreasing kon at fixed
bond strength e increase the recruitment time t1, as shown in
Fig. S2 (ESI†); these changes should increase the yield of higher
valences, discussed in Section 4.5. Modulation of kon could
perhaps be realized in experiment by modifying the length of
the spacer molecule, which would change the probability of
finding a binding partner. The two-step patch recruitment has
important consequences for the kinetically controlled assembly
mechanism of colloidal chains at high e.

4.3 Optimizing bond strength, droplet size, and binder
concentration for colloidomerization

Optimal conditions for colloidomerization require considering
both the dimer and the trimer assembly, since we must find a

Fig. 2 Illustration of adhesion patch formation for a dimer of droplets. Patch formation under conditions with high binding affinity occurs via a process
with two time scales (t1 and t2), one for recruitment of most linkers into a patch, and a second proceeding to saturation. The conditions for this particular
simulation are R = 50, Nb = 100 and e = 20.7. See Section S1.1 and Table S1 (ESI†) for more details.
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condition where not all binders are exhausted in the dimer,
where B50% of binders are available on a terminal droplet of a
trimer, and where very few are left on the trimer middle droplet,
preventing branching. Fig. 3a shows a systematic study of the
self-assembly of droplets of varying R and e, for a fixed total
number of binders Nb = 100. The heat maps show the fraction
of unbound binders in three configurations: a droplet–droplet
dimer, a terminal droplet in a trimer, and a central droplet in a
trimer. Conditions for colloidomerization are satisfied in the
region where the dashed ovals overlap. Later, we choose R = 50,
e = 20.7 and Nb = 100 to demonstrate that this condition results
in the robust assembly of colloidomers.

The number of binders in a patch at equilibrium is dictated
by the free energy of patch formation, which can be considered
as the difference in the chemical potential inside and outside
the patch.41 The driving force for a binder to enter the adhesion
patch is determined by the energy of forming individual bonds,
e, and opposed by steric repulsion between binders, the stretch-
ing of binders at the interface, as well as the loss of entropy as
the binder motion is constrained in a patch. As e increases, the
fraction of free binders decreases monotonically in the case of
both dimers and trimers until it reaches an asymptotic value
that is limited by the steric repulsion between binders.

Similarly, increasing droplet size in the strong binding limit
recruits progressively more binders into the patch, since there
is more space at the interface between larger droplets (Fig. 3a).
For large R in both dimers and trimers, we observe that the

transition from no binding to all binders in the patch is very
sharp as energy gain overtakes entropic losses without a penalty
from steric repulsion. In contrast, for small radii, the recruit-
ment of binders into the patch is more gradual with e due to
crowding.

Changing the droplet size not only changes the cost of
packing binders into a patch, but also the entropic cost of patch
formation, which increases with droplet size. Therefore, at inter-
mediate values of e we observe a non-monotonic recruitment of
binders into the patch as a function of droplet size. While
crowding dominates in small droplets, entropic costs dominate
in large droplets, giving rise to an optimal size for binder
recruitment, e.g. R = 120 for e = 15 in the dimer configuration.
We thus show that competition between the energy of binding,
steric repulsion between binders, and the entropy of free binders
can collectively result in non-monotonic patch density when
tuning e.g. the droplet radius.

We can now consider the transition from dimer to trimer,
where two adhesion patches are formed. Competition between
the two adhesion patches results in an approximately equal
split of binders on the middle droplet; therefore, even in cases
where more than half of binders can pack into a patch, only
half of the binders on each terminal droplet are exhausted. This
situation occurs for higher e, whereas for weaker binding,
entropy dominates and many binders remain outside of the
two adhesion patches on both the central and terminal dro-
plets. We note that for high e, rearrangement of binders

Fig. 3 Heat maps showing the percentage of binders remaining on the surface of a droplet in a dimer geometry, and on the terminal or central droplets
in a trimer geometry. Conditions predicted to be ‘‘good’’ for colloidomer assembly are indicated by dashed ovals, and selected conditions marked by red
open circles are illustrated in Fig. 4. (a) Fraction of remaining binders at fixed number of binders, varying droplet radius and bond strength. (b) Fraction of
remaining binders at fixed high bond strength, varying number of binders and droplet radius.
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between patches is expected to be slow. In Fig. S3 (ESI†) we
show that there is some asymmetry between patches except for
weak binding, and therefore conclude that the onset of effec-
tively irreversible patch formation occurs roughly at e B 10.

