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Abstract

We initiate a study of the following problem: Given a continuous domain €2 along with
its convex hull I, a point A € K and a prior measure p on €, find the probability density
over ) whose marginal is A and that minimizes the KL-divergence to u. This framework gives
rise to several extremal distributions that arise in mathematics, quantum mechanics, statistics,
and theoretical computer science. Our technical contributions include a polynomial bound
on the norm of the optimizer of the dual problem that holds in a very general setting and
relies on a “balance” property of the measure p on €2, and exact algorithms for evaluating
the dual and its gradient for several interesting settings of {2 and p. Together, along with
the ellipsoid method, these results imply polynomial-time algorithms to compute such KI-
divergence minimizing distributions in several cases. Applications of our results include: 1) an
optimization characterization of the Goemans-Williamson measure [15] that is used to round a
positive semidefinite matrix to a vector, 2) the computability of the entropic barrier for polytopes
studied by [7], and 3) a polynomial-time algorithm to compute the barycentric quantum entropy
of a density matrix that was proposed as an alternative to von Neumann entropy in the 1970s
[3, 32, 37]: this corresponds to the case when ( is the set of rank one projections matrices and
1 corresponds to the Haar measure on the unit sphere. Our techniques generalize to the setting
of Hermitian rank k projections using the Harish-Chandra-Itzykson-Zuber formula [21, 24], and
are applicable even beyond, to adjoint orbits of compact Lie groups.
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1 Introduction

Entropy maximizing distributions. Let Q be a subset of R? and let X = hull(Q) denote
the convex hull of ). Suppose one is given an A € K. A natural question arises: Is there a
canonical way to choose a probability measure supported on €2 that can be used to express A as a
convex combination of points on Q7 When () is a discrete and finite set, this problem has been
extensively studied and a canonical probability distribution was proposed by Jaynes [25, 26]: among
all probability distributions that can be used to express A as a convex combination of points in €2,
pick the one that maximizes the Shannon entropy. These distributions are referred to as maximum
entropy (max-entropy) distributions and arise in machine learning, statistics, mathematics, and
theoretical computer science (TCS). In TCS, these distributions have found many uses due to
duality, connections to polynomials, and algorithms to compute them [20, 36, 2, 14, 11, 1]; see [38].

In this paper we initiate a study of the computability when  is a continuous (and often
nonconvex) manifold. Examples of interest include

V= {ow' 1ve R,

Py = {vv* v € C vz = 1},

the set of rank & Hermitian projection matrices
Pe={Y:Y eC”" Tr(Y)=FkY =YY =Y}

(related to the Grassmanian), or a convex body (in which case K = Q).

Unlike the discrete setting, in the continuous setting the notion of finding a max-entropy distri-
bution is not well-defined since a canonical notion of entropy does not necessarily exist. We instead
consider relative entropy, Kullback-Leibler (KL) divergence with respect to a prior measure y on 2
that corresponds to the density function f(X) =1 for all X € €. For all of the manifolds mentioned
above, there is a canonical measure that has this property and is called the uniform measure; see
Section 2. This leads us to the following infinite dimensional convex optimization problem which
gives a canonical way to write A as a convex combination of points in : Find a measure v on
that is continuous with respect to p and, subject to the constraint that the expected point in I
with respect to v is A, v minimizes the KL divergence to p. Note that, by choice, v is as close to
the distribution p as possible; hence we call it a maximum entropy distribution.

The class of extremal entropy maximizing distributions that arise in this manner have several
properties that have led to their appearance, implicitly or explicitly, in several different areas:

the work of Klartag (inspired by a work of Gromov) on the isotropic constant 28, 16],

the work of Khatri and Mardia on the Matrix Bingham distribution in statistics with applications
to various scientific and engineering problems [6, 27, 22],

as shown here, the work of Goemans and Williamson on rounding semidefinite programs [15],
the works of Giiler, Bubeck and Eldan on barrier functions for interior point methods [18, 19, 7],

the works of Band, Park, and Slater that defined the barycentric quantum entropy and proposed
it as an alternative to the von Neumann entropy in the 1970s [3, 32, 37].



Computability of entropy maximizing distributions. One of the reasons why the entropy
maximizing problem defined earlier is interesting (and unifies the above problems) is duality: the
dual optimization problem roughly has the form:

inf (Y, A) + log e~V du(X),

Y Xen
where (-,-) is an inner product and g is the given measure. If strong duality holds, it can be
shown that the optimal distribution v* to the entropy maximizing problem can be described by
the optimizer Y* to the dual above: 1*(X) ox e~ "X} for X € Q. As for computability of v*, Y*
lives in a small, convex, and finite dimensional (same dimension as K) domain. Hence in principle,
one could hope to represent v* efficiently. However, bounding the running time of a optimization
method to find Y* reduces to 1) a bounding some norm of Y* and, 2) coming up with efficient
algorithms to compute [y q e~ X)du(X) for matrices Y with that norm. These are the main
problems studied in this paper.

1.1 Owur contributions

The main contributions of this paper are to initiate a formal study of the computability of entropy
maximizing distributions on continuous domains, to present an ellipsoid method-based framework to
compute them, to derive polynomial time algorithms for computing maximum entropy distributions
for specific manifolds mentioned earlier, and to present implications to some of the applications
listed above.

The continuous maximum entropy framework and duality. Our general framework is
presented Section 3. The focus is on the setting when the manifold €2 and the base measure p
is fixed to either the set of all rank one matrices over reals (V) with the measure induced by
Lebesgue measure on R™, or the set of all rank k projections over complexes (Py) for k > 1 with
the appropriate Haar measure. The input consists of an element A (which is a matrix in the cases
of interest) and the goal is to compute a representation for v* that is the KL-divergence minimizing
distribution to p with marginal A. We start by writing down the dual of this optimization problem
(Section A.1) and showing that strong duality holds under Slater’s condition — that there is a
density function that is strictly positive (and bounded) on €2 and has marginal A (Section A.2).
This is implied by the condition that A is in the relative interior of the convex hull K of 2, which
we then show is true quite generally in Sections A.3 and A.4. Strong duality then implies that
the optimal measure v* is determined by the optimal dual solution Y* as v*(X) e~ Y"X): gee
Theorem 4.1.

Norm of the optimal dual solution. However, to solve the dual convex program one needs,
at the bare minimum, that the norm of Y* is reasonably bounded. It is not difficult to see that as
A tends to the boundary of K, the optimal measure is concentrated on a face of I implying that
the norm of Y* must tend to infinity. Thus, one needs some assumption on the “interiority” of
A to ensure polynomial time computability. The situation is exacerbated by the fact that the Y*
appears in the exponent and, hence, to have any hope of computability of the entropy maximizing
distribution, the bound on Y* should be polynomial in the bit complexity of A. Unlike the case
when  is discrete (studied in [36]), the fact that the base measure u is continuous makes it harder.
Our main contribution towards the problem of bounding the norm of Y* involves identifying a
certain “balance” property of the measure p on the manifold 2 (Definition 4.1) and showing that,
roughly, ||[Y™*|| < poly(d,1/n) where n is the distance of A from the boundary of K; see Theorem 4.2.



We show that this balance property holds for a wide class of manifolds and obtain as corollaries a
bound of poly(n, 1/n) for both = Py, (Corollary 6.4) and when €2 is an n-dimensional convex body
(Corollary 6.6). This bounding box result is quite general and expected to find further applications.

Computing the integral in the dual for matrix manifolds. A bound on the norm of Y™
allows us to show that we can use the ellipsoid method to solve the dual convex program, provided
the measure p is balanced on €2, and we can evaluate the dual and its gradient at a specified Y
of norm up to that of Y*. The tasks of evaluating the dual and its gradient essentially reduce to
the computation of the integral [y g e‘<Y’X>d,u(X). In the case when Q = V; with u being the
measure induced by the Lebesgue measure, we observe that the dual optimization problem is finite
only when Y > 0, and thus we need to evaluate the integral only for such a Y. The integral above
then turns out to have a simple formula: roughly, logdetY (Proposition 9.3).

In other interesting cases, computing such an integral turns out to be a nontrivial task. In the
case when = Py and p; is the uniform measure induced by the Haar measure on the complex
unit sphere, we first note that the entropy maximizing measure cannot be obtained by solving the
problem first for V; and then “projecting” it on the sphere; see Section 9.2. Then, we note that the
integral does not reduce to a product of n integrals as in the Lebesgue case, and there is no easy way
around this. We need an algorithm to integrate the density e=*"Y" over the complex unit sphere
where the only thing we know about Y is that it is Hermitian. Neither the density is log-concave,
nor the support (unit sphere) is convex. Our main contribution here is to give an ezact algorithm
to compute this integral whose running time depends single exponentially on the bit complexity of
the input Y to it (Theorem 4.5). As remarked earlier, because Y is being exponentiated, this is
the best one can hope for and also turns out to be sufficient to obtain polynomial time algorithms
for computing maximum entropy distributions on P;.

Interestingly, the algorithm to compute this integral and its proof relies on an connection be-
tween the manifold P; and the probability simplex in n dimensions. Specifically, one can naturally
push forward the entropy maximizing measure from P; to a log-linear measure on the correspond-
ing simplex. There are then algorithms to sample from such a density function on the simplex
to estimate such an integral; however, to obtain an 1 + ¢ approximation to it, the running time
of these methods depends polynomially on 1/¢ instead log1/d. We give an exact algorithm to
compute this integral. Our method relies on Laplace transforms, is elementary, and a significant
effort is needed to deal with the case when Y has repeated eigenvalues. Importantly, this viewpoint
also leads us to an exact algorithm for computing such an integral for Py for £ > 1 using the
Harish-Chandra-Itzykson-Zuber formula [21, 24, 13, 39]; see Theorem 7.7.

Efficient algorithm via the ellipsoid method. Our general ellipsoid method-based algorithm
requires 1) a full dimensional embedding of hull(€2) in a d-dimensional real Hilbert space, 2) p is a
balanced measure on €2, 3) Q is contained in a ball of radius r, 4) the point A is in the n-interior of
hull(2) and, 5) that we have an exact counting/integrating oracle. It runs in time polynomial in
d,1/n,logr and log1/e, to solve the dual problem to an additive ¢; see Theorem 4.4. Our bound
on the norm of Y* and exact algorithms to compute the dual objective/gradient for the case of Py
imply a polynomial time algorithm to compute the entropy maximizing measure in this case when
A is in the polynomial interior of hull(Py); see Corollary 4.9.

