
Enhancing Video Analytics Accuracy via Real-time Automated
Camera Parameter Tuning

Sibendu Paul
Purdue University
West Lafayette, USA

Kunal Rao
NEC Laboratories America, Inc.

New Jersey, USA

Giuseppe Coviello
NEC Laboratories America, Inc.

New Jersey, USA

Murugan Sankaradas
NEC Laboratories America, Inc.

New Jersey, USA

Oliver Po
NEC Laboratories America, Inc.

San Jose, USA

Y. Charlie Hu
Purdue University
West Lafayette, USA

Srimat Chakradhar
NEC Laboratories America, Inc.

New Jersey, USA

ABSTRACT
In Video Analytics Pipelines (VAP), Analytics Units (AUs) such as
object detection and face recognition running on remote servers
critically rely on surveillance cameras to capture high-quality video
streams in order to achieve high accuracy. Modern IP cameras come
with a large number of camera parameters that directly a�ect the
quality of the video stream capture. While a few of such parameters,
e.g., exposure, focus, white balance are automatically adjusted by
the camera internally, the remaining ones are not. We denote such
camera parameters as non-automated (NAUTO) parameters. In this
paper, we �rst show that environmental condition changes can
have signi�cant adverse e�ect on the accuracy of insights from
the AUs, but such adverse impact can potentially be mitigated by
dynamically adjusting NAUTO camera parameters in response to
changes in environmental conditions. We then present C��T����,
to our knowledge, the �rst framework that dynamically adapts
NAUTO camera parameters to optimize the accuracy of AUs in a
VAP in response to adverse changes in environmental conditions.
C��T���� is based on SARSA reinforcement learning and it in-
corporates two novel components: a light-weight analytics quality
estimator and a virtual camera that drastically speed up o�ine RL
training. Our controlled experiments and real-world VAP deploy-
ment show that compared to a VAP using the default camera setting,
C��T���� enhances VAP accuracy by detecting 15.9% additional
persons and 2.6%–4.2% additional cars (without any false positives)
in a large enterprise parking lot and 9.7% additional cars in a 5G
smart tra�c intersection scenario, which enables a new usecase of
accurate and reliable automatic vehicle collision prediction (AVCP).
C��T���� opens doors for new ways to signi�cantly enhance
video analytics accuracy beyond incremental improvements from
re�ning deep-learning models.
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1 INTRODUCTION
Signi�cant progress in machine learning and computer vision tech-
niques for analyzing video streams [32], along with the explosive
growth in Internet of Things (IoT), edge computing, and high-
bandwidth access networks such as 5G [15, 45], have led to the
wide adoption of video analytics systems. Such systems deploy
cameras throughout the world to support diverse applications in
entertainment, health-care, retail, automotive, transportation, home
automation, safety, and security market segments. The global video
analytics market is estimated to grow from $5 billion in 2020 to $21
billion by 2027, at a CAGR of 22.70% [21].

A typical video analytics system consists of a video analytics
pipeline (VAP) that starts with one or more surveillance cameras
capturing live feed of the target environment. These live feeds are
sent over a 5G network to servers at the edge of the 5G network
where one or more analytics units (AUs) such as object detection,
face detection, and face recognition use deep learning models to
mine valuable information in the live video streams, as shown in
Figure 1. These AUs critically rely on the cameras to capture high-
quality real-time video streams in order to achieve high accuracy.

Modern IP cameras come with and expose a large number of
camera parameters that direcly a�ect the quality of the video stream
capture. While a few of such parameters, e.g., exposure, focus, white
balance are automatically adjusted by the camera internally, the
remaining camera parameters are not. We denote such camera
parameters as non-automated (NAUTO) parameters.

In this paper, we �rst show that as the environmental conditions
around the cameras change, the quality of video frames captured by
the cameras also changes, and this can adversely a�ect the accuracy
of insights derived by the analytics units. In our experiments, we
kept all automatic parameter setting features turned on and thus
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Figure 1: Video analytics pipeline.

our experiments show that those automatic settings are not enough
to adapt to di�erent environments for better analytics accuracy

Next, we experimentally show that by (manually) dynamically
adjusting a prominent set of NAUTO camera parameters, in par-
ticular, four image appearance parameters including brightness,
contrast, color-saturation (also known as colorfulness), and sharp-
ness, which are available in both PTZ and non-PTZ cameras, it is
possible to mitigate the potential loss in accuracy due to adverse
environmental changes. We chose these NAUTO parameters in
our study because they not only directly a�ect image qualities and
hence AU accuracy but also are challenging to tune due to their
large ranges of values.

Since streaming video analytics systems operate around the
clock (24 hours a day, seven days a week), it is not practical for
humans to manually adjust tens of con�gurable camera parameters
in real-time in response to every environmental change. Therefore,
we propose C��T����, a system that detects and dynamically
adapts to the changes in environmental conditions by automat-
ically adjusting camera parameters in real-time to improve AU
accuracy. C��T���� uses online reinforcement learning (RL) [48]
to continuously learn good camera settings and update the camera
parameters to enhance the accuracy of the AUs in the VAP. In par-
ticular, C��T���� uses SARSA [52], which is faster to train and
achieves slightly better accuracy in our video stream processing
context than other popular RL approaches like Q-learning.

Although RL is a fairly standard technique, applying it to tuning
camera parameters in a real-time video analytics system poses two
unique challenges.

First, implementing online RL requires knowing the reward/penalty
for every action taken during exploration and exploitation. Since no
ground truth for an AU task like face detection is available during
the online operation of a VAP, calculating the reward/penalty due
to an action taken by an RL agent is a key challenge. To address this
challenge, we propose an AU-speci�c analytics quality estimator
that can accurately estimate the accuracy of the AU. Our estimator
is light-weight, and it can run on a low-end PC or a simple IoT
device to process video streams in real-time.

Second, bespoke online RL learning at each camera deployment
setup requires initial RL training, which can potentially take a long
time for two reasons: (1) capturing the environmental condition
changes such as the time-of-the-day e�ect can take a long time, and
(2) taking an action on the real camera (i.e., changing the camera
parameter setting) by using the APIs provided by the camera vendor
incurs a signi�cant delay of about 200 ms. This limits the speed
of state transitions during RL exploration, and hence the training
speed of RL, to about 5 changes (actions) per second. To address
these two sources of RL training ine�ciencies, we propose a novel
concept called virtual camera. A virtual camera mimics (in software)

the e�ect of changing parameters of a physical camera to capture a
scene. There are two key bene�ts of doing this: (1) we can complete
an action of “camera setting change” almost instantaneously; and
(2) we can digitally augment a single frame captured by the real
camera to derive many new synthetically transformed frames, as
if we had physically captured many di�erent frames of the same
scene by using a real camera at di�erent environmental conditions
(i.e., time-of-day, lighting conditions, seasonal changes etc.). These
two bene�ts allow the RL agent to explore actions at a much faster
rate than possible in using a real camera. This drastically reduces
the RL training time required to develop a good, initial RL model,
which can then be further re�ned in a short period (adaptation
phase) after camera deployment.

Our paper makes the following contributions:
• We show that environmental condition changes can have
a signi�cant negative impact on the accuracy of AUs in
video analytics pipelines, but the negative impact can be
mitigated by dynamically adjusting a set of NAUTO camera
parameters.

• We develop, to our knowledge, the �rst system that auto-
matically and adaptively learns and tunes the set of NAUTO
camera parameters in response to unpredictable environmen-
tal condition changes to improve the accuracy of insights
from video analytics pipelines.

• We present two novel techniques that make the RL-based
camera-parameter-tuning design feasible: a light-weight AU-
speci�c analytics quality estimator that enables online RL
without requiring ground truth, and a virtual camera that
enables fast initial RL model training.

• We show that C��T���� improves AU accuracy in con-
trolled experiments and in real VAP deployment. In particu-
lar, in a real world deployment where two cameras deployed
side-by-side (one camera is managed by C��T����, while
the other is not) are monitoring a large enterprise parking
lot, and the live video streams are carried over a 5G net-
work, the camera managed by C��T���� detected 15.9%
(146) additional persons (in a 5-minute span) during evening
hours, without any false positives. The camera managed by
C��T���� detected 2.6%–4.2% (861–881) additional cars (in
a 5-minute span) during morning and evening hours, again
without any false positives.