In Fig. 3b we fix e = 20.7 at the goldilocks value from Fig. 3a,
and explore the effect of varying binder surface coverage. In this
strong binding regime, we eventually saturate the geometric
limit set by the droplet size and binder repulsion (see also
Fig. S4, ESI†). If Nb is increased above this limit, it simply
results in additional free binders. For small droplets, we
quickly reach the situation where not all binders on the middle
droplet of a trimer can fit into two patches, but we see that for
larger droplets there is a very wide tolerance for binder concen-
tration which might be useful for colloidomerization.

In summary, for certain parameters (including e = 20.7,
R = 50, Nb = 100) we find that o100% of the binders are recruited
for dimers, while in trimers patches contain exactly half of the
binders due to the competition between neighbors. This is an
optimal situation for the self-assembly of colloidomers, and we
proceed to study assembly of these droplets in Section 4.5.

4.4 Illustrating a molecular recipe for colloidomers

Fig. 4 illustrates scenarios that are predicted to be good or bad for
colloidomer assembly, as described above; full trajectories for

these conditions are also shown in Supplementary movies M1
and M2.† Considering the dimer, we see that large droplets and
high e allow almost all the binders to fit into a patch, which is
detrimental for colloidomer assembly because it terminates the
polymerization reaction. Decreasing droplet size to R = 50 limits
binders due to their steric repulsion in the patch, leaving just
enough binders to seed a trimer with no remaining binders on
the middle droplet, thus imposing the self-assembly of linear
chains. Lowering the droplet size further or decreasing the
binding strength leaves too many binders free on the trimer
middle droplet at equilibrium, which would eventually lead to the
self-assembly of branched colloidomers. Fig. 4b illustrates that
for a fixed droplet size and bond strength, the number of binders
must be chosen such that dimers have free binders to grow the
chain, while trimers have no free binders for branching via the
middle droplet, as is the case for Nb = 100. On the other hand, Nb

= 50 has almost all the binders (97%) recruited in the case of
the dimer, terminating colloidomer assembly. For Nb = 300, the
central droplet of a trimer has 21% binders remaining on the
surface, which would result in the branching of colloidomers.

4.5 Kinetic optimization of colloidomerization

Beyond dimers and trimers, the self-assembly of chains requires
further optimization of competing experimental timescales.

Fig. 4 Illustrations showing the dimer and trimer geometries simulated in Fig. 3, and the ‘‘molecular’’ features of our droplet model that can be tuned to
optimize for linear chains. Both results for dimers and trimers must be considered to predict the resulting polymerization reaction. (a) Varying R and e at
fixed number of binders Nb = 100, with dimer on left and trimer on right. (b) Varying the number of binders Nb at fixed R = 50 and e = 20.7. In (a) and (b),
the % of free binders available (averaged over 10 independent runs) is indicated in parentheses beside each of these conditions for a droplet in a dimer as
well as the terminal and central droplet(s) of a trimer. Based on the values of the % of free binders available, the conditions which are not suitable for
colloidomer assembly (almost all used up in dimer, too many remaining on central droplet in a trimer) are indicated by a red X.
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Combining a 1 : 1 mixture of droplets containing complemen-
tary binders of particles type ‘C’ and ‘D’ mimics the experiments
in ref. 23. Tuning the density f (area fraction) of droplets
modulates the thermodynamic driving force for assembly, but
also controls the collision time between droplets and allows us
to optimize the formation of long colloidomers out of equili-
brium for fixed time of assembly. Given that the droplets are
undergoing simple diffusion, the collision time tcollision B
hl2i/D, where l is the distance between droplets and D is the
diffusion constant. In two dimensions, l2 B f$1, such that the
collision time is inversely proportional to the droplet density.
The Einstein relation gives D = kBT/g, therefore tcollision B g, the
drag on a particle.