1.2 Applications

SDP rounding. One approach to semi-definite programming (SDP) based approximation algo-
rithms, starting with the work of Goemans-Williamson [15] for the maximum cut problem, is SDP



rounding. Here, typically, A is a positive semi-definite (PSD) matrix, that is computed using a
SDP relaxation to some non-convex problem, and one of the goals is to round A to a vector. This
involves choosing a distribution on the set V; defined above, and typical choices have been some-
what magical and lack an explanation. In the Goemans-Williamson setting, A is an n x n PSD
matrix, and the density v on 2 they choose to express A as a convex combination is as follows:
pick a vector v € R™ from the normal distribution with covariance matrix A. We show that this
distribution is the maximum entropy distribution v* (corresponding to A) on V; with base mea-
sure induced by the Lebesgue measure on R", thus giving an optimization characterization of this
measure; see Corollary 4.12. The proof relies on strong duality and a closed form expression for
the dual objective integral on Vi; see Theorem 4.1.

Quantum entropy. In quantum mechanics, a density matrix p is a trace one complex n x n
PSD matrix and describes the statistical state of a system. The extreme points in the set of
density matrices are the pure states or P;. von Neumann defined a notion of entropy [40] of p
that is computed by first writing p as a convex combination ) ;" ; Aju;u;, where {Ui}ie[n} is an
orthonormal basis for C", and then computing the negative Shannon entropy of the \;’s. While the
von Neumann entropy is a mathematically elegant notion, it was vigorously argued in the 1970s
that it does not capture the uncertainty in p [3, 32, 37]. In fact, von Neumann’s way to write p as
a convex combination of pure states can be viewed as “the most terse”, or entropy minimizing one.
In the same papers, an alternative way to define entropy of a density matrix was suggested — as the
entropy of the entropy maximizing distribution with marginal p — and referred to as the barycentric
quantum entropy. Unlike the von Neumann entropy, that has a simple formula (— Tr plog p)), the
barycentric entropy did not have an efficient algorithm that could compute it. Our algorithm to
compute entropy maximizing distributions for P; mentioned above directly implies a polynomial
time algorithm to compute the barycentric entropy of a density matrix (that is sufficiently in the
interior) along with the probability density that achieves it; see Corollary 4.11.

Entropic barrier function. Bubeck and Eldan in [7] proved that the entropic barrier of a convex
body K C R%is a (1+o0(1))n-self-concordant barrier on K. Roughly speaking, this barrier function,
for a point in K is defined to be the optimal value of a dual maximum entropy optimization problem
when €2 = K and the measure is the Lebesgue measure on K. The computability of this barrier
function for a point K is not known in general. One obstacle is to get a reasonable bound on the
norm of the optimal dual solution. An almost direct consequence of Theorem 4.2 implies such a
bound for points that are sufficiently in the interior of K; see Corollary 6.6.

2 Preliminaries

Notation. Let C,R,R;,N denote the complex, real, nonnegative real, and natural numbers re-
spectively. For k,n € N, let CF*™ and R¥*™ denote the sets of k x n complex and real matrices
respectively. A matrix M € C™*" is said to be Hermitian if A = A* where % denotes the con-
jugate transpose. A Hermitian matrix M is said to be PD (positive definite) and PSD (positive
semidefinite) if its eigenvalues are positive and nonnegative respectively. For an n x n matrix X,
we define diag(X) to be the length-n vector of the diagonal entries of X. If z is a vector, then
we define diag(z) to be the diagonal matrix with entries the entries of . For any k,n € N, we
equip the vector space C**™ with the Frobenius inner product (Y, Z) := Tr(Y Z*). We also denote
Y] == /(Y,Y). Note that (Y,Z) € R whenever Y, Z are Hermitian, so that the set of n x n
Hermitian matrices is a real Hilbert space of dimension n?. Also (Y,Z) > 0 whenever Y, Z are



PSD. We further let B.(Y") denote the open e-ball centered at Y in the space in which Y lives (e.g.,
the n x n Hermitian matrices). Finally, we let hull(S) denote the convex hull of a set S in some
ambient vector space.

Manifolds. In general, we let 2 be any smooth manifold that is embedded in a d-dimensional
real Hilbert space V with inner product (-,-). Let £(X) = B denote the affine space in which
hull(Q2) is full dimensional, i.e., every element X € hull(Q2) satisfies the equation £(X) = B. The
concrete manifolds we consider are collections of matrices with some structure. In particular, for
fixed n € N, consider the following manifold within C"*". An n x n rank-k PSD projection is a
PSD matrix with k eigenvalues equal to 1 and the rest equal to 0.

Pr = Pr(n) := {n x n rank-k PSD projections}.

Note that P} is also a manifold within the space of n x n Hermitian matrices.! Other manifolds
we consider are the complex unit sphere S¢ C C™ (which is related to P;), the manifold of all rank
one matrices (not necessarily trace one): Vi := {vv" : v € R"}, and a convex body K C R".

We would also like to consider the convex hull of a given manifold 2. To make sense of such a
notion, we need to consider the manifold as being embedded in some ambient vector space. This
ambient space often the space of n x n Hermitian matrices in our examples. In general, we refer to
the elements of hull(2?) as marginals or marginals matrices.

Group actions. It is useful to understand the symmetries of some of the manifolds mentioned
above in terms of groups that act on them. Recall that an n X n unitary matrix is an invertible
matrix U for which U~! = U*, and an n x n orthogonal matrix is an invertible matrix O for which
O~! = O". The unitary and orthogonal groups (U(n) and O(n)) act on the manifolds discussed
above as follows:

e U(n) acts on column vectors in S¢ and on hull(S¢) by left multiplication.
e U(n) acts on Py, and on hull(Py) by conjugation.
e O(n) acts on V; and on hull(V;) by conjugation.

Note that the actions of U(n) on S¢ and on P; are compatible in the sense that for z € S and
U € U(n), we have (Uzx)(Uzx)* = U(xx™)U* where xa* € P.

Relative interior. The convex set hull(f2) is not necessarily full dimensional in the ambient
Hilbert space. To define a notion of interior for hull(€2), we restrict to the minimal affine subspace
in which € lives (this is given explicitly by £(X) = B discussed above). More generally, we make
the following definition.

Definition 2.1 (Relative interior) Fiz a convex subset S in a vector space V', and let Vo p be
the minimal affine subspace in which S lives. We say that Y € V is in the n-interior of S (for
n>0)if

B,(Y)NnV,pCS.

We say that Y is in the interior of S if there exists n > 0 such that Y is in the n-interior of S.

Here we usually consider S = Py(n), and we will be interested in the case where n > m.

Note that P is homeomorphic to a Grassmannian, i.e., the manifold of k-dimensional subspaces within an n-
dimensional space. The homeomorphism is explicitly given as the map which sends a rank-k PSD projection to the
k-dimensional subspace given by its image.



Measures and densities. Often, the manifolds 2 we consider have some geometric structure
(e.g., it is a manifold with a group action), and we want to consider measures which interact nicely
with this structure. To make sure this happens, we restrict to the class of measures which are given
by continuous density functions on 2. To make sense of this, we need a natural base measure p on
Q) which corresponds to the density function f(X) = 1. (E.g., in the case of Q = C" or 2 = R",
the Lebesgue measure often plays this role.) In particular, the support of p should be equal to .

In the case of {2 = Py, there is a canonical measure which is appropriately called the uniform
measure: we define pi be the unique unitarily invariant measure on Py, where U(n) acts by
conjugation (as discussed above). Hence, equivalently (and more formally), we restrict to the class
of measures on Py, which are absolutely continuous with respect to . We prove here the existence
of uk, a classical result.

Proposition 2.1 (Existence of uy) There exists a distribution puy on Py (which we call the uni-
form distribution). If X is a random wvariable distributed according to py, then X and UXU™* have
the same distribution for any unitary U.

Proof:  Pick random complex unit vectors v; € C"™1~% for i € [k]. Note that v; € C". Now,
map vy into v = C"~!, map w3 into {vy, vy}~ =2 C" 2, etc. to obtain a collection of k orthogonal
vectors in C™. Form an k xn matrix P by letting the v; be the rows of P. Defining X := P*P € P
gives a distribution g on Py.

For unitary invariance, note that this property holds for the choice of v by construction. This
can then be inductively applied to ve,..., v, by composing the given unitary with the appropriate

projection. ]

We also consider the standard Lebesgue measure on R™ for convex bodies and its pushforward
measure £ through the map v — vv! on V;. Note that S¢ also has a canonical unitarily invariant
measure, usually called the Haar measure. The pushforward of this measure through the map
v — vv* yields the unitarily invariant measure p; on Pj.

Integration/Counting oracle. We are interested in computing the following exponential inte-
gral for a given Y in our Hilbert space V.

Definition 2.2 (Exponential integrals) Fiz n € N and let p be a measure with support Q, a
manifold embedded in the real Hilbert space V.. We define the following function on an inputY € V:

E(Y)=E,(Y) :=log /Q e VX du(X).

Whenever i = py and @ = Py, we use the following shorthand notation E,(Y'). We sometimes also
refer to these integrals as exponential integrals.

A strong integration/counting oracle for  and p outputs two quantities, given an element Y from
the ambient Hilbert space V' of €:

1. £,(Y)
2. the matrix VE,(Y), defined so that the following holds for any Z € V:

(VELY), Z) = %@(Y +iz)| .
t=0



Primal Dual

sup [— / V(X) log /(X)) du(X) inf FA(Y) = inf {(Y, A) + log / e‘<Y’X>du(X)]
v Q Q
subject to: subject to:
v:Q — R, p-measurable LY)=0

/Q Xu(X)du(X) = A

/ V(X)dp(X) = 1
Q

Figure 1: Primal and dual maximum entropy convex programs for A in the interior of hull(2).

In the case of ) = P, Y and Z are Hermitian. Further, since the measure py is unitarily invariant,
we can assume that Y is diagonal and expect the running time of the counting oracle should depend
polynomially on n and the number of bits needed to represent e~ ¥ for any ¢, where y,...,y, are
the eigenvalues (diagonal elements) of Y.

As we will show, in the special case when 2 = V; and p is the pushforward of the Lebesgue
measure, we can compute the integral £,(Y’) exactly in time polynomial in the bit complexity of ¥’
due to a direct formula. This happens because the measure p is a product measure, which is not
the case for pg.

3 The maximum entropy framework

In this section we present our maximum entropy convex program. Fix a manifold Q in a d-
dimensional real Hilbert space with inner product (-, -), and let £(X) = B denote the corresponding
affine space containing €. Let 1 be the base measure on Q and A in K := hull(Q2). Our goal is to
find a density function v with marginal A that minimizes the KL-divergence with respect to pu.

We use the shorthand Prim,,(A) (or Primy(A) if i = py) to refer to this primal optimization
program. We mainly consider the case of y = uy and 2 = Py, or Q = V; with p the pushforward of
Lebesgue measure. In these cases Y will comes from some subspace of the n x n Hermitian matrices.
Drawing from the intuition that these base measures are uniform over the manifold, and hence in
some sense maximize entropy, we say the KL-divergence minimizing measure is entropy maximizing.
However, we note that this framework is also applicable to other base measures, in particular to
the case when  is a convex body in R? and y is the Lebesgue measure. The fact that the entropy
integral (without the minus sign) is convex as a function of the density v follows from the fact that
this integral is precisely the KL divergence between the probability distribution corresponding to
v and the distribution . Convexity of the KL divergence for probability distributions is then a
well-known fact.