• Furthermore, by recording a real-world car accident scenario
at a tra�c intersection (at one of our customer locations)
and by using VC to emulate frame captures at di�erent times
of the day, the VAP with C��T���� reliably detected 9.7%
(122) additional cars (across the frames in a 1.5-minute span),
which dramatically improves the accuracy (and lead time)
of collision prediction.

• We show that C��T���� incurs very low computation over-
head and C��T���� can be easily incorporated into VAPs
that are executing on low-end PC or IoT devices that are
directly attached to the camera.

2 BACKGROUND
Figure 1 also shows the image signal processing (ISP) pipeline
within a camera. Photons from the external world reach the image
sensor through an optical lens. The image sensor uses a Bayer
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Table 1: Parameters exposed by popular cameras. Parameters
with “*” are auto-adjusted by the camera internally.

Camera Setting Parameters

Image

Brightness

Appearance

sharpness
contrast
color level

Exposure

Exposure Control⇤

Settings

Max Exposure Time
Exposure Zones⇤

Max gain
IR cut �lter⇤

Image

Defog E�ect

Correction

Noise Reduction
Stabilizer

Auto Focus Enabled⇤

White Type⇤
Balance window⇤

Video Stream Parameters

Image
Resolution

Appearance
Compression
Rotate image

Encoder GOP length

Settings H.264 pro�le

Bitrate
Type of Use

Control
Target Bitrate

Priority

Video Stream Max FPS
MJPEG Max frame size

�lter [7] to create raw-image data, which is further enhanced by
a variety of image processing techniques such as demosaicing,
denoising, white balance, color-correction, sharpening and image
compression (JPEG/PNG or video compression using H.264 [5],
VP9 [4], MJPEG, etc.) in the image-signal processing (ISP) stage [46]
before the camera outputs an image or a video frame.

The camera capture forms the initial stage of the VAP, which
may include a wide variety of analytics tasks such as face detection,
face recognition, human pose estimation, license plate recognition
etc. (see Figure 1).

In this paper, we study video analytics applications that are based
on surveillance cameras. Such cameras are running 24X7 in contrast
to DSLR, point-and-shoot or mobile cameras that capture videos on-
demand. Popular IP video surveillance cameras aremanufactured by
vendors such as AXIS [17], Cisco [13], and Panasonic [25]. These
surveillance camera manufacturers have exposed many camera
parameters via REST APIs which can be set by applications to
control the image generation process, which in turn a�ects the
quality of the produced image or video. The exposed parameters
include those for changing the amount of light that hits the sensor,
the zoom level and �eld-of-view (FoV) at the image-sensor stage,
and those for changing the color-saturation, brightness, contrast,
sharpness, gamma, acutance, etc. in the ISP stage. Table 1 lists
the parameters exposed by a few popular surveillance cameras in
the market today. Remotely changing the camera setting via the
exposed APIs, however, incurs a signi�cant delay, e.g., about 200
ms on Axis Q1615, Axis Q3515, Axis Q6128-E and Axis Q3505 MK
II network camera.

While a few of these camera parameters, e.g., exposure, focus,
balance, are automatically adjusted by the camera internally, the
remaining camera parameters are not adjusted automatically. We
denote such camera parameters as non-automated (NAUTO) param-
eters.

In this paper, we focus our study on the four image appearance
camera parameters, denoted as I-A parameters in the rest of the pa-
per, which are widely available in both PTZ and non-PTZ cameras:
brightness, contrast, color-saturation (also known as colorfulness),

and sharpness. We choose the above four NAUTO camera param-
eters in our study in this paper for two reasons: (1) they directly
a�ect the quality of the image which is essential to AUs which typi-
cally extract insights, e.g., face recognition, from individual frames;
(2) These parameters are more challenging to tune due to the large
range (for example, between 1 and 100 for each of the parameters on
Axis Q1615, Axis Q3515, Axis Q6128-E, Axis Q3505 MK II network
camera etc.) compared to other NAUTO camera parameters which
have either a few �xed settings or just a binary ON/OFF switch. Sev-
eral AUTO parameters, e.g., exposure and white-balance, a�ect the
raw capture before the four I-A parameters are applied in the ISP
stage. Thus, there is no mutual interference between those AUTO
and I-A parameters when analyzing the impact of I-A parameters
on capture quality.
3 MOTIVATION
We motivate the need for dynamically adjusting NAUTO camera
settings by experimentally showing the impact of environmental
changes on AU accuracy despite all the auto-setting features are left
on, and that tuning a set of NAUTO camera settings can improve
AU accuracy under the same environmental conditions.

3.1 Impact of Environment Change on AU
Accuracy

Environmental changes happen for at least three reasons. First,
such changes can be induced due to the change of the Sun’s move-
ment throughout a day, e.g., sunrise and sunset. Second, they can
be triggered by changes in weather conditions, e.g., rain, fog, and
snow. Third, even for the same weather condition at exactly the
same time of the day, the videos captured by the cameras at di�er-
ent deployment sites (e.g., parking lot, factory, shopping mall, and
airport) can have diverse content and ambient lighting conditions.

To illustrate the impact of environmental changes on image qual-
ity, and consequently on the accuracy of AUs, we experimentally
measure the accuracy of two popular AUs (face detection and per-
son detection) throughout a 24-hour (one-day) period. Since there
are no publicly available video datasets that capture the environ-
mental variations in a day or a week by using the same camera
(outside the baseball stadium which was fairly crowded through-
out the day), we use several proprietary videos provided by our
customers that were captured with the default camera setting – in
this paper, the default camera setting refers to when all auto-setting
features are turned on and NAUTO parameters are set to the default
values provided by the manufacturers. These videos were captured
outside airports and baseball stadiums by stationary surveillance
cameras, and we have labeled ground-truth information for several
analytics tasks including face detection and person detection.

We use RetinaNet [19] for face detection and E�cientDet-v8 [50]
for person detection. We compute the mean Average Precision
(mAP) by using pycocotools [16]. Figure 2a shows that the average
mAP values for the face detection AU during four di�erent time peri-
ods of the day (morning 8AM - 10AM, noon 12PM - 2PM, afternoon
3PM - 5PM, and evening 6PM - 8PM), and with the default camera
setting, can vary by up to 40% as the day progresses (blue bars). Sim-
ilarly, Figure 2b shows that the average mAP values for the person
detection AU (with the default camera parameter setting) can vary
by up to 38% during the four time periods. We also observed similar
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(a) Face detection (b) Person detection

Figure 2: AU accuracy variation in a day under the default
camera setting.

accuracy variation while using other face-detection (MTCNN) and
person-detection models (Yolov5). These results show that changes
in environmental conditions can adversely a�ect the quality of
the frames retrieved from the camera, and consequently adversely
impact the accuracy of the insights that are derived from the video
data.

3.2 Impact of Image Appearance Camera
Settings on AU Accuracy

We experimentally show that adjusting the four image appearance
(I-A) (NAUTO) camera settings, i.e., brightness, contrast, color-
saturation (also known as colorfulness), and sharpness, can help
to mitigate the adverse impact of environmental changes on AU
accuracy.

Analyzing the impact of camera settings on video analytics in
general faces a signi�cant challenge: it requires applying di�erent
camera parameter settings to the same input scene and measuring
the resulting accuracy of insights from an AU. The straightforward
approach is to use multiple cameras with di�erent camera parame-
ter settings to capture the same input scene. However, this approach
is impractical as there are thousands of di�erent combinations of
even just the four camera parameters we consider. To overcome
the challenge, we proceed with the following workaround which
uses a single real camera.