In Fig. 5, we show that by fixing the previously optimized R,
Nb, e parameters and varying f and gA, we can maximize the
yield of colloidomers (with results from two lower values of e
shown in Fig. S8–S10, ESI†). Previous arguments suggest that
higher valences would be preferred at equilibrium,50–52 but in
this case our goal is to maximize the yield of linear chains. We
therefore adopt the strategy of kinetic control, where we predict
that chains can be formed whenever adhesion patches form
and exhaust approximately half of available binders before

subsequent droplet collisions and patch formation, based on
the strategies in the previous section. To achieve this control,
we first vary the droplet density f. Since droplet collisions are
fast in dense suspensions, we observe many droplets with
valence three or four at the highest initial density. At lower
densities, valence two predominates as predicted based on our
dimer or trimer experiments; whenever that does not occur
‘‘defects’’ result, producing branched structures.

A second way to modulate our kinetic yield of chains can be
achieved is by increasing gA for the droplet, which slows down
the collision rates without changing the thermodynamic driv-
ing force for assembly and increases the yield of linear chains,
while also avoiding loop formation (Fig. 5-upper row); full
trajectories for the upper row are also provided in Supplemen-
tary movie M3.† As described in the simulation methods
(Section 3), it is important to note that we control drag on the
central droplet and binders separately; here we only varied the
drag on the droplet particle ‘A’ (gA) and kept gbinder at a very
small constant value, because increasing g for each of the
binder particles can also slow down the diffusion of the droplet
as a whole. We also predict that decreasing the binding rate kon

at fixed bond strength e would be detrimental to our goal of

Fig. 5 Effect of area fraction f and the droplet drag coefficient gA on self-assembly in a 1 : 1 mixture of 81 R = 50 droplets containing Nb = 100
complementary binders of type C and D (with one surplus droplet of C/D). e = 20.7. Here, f = 0.1, 0.2, 0.3, 0.4 (increasing from left to right) and gA = 0.01,
1.0 (bottom and top). Every system is the same size, but each snapshot has identically sized field of view by area, meaning droplets are cropped at f o
0.4. Droplets are colored according to structure as shown in the key. Each condition is accompanied with bar charts representing quantities computed
over 10 independent runs that can quantitatively help in collectively deciding the ‘winning condition’ for colloidomer formation. These quantities are
labeled in the second key, and described in detail in the main text, and for each quantity, optimal would be a larger bar. The few droplets that have valence
3 or higher are also marked with a ‘cross’ in the representative configurations to reinforce that even the branched structures which are considered part of
‘errors’ have long segments of droplets with valence = 2. The condition we consider optimal, f = 0.3, gA = 1.0 is highlighted with a red box. Snapshots at
f = 0.4 show periodic images to emphasize that structures are extended across the periodic boundaries. The distributions of structures obtained, particle
valences, and of colloidomer chain lengths for each of these 8 conditions are illustrated in Fig. S5–S7 (ESI†) respectively. Timing data for these simulations
as well as larger systems are given in Tables S2 and S3 (ESI†).
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assembling chains, since as described earlier it would take
longer to assemble a patch as compared to the collision time of
droplets (see Fig. S2, ESI†). The relative speeds of the two
competing processes of patch recruitment and droplet–droplet
collision can thus be tuned to dictate the kind of structures
observed in self-assembly and provide more insights on kinetic
control.