Efficiently solving this convex program directly is a priori impossible as the support of v is
infinite. To find a succinct representation for the optimal v*, we turn to the dual program (see
Section A.1 for a derivation), which gives us a nice representation of the max-entropy density
function v*. We often use the shorthand Dual,(A) (or Dualy(A) if u = puy) to refer to this
program.

In the case of Py with uniform measure py, the optimal solution to Dualg(A) is given by a



Hermitian matrix Y*. By strong duality (see Theorem 4.1), this in turn shows that the max-
entropy density function v* takes on a nice form:

V(X)) o e VX0,

As a note, in the case of 2 = Py this matrix Y is only unique up to a shift by a multiple of the
identity matrix. Issues arising from non-uniqueness can be handled by restricting to the minimal
affine subspace in which hull(Py) lives, as referred to in the discussion surrounding Definition 2.1.
However, as A tends to the boundary of hull(€2), Y* can be seen to tend to infinity as the support
of the measure v* tends to lower dimensions.

4 Formal statement of our results

4.1 Mathematical and computational results

Our first result shows that strong duality holds.

Theorem 4.1 (Strong duality) Let Q be a manifold that is embedded in a d-dimensional real
Hilbert space with an inner product (-,-), and let p be a measure supported on . For any A in the
relative interior of the convex hull of 2, the optimal values of the primal and dual objective functions
coincide, and the corresponding max-entropy distribution has density function of the following form

for some Y*:
V(X)) oc e VXD

The proof of this result uses standard techniques and appears in the appendix (Sections A.2 and
A.3). This result applied to P and pi shows that optimizing Dualg(A) is in fact equivalent to
optimizing Primg(A), and therefore the max-entropy measure has the exponential form described
above.

With strong duality in hand, we focus on the computability of the optimal matrix Y™* for the
dual program. To do this we use a version of the ellipsoid algorithm (see Theorem 8.1 and the
algorithm that follows), for which we need two things.

First, we need an upper bound on some norm of the dual optimal solution. If Y* is the optimal
solution, then the number of iterations of the ellipsoid algorithm depends on log |[|[Y*||. That said,
it may seem that a bound depending on €'/, where 7 is such that B, (A) C hull(), is enough to
achieve polynomial dependence on % However, this is not enough, since the integral appearing in
the dual is polynomially dependent on the number of bits needs to represent e~¥, where the y;’s
are the entries or eigenvalues of a given input Y. Hence, we actually need polynomial dependence
on %, which is achieved in our bounding box result below. Note that this issue is not surprising, as
it crops up in exactly the same way in the discrete maximum entropy case (see [36]).

We give here a bounding box result which is more general than we need for the rank-k projections
case (0 = P and p = py). It relies on a key “balance” property of the measures. This notion
extends important properties of the discrete uniform measure to continuous measures on manifolds
and is one of the key notions we introduce.

Definition 4.1 (Balanced measure) A measure u is said to be balanced if for any § > 0 and
X € Q, we have that at least exp(—poly(d=1,d)) of the mass of u is contained in the §-ball about
X (where d is the dimension of the ambient space in which hull(2) lives).
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We see in Definition 6.2 how this notion can be used to give a more refined notion of interior
(beyond the n parameter discussed above). Conceptually, it allows us to give an measure-theoretic
relaxation of the notion of a separating hyperplane.

Theorem 4.2 (Bounding box) Let 1 be a measure supported on a manifold 2 embedded in a d-
dimensional real Hilbert space. Suppose that p is balanced, in the sense of Definition 4.1. Further,
let A be an element of the n-interior of the convex hull of Q. Then there is an optimal solution Y™
to the dual program such that:

[Y*|| < poly(n~", d).

Corollary 6.4 and Corollary 6.6 give bounds for rank-k projections and convex bodies as corollaries.

Remark 4.3 Our bounding box result significantly generalizes the discrete case (Theorem 2.7 in
[36]). Uniform distribution in the discrete case has atoms of uniformly strictly positive (at worst
singly-exponentially small) mass at all points, and this implies a bound on optimal dual solutions.
In the continuous case this is no longer true, the notion of balance then fills the gap.

Second, at each step of the ellipsoid algorithm, we need to be able to evaluate the dual objective
function and its gradient at given input Y. The hardest part of such a computation comes in
evaluating &,, the exponential integral portion of the objective function. We show that if we
have access to such an evaluation oracle, then under very general conditions, we can compute the
maximum entropy distribution.

Theorem 4.4 (Ellipsoid method-based general algorithm) Let p be a balanced measure
with support on a manifold Q) embedded in a d-dimensional real Hilbert space. Let the affine space
in which 2 lies, L(X) = B, be given as input (L, B). Assume that Q is contained in a ball of radius
r. There exists an algorithm that, given A in the n-interior of hull(2), any ¢ > 0, and a strong
counting/integration oracle for the exponential integral £,(Y), returns Y° such that

Fa(Y°) < Fa(Y") +¢

where Fa is the objective function for the dual program Dual,(A), and Y™* is an optimum of the
dual program. The running time of the algorithm is polynomial in d, n~!, log(e~1), log(r), and the
number of bits needed to represent A, L, and B.

Our next result says that in fact we have an efficient strong counting oracle for &, on the domain
P, with measure pi.

Theorem 4.5 (Counting oracle) There is an algorithm that, givenn € N, k € [n], an n xn real
diagonal matriz Y = diag(y), and a 6 > 0, returns numbers E,G such that

1L IE-&((Y)| <6

2. |G = VE&(Y)] <9,

where & is the exponential integral defined above (and in Definition 2.2). The running time of
the algorithm is polynomial in n, log(%), and the number of bits needed to represent e % for any
i€ [n].

The proof of this theorem for & = 1 is elementary but relies on the interesting connection between
the complex unit sphere and the probability simplex. This connection also yields an exact sampling
algorithm; see Proposition 7.10. For k > 1, the proof of the theorem above relies on the Harish-
Chandra-Itzykson-Zuber formula [21], [24]; see Theorem 7.7.
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Remark 4.6 In the case of V1 with the pushforward of Lebesgue measure, there is an exact formula
to compute the corresponding dual optimum for positive definite marginals A: Y* = %A‘l; see
Corollary 9.4. Positive-definiteness of the input Y is in fact required for the dual objective to be
finite, which is in stark contrast with the Py case where any Hermitian matriz is allowed. These
points suggest a conceptual divide between the Lebesgue measure case and the rank-k projections
case. We do not expect such a formula for Y™ in the case of P1 and, indeed, the lack of one has
been one of the obstacles for efficient algorithms for quantum barycentric entropy and computing
the normalizing constant of the matriz Bingham distribution.

Remark 4.7 In this paper we primarily consider the best possible setting where the running time
of the counting oracle depends logarithmically on the accuracy. We refer to such counting oracles
as exact. We note that our framework does allow for counting oracles where the dependence is
polynomially in 1/4.

Remark 4.8 Guler in [17] studies the characteristic function of a convex cone. In our language,
the characteristic function of a cone is the exponential integral Ex (y) with respect to the Lebesgue
measure on the dual cone K :

Ex(y) = log/ e~ W g,
K

For the case of homogeneous convex cones, Guler gives a nice way to construct explicit formulas
for the characteristic function. (A homogeneous cone is a cone K such that for all u,v € K theres
s a linear isomorphism of K which maps u to v. Orthants, Lorentz cones, and semidefinite cones
are all homogeneous. See Sections 3 and 7 of [17] for more details.) Given a fized vector e in the
interior of K, any other vector y in the interior of K, and an automorphism A, of K mapping e
to y, the dual objective for K can be written up to additive constant as:

1

Foly) = (,0) — log / &) dz = (y,0) —  log(det(4, A])).
K

Such an explicit formula gives a route to efficiently computing the dual objective function in this

case.

The bounding box and counting oracle for uy and Py then imply that the ellipsoid method-based
algorithm from Theorem 4.4 gives a polynomial time algorithm for approximately computing Y™*,
the optimum of the program Dualy(A).

Corollary 4.9 (Ellipsoid method-based efficient algorithm for Py) There exists an algo-
rithm that, given n € N, k € [n], a trace-k PD matriz A in the n-interior of the convexr hull of the
set of n x n rank-k PSD projection matrices (i.e., hull(Py)), and an & > 0, returns a Hermitian
matriz Y° such that

Fa(Y?) < Fa(Y™) +e,

where Fy is the dual objective function and Y* is an optimal solution to the dual program Dualy(A).
. . . . P 1 1 .

The running time of the algorithm is polynomial in n, . log(2), and the number of bits needed to

represent A.

We further discuss the closeness of the distributions associated to Y° and Y* from the previous
Corollary in Appendix C.
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Remark 4.10 Notice that the dependence on 1 means that we do not achieve a polynomial time

algorithm for A near the boundary of hull(Py). This dependence comes from the fact that the
bounding box (Theorem 4.2) is dependent on % One may then naturally ask whether this bounding
box dependence can be improved. It turns out that it cannot in this case, see Remark 6.5. Note that
this differs from the discrete case, where in [38] the authors are able to remove this % dependence
under certain assumptions on the polytope.

4.2 Applications

Barycentric quantum entropy. In [37], Slater discusses the notion of barycentric quantum
entropy of a density matrix, and compares it to that of von Neumann entropy. His investigation
of this notion was prompted by the work of Band and Park [3, 32], who critiqued the use of von
Neumann entropy as a good indicator of the uncertainty of the given density matrix. In particular,
they argue that a better notion of entropy would relate to distributions on all possible pure states,
whereas the von Neumann entropy is derived from the discrete distribution on the pure states
corresponding to eigenvectors of the matrix. In response to this, Slater defines a notion of quantum
entropy in terms of a max-entropy program on the set of all pure states. He then goes on to show
how one might determine the quantum entropy in a few specific cases.

Definition 4.2 (Barycentric quantum entropy) Let p be an n x n Hermitian density matriz
(trace-1, positive semidefinite). Then the barycentric quantum entropy of p is defined (in our
notation) as: Hy(p) := inf, [p v(X)log(v(X))dui(X) subject to

V(X)>0 VX EP,  and / V(X)dp(X) =1 and Xv(X)dp1 (X) = p,
P1 P1

where Py denotes the set of pure states and py denotes the unitarily invariant measure on Py.

Our results for computing max-entropy measures on P; immediately imply efficient computability
of the barycentric quantum entropy for density matrices that are polynomially in the interior.