We use a real camera, Axis Q3505 MK II Network camera, to cap-
ture (at 10 FPS) the same real-world scene repeatedly under varying
camera settings, and compare the accuracy of object detection AU
for "default" and several "modi�ed" settings – in this paper, a "mod-
i�ed" setting refers to modifying the four I-A camera settings while
keeping all other camera parameter values the same as the default
setting. In our scene, two people walk from the camera towards two
parked cars, and each of them then starts driving a separate car in a
loop within the parking lot, parks the car in the same parking spot,
and walks back towards the camera. The entire sequence of steps
takes around 2 minutes and we repeat these exact steps over and
over again for 26 di�erent camera settings (including the "default"
setting). These experiments are conducted immediately one after
another in quick succession to minimize the e�ect of environmental
change. Thus, all 2-minute video clips have almost exactly the same
content.

We consider object detection AU in this experiment, which de-
tects cars and persons in the scene. Speci�cally, we use E�cient-
det [50] object detector. An illustration of the scene is shown in
Figure 4 with two side-by-side frames, where the right one is with

(a) Car Detection (b) Person Detection

Figure 3: Impact of camera settings on object detection.

Figure 4: Same scene with di�erent camera settings.

Table 2: Best settings for di�erent environment.

Environment Best Camera Setting
(Time-of-day) [brightness, contrast, color, sharpness]

Dawn [80, 75, 50, 75]
Morning [30, 30, 50, 50]
Evening [90, 90, 50, 50]

the "default" camera setting and the left one is with a "modi�ed"
camera setting. Here, the AU can accurately detect two persons
and two cars on the frame with the modi�ed camera setting while
from the camera capture under the default setting, the AU can only
detect one car. We observe that the accuracy of the AU varies across
di�erent camera settings and Figure 3 shows the cumulative num-
ber of true-positive car and person detection counts 1 for "Default
Setting" and for "Modi�ed Setting", which shows the highest accu-
racy among the 25 di�erent camera settings. We see that "Modi�ed
Setting" correctly detected 1890 additional cars and 96 additional
persons across 1300 frames compared to “Default Setting”. We also
note that the additional detections for remaining camera settings
is quite scattered, thus showing that even within a subset of 26
settings, it is quite di�cult to choose the best camera setting.

To understand if the modi�ed camera setting that provides the
highest AU accuracy remains the same as the environment under-
goes changes, we repeat the above experiment for three di�erent
times of the day, i.e., dawn, morning and evening, which have vary-
ing sunlight, while enacting the same scene for camera capture. Ta-
ble 2 shows that the I-A camera setting that provides the highest
AU accuracy is not the same as the manufacturer-provided default
setting and it varies for di�erent times of the day, i.e., di�erent
environmental conditions. Thus, it is very di�cult to �nd the best
camera setting among thousands of possible camera settings.

3.3 Optimal camera setting is AU-speci�c
Along with the environment, to observe the impact of camera pa-
rameters on various AUs, we printed 12 di�erent person cutouts
obtained from COCO dataset [35] and placed them in front of an
1An object detection is true-positive if the detector correctly predicts the object label
and the IoU between the detected and ground-truth bounding box is more than 0.7.
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(a) DAY (b) NIGHT

Figure 5: Camera captures under di�erent environment and
visual impact.

Axis network camera. we use E�cientdet [50] as person-detection
AU and RetinaNet [19] as face-detection AU and observe the impact
on each of these AUs individually under DAY and NIGHT condition
simulated inside our lab using two light sources. One of them is
always kept ON, while the other light source is manually turned
ON or OFF to simulate DAY and NIGHT environmental conditions,
respectively. For each of these conditions, we vary the four image
appearance camera parameters, i.e., brightness, contrast, sharpness
and color-saturation ranging from 0 to 100 at a step of 10. Figure
5 shows the images captured under the default camera setting for
DAY and NIGHT condition. To �nd the “Best” settings for a speci�c
AU, we change the four camera parameters to �nd the setting that
gives the highest mAP. Speci�cally, we vary each parameter from 0
to 100 in steps of 10 and capture the frame for each camera setting.
This gives us ⇡14.6K (114) frames for each condition. Changing the
camera setting through the VAPIX API takes about 200ms, and in
total it took about 7 hours to capture and process the frames for
each condition.

Table 3 shows that the best I-A camera parameter setting for
di�erent AUs are unique. Furthermore, these Best camera settings
not only vary across di�erent AUs but change due to environmental
condition changes (i.e., from DAY to NIGHT), also shown in Table
3. This motivates the need for capturing AU speci�c perception in
tuning the camera parameters.

Table 3: Best settings across di�erent AUs for various env.

AU-best Best camera setting
[brightness, contrast, color, sharpness]

DAY NIGHT
Person Detection-best [80,90,70,100] [40,90,60,100]
Face Detection-best [80,90,60,80] [60,40,90,90]

4 CHALLENGES AND APPROACHES
Designing C��T���� to automatically tune camera parameter set-
tings to enhance video analytics accuracy faces several challenges.
In this section, we discuss these challenges and our approaches to
address each one of them.

Challenge 1: Identifying the best camera setting for a par-
ticular scene. Cameras deployed across di�erent locations observe
di�erent scenes. Moreover, the scene observed by a particular cam-
era at any one location keeps changing based on the environmental
conditions, lighting conditions, movement of objects in the �eld
of view, etc. In such a dynamic environment, how can we identify
the best camera setting that will give the highest AU accuracy for a
particular scene? The straightforward approach of collecting data
for all possible scenes that can ever be observed by the camera and

training a model that gives the best camera settings for a given
scene is infeasible.

Approach. To address this challenge, we propose to use an on-
line learning method. Particularly, we use Reinforcement Learning
(RL) [48], in which the agent learns the best camera settings on the
go. Out of several recent RL algorithms, we choose the SARSA [52]
RL algorithm for identifying the best camera settings (more details
provided in §5.1).

Challenge 2: No Ground truth in real-time. Implementing
online RL requires knowing the reward/penalty for every action
taken during exploration and exploitation, i.e., what e�ect a partic-
ular camera parameter setting will have on the accuracy change of
the AU. Since no ground truth of the AU task, e.g., face detection, is
available during normal operation of the real-time video analytics
system, detecting a change in accuracy of the AU during runtime
is challenging.

Approach.We propose to estimate the accuracy of the AU. Each
AU, depending on its function has a preferred method of measuring
accuracy, e.g., for face detection AU, a combination of mAP and
true-positive IoU is used, whereas for face recognition AU, the
true-positive match score is used. Accordingly, we propose to have
a separate estimator for each AU. We design such AU-speci�c
analytics quality estimators to be light-weight so that they can be
used by the RL agent in real-time (more details provided in §5.2).

Challenge 3: Extremely slow initial RL training. Online
learning at each camera deployment setup requires initial RL train-
ing, which can potentially take a very long time for two key reasons:
(1) Capturing the environmental condition changes such as the time-
of-the-day e�ect requires waiting for the Sun’s movement through
the entire day until night, and capturing weather changes requires
waiting for weather changes to actually happen. (2) Taking an ac-
tion on the real camera, i.e., changing the camera parameter setting,
incurs a signi�cant delay of about 200 ms. This delay fundamentally
limits the speed of state transition and hence the learning speed of
RL to only 5 actions per second.

Approach. In order to speed up the initial RL training, we pro-
pose a novel concept called Virtual Camera (VC). A VC mimics the
e�ect of environmental conditions and camera setting changes on
the frame capture of a real camera. This has two immediate bene-
�ts. First, it can e�ectively complete an action of “camera setting
change” almost instantaneously. Second, it can augment a single
frame captured by the real camera with many new transformed
frames as if they were captured by the real camera under di�erent
conditions. Together, these two bene�ts allow the RL system to
explore an order of magnitude more states and actions per unit
time (more details provided in §5.3).

5 ⇠0<)D=4A DESIGN
Figure 6 shows the system-level architecture for C��T����, which
automatically and dynamically tunes the camera parameters to
enhance the accuracy of AUs in the VAP. C��T���� augments
a standard VAP shown in Figure 1 with two key components: a
Reinforcement Learning (RL) engine, and an AU-speci�c analytics
quality estimator. In addition, it employs a third component, a
Virtual Camera (VC), for fast initial RL training.



SenSys ’22, November 6–9, 2022, Boston, MA, USA Sibendu Paul, et al.

Figure 6: ⇠0<)D=4A system design.