More quantitatively, we compute the distribution of structures
produced at the end of 108 steps, averaging over 10 independent
simulations. We partition every interconnected assembly using an
algorithm described in Section S2.1 (ESI†), and then classify these
structures as monomers, dimers, linear chains (N Z 3), loops, and
‘other’ (at least one droplet has valence Z3). To define the best
conditions for chain assembly, we sought to maximize three
quantities that are shown in bar charts next to each condition in
Fig. 5: (1) fraction of droplets present in structures that are not
monomers or branched—which we call ‘‘success’’ (purple bar), (2)
fraction of droplets with valence 2 (green bar), and (3) the average
maximum chain length (blue bar, which we scale by the highest
value hNmaxihighest = 20 observed for the condition f = 0.4, gA = 1.0).

While conditions at f = 0.4 have the longest chains and a
high fraction of particles with valence 2, there are also many
‘errors’ due to chain branching, and so we eliminate high
density. Conditions at lower f have fewer errors but also shorter
chains. Based on maximizing these three metrics, we choose the
condition (f = 0.3, gA = 1.0) as our best, and we provide more
details about the structures observed at this condition in Fig. 6.

In Fig. 6a, we show the evolution of bond valence versus
time, which reflects on average, colloidomers are formed by
conversion of monomers to dimers, followed by the conversion

of dimers to trimers. Fig. 6b shows the distribution of valence,
and for this condition, we observe that only E5% of droplets had
valence higher than 2, which is indicative of a small number of
branching points in chains. This result actually has a higher yield
of linear chains than the best condition found experimentally in
ref. 23. However, even a small fraction of droplets with valence 3
can prevent extremely high quality assembly of only chains, as
shown in Fig. 6c, where we observe that E30% of droplets are
present in structures that contain at least one particle of valence 3
(cyan bar), and hence are considered as errors. Finally, Fig. 6d
shows that the distribution of chain lengths seems to follow an
exponential distribution, with an average length longer than in
the optimal conditions in ref. 23. An exponential distribution
implies that it will be challenging to obtain a large median chain
length via a simple self-assembly strategy. This comports with
experimental findings, where for efficiency, a new methodology
was developed to engineer longer chains using magnetic fields
applied to a dispersion in a ferrofluid.44

4.6 Application of the model to colloidomer folding

Folding of colloidomer chains and the study of their pathways
towards stable structures is an area of active research.44 Here,
we demonstrate that our CG model can capture experimentally
relevant folding behavior of colloidomer chains and use this to
highlight additional features of our CG framework.

Our CG framework allows the user to generate an initial linear
colloidomer chain of any length and an arbitrary sequence of
binder types. Moreover, there can be multiple types of binders on
the same droplet. To study colloidomer folding, we mimic the
experimental setup of having two types of binders on the same
droplet, C and D, each of which is self-complementary. Here, C–C
bonds are intended to make up the backbone of the chain, while
D–D bonds are the ones driving folding. As described earlier, our
dynamic bonding model can also have temperature dependent
binding/unbinding (see Section A3 for full details). We therefore
choose different melting temperatures such that D–D bonds
melt at a lower temperature, while C–C bonds stay in place.

Here, we generate folded structures using a square wave
heating and cooling cycle. During the first segment at higher
temperature, the backbone adhesion patches form and the
chain explores unfolded configurations. After that, repeated
cooling and heating are used to generate low energy structures.

In contrast to our work in Section 4.3 on optimizing colloi-
domer assembly, here we do want to produce higher valences.
This is achieved through the use of smaller R = 20 and lower
eDD = 4.6, where reversible bonding allows for rearrangements
such that equilibrated structures form. Low R has the addi-
tional benefit of faster folding times, allowing us to generate
many structures in relatively little computational time.