Corollary 4.11 (Computability of barycentric quantum entropy) There exists an algo-
rithm that, given a Hermitian density matriz p in the n-interior of the set of Hermitian density
matrices and an € > 0, returns a number H such that |H — Hy(p)| < €. The running time of the
algorithm is polynomial in n, %, log(%), and the number of bits needed to represent p.

Goemans-Williamson SDP rounding. In their seminal paper, Goemans-Williamson [15] gave
a rounding scheme that gives a way to round a given PD matrix A to a vector. Their method goes

by drawing a vector v from a particular distribution on R™ based on the matrix A.

Definition 4.3 (Goemans-Williamson measure) Givenn € N and a real positive definite nxn
matriz A, the Goemans-Williamson measure ugw can be defined via a sampling process on R™ as
follows.

1. Sample g € R™ from the standard multivariate Gaussian distribution.
2. Compute v := Vg where V is a square oot of A, i.e., A=VVT.

3. v is a sample from ugw-.
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It is then straightforward to compute the marginals matrix associated to this distribution as follows:

E[vv'] = /n(va)dqu(v) =V [/}Rn g9 dg| VI =VVT = A

Thus, if we map R™ to V; via v — vv! and also pushforward the Lebesgue measure through this
map, the above is precisely the marginal constraint in our max-entropy framework. This observation
implies that the pushforward of the measure ugw is a (strictly) feasible solution to the max-entropy
primal program on the domain V; with the pushforward of the Lebesgue measure. We show that
it is also the optimal solution to the max-entropy program.

Corollary 4.12 (Goemans-Williamson measure maximizes entropy) For any positive def-
inite matriz A, let paw be the measure corresponding to the Goemans- Williamson rounding scheme
for A. Then the pushforward of pgw to Vi is the max-entropy measure with marginals A on Vi
with respect to the pushforward of Lebesque measure.

Entropic barrier function. Bubeck and Eldan in [7] prove that the entropic barrier of a convex
body K C R? is a (1+ o(1))n-self-concordant barrier on K, improving a seminal result of Nesterov
and Nemirovski [30]. In fact this gives the first explicit construction of a universal barrier for convex
bodies with optimal self-concordance parameter.

Definition 4.4 (Entropic barrier) Given a convezx body K C R?, define the entropic barrier for
K as the real-valued function on the interior of K defined as:

Bk (v) := sup
yERd

(y,v) — log/ e<y’x>dx} .
K

Note that — By (v) is precisely the mazium entropy dual program, up to negation of y in the expres-
ston.

Open questions still remain about the efficient computability of the entropic barrier. This is in
particular true in the case where K is a polytope, given as a membership oracle. Towards this, the
following is essentially a corollary to Theorem 4.2 (see Section 6.3 for a full proof), and can be used
to efficiently compute the entropic barrier at points which are in the n-interior of K.

Corollary 4.13 (Bounding box for convex bodies) Let @ C R? be a conver body contained
in a ball of radius R. Further, let A be an element of the n-interior of the convex hull of Q0. Then
there is an optimal solution Y™* to the dual program such that |Y*|| < poly(n~!,d,log(R)).

Details of how this implies computability of the entropic barrier are omitted from this paper.

5 Technical overview

In this section, we give overviews of the proofs of the main results of this paper and compare
our techniques with those of previous work. We start by describing the approach of [36] in the
case of discrete uniform measures p with finite support © C {0,1}¢. In this case, the marginals
vector A of a measure v on ) is defined by setting Ay to be the expected value of the kth entry
of  when x is chosen according to v. Note that the marginals vector A is always an element of
hull(Q2). The problem the authors of [36] solve is described as follows: given a finite subset {2 and
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a desired marginals vector A in the n-interior of hull(€2), compute the probability measure on €2
with marginals A which maximizes entropy.
They consider the dual formulation

inf  Fa(y) := (y, A) + log Z e~ (@)
veRe z€N

which gives rise to measures on €2 of the following succinct form for some real vector y*:

v(z) e~ (),
By strong duality v = v* is the entropy maximizing measure, and they then use the ellipsoid
method to approximate y*.

We generalize their approach to continuous measures p on continuous domains 2. For the most
part, the ellipsoid algorithm can be applied in the same way as in the discrete case once we have
the three main pieces in hand: (1) strong duality, (2) a bound on Y*, and (3) the strong counting
oracle. Even in the continuous case, one can show that strong duality holds via a certain Slater-
type condition (see Sections A.2 and A.3). What makes the passage from the discrete case to the
continuous case much more interesting and nontrivial is proving the remaining two main pieces.

5.1 Proof overview: bounding box

The goal of this section is to explain the proofs of the main bounding box result and its corollaries.
We first describe the approach of the discrete p case discussed above. Note that for B € hull(Q),
there exists some X € € such that

<_Y*7X0 - B> Z 07

since every closed half-space containing B contains an extreme point Xy € hull(2). If A is in the
n-interior of hull(€2), we can choose B = A — nﬁ to get:

(=Y, Xo = A) Z nl[Y™].

Because p is a discrete uniform measure, we have u({Xo}) = |©2|~!. This implies a bound on Y*
as follows, via the dual objective function F4(Y):

. . log |©)
OzFA(O)ZFA(Y*)zlog/e<‘Y X Ap(x) > log (Y1 0 1) = |y < Ogn' J

The lower bound on F4(Y™*) above follows from restricting the integral (which is a sum in the
discrete case) to the single point Xy. This demonstrates exactly why this argument fails in the
continuous case, because in that case we have p({X}) =0 for all X € Q.

This is the first difficulty we must overcome. We need a way to restrict the dual objective
integral to a region of 2 which has positive mass, emulating the role of atoms in the discrete case.

We introduce a two-parameter interior for the measure . We say that A is in the (7, d)-interior
of u if every half-space intersecting the n-ball about A contains at least § mass of p (Definition
6.2). Instead of restricting the dual integral to a single point of 2, we restrict it to the appropriate
d-mass to obtain a bound on [|[Y*|:

x x 1 1
0> log/e<_y A=A du(X) > log (e””y I -5) = ||V < Elog 5
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We explain this formally in Lemma 6.1.

This leads to the second difficulty. Our bounding box theorem only refers to the 1 parameter,
and so we need a way to handle or control ¢ in terms of n and d.

Here is where the key balance property comes into play. We say that a measure p is balanced if
foralle > 0 and X € (, the e-ball about X contains exp(—poly(e~!,d)) of the mass of u (Definition
4.1). This links the two interiority parameters: from any point of the e-interior of hull(€2), there
will be at least exp(—poly(¢~!,d)) mass in the direction of any X € ) on the boundary.

The crucial feature of the balance property is then how this linking of the parameters allows one
to transfer between them. Specifically for a balanced measure, the n-interior of hull(£2) is contained
in the (Z,exp(—poly(4,d)))-interior of y. To see this, let A be in the 7-interior of hull(€2). Hence,
any half space which intersects the Z-ball about A contains another Z-ball in hull(Q2). By translating
this ball toward a point of {2, we can assume that the half-space contains an g—ball about a point
of Q. Since p is balanced, this implies A is in the (4, exp(—poly(4,d)))-interior of .

At this point, the rest of the proof of Theorem 4.2 is straightforward. For balanced p and A in
the 7-interior of hull(€), we actually have that A is in the (2, exp(—poly(2,d)))-interior of y. The
two parameter bound described above then implies ||[Y*]| < poly(%, d).

To obtain bounding boxes for p on Py, n x n rank k projections, (Corollary 6.4) and to uniform
measures on convex bodies (Corollary 6.6), we then demonstrate balance properties. In the case of
tks Pr C B, z(0) can be covered by at most exp(poly(log 6=, n)) balls of radius & for any & > 0,
morally because:

vol(Bs) — (md)"/n!

vol(Byg) _ (av/k)" /! _ <\/E
o

—) = exp(poly(log 6", n)).

Therefore a 6-ball about some point of P}, must contain at least exp(—poly(logd~*,n)) of the mass
of ug, and unitary invariance then implies that this is actually true for all points of Py.

For uniform measures 1 on convex bodies K contained in a ball of radius R, we prove the
bounding box using similar arguments as follows. By the volume ratio computation above, every
0-ball contained in K contains at least (%)d of the mass of y. Therefore every A in the n-interior
of hull(€2) is also in the (Z, (%)d)-interior of yu, since every half-space intersecting the Z-ball about
A contains another Z-ball in K. The bounding box then follows from the two-parameter bound
discussed above (Lemma 6.1).

5.2 Proof overview: counting oracle for P; and V;

The goal of this section is to explain why we can efficiently evaluate and compute the gradient of

Eu(Y) =1og [ e O Ndu(x)
Q
in the case of Q =Py and Q =V,

First consider the case of 2 = Vi, where pu is the pushforward of the Lebesgue measure through
x — xz'. In this case we have a very explicit formula whenever Y is positive definite:

£,(Y) = log / N du(X) = 2 los(r) - %log det(V).

Since p is the pushforward of the Lebesgue measure through z +— zz ", this expression follows from
the following classical Gaussian integral formula:

J e 00 = [ e e = Jaer(ay). (1
1
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This is demonstrated formally in Proposition 9.3. We show how leads to our optimality character-
ization of the Goemans-Williamson measure at the end of this section.

The above Gaussian formula for V; suggests a natural approach for computing £ on P;. Al-
lowing complex Hermitian matrices, note that P; is the set of norm-1 elements of V;. Hence, we
“integrate out” the norm of the elements of Vi, in an attempt to obtain a similar formula for P;.
We do this via a standard change of variables (equalities are up to scalar):

/\}15 v, /Pl/ —(Yr2X), 2n— 1drd,u1( )2/7)1(KX>_"dm(X) £ &(Y).

This shows that this approach fails: that is, integrating out the norm does not provide us a formula
for & (Y) (for more discussion see Section 9.2).

This demonstrates the first difficulty for constructing a counting oracle for P;. Normalizing
the max-entropy measure on V; as above yields a measure on P; which is not a max-entropy
measure. Max-entropy measures on P; an V; are therefore fundamentally different objects, and
thus constructing the associated counting oracles requires different techniques. In particular the
well-known Gaussian integral formulas cannot help us in the case of P;.