5.1 Reinforcement Learning (RL) Engine
The RL engine is the heart of C��T���� system, as it is the one that
automatically chooses the best camera settings for a particular scene.
Q-learning [51] and SARSA [52] are two popular RL algorithms
that are quite e�ective in learning the best action to take in order to
maximize the reward.We compared these two algorithms and found
that training with SARSA achieves slightly faster convergence and
also slightly better accuracy than with Q-learning. Therefore, we
use SARSA RL algorithm in C��T����.

SARSA is similar to other RL algorithms. An agent interacts with
the environment (state) it is in, by taking di�erent actions. As the
agent takes actions, it moves into a new state or environment. For
each action, there is an associated reward or penalty, depending on
whether the new state is desirable or not. Over a period of time,
as the agent continues taking actions and receiving rewards and
penalties, it learns to maximize the rewards by taking the right
actions, which ultimately lead the agent towards desirable states.

SARSA does not require any labeled data or pre-trained model,
but it does require a clear de�nition of the state, action and reward
for the RL agent. This combination of state, action and reward is
unique for each application and needs to be carefully chosen, so
that the agent learns exactly what is desired. In our setup, we de�ne
them as follows:

State: A state is a tuple of two vectors, BC =< %C ,"C >, where %C
consists of the current brightness, contrast, sharpness, and color-
saturation parameter values on the camera, and "C consists of
the measured values of brightness, contrast, color-saturation, and
sharpness of the captured frame at time C , measured as in [8, 18, 23,
44].

Action: The set of actions that the agent can take are (a) increas-
ing or decreasing one of the brightness, contrast, sharpness or
color-saturation parameter value, or (b) not changing any parame-
ter values.We choose the increase or decrease of camera parameters at
a granularity of 10 only. The choice of such a granularity of camera pa-
rameter setting adjustment is to strike a balance between adjustment
complexity and potential gain. In particular, we search in a discrete
action space of increments of 10 to make the camera parameter tuning
problem tractable.

Reward: We use an AU-speci�c analytics quality estimator as
the immediate reward function (r) for the SARSA algorithm. Along
with considering immediate reward, the agent also factors in future
reward that may accrue as a result of the current actions. Based
on this, a value, termed as Q-value (also denoted as & (BC ,0C )) is

calculated for taking an action 0C when in state BC using Equation 1.

& (BC ,0C )  & (BC ,0C ) + U [A + W ·& (BC+1,0C+1) �& (BC ,0C )] (1)
Here, U is learning rate (a constant between 0 and 1) used to control
how much importance is to be given to new information obtained
by the agent. A value of 1 will give high importance to the new
information while a value of 0 will stop the learning phase for the
agent.

Similar to U , W (also known as the discount factor) is another
constant used to control the importance given by the agent to any
long term rewards. A value of 1 will give very high importance to
long term rewards while a value of 0 will make the agent ignore
any long term rewards and focus only on the immediate rewards.
If the environmental conditions change very frequently, a lower
value, e.g., 0.1, can be assigned to W to prioritize immediate rewards,
while if the conditions do not change frequently, a higher value,
e.g., 0.9, can be assigned to prioritize long term rewards.

Exploration vs. Exploitation. We de�ne a constant called n
(between 0 and 1) to control the balance between exploration vs.
exploitation in taking actions. At each step, the agent generates a
random number between 0 and 1; if the random number is greater
than the set value of n , then a random action (exploration) is chosen.
5.2 AU-speci�c Analytics Quality Estimator
In online operations, the RL engine needs to know whether its
actions are changing the AU accuracy in the positive or negative
direction. In the absence of ground truth, the analytics quality
estimator acts as a guide and generates the reward/penalty for the
RL agent.

Challenges. There are three key challenges in designing an
online analytics quality estimator. (1) During runtime, AU quality
estimation has to be done quickly, which implies a model that
is small in size. (2) A small model size implies using a shallow
neural network. For such a network, what representative features
should the estimator extract that will have the most impact on the
accuracy of AU output? (3) Since di�erent types of AUs (e.g., face
detector, person detector) perceive the same representative features
di�erently, the estimator needs to be AU-speci�c.

Insights. We make the following observations about estimating
the quality of AUs. (1) Though estimating the precise accuracy
of AU on a frame requires a deep neural network, estimating the
coarse-grained accuracy, e.g., in increments of 1%, may only require
a shallow neural network. This insight is based on the observation
that binning the accuracy into coarse-grained bins (with 1% incre-
ments) and predicting which bin the accuracy of the DNN falls into is
a simpler task than estimating the precise accuracy. (2) Most of the
“o�-the-shelf” AUs use convolution and pooling layers to extract
representative local features [11]. In particular, the �rst few lay-
ers in the AUs extract low-level features such as edges, shapes, or
stretched patterns that a�ect the accuracy of the AU results. We can
reuse the �rst few layers of these AUs in our estimator to capture
the low-level features. (3) To capture di�erent AU perceptions from
the same representative features extracted in the early layers, we
need to design and train the last few layers of each quality estima-
tor to be AU-speci�c. During training, we need to use AU-speci�c
quality labels.

Design.Motivated by the above insights, we design our light-
weight AU-speci�c analytical quality estimator to consist of two
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Figure 7: AU-speci�c analytics quality estimator design.

components: (1) feature extractor and (2) quality classi�er, as shown
in Figure 7. We use supervised learning to train the AU-speci�c
quality estimator.

Feature Extractor. Di�erent AUs and environmental conditions
can manipulate local features of an input frame at di�erent granu-
larities [22]. For example, blur (i.e., motion or defocus blur) a�ects
�ne textures while light exposure a�ects coarse textures. While
face detector and face recognition AUs focus on �ner face details,
person detector is coarse-grained and it only detects the bounding
box of a person. Similarly, in convolution layers, larger �lter sizes
focus on global features while stacked convolution layers extract
�ne-grained features. To accommodate such diverse notions of
granularities, we use the Inception module from the Inception-v3
network [49], which has convolution layers with diverse �lter sizes.

Quality classi�er. The goal of the quality classi�er is to take
the features extracted by the feature extractor and estimate the
coarse-grained accuracy of the AU on an input frame, e.g., in incre-
ments of 1%. As such, we divide the AU-speci�c accuracy measure
into multiple coarse-grained labels, e.g., from 0% to 99%, and use
fully-connected layers whose output nodes generate AU-speci�c
classi�cation labels.

Detailed design and training of two concrete AU-speci�c analyt-
ics quality estimators are described as follows.

(1) Face recognition AU: The quality classi�er of face recognition
consists of 2 fully-connected layer and has 101 output classes. One
of the classes signi�es no match, while the remaining 100 classes
correspond to match scores between 0 to 100% in units of 1%.

To generate the labeled data, we used 300 randomly-sampled
celebrities from the celebA dataset [37]. We choose two images
per person. We use one of them as a reference image and add it to
the gallery. We use the other image to generate multiple variants
by applying digital transformations on the image. These variants
(⇠4 million) form the query images. For each query image, we
obtain the match score (a value between 0 and 100%) using the Face
recognition AU, Neoface-v3. The query images along with their
match score form the labeled samples, which are used to train the
quality estimator.

(2) Face and object detection AU. The quality classi�er of face
and object (i.e., car and person) detection AU consists of 2 fully-
connected layers, and has 201 output classes to predict the quality
estimate of the face and object detection AU for a given frame.
One of the classes signi�es AU cannot detect anything accurately,
and the remaining 200 classes correspond to the cumulative mAP
score between 0 to 100 and IoU score between 0 to 1, i.e.,<�% +
�$*)AD4�%>B8C8E4 ⇤ 100. To generate the labeled data to train face-
detection AU speci�c quality estimator, we used the Olympics [39]
and HMDB [33] datasets, and created ⇠7.5 million variants of the

Figure 8: VC block diagram.

(a) TM table (b) MDT Table

Figure 9: O�line generated tables for VC.
video frames by applying digital transformations. Then, for each
frame, we use the face detection AU (i.e., RetinaNet [19]) to deter-
mine the analytical quality estimate. Similarly, we use the object
detection AU (i.e., E�cientDet [50]) on labeled images from COCO
dataset [35] that contain car and person object classes and their
augmented variants. The video frames/images and their quality
estimates form the labeled samples, which are used to train the
estimator model.