As a benchmark case to confirm that our model would be
applicable in future studies of colloidomer chain folding, we
investigate the heptamer case consisting of N = 7 droplets that
has been experimentally realized in ref. 44. There are four possible
rigid structures which are the low energy states of the heptamer.
Scanning a small range of R and eDD over 15 heating–cooling cycles
we uncover the aforementioned condition (R = 20, eDD = 4.6) where

Fig. 6 Best choice of parameters for obtaining maximum quality of
colloidomer chains: Nb = 100, R = 50, f = 0.3, e = 20.7, gA = 1.0. (a)
Fraction of droplets in each possible valence versus time. (b) Final valence
distribution obtained across the 10 simulations. Open squares show
optimal valence distribution from Fig. 2g in ref. 23. (c) A combined
histogram showing the fraction of the total number of droplets present
as a particular kind of structure from 10 different final configurations for
this condition. (d) Distribution of linear chain lengths P(N) obtained for this
condition, with the errorbars computed using a bootstrapping procedure
described in Section S2.3 (ESI†).68,69 Open squares show experimental
length distribution from Fig. 3a in ref. 23.
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all four possible structures are observed in a single simulation, as
shown in Fig. 7a, and Supplementary movie M4.†

Having obtained all structures in a single long simulation,
we wished to quantify the population of each stable folded
state. We ran 300 independent simulations each consisting of 5
folding/unfolding cycles and show in Fig. 7b the yields of each
structure; the ladder and the chevron structures are kinetically
accessible and have a higher yield than the rocket and flower
geometries, in good agreement with ref. 44.

From these preliminary studies of folding within our model,
we have learned several key principles. Firstly, we only observe
the flower structure—which has the highest bond count—when
eDD is very low; this is because folding to this structure is not
fully downhill, and requires the breaking of a droplet–droplet
bond (dissolving an entire adhesion patch) to reach the final
state. Second, every droplet contains both C and D binders, and
so it could be a concern that the D’s become exhausted in
forming backbone bonds, which would tend to form faster than

bonds farther away in sequence space. In our simulation, this is
prevented by choosing R and Nb where the patch is fully
saturated by C’s (see Fig. S4 and S11, ESI†), meaning that there
is no opportunity for D’s to enter the backbone.

Moreover, the exclusion of D’s from the adhesion patches
means there is a smaller area for them to occupy, which results in
faster formation of bonds during the folding process. The factors
which contribute to the speed of folding are also important to our
results, since both in simulations and in experiments we do not
want to wait arbitrarily long times in the cooling phase when
generating low energy structures.

5 Conclusions
In this work, we report a CG model and simulation framework
for colloidal liquid droplets with explicit mobile binders. The
core of this model is a dynamic bonding protocol that satisfies
detailed balance, that is very flexible in allowing one to control
separately binding and unbinding rate constants, as well as
implementing a tunable temperature dependence. Both the
dynamic bonding code and the pyColloidomer framework are
easy to use and freely available with examples from https://
github.com/hocky-research-group/pyColloidomer_2023.

Previous modeling works have studied colloidal liquid dro-
plets with implicit mobile linkers, such that bonds are formed
or removed based on a statistical mechanical model that
predicts the strength of a patch and which can include time-
scales for bonding. Our model with explicit binders comple-
ments these studies—while having many explicit binders
makes the model higher resolution, and hence slower, it also
allows us to build insight into the adhesion patch formation
process. For example, the use of explicit binders allowed us to
see the effects of excluding particles from patches once they are
formed, which had major consequences for ensuring valence = 2
structures in optimizing colloidomer assembly, and in preventing
binders from being used up in colloidomer backbones in our
folding studies. We also observe that above a certain binding
strength (around e 4 13), the growth of a patch can follow a
process characterized by two timescales, where saturation can
take much longer than initial formation and recruitment. This
could have an important effect at higher densities and lower
viscosities, where droplet collisions can take place before patches
are fully recruited; this effect could be incorporated into simula-
tion models that use a parameterized equation for the recruit-
ment process, such as recently done in ref. 53. The separation of
the timescales for the motion of the droplet and for the binders
in our CGMD model can also be applied in the case of systems
such as polymer-grafted nanoparticles (NPs)46–49 which can help
in kinetically controlling the interactions and hence the for-
mation of non-equilibrium structures such as sheets and strings.