The remarkable fact is then that max-entropy measures on P; can be translated into max-
entropy measures on a very simple polytope: the standard simplex in R”. We have the following
equality for real Y = diag(y), where m is the Lebesgue measure on the simplex Ay := {p € R} :

Yo pi =1}
/ e_<Y’X>d,u1(X) = / e_<y’$>dm(3:).
P1 A1

Put another way, max-entropy measures on P;, a nonconvex manifold, correspond to max-entropy
measures on Aj, a convex polytope. To see this, first note the following for any my,...,m,. The
first equality is the Bombieri inner product formula (Lemma 7.2), and the second inequality is a
basic induction after a change of variables:

mq!---myl(n —1)! /
X XMrdpy (X) = = "l dm(z).
[ Xt X (X) = P = [ ()

The exponential equality then follows from limiting, since P; and A are compact and since e~ X

and e~ %) are limits of polynomials.
This argument also implies the more general fact: that m is the pushforward of p1 through the
map ¢ : X — diag(X):

f(o(X))dp (X) = | f(z)dm(z).
P1 Aq

This transfer to the simplex now leads to an explicit computation for & (Y) when Y = diag(y).
(Considering diagonal Y is actually without loss of generality, see the discussion in Section 7.) B
making a change of variables, the simplex integral is an iterated convolution:

1 1—x l1—z1——zp_2
—(Y, W) 70 (oIt L Yl
1)1 /791 d,ul / / / e dx = (e %o %e )’t:1 .

This is stated formally in Lemma 7.3. Applying the Laplace transform £ converts this convolution
into a partial fraction decomposition problem for distinct values of y;:

E cie —Yi
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Computing the values of ¢; via a standard partial fractions formula gives:

1 e _ det(M(~y))
(n - 1)' /1 dlul Z H];ﬁz(yj yl) B Hi<j(yj - yl) .

This is stated formally in Proposition 7.4. Here M (—y) is a Vandermonde-like matrix which arises
when forming the common denominator of the last expression, given (for the case of distinct y;s)
as follows:

(—yl)2 (—y2)2 e (—yn)2
M(—y) _ (_?{1) (—Z:/2) (—Z{n)

(—y)"2 (=)™ o (=)

| e w e~ Y2 e~¥n |

We define this matrix formally in Definition 7.1.

This brings us to the second difficulty for constructing a counting oracle for P;. When the
values of y; are not distinct, then the denominator vanishes and this formula cannot be used. Even
though &; is continuous, this could still be a major problem: if for example the gradient of & (Y")
becomes large as y; approaches y;, then computing £1(Y") could become computationally infeasible.

To handle this difficulty, we take limits by successively applying L’Hopital’s rule. One iteration
for y1 = yo goes as follows:

det(M (~y)) _ 0y, det(M(~y))
y2—y1 Hi<j(yj ) 8y2 HK]'(ZJZ‘ - yj)

_ det(M'(—y))
H2<i(yi y1)? H2<z<] (yi — yy)

Y2=y1

The key observation here is the fact that the numerator is still a determinant, due to the fact that
only one column of M(—y) depends on y; for all i. Applying L’Hopital’s rule as many times as is
necessary leads to the following, where \; represent the distinct values of y with multiplicities m;:

_ det(M(—=)\))
exp(€1(V) = [ e ¥dpr (X) = (n - 1) —
P1 Hi<j(/\i — )i
Note that M (—\) is a matrix similar to M (—y) above which handles the non-distinctness (we unify
the notation of these matrices in Definition 7.1). A similar expression for the gradient is achieved
using the same techniques, and so we state it here without further detail:

det(Mp(—A))
det(M(—N))

(Va))i=->_ 3 nii)\' -
i#zp P

M,(—\) is another, similar Vandermonde-like matrix, see Proposition 7.6 and Definition 7.2.

Since the entries of M(—\) and My,(—\) have bit complexity polynomial in n and the bit
complexity of e7¥, their determinants have the same bit complexity. Therefore these formulas, for
&1(Y) and its gradient, lead to an efficient counting oracle for P;.

The optimality of Goemans-Williamson measure. As a consequence of Equation (1), we
now show briefly how this formula is used to prove that the Goemans-Williamson measure pugw
with respect to a real symmetric positive definite matrix A is a max—entropy measure on V;. For
A =VVT, the measure ugw is defined to be distributed according to zz " := (Vg)(Vg)" where g
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is a standard Gaussian in R”. By the change of variables formula, z2 " is distributed as follows on
R"™:
zz! ~ e 3llV el ~det(V Ydu(zx ") o e_<%A71’mT>d/¢(:ﬂxT).

We state this formally in Proposition 9.1. To prove that this is a max-entropy measure, we determine
the critical point of the dual objective with respect to real symmetric positive definite Y

0= V((Y,A) + E(Y)) = A %Y‘l oy %A‘l.

Therefore, the Goemans-Williamson measure paw(X) o e~(z471X)

measure on V] with respect to A.

du(X) is the max-entropy

Proof overview: sampling for P;. We now discuss how to sample from max-entropy distri-
butions on P;. Our main algorithm (Theorem 4.4) gives an efficient oracle for approximating the

max-entropy density function:
V(X) o eV,

The main problem is that it is not at all clear how to use such a density function to sample from
a manifold.

We avoid this difficulty by transferring the problem of sampling to the simplex A; for Y* =
diag(y*), using the following fact discussed in the previous section:

1 1— 1 1— T1——Tp_2 .
R — ( _< 7SC>
i oy a0 = [T e

The sampling process for P; then occurs in two parts.

First, we sample from the max-entropy distribution on the simplex, one coordinate at a time.
We use the right-hand side of the above expression to compute the cumulative density function
(CDF) for each coordinate, conditioned on the previously sampled coordinates. Formulas and
computations for these conditioned CDFs are very similar to that of the counting oracle, and hence
we omit them here (see Corollary 7.13).

Once we have a sample x on the simplex, we need to convert it into a sample on P; by considering
its inverse image under the map ¢ : X — diag(X). The difficulty that now arises is the fact that
there are many elements of P; which map to the same simplex element under ¢.

Fortunately, there is a principled way to select from these possibilities. The fiber ¢~!(x) is
an orbit of the action of diagonal unitary matrices on P; by conjugation. Since Y™* is diagonal,
this implies the max-entropy measure v(X) is uniform when restricted to ¢~'(z). Given z, we
then sample X from ¢~ !(x) by picking an arbitrary Xy € ¢~ () and conjugating by a uniformly
random diagonal unitary matrix.

Hence, to sample X from P; we (1) sample x from the simplex, and then (2) sample X uniformly
from ¢~!(z). This samples X from the correct measure due to the disintegration theorem, which
says the following for any f:

- f(X)dpa (X /Alf ‘) X)dpy—1(g)(X)dm(z).

That is, the measure p; can be split into measures on Aj and on the fibers ¢~!(z) (see Proposition
7.11).

Therefore, the above sampling process efficiently samples the max-entropy measure on P; with
density v(X).
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5.3 Proof overview: extending the counting oracle for P; to P

For the case of Py and py, we want to generalize the formulas of the & = 1 case. To do this, we
make use of the famous Harish-Chandra-Itzykson-Zuber formula (Theorem 7.7) for integrals over
the Haar measure of the unitary group U(n). It is stated as follows for Hermitian Y, B with distinct
eigenvalues y;, 5;:

n—1 — ;B
_ . det([e y1/83h<. i )
(Y, UBU )dU _ ' <i,j<n
e p! .
/U(n) (,,1;[1 ) [Tici (i — )85 — Bi)
For B = diag(1,...,1,0,...,0) with & 1s and n — k Os, notice that P, = {UBU* : U € U(n)}.
This leads to the following:

exp(&(¥) = [

; e~ VX dp(X) =/ e~V UBU™) qu.
k

U(n)

To handle the issue of the denominator vanishing, and to compute the gradient, we apply all the
same techniques which were required for the k = 1 case (see Corollaries 7.8 and 7.9). These formulas
end up having the right bit complexity, and so they immediately imply an efficient strong counting
oracle for Py,.

Unlike in the case of k = 1, the problem of sampling in the case of k£ > 1 is more difficult as
the image of Py, under the map ¢ : X — diag(X) is much more complicated. Thus we leave as an
open problem the question of sampling from the associated maximum entropy distributions in the
case of Py, for k > 1.

6 Bounding box

In this section, we prove the general bounding box result (Theorem 4.2). With this, we then
specialize to the cases of rank-k projections and convex bodies.

6.1 General bounding box

In what follows we will discuss “interiors” of a probability distribution u given by two parameters,
(n,0). The n parameter will control how far we are from the boundary, and the § parameter will
control how well-distributed p is on its support. At the end of the day, we will prove that for nice
situations one only needs to consider the n parameter (as in the bounding box result of [36]).

We now define the two-parameter interior. In what follows, we will let V be the vector subspace
given by £(X) = 0, where £L(X) = B is the maximal set of linearly independent equality constraints
for €. More informally, V. is the vector space corresponding to the minimal affine space in which
K = hull(2) lives (i.e., translate the affine space so that 0 € V). The fact that £(X) = B is a
maximal linearly independent set means that the optimal solution to the dual program is unique
when restricted to V.. (Existence follows from Lemmas A.1 and A.3.) We discuss this further in
Section 8.

Definition 6.1 We define the (0,0)-interior of p to be the set of all A € K such that for allY € V.
we have:
WX Q[ (X~ AY)>0}) >4

Morally, this says that every closed half-space containing A contains more than ¢ of the mass of
u. Note that this is not always an open set (which is perhaps a bit odd for something called the
“interior”, but this will be our convention).
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Definition 6.2 (Two-parameter interior) We define the (n,d)-interior of u to be the set of all
A € K such that the ball of radius n about A is contained in the (0,0)-interior of u. Note that this
s not necessarily an open set.

The next lemma is then precisely how to combine the two parameters to get a bounding box for
the optimal solution to the dual program.

Lemma 6.1 (Two-parameter bounding box) Given A € K, let Y* € V be the optimal solu-
tion to the dual program. Recall the dual objective:

inf F4(Y) = inf log/ e~ VXN gu(X).
Y Y 9]

If A is in the (n,d)-interior of p, then ||[Y*|| < %log (%)

Proof: By definition, we have that A — 7 - ”¥:” is in the (0, ¢)-interior of K. Therefore:

0 <p({X e Q[ (X = (A—n-YY/[Y"]),=Y") =2 0}) = u({X € Q[ (X = A, =Y7) =7 [[Y*[[}).

This gives the bound:
1m3/e“Y“X—mdu@¥>zﬂog(a-aﬂyﬂo:=1m45>+n-nYﬂL

On the other hand, plugging in Y = 0 gives an upper bound on the optimal value of the above dual
program:

02 log [ "N ap(X) > log(8) + - V7.
Rearranging this gives the result. [ |

This gives us a good way of bounding solutions corresponding to interior points of K. In general
however, trying to get a bound on the § parameter of the interior is much more difficult than that
of the n parameter. To deal with this we define a property of p which allows us to only have to
consider the n parameter.

Definition 6.3 (-balanced measure) We say that p is d-balanced if for any X € Q, we have
that at least exp(—poly(6=1,d)) of the mass of pu is contained in the 5-ball about X (where d is the
dimension of K). If f is the polynomial in the exponent (i.e., exp(—f(61,d))), then we say that
1 1s d-balanced with bound f.