For both the classi�er training, we use a cross-entropy loss func-
tion to train AU-speci�c analytics quality estimators, initial learning
rate is 10�5, and we use Adam Optimizer [31]

5.3 Virtual Camera
De�nition. A VC (shown in Figure 8) takes an input frame 58 ,
captured by a real camera, the target time-of-the-day ): , and VC
parameter settings + , as input, and outputs a frame 5> as if it was
captured by the physical camera at time ): . To generate a frame at
time ): , VC uses a composition function ⇠><?>B4 (-: ,+ ), which
composes output frame 5> using -: , which is the transformation
that augments the environmental e�ects corresponding to the tar-
get time ): on input frame 58 , and + , which is the VC parameter
settings. The composition function is de�ned as-: ⇤10+ �0.5, which
considers -: and + simultaneously, similar to a real camera. Using
this composition function,-: is scaled up if the value of+ is greater
than 0.5 and scaled down if the value is less than 0.5; no scaling of
-: happens for + equal to 0.5.

To understand how VC works, we �rst introduce an important
de�nition. Each frame 58 , from a real physical camera, possesses
distinct values of brightness, contrast, colorfulness and sharpness
metrics, denoted as a metric (or feature) tuple "8 =< U" , V" , W" ,
Z" >. The unique metric tuple encapsulates the environmental
conditions and the default physical camera settings when the frame
was captured.

O�line pro�ling phase: VC derives two tables for a given
physical camera deployment during an o�ine pro�ling phase and
then uses the two tables during online operation to generate the
output frame 5> .
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The �rst table (TM)maps a given time-of-the-day): to themetric
tuple": which captures the distinct values of brightness, contrast,
colorfulness and sharpness metrics of frames taken by the physical
camera with the default settings at time ): . We generate the table
to cover the full 24-hour period with a granularity of 15 minutes,
i.e., the table has one mapping for every 15 minutes, for a total of 96
mappings. To construct the table, we use a full 24-hour long video
and break it into 15-minute video snippets. We extract all the frames
from the video snippet for each 15-minute interval ): . We divide
each frame into 12 tiles, obtain the corresponding metric tuple for
each tile, and compute the mean metric tuple for the corresponding
tiles in all frames in the 15-minute interval as the metric tuple for
that tile, and the list of tuples for all 12 tiles form the entry for time
): in the table, as shown in Figure 9a.

The second table (MDT) maps the di�erence between two metric
tuples"8 and": , X ("8 ,": ), to the corresponding transformation
tuple -: that would e�ectively transform a frame captured by the
physical camera with metric tuple"8 to become a frame captured
by the physical camera for the same scene with metric tuple ": .
We note since each camera parameter can take 11 values, from
0 to 100 with increments of 10, the di�erence between any two
metric tuples can possibly be mapped to one of these 14K (114)
settings. We construct the entries for the table backward as follows.
(1)We select a random frame from each 15-minute interval to form a
collection of 96 frames with varying environmental conditions, i.e.,
corresponding to di�erent time-of-the-day. (2) For each possible
transformation -: , we transform the 96 frames into 96 virtual
frames. We then obtain the delta metric tuples between each pair
of original and transformed frames, calculate the median of the 96
delta metric tuples, X: , and store the pair of < X: ,-: > in the table.
(3) We repeat the above process for all possible transformation
settings (14K in total) to populate the table, as shown in Figure 9b.

Finally, at runtime when the table is used by the VC, if the entry
for a given delta metric tuple X8 is empty, we return the entry whose
delta metric tuple X: is closest to X8 using L1-norm.

Online phase. VC transforms the input frame 58 to output frame
5> in �ve steps. (1) It measures the current metric tuple"8 =< U" ,
V" ,W" , Z" >2DAA from input frame 58 ; (2) It looks up Time-to-Metric
(TM) table for the metric tuple ": =< U" , V" , W" , Z" >34B8A43
that corresponds to the target time of the day (): ); (3) It calculates
the di�erence between"8 and": , X ("8 ,": ) or X8: ; (4) It looks up
Metric-di�erence-to-Transformation (MDT) table to �nd the trans-
formation -: =< U- , V- , W- , Z- >0??;843 that corresponds to
X8: ; (5) It applies -: along with + using the composition function
⇠><?>B4 (-: ,+ ) to input frame 58 and generates output frame 5> .

Since di�erent parts of an input frame may exhibit varying local
feature or metric values, to improve the e�ectiveness of virtual
knob transformation, instead of applying the above steps directly
to input frame 58 , we split it into 12 (3 - 4) equal-sized tiles, apply
Steps 1-3 to each of the 12 tiles, i.e., each of"8 ,": , and X8: consists
of 12 sub-tuples corresponding to the 12 tiles, respectively. The
12 sub-tuples in X8: are looked up in the MDT table to �nd 12
transformation tuples. Finally, to ensure smoothness, we calculate
the mean of these 12 sub-tuples -: , which is then applied to input
frame 58 .

5.4 Integrating VC with the RL engine
During initial RL training, the RL agent performs fast exploration
by leveraging VC as follows. It reads each frame 58 from the input
training video, and repeats the following exploration steps for all
time-of-the-day values ): . At each exploration step 9 , the agent
which is at state B =< % 9 ,"9 > performs tasks: (1) based on current
state (s), it takes a random action 0 and apply that on+9 , which is VC
equivalent of % 9 for a real camera, to get a new virtual knob setting
for next exploration step ( 9+1),+9+1; (2) it invokes the VCwith frame
58 for the target time-of-the-day ): , and current VC parameters
+9+1 as input, and the VC outputs frame 5> . The measured tuple
"9+1 of brightness, contrast, colorfulness and sharpness metric
values of output frame 5> along with the virtual knob setting +9+1,
form the new state of the RL agent, B=4F =< +9+1,"9+1 >; (3) it
calculates the reward/penalty by feeding 5> into the AU-speci�c
quality estimator; and (4) it updates the Q-table entry & (B,0).

The above initially trained SARSA model with the VC is then
deployed in the real camera for the normal operations ofC��T����.
First, the n value is set to low (0.1) and U is set to high (0.85) so
that the SARSA RL agent will go through a short adaptation phase,
e.g., for an hour, by performing primarily exploration. Afterward,
the n and U values are set to high (0.9) and low (0.15), respectively,
so that SARSA performs primarily exploitation using the trained
model.

6 IMPLEMENTATION
6.1 Hardware Setup
For the evaluation, we implemented a VAP using an Axis Q3505 MK
II network surveillance camera. We run C��T���� on a low-end
Intel NUC box 2 while face detection and object detection AUs
and initial pre-training with VC run on a high-end edge-server
equipped with Xeon(R) W-2145 CPU and GeForce RTX 2080 GPU.
The captured frames are sent for AU processing on the edge-server
over a 5G network with an average frame uploading latency of 39.7
ms.
6.2 Software Implementation
We implemented the SARSA RL agent in Python, the light-weight
AU-speci�c analytics quality estimators in pytorch framework
which runs as a service using the ZeroMQ [3] networking library,
and the Virtual Camera in Python which is trained on the GPU
edge server. We use PIL [14] and OpenCV [2] for image processing
during the o�ine pro�ling phase in VC design and also during
o�ine training of the SARSA RL agent. We use Axis’ VAPIX API to
change the camera parameters decided by the SARSA-RL agent as
well as to capture input frames.

Similar to a real camera, our VC runs continuously during o�ine
SARSA RL training and streams the output frames on a NATS [1]
queue at the same frames-per-second (FPS) with which the video
was captured. Each frame is sent in BSON format which includes
the frame number, frame data (i.e., array of bytes), and timestamp.
Like a real camera, VC exposes REST APIs that are used to query
and change its settings to allow augmenting various environmental
e�ects.