In ongoing work, we are now using these explicit binders to
test the contributions to the free energy of patch formation and
patch shape predicted experimentally in ref. 41. We are also
expanding our dynamic bonding model to include the effect of
force on unbinding rates54,70,71 to probe its effect on adhesion

Fig. 7 (a) Folding and unfolding cycles shown for a heptamer of droplets
with 100 ‘C’ binders and 100 ‘D’ binders on each droplet, R = 20, eDD = 4.6,
eCC = N, and gA = 0.1. Tmelt = 1.2 for D–D bonds and temperature is cycled
between 1.0 and 1.3. The variation of the average bond valence hBni (red)
with simulation time is shown, as the temperature (navy blue) is alternately
raised and lowered. An expected hBni = 1.7 is obtained when the structures
unfold back to chains. (b) Histogram showing the yield of each of the four
possible folded rigid structures (ladder, chevron, rocket and flower)44 from
a total of 1500 folded structures obtained from 300 independent simula-
tions each consisting of 5 folding and unfolding cycles. (only 5/1500 did
not reach one of these structures, and are not shown in this histogram).
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patch formation,23,41 a dependence which is known to play an
important role in the behavior of biomimetic assemblies of
cellular adhesion proteins.33 Preliminary data shows that our
model captures observed behavior for folding of two dimen-
sional colloidomer homopolymer chains; in future work we can
use our model to compare the structures and pathways gener-
ated through the use of explicit binders with those using very
reduced models.44,72 We can also trivially expand our folding
studies to three dimensions by removing confinement, which
will allow us to detail folding pathways in ways that are difficult
to quantify in experiment.

Our CG model is quite versatile and can also be adapted to
represent the behavior of analogous systems of lipid bilayers
mentioned earlier;24–29 it can also be used to explore the
assembly of colloidal nanoparticles coated with ligands that
bond via formation of reversible dynamic bonds with secondary
linker molecules.73,74 Linker-mediated colloidal assembly is a
ripe area for exploration because the mobility of the secondary
linkers and the reversibility in bonding can lead to formation of
kinetically controlled structures such as string-like gels. Tuning
the ratio of the linker to the colloid concentration73,74 can
appropriately control the phase behavior. It would be fascinating
to explore the consequences of assembling our particles with
mobile binders using explicit free linkers with complementary
binding sites rather than using direct binding.

Although our model captures what we believe to be the most
crucial features of systems with mobile binding sites, there are
simplifications whose effects we would like to investigate in the
future. For example, the presence of a spring between the
center of the droplet and binders allows the binders’ vertical
position to vary, and by tuning this parameter we can explore
the tendency to form a planar adhesion patch—however, we are
missing the lateral coupling between binders that could be
important in the case of deformable droplets. Our work also
currently employs harmonic springs, and we plan to investigate
the differences where more complex stretching behavior is
taken into account.41 Our powerful and flexible framework is
freely available and simple to use, and so we hope others will
build upon our work and take these studies in new directions.
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Appendices

A1 Non-bonded interaction details

Usoft rð Þ ¼
esoft 1$ r

rcut

" #4
" #

if ro rcut

0 if r % rcut

8
>><

>>:
(A1)

Here, esoft is the strength of the interaction potential (in
units of kBT) and rcut is the cut-off distance, as shown by the
dotted green curve in Fig. 8. A smoothing function was applied

to this potential Usoft(r) that results in both the potential energy
and the force going smoothly to 0 at r = rcut, in this case the
XLPOR smoothing75 function S(r), given by

S rð Þ ¼

1 if ro ron

rcut2 $ r2
& '2

rcut2 þ 2r2 $ 3ron2
& '

rcut2 $ ron2ð Þ3
if ron ) r ) rcut

0 if r4 rcut

8
>>>>><

>>>>>:

(A2)

Here, ron is chosen as the point at which the smoothing
starts. We set ron = 0.1 rcut for our simulations. The modified
potential is shown in Fig. 8 and is given by

Vsoft rð Þ ¼
SðrÞUsoftðrÞ if ron o rcut

UsoftðrÞ $Usoft rcutð Þ if ron % rcut

(
(A3)

The soft potential was implemented by using HOOMD-
Blue’s tabulated potential option (with 1000 interpolation
points between rmin = 0 and rmax = 1.05 rcut).