We now prove the main bounding box theorem for such balanced measures. We then use this
to obtain a bounding box for rank-k projections and for convex bodies in the following sections.

Theorem 6.2 (Bounding box for balanced measures) Suppose p is 4 -balanced with bound f.
If A is in the (n,0)-interior of u and Y* € Vi is the optimal solution to the corresponding dual
program, then |[Y*| < 2n~" - f(2n~",d) = poly(n~', d).

Proof: ~We first show that the (Z,0)-interior of x is contained in the (0,exp(—f(%,d)))—interior
of p. To see this, let Ay be some element of the (3,0)-interior of . Then any closed half-space
containing Ay also contains an Z-ball about some X € Q. That is, for every Y € V there exists X
such that:

B, (X)) C{Z € Q| (Z - Ao, Y) > 0}.
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Since 1 is 3-balanced, we have that exp(—f (%, d)) of the mass of y is contained in the 2-ball about

X. This implies:
exp(—f(2/n,d)) < u(By2(X)) < n({Z € Q| (Z - Ao, Y) = 0}).

That is, Ap is in the (O,exp(—f(%,d)))—interior of p.
Now for A in the (n,0)-interior of y, we have that the 3-ball about A is contained in the (3,0)-
interior of y. Therefore A is in the (Z,exp(—f (%, d)))-interior of p. By Lemma 6.1, this implies

|Y*| <2n7t- f(2n7 1, d). -

Remark 6.3 Note that Theorem 6.2 is immediately applicable to uniform discrete measures on
(singly) exponentially sized sets S. In particular, such a measure is automatically balanced with
constant bound f =log|S|.

6.2 Rank-£ projections

We now prove bounding box result for Py, by showing that py, is balanced and applying the previous
theorem. Note that in this case £(X) = B reduces to Tr(X) = k, and so V is the set of traceless
Hermitian matrices in this case.

Corollary 6.4 (Bounding box for Py) Let uy be the uniform distribution on Py. Then given A
in the (n,0)-interior of ug, the optimal traceless solution Y* of the corresponding dual program is
such that ||[Y*]| < %log (8"—7;@)

Proof: We prove that py is balanced and then apply the previous proposition. The number of
balls of size § required to cover the unit ball in R™ (with Euclidean/Frobenius norm) is at most
(2n/ 5)"2. Since the set of projections of rank k is contained in the sphere of radius vk, we have
that it requires at most (2nvk/ 5)"2 0-balls to cover all such projections. With this, there exists
some 6-ball (call it By) in this cover which contains at least (2nv/k/8)™"" of the mass of ju,. Pick
some X € P N Bs, and let Bys(X) be the ball of radius 2§ which is centered at X. Thus, in fact
Bys(X) contains at least (2nv/%/8)™™" of the mass of yz. By unitary invariance of i, we have that
the ball of radius 26 about any point of P}, contains at least (2nv/'k/ 6)_”2 of the mass of p. That
is, pu, is 0-balanced with bound f(671,n) = n?log(4nvk-6~1) for all § > 0. Applying the previous
proposition then gives the result. [ ]

Remark 6.5 In the discrete measure case, the authors of [38] were able to improve the dependence
onn of the bounding box from n~" tolog(n™'). This leads to a maz-entropy approzrimation algorithm
which does not depend on 1. One may then naturally ask whether or not this is possible for the
bounding box for pj discussed here. The answer turns out to be “no”, and this can be seen by
considering the optimal Y* = diag(y1,y2) in the case of n = 2 and k = 1. Specifically one can show
that for A = diag(n,1 —n), the value of |y1 — ya| is of the order n=' as n — 0. Since the relative
entropy of the optimal distribution is unbounded as n approaches 0, approximation of Y* cannot

help us to improve the dependence of |y1 — ya| on n~'.

6.3 Convex bodies

We now prove bounding box result for convex bodies. Instead of applying the previous theorem
directly, we make some simpler computations which are in the same spirit.
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Corollary 6.6 (Bounding box for convex bodies) Let u be the uniform distribution on a d-
dimensional convex body Q0 contained in a ball of radius R. (Note that KK = hull(Q2) = Q in this
case.) Then given « in the (n,0)-interior of u, the optimal solution y* € Vp of the corresponding
dual program is such that ||y*| < % log(%).

Proof: Note that « in the (7, 0)-interior of y is automatically in the (g, (&)d)—interior of p,

since: 1(B,,4) d
Vo 4 n
B, > YO\ Pn/4) (_> .
#(Byya) 2 vol(Bg) 4R
By Lemma 6.1, this implies ||y*|| < % log(%)- -

7 Counting oracle for P;

In this section, we prove existence of a strong counting/integration oracle for the objective function
of the dual program Dual;. Recall the dual objective function:

Fa(Y) = (Y, A) + &) = (Y, A) +log ; e~ YN dp (X).

k
We want to be able to efficiently compute this function and its gradient. In this case of rank-k pro-
jections, we make the simplifying assumption that Y and A are both diagonal. This simplification
is actually without loss of generality, due to the Schur-Horn theorem (Corollary B.2) and unitary
invariance of py. Further, it is enough to consider only £ (Y) (which is independent of A) since
(Y, A) is linear and hence easy to handle. This leads to the main theorem of this section, stated
originally as Theorem 4.5.

Theorem 7.1 (Counting oracle for P;) There is an algorithm that, given n € N, k € [n], an
n x n real diagonal matriz Y = diag(y), and a § > 0, returns numbers E,G such that

1L E—-&((Y) <6
2. |G - VE&(Y)| <6,

where &, is the exponential integral defined above (and in Definition 2.2). The running time of
the algorithm is polynomial in n, log(%), and the number of bits needed to represent e~ Y for any
i€ n].

The main tool we use to prove this theorem is a collection of explicit formulas for computing &
and its gradient. We first discuss this in full detail for the case of k = 1. After that, we discuss
how to generalize the arguments to the £ > 1 case.

7.1 Algorithm for £k =1

In this section, we construct the strong counting/integration oracle for rank-1 projections by giving
formulas for the function & and its gradient (Propositions 7.4 and 7.6). Specifically, for diagonal
Y = diag(y) with distinct entries Ay > --- > A\; with multiplicities my, ..., my, we can compute
the following where M (y) and My (y) are matrices defined below:

n—1
E1(Y) = log(i) + logdet(M(—y)) — > _ mymjlog(\; — )),
i=1 i<j
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o mi  det(My(—y))
(VE(Y)) = ; NN det(M(y)

The only potentially hard part of computing these expressions is computing the determinants of
M (—y) and My,(—y). It is a standard fact that one can compute a determinant in time polynomial
in the number of bits needed to represent the matrix, so we just need to demonstrate that the
matrices have the necessary bit complexity. Considering Definitions 7.1 (for v = 1) and 7.2 below,
we see that the matrix entries depend on computing e™¥, n!, and y;*. All of these can be computed
in time polynomial in n and number of bits needed to represent e ¥, which is exactly what we
need. That said, all we have left now is to prove the two formulas stated above, and we do this in
the following sections.

7.1.1 Evaluating the dual integral

We now prove the main evaluation formulas for integrals on the manifold P;. Throughout we will
often consider integrals on the unit sphere in C", denoted S¢, instead of on P directly, and we will
let pgn refer to the Haar measure on the unit sphere. Note that the transfer of formulas from the
sphere to P is straightforward, as given by (2) of Proposition 7.4. First, we define a parameterized
matrix of a particular form which will show up many times in our computations.

Definition 7.1 (Matrix for dual integral, k = 1) Given y1,...
denote the distinct values of y; with multiplicities mq, . .
M(y,v) as follows:

JUn € R et A < - < Ag
.,my. Given vy, we define an n x n matrizc

1 0 0 1 0
A1 1 0 A9 1
AP Dy - 0 ; (D2
M) =1 o s s s
D G P () DY P Ve (e DY
e e ym1—lerM err2 erA2 o
L0 i (ma—1)! ] 10 _

We also define M (y) := M (y,1). Note that only one row of M(y,~) depends on ~y.

We now state a lemma which gives the most basic result about integrals on P;. Specifically, we
state a well-known result for integrals of polynomial-like functions. This proof is very related to
the unitarily invariant inner product on homogeneous polynomials, which has many names in the
literature: Bombieri inner product, Fischer-Fock inner product, Segal-Bargmann inner product,
etc. The following lemma is standard, see e.g. Lemma 3.2 of [33].

Lemma 7.2 (Bombieri inner product formula) For a € {0,1,2,...}" such that >, a; = d,
we have:

[ 1oyt = [ Tioanseto = (2) (457 71) -
Hsg N ; ‘ Hsg N\ n—1 N

d+n—1y . . . .
") is the binomial coefficient.

apl - apl(in —1)!
(d+n—1)!

Here, (g) is the multinomial coefficient, and (

The next lemma then shows the connection between the integrals we want to compute and the
Laplace transform. As an immediately corollary, we obtain equality of (3) and (4) in Proposition
7.4 below in the case of distinct values of y1,...,yn.
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Lemma 7.3 For yi,...,yn € R and x,, := 1 — 21 — --- — 21, we have the following where
denotes the usual integral convolution.:

1 11—z l—z1——xp_2 t n
/ / / e<y,$>d$n_1...dx1: (¥ 5 -+ - x el )’ ‘
0 0 0 t=1

If y1 < yo < -+ < yp, then we further have:

1 1—z1 l—z1——Xp—2 n Yi det(M
0 Jo 0 i—1 H];ﬁl(yl Y;) [Li<; (y; — vi)

Proof: We first compute:

1 pl—xy l—z1——xpn_2
/ / . / eVt dg 1o day
0 Jo 0

1 l—2x1——2p_2
— / eylxl e / eynflxnfleyn(l_xl_"'_xnfl)dxn_l L. dl'l
0 0

1 l1—z1——zp_3
— / eylxl L. / eyn72xn72 (eynflt * eynt)‘ dxn_2 e dml
0 0 t=1l—x1——xp_2
1
— ... :/ eylxl (eyQt*...*eynt)‘ dxl
0 t=1—x1
= (eylt*---*ey”t)’ .
t=1
Using the Laplace transform, we have L[e¥!](s) = —— which implies:

1
(s—y1)(s—y2)- (s —yn)

().

Y1t g Ly pUnt — ﬁ_l {
Assuming y; < yo < --- < y,, we can use Lagrange interpolation to compute:

-1 1 — o1
£ [(s —y1)(s —y2) - (5 — yn)} =L [Q’(yl) (s —y1) L Q' (yn) - (s — yn)] (®)

Here, Q(s) :== (s —y1)(s —y2) - - - (s — yp). With this we have:

1 1

o1 [ 1 1 } t) eyt eynt n evit

e AT R eErm ] Ao o RN T ow RaP DYy sowcremyrn

Plugging in ¢ = 1 gives the first equality in the second statement. To see the last equality, notice
that because y; < -+ < yp, the expression for det(M(y)) will be a sum of exponentials multiplied
by Vandermonde determinants (expand along the last row of M(y)). The result follows, taking
care to keep track of signs. [ |

We now state and prove the full evaluation formula for P;. The two most involved parts of the
proof are showing equality of (1) and (4) on polynomials and showing equality of (4) and (5) for
non-distinct values of y1, .., Yn.