2Currently it is performed at the edge (an Intel-NUC box), but camera parameter tuning
can be performed either at the edge or on a device.
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7 EVALUATION
We extensively evaluate the e�ectiveness of C��T���� by measur-
ing its impact on AU accuracy improvement in a VAP via controlled
experimental emulation and in a real deployment (§7.1 – §7.4). We
also evaluate its system performance (§7.5) and the e�cacy of its
two key components, AU-speci�c analytics quality estimator and
VC (§7.6).

7.1 End-to-end VAP Performance
We �rst evaluate the e�ectiveness of C��T���� by comparing AU
accuracy of �ve di�erent VAPs.
7.1.1 Experimental Setup. We compare three C��T���� variants
against two baseline VAPs. All system variants, including C���
T����, only di�er in how the four I-A camera parameters are tuned,
while keeping all automatic parameter setting features turned on
and the rest NAUTO parameters at the default values. (1) Baseline:
In the Baseline VAP, the I-A camera parameters are not adapted
to any environmental changes. (2) Strawman: The Strawman ap-
proach applies a time-of-the-day heuristic that tunes the four I-A
camera parameters based on a human perception metric. In par-
ticular, we use the BRISQUE quality metric [38] and exhaustively
search for the best camera parameters for the �rst few frames in
each hour and then apply the best camera setting found for the
remaining frames in that hour. This exhaustive search of camera
settings using initial frames takes a few minutes (which is expen-
sive) and our results show that performing this adaptation more
often than once per hour does not give signi�cant improvement. (3)
C��T����-V : This variant of C��T���� only uses a few rounds of
online exploration (i.e., which takes about 1 hour, same as in online
exploration performed by C��T����), i.e., the SARSA RL agent
does not rely on the VC for initial o�ine exploration. Instead, at the
start of online exploration, the C��T����-V framework is initially
seeded with an empty Q-table. (4) C��T����-U : This variant of
C��T���� adjusts the I-A camera setting dynamically by using
only the o�ine trained SARSA RL agent, i.e., the agent does not
perform any exploration during online operation. (5) C��T����:
The complete C��T���� framework is seeded with o�ine trained
SARSA RL agent, and then during online operation, the agent con-
tinues exploration initially and then moves towards exploitation, as
described in §5.4. For C��T����-V , C��T����-U and C��T����,
the RL agent adaptively adjusts the four I-A camera parameters
periodically; the time interval is con�gurable and we choose it to
be 10s.

Experimentalmethodology.Comparing these 5 VAPs in a real-
world deployment is di�cult because (1) even with 5 co-located
cameras, it is di�cult to see the identical scene from the same
angle; (2) furthermore, in a real-world deployment, the captured
scenes do not have the ground-truth to measure the AU accuracy.
To overcome the above challenge, we loop a pre-recorded (original)
5-minute video snippet (a customer video captured at an airport)
labeled with ground-truth through VC – VC is used here not for RL
training but for generating augmented input videos that emulate
di�erent environmental changes to be fed into the �ve VAPs. In par-
ticular, we gradually change the VC model parameters (i.e., digital
transformations) to simulate the changes that happen during the
day as the Sun changes its position and �nally sets, and we ensure
(through manual inspection) that same ground-truths are carried

(a) Face detection AU (b) Person detection AU

Figure 10: mAP improvements for di�erent AUs.

over in the VC generated videos from the original video. We then
project these VC-generated videos on a monitor screen in front of a
real camera, and run each of the �ve VAPs in turn. We note that the
above controlled experimental setup is the closest approximation
to a real-world deployment.
7.1.2 End-to-end Accuracy. We evaluate the AU accuracy improve-
ment of VAPs 2-5 over VAP 1 for eight 5-minute video segments
randomly selected from the VC-generated videos consisting of 7500
frames each, and the video segments are separated by 1 hour apart.
Using the labeled ground-truth, we evaluate the detection accuracy
of the 5 VAPs for face-detection and person-detection AUs.

Figure 10 shows the bar-plot of mAP improvement of VAPs
2-5 over VAP 1 for the eight 5-min video segments correspond-
ing to eight di�erent hours of the day. We make the following
observations. The strawman approach based on the time-of-the-day
heuristic can provide only nominal improvement over Baseline, i.e.,
less than 1% on average across the videos for both face detection and
person detection. Just a few hours of “slow” online exploration (i.e.,
with no VC-accelerated o�ine exploration) enables C��T����-V
to improve face detection accuracy by 2.70% on average and person
detection accuracy by 2.31% on average over Baseline. In contrast,
fast o�ine exploration using virtual camera (with no online ex-
ploration) helps C��T����-U to improve face detection accuracy
by 6.01% on average and person detection accuracy by 5.49% on
average over Baseline. Finally, dynamically tuning the real camera
parameters with online learning in C��T���� improves the face
detection AU accuracy by up to 13.8% and person detection AU
accuracy by up to 9.2%, with an average improvement of 8.63% and
8.11% for face detection AU, and average improvement of 7.25% and
7.08% for person detection AU compared to Baseline and Straw-
man, respectively. Note that the environment observed by the camera
during the hours corresponding to bars v5-v8 in Figure 10 has not
changed signi�cantly while the environment observed for bars v1-v4
is largely di�erent from that during o�ine exploration. This explains
why the improvement gap between C��T����-U and C��T����
over VAP 1 seems to diminish for bars v5-v8.

In summary, during o�ine phase VC helps the SARSA RL agent
to quickly train through fast and equivalent environmental changes
and camera parameter changes applied to the input scene. Then
during online operation, a few rounds of exploration helps C���
T���� to achieve better accuracy than directly using the initially
trained SARSA model with VC (C��T����-U).

7.1.3 In-depth Analysis. Next, we show how C��T���� dynami-
cally adjusts the camera parameter setting for one of the 5-minute
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(a) Camera setting adaptation

(b) mIoU variation

Figure 11: ⇠0<)D=4A in operation.

video snippet (i.e., V3 in Figure 10) used in §7.1.2 for face-detection
AU. Recall at every 10 seconds, based on the current environmen-
tal condition and content seen by the camera, C��T���� either
chooses to “increment” or “decrement” one of the four parame-
ters, i.e., increase or decrease by 10 within the parameter range
of [0, 100], or keep the previous parameter setting. Figure 11a
shows how the camera parameters are adapted throughout the
video length during the exploitation phase, and Figure 11b shows
how the corresponding mean intersection-over-union (mIoU) (i.e.,
IoU across all ground-truth bounding boxes in each frame) varies
for the C��T����-based VAP and the Baseline VAP.

Wemake the following observations. (1) Starting with the default
camera parameter setting, i.e., [50, 50, 50, 50], C��T���� decre-
ments the sharpness parameter after looking into the initial two
frames, and then decrements contrast after 7 tuning intervals (at
70th second). At the 13C⌘ tuning interval, it increments a third pa-
rameter, brightness. Then again after two intervals (at 150th second),
it increments the sharpness parameter. In the subsequent interval,
C��T���� decides to decrement color-saturation after looking into
the most recently captured scene. Finally, C��T���� further decre-
ments the sharpness parameter three more times where the �rst
two are separated by 10s but the last parameter change (at 270th
second) happens after a 90s gap. Throughout the 5-minute video,
C��T���� adjusts the camera setting 8 times. The camera setting
adaption improves the mIoU per frame by 0.026 on average with
the maximum mIoU improvement of 0.67 in comparison with using
the default camera parameter setting. (2) C��T���� improves the
mIoU for 24.8% of the video frames (by a maximum of 0.67) and
only minimally reduces the mIoU for 1.6% of the frames (by a max-
imum of 0.005). An mIoU value of zero implies that no face in the
input scene is detected by the face-detection AU. (3) Figure 11b also
shows that while faces are not detected under the default setting
for 2.4% of the frames, the face-detection AU can detect faces in
those frames once C��T���� adapts the camera parameters.

(a) capture under SS1 (b) capture under
SS2

(c) C��T���� cam-
era capture

Figure 12: Sample static & C��T���� camera captures.