The wall potential is given by a shifted LJ potential with rcut =
21/6(2R).

Vwall(r) = VFLJ(r) $ VFLJ(rcut) (A4)

where, VFLJ(r), the force-shifted Lennard-Jones pair potential is
given by,

VFLJ rð Þ ¼ 4ewall
s
r

$ %12
$a s

r

$ %6( )
þ DVðrÞ if ro rcut

0 if r % rcut

8
<

: (A5)

DVðrÞ ¼ $ r$ rcutð Þ@VLJ

@r
rcutð Þ (A6)

where a = 1.

Fig. 8 The soft repulsive pair potential V(r) as a function of the distance r
between two binder particles of radius rC = 1. In this figure, rcut = 2 is
indicated by the vertical dotted line. The green dotted curve shows the
potential U(r) without any smoothing function applied to it and the red
solid curve shows the potential V(r) after it is multiplied by a suitable
smoothing function S(r).
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A2 Algorithm for binding and unbinding

Every n steps of the MD simulation (run using HOOMD-Blue), a
Dynamic Bond Updater is called. The Dynamic Bond Updater is
an open source C++ plugin (based on previous work on epoxy
curing59) that stochastically adds or removes dynamic bonds
during the course of the MD simulation. If there is more than
one dynamic bond type present in the system, the Bond
Updater has to be configured for each independently.

Each time the bond updater is called, it first iterates over all
the existing dynamic bonds to attempt unbinding. The prob-
ability of unbinding is calculated, given by

P0
off = nkoff dt (A7)

where, dt is the timestep of the MD simulation. For each bond
in sequence, a uniform random number r A [0,1) is generated,
and if r o Poff the bond is added to a list of bonds to be
removed from the bond table. Once all the possible unbinding
events are taken into consideration, we iterate over the list of
bonds to be removed and perform unbinding.

After performing unbinding, we create a list of proposed
bonds to add. We iterate over particles which were unbound at
the start of the binding update (but not those freed by unbinding),
and find the closest available complementary particle which
is also unbound and whose distance from the particle under
consideration is between lmin and lmax (by iterating over HOOMD-
Blue’s neighbor list). If an eligible neighbor exists, and neither
particle is already in the proposed bonds list, then this pair is
appended. Our binding algorithm is inspired by (but not iden-
tical) to the implementations in ref. 76–78.

We then iterate over the proposed bond list, generating new
uniform random numbers and creating a bond if r o Pon. By
default, P0

on = nkon dt. Here we choose kon such that kon(ndt) = 1,
i.e. the fastest possible reaction rate for a specific time dis-
cretization because we want to form as many bonds as possible
without rejecting too many Monte Carlo79 moves. We note that
as a consequence, this scheme does not intend to match
detailed chemical kinetics of the underlying processes, which
would require schemes that would be more computationally
demanding in this case such as the Gillespie algorithm80 used
in ref. 51. To ensure detailed balance for individual binding
reactions, the probability of binding is modified71,81 such that
Pon = P0

one$DU(d)/kBT, where DU is the additional energy added by
creating a bond of length d, possibly away from its rest length.
Since we are only using harmonic bonds in this work,

PonðdÞ ¼ P0
one
$kdynðd$ldynÞ2=ð2kBTÞ; (A8)

where kBT is the instantaneous temperature of the system.
As in ref. 81, we are putting all of the energetic dependence

into the binding step and none in the unbinding step,
although other choices are possible.71 The stretch dependent
binding rates prevents formation of bonds which are very
unlikely, so this helps in preventing non-equilibrium heating
of the system. This choice of stretch-dependent on rate and
constant off rate does not correspond to our belief about the

detailed molecular kinetics of DNA unbinding, but rather is
an algorithmic choice that is valid because we are not cur-
rently interested in including the detailed effect of stretching
on the rates, although we are planning to pursue this direc-
tion in the future.54,70,71