Proposition 7.4 (Evaluating the dual integral, k = 1) Fizn € N, and let ST i1y A, be the
uniform probability distributions on the complexr unit sphere in C™, on Py, and on the standard
simplex in R™, respectively. For a given analytic function f on the standard simplex the following
expressions are equal:
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[l F o Padnse (),
2. [ (g0 (X).

5. |, @), (@),

1 pl—z l—z1——xpn_2
(n_l)!/o /0 /0 flxi, . xp_1, 1l —x1 — - — Zp_1)dap_1 - - day.

If f(x) =e w2 for some real y with distinct entries Ay < --- < A\, with multiplicities my, ..., my,
then we have another equal expression:
det(M
5 0 1y et )

[Ticy(Aj = Ai)mima”

Proof:  First, for the equality of (1) and (2), note that y; is the pushforward measure of pgn
through the map 1 : S¢ — P1 given by 1) : v = vv*. (To see this, note that 1 is unitarily invariant
and p1gn and py are the unique unitarily invariant measures on their respective domains.) With
this, we then have:

, $(iag(X))ds (X) = [ 7(@ingo0)sy )= [ F(als . enl sz o)

That is, (1) and (2) are equal.

Next, the equality of (3) and (4) follows from the fact that the map between the two domains
of integration (both of which are simplices) is affine. Therefore the determinant of the Jacobian is
a constant, and so we only need to integrate over a constant function to determine that constant.
A simple induction shows that it is (n — 1)!.

To prove the equality of (1) and (4), we compute the integrals on a given monomial =™ :=

T xnmj{l(l —xy — - —xp—1)™. First, by Lemma 7.2 we have:
-1
9m myl--mpl(n —1)! m|+n—1
d n = = .
/\v\ sz (v) (jm|+n —1)! My, ey Mp,n — 1
Now, note:
1 m 1 Im! l+j+1) I'm!
I m m k I+k I'm J#k J
| — 2)"de = 1 / du = .
/Oa;( z)"dx ,;(k>( ) et (l+m+1,z DEEI(m — k) (+m+ 1)

The last equality is due to Lagrange interpolation, considering the sum as a function of n. We

further have: .
m! <l+m+2—1>

I+m+1)!  \ I,m2-1
That is, we have equality whenever n = 2, proving the base case. The rest of the proof goes by
induction. First we compute fora =1—27 — -+ — z,,_9:
¢ k _ ! j k _ jtk+1 ! j k. ol TR 1k
/0 ) (a—xp_1)’dry,_1 = /0 (au)! (o — au)’adu = « /0 w (1 —u)¥du = m
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With this, we then compute the following by induction, letting 8 =1— 21 — -+ — x_3:

(n—1)! / / Ha—2p_1)™dry—q - dxy

Myy— 1' ' a+Tp—2
== n — 1 / / ml e $ 2 am"*1+m"+ld$n_2 e dxl

(mp,— 1+mn+1)'
Mp—1!my,! (’I’L—l) / / 22 Mp—1+mp+1
= n_2 " — . n—1 nTlide, o
(Mp—1 + my, +1)! (6 = n-2) e
 mp1!my!(n —1) cmalmg al(mp—1 +mp +1)(n —1—1)!
(M1 +mp + 1)1 (mi+-4+mp+1+n—-1-1)!

o omplomyl(n = 1)!
S (mit g = 1)

This completes the proof of equality of (1) and (4).
Finally, we prove the equality of (4) and (5) for f(z) = %), Note that if y; < --- < yn, then
the result follows from the previous lemma. Otherwise, the expression in (4) (for this function f)

is continuous in yq, ..., ¥y,, and so we can limit the expression for distinct eigenvalues. That said,

det(M(y'))
Hi<j (y; —v;)
based on the multiplicities of the y;. Specifically, for each i € [k] we apply the following differential
operator to numerator and denominator (let 9; := 9,/):

we let ¥} < --- <yl be distinct values near to the y;, and we apply L'Hoptial’s rule to

_ J—1 0 1 mi—1
v H8m1+ Fmi_1+j T =0, My 1+1a mi+-tmi 1427 am1+ +mg

The powers here correspond to the number of terms of the denominator of % which will
1<J
vanish when the m; values of y,..., ), limit to \;. That said, we now want to compute:
Dq--- Dy det(M(y/))

Dl T Dk H2<j(y_; - y7l,) Y=\ ‘
We first compute the denominator via the product rule, noting that the only nonzero term occurs

whenever all derivatives from a given D; are applied to differences of eigenvalues corresponding to
/\i:

k mi—l
denominator = H H P!l - H()\j — )™
=1 p=0 i<j

We next compute the numerator using the fact that exactly one row of the matrix depends on
any given y., as so we can apply the derivatives to the appropriate rows. Further, this means
the numerator can still be expressed as a determinant. We also incorporate the factorials in the
denominator expression above, by dividing each column by the appropriate factorial:
/
numerator _ Dy Dy det(M( ) — det(M(y).
Hz 1Hp 0 Hz 1Hp 0 y'=X\

This gives the result. u

Remark 7.5 FEven though we assume the distinct values of y1,...,y, to be in increasing order in
the previous result and in Definition 7.1, we actually don’t need this. Note that swapping the order
of A\i and \i+1 affects the numerator and denominator of the expression (4) in the same way, by
multiplication by (—1)""i+1,
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7.1.2 Computing the gradient

We now compute the gradient of & (Y) for Y = diag(y) using the above formulas. The first thing

to note is that we can use an argument similar to what we used in the proof of the evaluation

formula. Specifically, note the following expression where 9,, := a%l:

_ f —X - €_<Y’X>d/1,1(X)
Jem ¥ X dpy (X)

0y, &1(Y) = 0y, log/e_<Y’X>d,u1(X)

In particular, we obtain the following bound where y; > --- > 4, are the entries of diagonal Y:

eV ()
= [emwlnXdy, (X)

|0y, E1(Y) = eyl/e_<Y’X>du1(X).

From these observations, we have that d,,£1(Y') is continuous on diagonal matrices Y. Therefore,
to compute the gradient we can first assume that y; is distinct from the other diagonal entries, and
then limit via L’Hopital’s rule (as in the proof of the evaluation formula). We do exactly this to
prove the gradient formula, after defining another parameterized matrix.

Definition 7.2 (Matrix for gradient formula, k = 1) Given y1,...,y, € R, let Ay < -+ < Ak
denote the distinct values of y; with multiplicities mq, ..., my. Given p € k|, we define an n x n
matric M, (y) as the matriz which differs from M (y) in one column, given as follows:

1 0 0 0
)\12, 21 0 0
M ( ) Ap (l))\P 0 0
p\Y) = : :
n— n— n— n— n—m. n— n—mp—2
AYDA 2 121 An—3 (%_22)A Ay (m,,z))‘f »
P ep ep e’p
L o ar (mp—2)! mp! i

. O, . . .
That is, m—: is applied to the right-most column of M(y) that depends on X,.

, Yn are the diagonal values of diag-
,m. Letting p be such that

Proposition 7.6 (Gradient formula, £ = 1) Assume y1, ...
onal Y, with distinct values Ay > --- > X\ and multiplicities mq, . ..
Y1 = Ap, we have the following expression:

mi _ det(My(=y))

(VE(Y)) = — % Ap — Ai B det(M(—y))

Proof: = We first assume that y; is distinct from A,, and then we limit at the end. Specifically,
we assume the distinct values of y1,...,y, are Ay > -+ > A\, >y > A1 > -+ > A, where now
the multiplicity of )\, is now one less than it was originally. We let ¢’ denote these new values of
y (with y; possibly changed) and let m/ denote these new multiplicities (only m, decreased by 1).
We now want to compute:

-1 det(M(—y/))
[Tic;(Ni — )\j)m;m;' [Lic,(Ni — Y™ [Tisp (v — Ai)™

aylgl(Y)‘yl:)\p = Oy, log (

Y=Ap

= 0y, [log <M> = milog(Ai —y) — Y milog(y — )\i)]

— )
(Ap — yi)™ i<p i>p

YI=Ap
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It is at this point that we limit y; to A, and use the L'Hopital’s rule argument. (Recall the above
discussion which describes why this argument is valid.) We want to apply this argument to the
following part of the above expression:

det(M(—y")) _ Qp =) - 9y, det(M(—y")) + det(M(—y")) - (mp — 1)
ayl IOg (Ap N yl)mp_l

B det (M) - O — )
The key is to notice that the denominator contains exactly mfn + 1 = m,, factors of (A, —y;) up
to scalar, where my, factors come from the determinant. With this, we apply 9,, to the numer-
ator and denominator Zm; times and then set y; = A,. Computing this for the denominator is
straightforward:

Y1=Ap Y1=Ap

denominator = 9, det(M(—y')) - (A\p — w1) = (—1)"*mp!det(M(—vy)).

Yi=Ap

The computation is easy here for the same reason as in the proof of Proposition 7.4: using the
product rule for all the derivatives only leaves a single term which does not evaluate to zero once
we set y; = A\,. A similar thing happens for the numerator, which yields:

numerator = 9% [(X, — y1) - 8y, det(M(—y')) + det(M(—y')) - (m), — 1)]

Yyi=Ap
=g det(M(—y’))‘yl:AP
= (=)™, det(M,(—y)).
With this, we have the following expression:
Oy &1(Y)ly oy, = — ;, /\pn_% N iii((ﬂj\?((__i))))'
This completes the proof. [ |

7.2 Algorithm for k£ > 1

We now discuss how to generalize the formulas and arguments from the rank-1 case to the rank-k
case. The computations done here are very similar to those given above, and so we will be a bit
less explicit in what follows. And although the matrices involved are a bit more complicated (see
Definitions 7.3 and 7.4), we still achieve the required bit complexity bounds. Specifically, each of
the entries of these matrices require a polynomial number of computations of m!, y!*, and e~ ¥ for
m < n, and so the determinants can still be computed as efficiently as is necessary for Theorem
7.1.

We now state the explicit integral formulas for £, and V&, which generalize those of the k =1
case of the previous section. Our main tool to prove these formulas is the Harish-Chandra-Itzykson-
Zuber formula ([21], [24]), given as follows.