(a) suboptimal setting 1 (SS1) (b) suboptimal setting 2 (SS2)

Figure 13: C��T���� reaction to suboptimal settings (Nor-
malizedMoving average of total object detection is computed
over last 100 frames, shown in Y axis.)
7.2 How quickly does C��T���� react to

suboptimal settings
Here, we evaluate how quickly C��T���� can react if the camera is
set to a suboptimal setting that leads to degraded analytical outcome.
We place two side-by-side cameras in front of a scene consisting
of 3D objects as shown in Figure 12. In this scene, 3D slot cars are
continuously moving over the track and 3D human models are kept
stationary. Both cameras start with a same suboptimal setting (we
use two suboptimal settings denoted as SS1 and SS2) and stream
at 10 FPS for 2-minute period, during which the I-A parameters of
Camera 1 are kept to the same initial suboptimal values, while the
I-A parameters of Camera 2 are tuned by C��T���� every 2s. On
every frame streamed from camera, we use Yolov5 [28] as the object
detector to detect and record the type of objects with their bounding
boxes 3. Figure 13 plots the normalized moving average of the total
number of object detections in the last 100 frames in the Y axis
(to clearly show the trend) of the two cameras under two di�erent
initial suboptimal settings, SS1 and SS2. We observe a small initial
gap between the performance of YOLOv5 between the two camera
streams which indicates that within the �rst 10 seconds, C��T����
changes the camera parameters once based on analytics quality
estimator output and achieves better object detection. Furthermore,
we observe that C��T���� gradually converges to a best-possible
setting within a minute that enables Yolov5 to detect all objects
from the scene (total 5-7 more object detections per frame).

7.3 Real-world Deployment (Parking Lot)
To validate that similar accuracy improvement from video-playback
in §7.1.2 is achieved in real-world deployment where the I-A param-
eters of the camera are continuously recon�gured by C��T����,
we evaluated our deployment of C��T���� at a large enterprise
parking lot. The real-world deployment has two co-located cameras,
as shown in Figure 14. One camera is part of the Baseline VAP (VAP
1) while the other camera is part of the C��T���� VAP (VAP 2).
3Manual inspection con�rms no false-positive detection in the 2-minute period.
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Figure 14: C��T���� real-world deployment setup.

Both VAP deployments use Axis Q3505 MK II Network cameras,
which upload the captured frames over 5G network to a remote
edge-server (with a Xeon processor and an NVIDIA GPU) running
the E�cientdet [50] object detection model to detect cars and per-
sons in the parking lot. In VAP 2, the captured frames are also sent
in parallel to C��T���� which runs on a low-end Intel-NUC box
(with a 2.6 GHz Intel i7-6770HQ CPU). C��T���� is seeded with
the same initially VC-trained RL agent as in §7.1.2 and it performs
a few initial online exploration rounds and then starts exploitation
and adjusts camera settings every 30 seconds. To evaluate the ac-
curacy of the AUs in the VAPs, we ensure that both cameras view
almost identical scenes at the same time.

We ran both VAPs side-by-side for 8 continuous hours in a day
and recorded the videos from both VAPs. Since we want to man-
ually inspect and validate the detections from both VAPs, we ran-
domly picked detections for 5-minute spans during Morning and
Evening time and compare car and person detections across the
two VAPs. Figure 15 shows the cumulative number of true-positive
car and person detections. Figure 15a and Figure 15c show that
C��T���� detects 2.2% (3) and 15.9% (146) additional persons than
Baseline during Morning and Evening, respectively. C��T����
also detects 2.6% (861) and 4.2% (881) more cars than the Baseline
VAP during Morning and Evening, respectively, as shown in Figure
15b and Figure 15d. Upon manual inspection of the videos, we con-
�rmed that C��T���� does not have any false positive detections
for car/person.

7.4 5G Use Case: Automatic Vehicle Collision
Prediction (AVCP)

AVCP is an important use case in Intelligent Transportation Systems
(ITS). This use case requires extremely low latency because it is
very critical to predict collision and react almost instantaneously in
order to prevent a potential life-threatening accident. In particular,
low latency in the order of milliseconds is desired for this use case
which can be achieved by using 5G, which promises ultra-reliable
low latency communication (URLLC). In AVCP usecase, reliably
detecting and tracking vehicles and pedestrians is one of the most
critical building blocks; without this, the collision prediction won’t
work properly and may lead to life-threatening accidents. C���
T���� plays an important role in AVCP usecase, where it changes
the camera settings dynamically in reaction to the environmental
changes. Since the environment does not change within seconds,
C��T����’s quick (in the order of milliseconds) adjustment of
camera setting improves the detection and tracking of vehicles and
pedestrians at all times.

(a) Morning-time video (b) Morning-time video

(c) Evening-time video (d) Evening-time video

Figure 15: C��T���� performance in Parking lot.

(a) Intersection (b) Before accident (c) Car accident

Figure 16: Car accident prevention scenario.

Figure 17: C��T���� performance in Accident Prevention
scenario.

To evaluate this use case, we recorded a 1.5-minute-long car
accident scenario, as shown in Figure 16, at one of our customer
sites that has a 5G smart tra�c intersection testbed. We then used
the experimental methodology described in §7.1.1 to emulate the
same car accident scenario at 7 di�erent hours (i.e., environmental
conditions) of the same day, and running 2 VAPs (VAP 1 uses the
default camera settings, denoted as Baseline and VAP 2 runs C���
T����) that detect cars using E�cientDet object detector. Figure
17 reports the true-positive car detection count 4 observed under both
VAPs. Compared to VAP 1, VAP 2 using C��T���� detects 6.2%
additional cars on average across the di�erent hours, and as much
as 9.7% (122) more cars at 1 AM, as shown in Figure 17.

4A detection is considered as true-positive (TP) when the class labels both for predicted
and ground-truth bounding box are the same and IoU (intersection over union) between
them is atleast 0.7



SenSys ’22, November 6–9, 2022, Boston, MA, USA Sibendu Paul, et al.

Table 4: Accuracy of VC.

Parameter Brightness Contrast Color Sharpness
-Saturation

Mean error 5.4 % 13.8 % 17.3 % 19.8 %
Std. dev. 1.7 % 4.3 % 9.6 % 8.1 %

7.5 System Performance
Since C��T���� runs in parallel with the AU, it does not add any
additional latency to the VAP and hence the AU latency. In the
following, we show that the normal online operation of C��T����
is light-weight, and the initial training phase using VC can explore
each action extremely fast.

First, during online operation, each iteration of C��T���� in-
volves three tasks: evaluating the AU-speci�c quality estimator,
evaluating the Q-function by the SARSA agent, and changing the
parameters of the physical camera. We run C��T���� on a low-
end edge device, an Intel-NUC box equipped with a 2.6 GHz Intel
i7-6770HQ CPU. The AU-speci�c quality estimator takes 40ms on
the Intel-NUC edge device, i.e., 10X faster than the SOTA image clas-
si�ers, and the SARSA RL agent takes less than 1 ms to complete
Q-function calculation and Q-table update. Since the two tasks can
be pipelined with changing the physical camera settings which
takes up to 200 ms on the AXIS Q3505 MK II Network camera we
used, each iteration of C��T���� takes 200 ms, i.e., 5 iterations
per second, and the average CPU utilization is only 15% with 150
MB memory footprint.

Next, we run the initial RL training phase on a high-end PC with
a 3.70 GHz Intel(R) Xeon(R) W-2145 CPU and GeForce RTX 2080
GPU. During the one-hour training phase performed in §7.6, in
each iteration of the RL exploration, VC takes 4 ms to output 5> ,
the quality estimator takes 10 ms, and the RL agent take less than 1
ms to evaluate the Q-function and update the Q-table, for a total of
15 ms. As a result, C��T���� can explore around 70 actions per
second, which is 14X faster than using the physical camera. The
CPU utilization in this case is steady at 60%.

7.6 Accuracy of O�line Trained Models
Finally, we evaluate the e�cacy of two key components of C���
T���� which are trained o�ine: VC and AU-speci�c analytics
quality estimator model.