Detailed balance for the overall binding/unbinding reaction
is satisfied to the best of our ability when performing a large set
of binding/unbinding reactions at once (as compared to only
doing one single binding/unbinding per trial) by ensuring that
every event is independent such that the probability of the total
change in bonded pairs factorizes, and each individually
satisfies a Metropolis criterion62,79 We ensure independence
by generating a list of possible reactions in a deterministic
order and only allowing a particle to possibly bind with one
other particle. The only possibly weak breaking of detailed
balance comes in the rare situation where upon unbinding,
one or both of the particles was assigned a different binding
partner since it was not bound to the neighbor from whom its
distance is most close to the equilibrium bond length. In
practice, because we use a stiff spring this is very unlikely,
and moreover, the configuration evolves n steps between
binding/unbinding trials, we do not expect this to cause any
substantial non-equilibrium effects.

A3 Temperature dependence of binding/unbinding

Our dynamic bonding model allows us to use non-constant values
of koff, kon. As one example, for this work we have incorporated an
optional dependence of the rate constants on temperature. Since
our binders here might represent double stranded DNA, which
dissociates in a cooperative manner, we implemented an optional
tunable sigmoidal dependence on temperature for the rate con-
stants. Without trying to match the behavior of any specific
module, we implemented a two parameter sigmoidal dependence
on temperature to represent cooperative melting,

g Tð Þ ¼ 1

2
tanh a T $ Tmeltð Þð Þ þ 1½ +; (A9)

kon/off(T) = kinit
on/off(1 $ g(T)) + kmelt

on/off g(T) (A10)

where, kmelt
on/off is the value of the binding (or unbinding) rate

constant after the melting of bonds. The dependence on T $ Tmelt

arises in a two state melting model82 where DHmelt and DSmelt are
taken to be constants; in this case DG ¼ DHmelt $ TDSmelt ¼

DHmelt $ TDHmelt=Tmelt ¼
DHmelt

Tmelt
Tmelt $ Tð Þ / T $ Tmelt; DS =

DH/Tmelt because DG(T = Tmelt) = 0.
Combining these results in for either off or on rates and

DT = T $ Tmelt,

kon=offðTÞ ¼
kmelt
on=off $ kiniton=off

2
tanhðaDTÞ þ

kmelt
on=off þ kiniton=off

2
;

(A11)

such that when DT c 0, k - kmelt and DT { 0, k - kinit. Here,
we can set the steepness of the transition with the parameter a
(which in experiment could be tuned by changing the DNA
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sequence and sequence length). Tmelt should be the tempera-
ture where the fraction of bonds formed is 0.5.

For a two-state model, the bound fraction is given by

fbound Tð Þ ¼ KeqðTÞ
1þ KeqðTÞ

(A12)

where, Keq(T) = kon(T)/koff(T). Ensuring fbound(Tmelt) = 0.5
requires kon(Tmelt) = koff(Tmelt). Therefore

kinit
on + kmelt

on = kinit
off + kmelt

off (A13)

since, g(Tmelt) = 0.5. We choose kmelt
on = 0, so that there is no

binding at T c Tmelt, at which point kmelt
off can be determined

from eqn (A13). Fig. 9(b) shows how fbound depends on Tmelt

using this model.
Combining all of these facts together, we get

konðTÞ ¼ kiniton

1$ tanhðaDTÞ
2

" #
; (A14)

koffðTÞ ¼
kiniton $ 2kinitoff

2
tanhðaDTÞ þ kiniton

2
; (A15)

which satisfy all the correct limits for DT { 0, DT c 0 and
DT = 0.

We note that the on rate expression is the commonly used
Glauber rule83 from Monte Carlo simulations62,79,84 assuming a
difference in (free) energy between two states proportional to
DT as explained above, but here the off rate is a modification of
this Glauber rule that switches between two finite rates rather
than zero and infinity.

A4 Comparison of our droplet model
with experimental geometry
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