Virtual camera. VC is designed to render a frame taken at
one time ()1) to another time ()2), as if the rendered frame were
captured at time )2. First, we trained VC in the o�ine pro�ling
phase as discussed in §5.3 using a 24-hour long video obtained
from one of our customer locations at an airport. To evaluate how
well VC works online, we obtained several video snippets at 6
di�erent hours of the day from the same camera. Next, we fed 1
video snippet +(0 from one particular hour �0 through VC which
applies di�erent digital transformation to generate 5 video snippets
+( 9 corresponding to the hours of the other 5 videos. For each
generated video snippet +( 9 , we calculated the relative error of
the metric tuple values of each frame in +( 9 relative to that of the
corresponding original video frame and average such error across
all the frames in +( 9 (over 37.5K frames). We obtained 5 VC error
metric tuples for one video, each corresponding to the hour of the
other 5 video snippets. We repeated the above experiment for the

Figure 18: Analytics quality estimator performance.

5 other original video snippets to obtain a total of 30 VC error
tuples. Table 4 shows the mean error and standard deviation among
all 30 VC error tuples. We observe that the average VC errors are
5.4%, 13.8%, 17.3%, and 9.8% for brightness, contrast, color-saturation
and sharpness, respectively.

AU-speci�c analytics quality estimator. Next, we evaluate
the performance of AU-speci�c quality estimators. Since the AU-
speci�c estimator is a lightweightmodel that predicts coarse-grained
accuracy measure of the heavyweight DNN model (i.e., used in AU),
it is not meaningful to compare its accuracy against the accuracy
achieved by the heavyweight model (derived using ground truth).
Instead, we measure the quality of the AU-speci�c quality estima-
tor by measuring the Spearman and Pearson correlation between
the two accuracies for three di�erent AUs i.e. face-recognition,
face-detection, and person-detection. First, we trained the three
estimators through supervised learning as described in Section 5.2.
To evaluate the face-recognition estimator, we used the celebA-
validation dataset which contains 200 images (i.e., di�erent from
the 300 original training images used in Section 5.2) and their about
2 million variants from augmenting the original images using the
python-pil image library [14]. Figure 18 shows that the quality pre-
dicted by the face-recognition analytics quality estimator is strongly
correlated with the output by the AU (both Pearson and Spearman
correlation are greater than 0.6) [9, 47].

To evaluate the face-detection quality estimator, we used anno-
tated video frames from the olympics [39] and HMDB datasets [33]
and their 4 million variants that were generated. To evaluate object-
detection analytics quality estimator, we used labelled images (i.e.,
only consist car and person object classes) from the COCOdataset [35]
and their 7 million augmented variants Figure 18 shows that there
is a strong positive correlation between the measured mAP and IoU
metric and the predicted quality estimate for both face-detection
and object-detection AUs. In summary, the strong correlation be-
tween the prediction by the estimators and the actual quality of AUs
based on ground truth, enables C��T����’s RL agent to e�ectively
tune camera parameters.

8 DISCUSSION
C��T���� can be applied to dynamically determine either optimal
IP camera parameters or optimal digital transformation that can
be applied after capture, e.g., for cameras that do not expose such
REST APIs for remote camera parameter tuning.

It is important to note that modifying camera parameters to
capture a better image or video feed is fundamentally di�erent
from applying transformations to the frames already retrieved from
the camera. To study the impact of post-capture image processing,
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(a) Suboptimal Setting-1 (S1) (b) Suboptimal Setting-2 (S2)

(c) Suboptimal Setting-3 (S3) (d) Suboptimal Setting-4 (S4)

Figure 19: Parameter tuning vs. postprocessing for NIGHT.
we place face cutouts of 10 unique individuals in front of the camera
as a �xed static scene and evaluate the performance of the most
accurate face-recognition AU (Neoface-v3 [42]5) for multiple face
matching thresholds across various camera settings for the NIGHT
condition (see §3.3). We intentionally change the camera settings to
four di�erent settings denoted as S1, S2, S3 and S4 and measure the
Recall (i.e., true-positive rate) for the face recognition AU. In these
settings, the frames from the camera are of poor quality and the
Recall for various thresholds are quite low for all settings. Then, we
apply digital transformation on these frames and note the highest
Recall value that we can obtain.

Figure 19 compares the results of actual camera parameter tun-
ing and post-capture transformations. We see that for each of the
four sub-optimal camera settings, post-processing improved the
Recall compared to the original video, but the Recall is still quite
low. In contrast, if we directly change the actual camera parameters,
shown as “Best setting", then we are able to achieve the highest
possible Recall (i.e., 100%).

The above results show that modifying camera parameters to
capture a better image or video feed is fundamentally di�erent from
applying post-capture transformations to the frames. In particular,
if the image captured by the camera is su�ciently poor due to sub-
optimal camera settings, no further transformations of the video
stream from the camera can improve the accuracy of analytics. In
addition to providing better accuracy improvement, in-camera tun-
ing also provides lower end-to-end latency than the after-capture
post-processing. For these reasons, in this work we directly used
the camera-exposed APIs to change camera settings rather than
applying transformations to the frames.
9 RELATEDWORK
Similar to our �ndings, Jang et al. [26] also show that environmental
condition changes a�ect VAP, but their approach to adapt to such
changes is to use di�erent AUs depending on the environmental
conditions, e.g., using Haar cascade for detection when lighting
is su�cient and switch to HOG when environment gets darker.
Since there could be several reasons for change in environment as
5This face-recognition AU is ranked �rst in the world in the most recent face-
recognition technology benchmarking by NIST.

discussed in §3.1, developing an AU for every kind of environment
is not feasible. In contrast, C��T���� takes a di�erent approach
where the AU is �xed and camera settings are adjusted to adapt to
environmental changes.

Several works investigate tuning parameters of a VAP after cam-
era capture and before sending it to an AU or changing the AU
based on the input video content. Videostorm [55], Chameleon [27],
and Awstream [54] tune the after-capture video stream parameters
such as frames-per-second or frame resolution to ensure e�cient
resource usage while processing video analytics queries at scale.
In contrast, C��T���� dynamically tunes camera parameters to
improve the AU accuracy of VAPs.

More recent work, e.g., Focus [24], NoScope [29], Ekya [41], and
AMS [30], studied how to adapt AU model parameters based on
captured video content. Such an approach requires additional GPU
resources for periodic model retraining and is also less reactive
to video content changes. In contrast, C��T���� quickly adapts
the camera parameters in real-time according to environmental
changes.

Several frame �ltering techniques on edge devices [10, 12, 34, 43]
can work in conjunction with C��T���� and potentially further
improve C��T����’s performance. Our AU-speci�c analytics qual-
ity estimator shares similar goal as the AQuA-quality estimator [43]
but di�ers in that C��T����’s quality estimator performs quality
estimation that is speci�c to each AU, while AQuA performs much
more coarse-grained AU-agnostic image quality estimation.

There is a large body of work on con�guring the Image Signal
Processing pipeline (ISP) in cameras to improve human-perceived
quality of images from the cameras [20, 36, 40, 53]. In contrast, we
study dynamic camera parameter tuning to optimize the accuracy
of VAPs. OpenTuner [6] is a SOTA autotuning framework that
performs one-time parameter tuning for compilers, hardware, and
general programs that cannot be hand tuned. In contrast, C���
T���� performs dynamic tuning and adapts the camera parameters
continuously as the environment changes.
10 CONCLUSION
In this paper, we presented the design and evaluation of C��T����,
to our knowledge the �rst adaptive VAP framework that adaptively
learns the best setting for its NAUTO camera parameters deployed
in the �eld in reaction to environmental changes to enhance AU
accuracy. Our controlled experiments and real-world VAP deploy-
ment show that compared to a VAP using the default camera setting,
C��T���� allows the VAP to detect 15.9% additional persons and
2.6%–4.2% additional cars (without any false positives) in a large
enterprise large parking lot and 9.7% additional cars in a 5G smart
tra�c intersection scenario. C��T���� dynamically determines
how to tune IP camera parameters, which can be executed either
directly inside the camera via the exposed REST APIs for remotely
con�guring the camera setting, or via digital transformation after
camera capture, e.g., for cameras that do not expose such APIs. Fur-
thermore, we believe C��T����’s design and its key components,
Virtual Camera and light-weight AU-speci�c analytics quality esti-
mators, can be applied to dynamically tune other complex sensors
such as depth and thermal cameras.
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