Theorem 7.7 (HCIZ formula) For nxn Hermitian matrices Y and B with distinct eigenvalues
yr < - < ynp and By < --- < By respectively, we have the following where p is the Haar measure
on the unitary group U(n):

n—1 iBj .
(YUBU*) g,,(1]) — | det([e¥"]1<i,j<n) '
/U(n) ‘ wo) (H p) [Lic;(yj — vi)(B; — Bi)

p=1
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Using the L'Hoptial’s rule argument used in the rank-1 case, we can limit B to the rank-k PSD
projection diag(1,...,1,0,...,0) to obtain a formula for & (Y') for Y with distinct eigenvalues.
Using again the same sort of argument, we can then limit Y to any real diagonal matrix (eigenvalues
not necessarily distinct). First, we need to define a parameterized matrix as in the rank-1 case.

Definition 7.3 (Matrix for dual integral, k > 1) Given y1,...,y, € R, let \y < -+ < Xk
denote the distinct values of y; with multiplicities mq, ..., my. Let the polynomial g; j(t) be defined
as follows:

9 min(.j) /o il
qi;(t) = e tL(te) = —_
We define an n x n matriz M®*)(y) as follows:

1 0 e 0 1 .
A1 1 - 0 Ao
MO | T e g g
6)\1(]070()\1) e)\lq(],l()\l) . 6 qo,ml—l()\l) EAZQQ,O()\Q)
ex\lql,o()q) 6)‘1q1,1()\1) 6)‘1Q1,m1—1()\1) 6)‘2(11,0()\2)
Mg1oM) Mg1i(A) o €M geotm—1(A1)  €2qr_1.0(02) |

Also, any term of the form \!* for m < 0 in the above matriz should be replaced by 0.

The matrix defined above and the arguments of the previous section then allow us to write down
an explicit formula for & (Y).

Corollary 7.8 (Evaluating the dual integral, £ > 1) Let Y be an n x n Hermitian matriz Y
with eigenvalues y1,...,y, and distinct eigenvalues Ay > --- > A\ with multiplicities mq, ..., my.
We have the following:

_ I,-1 ! det(M ™) (— ))
(YV,X) .
/Pke dpk(X) = Hn k— 1@.1‘{’;;%],! HK]()\ — \j)mi

This leads to a formula for E,(Y):

= p!
n— k 1 k—
L= o112

E(Y) = 1og< 1pl> +log det(M™ (—y)) — 3 mim;log(N; — ;).

1<j

Notice that this reduces to (5) of Proposition 7.4 whenever k = 1. As in the £ = 1 case, we use the
Schur-Horn theorem and unitary invariance to restrict the inputs of £ (Y) to real diagonal matrices
(see Section B). Therefore, we only need to compute the gradient on the diagonal entries of Y. The
arguments are essentially the same as those of the k = 1 case, again via L’Hoptial’s rule, and so
we state the gradient formula for & as a corollary without proof. First though, we need to define
another parameterized matrix for the gradient formula, as in the k£ = 1 case.
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Definition 7.4 (Matrix for gradient formula, k > 1) Given y1,...,y, € R, let Ay < -+ < Ak
denote the distinct values of y; with multiplicities mq, ..., my. Let g; ;(t) be defined as in Definition
7.3. Given p € [k], we define an n x n matric Mlgk)(y) as the matriz which differs from MW" (y) in
one column, given as follows:

1 0 0 0
A 1 0 0
v IV 0 0
’fL— — n—k— ' n—k— . n—k— ;L—k—m -‘rl n—k— 7‘7,—]6—771 -1
Mzgk)(y) — ... A k-1 ( Ilf 1))\p k-2 . (mpk_;))\p P ( nfp 1))\p P
e*qo0(Ap) egoa(Np) o €qom,—2(Ap) e go,m, (Ap)
e*qio(Np) e*qi1(\p) i 6A”Q1,mp—2(>\1) 6A"Q1,mp()\p)
v qeo10(p)  ea_11(Np) o € G1m,—2(Ap) e @—1,m, (Ap)

That is, % is applied to the right-most column of M®) (y) that depends on X\,. As in Definition
7.3, any term of the form \]* for m < 0 in the above matriz should be replaced by 0.

Corollary 7.9 (Gradient formula, k > 1) Assumey,...,y, are the diagonal values of diagonal
Y, with distinct values Ay > --- > A\, and multiplicities my, ..., my. Letting p be such that y; = \p,
we have the following expression:

det(My" (—y))
i det(M®) (—y))’

(VEX))i=-) )\ nzi)\
i#p *P

7.3 Sampling from P,

Given some real diagonal matrix Y as in the previous section, we want to be able to sample from
the measure on P; given by e~ "®)dyu;(X). It is not immediately obvious how to do this on P;
itself, so we instead transfer the measure to a simpler domain.

Specifically, we use the Proposition 7.4 to transfer the sampling problem to the simplex. Once
on the simplex, we can apply standard techniques via the coordinate-wise cumulative distribution
function (CDF). That said, we now state the sampling process for P; and then use the rest of the
section to fill in the details.

Proposition 7.10 (Rank-one Sampling) LetY = diag(y) be a real diagonal n x n matriz. The
following process produces samples from the measure e_<Y7X>d,u1(X) on Py.

1. Sample v from the measure e_<yvv>d,uA1(v) on the simplex A1 by iteratively sampling v; con-
ditioned on vi,...,v;_1.

2. Sample z1,...,z, independently uniformly from the complex unit circle.
3. Construct X := (2y/v)(2y/v)* € Py where z:/v is the column vector (z1/v1,- .., Zn\/Un)-

Note that step (1) is nontrivial, but we discuss how to sample coordinate-wise from the simplex
below.
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Proof:  We give a proof sketch here, leaving the details to the remainder of this section. First,
the reason we are able to reduce to sampling on the simplex is due to Proposition 7.11. Specifically,
let & : Py — Aj be given by @ : X > diag(X). Then for any v € A;, we have the following where
T is the complex unit circle:

P lv)={X P, : v=diag(X)} ={X €P; : X = (2v/0)(2/0)* for z € T"}.

The fact that e~ "X)dy; (X) is invariant under the action of conjugating X by diag(z) for z € T"
then implies that we can uniformly sample z from T" via Proposition 7.11.

Second, sampling from the measure e~ >*X)du;(X) is nontrivial, but doable by sampling each
coordinate conditioned on the previous coordinates sampled. To do this we need to be able to
efficiently compute the cumulative density function (CDF) for the conditioned measures, and we
discuss how to do this below. Once we have this, we can sample each conditioned coordinate using
standard techniques; see [31], Section 4.5. ]

For the case of ui for k > 1, we leave the question of sampling from the associated maximum
entropy distributions as an open problem.

Transferring to the simplex. To transfer sampling from P; to sampling from the simplex, we
need a way of applying pushforward to sampling. The way to do this is via disintegration (see [9]),
which we discuss in the following result.

Proposition 7.11 (Pushforward sampling) Let X,Y be separable complete metric spaces, and
let p,v be probability measures on X,Y respectively. Let ® : X — Y be a map such that v is
the pushforward measure of p. Further, for any y € Y, let p, denote the measure on the fiber

®~L(y) given by disintegration: i.e., such that [y f(z)du(x) = [y Jo-1¢y) f(@)dpy(2)dv(y) for all
measurable f (see [9]). Then the measure on X generated by sampling y from (Y,v), followed by
sampling x from (®~(y), py), is equal to p.

Proof: Let v denote the measure on X generated by the described two-step sampling process.
For any measurable set A we have the following, where P; and P, denote the probabilities according
to the first and second steps of the process respectively:

Y(A) =Pi(y € ®(A) - Po(x € 7 (y) NA | y € D(A))
- (/ v )> _ f f@ y)NA dl‘y( )dv(y)
~ o™ J;NA fX dpay (2)d(y)
L " / duy z)dv(y).

The second equality is just by definition of conditional probability. We then further have:

L(A) Ll(y)ﬂ iy / / 1(y (@) dpy (x)dv(y)
- / / o, L@y (2)d()

That is, v(A) = u(A). []
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Computing the conditioned CDF. We now compute the conditioned CDF for each coordinate
of the measure on the simplex in Corollary 7.13, after a necessary lemma. Note that the formula
below in Corollary 7.13 is not given in full explicit detail. However, the formula is still a constant
times a determinant of a matrix, and expressions are given for the entries of that matrix. They
are in fact rational functions of polynomials in 3, y;, ¢¥”, and factorials at most n (see below).
Therefore, the whole determinant is computable in time polynomial in n and the number of bits
needed to represent e¥%#.

Lemma 7.12 Fix yy,...,yn € R, and let \y < --- < A\, be the distinct values of y; with multiplic-
ities m;. For valid v >0 and x,, ;=1 —~vy—x1 — -+ — xp_1, we have the following:

-y pley—mz1 l—y—z1——Tn 2 det(M(y,1 —~))
P <y7x>d ... d = ’
e Ty x ool
/0 /0 /0 B T PSTCYEP W

Moreover, only one of the rows of the matriz M(y,1 — ) depends on ~.

Proof: The proof follows from a simple substitution (u; = ﬁ—ty), applying Proposition 7.4, and
then multiplying and dividing factors of (1 — ) in the rows and columns of M ((1 —v)y) to obtain

To see this, we apply the change of variables u; = -

1—y

1 1—ug l—u;—-—up—2
left-hand side = / / . / 6(1_7)<y’“>(1 — )" gy - duy
0o Jo 0

det(M((1 —7)y))
Hi<j(1 — fy)mimj ()\] — )\Z)mzm] :

and Proposition 7.4:

=1 ="t

Note now that we can do the following to M((1 — 7)y) to make it so that only one of its rows
depends on v (recall the definition of M (y) from Definition 7.1). First, divide the ith row of the
matrix by (1 —~)*"! up to i =n — 1. Then, for any Ap multiply the jth column depending on A,
by (1 —~)7~1. Only the last row of the matrix obtained will depend on +, and in fact this matrix
is precisely M (y,1 — 7).

The process described above is equivalent to pulling out of the determinant a factor of (1 — )
with the following exponent:

n—2 k mp—1 n—1 k m
t of factor = » i — j = - P
exponent or ractor Z 1 Z Z Vi < 9 ) Z ( 9 )
=0 p=1 j=0 p=1

With this have that
det(M(y, 1 — 7))

[Ticj(Aj — Ai)mema”
where £ = (n — 1) — 30, ; mimj + ("3") = Sk_, (). Note that

left-hand side = (1 — 7)5 .

p=1

B k 2 k
6t (Som) im0

since Z’;Zl my, = n. The result follows. [
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Corollary 7.13 (Conditioned CDF formula) Fiz yi,...,y, € R, and let \y < --- < X, be

the distinct values of Yk+1s- -+, Yn with multiplicities m;. Further, fix x1 = oy, ..., Tp—1 = Qp—1
and let o 1= Z 1 a;. Also, let xy, :=1—a —xp — -+ — xp_1. The CDF denoted Fy () for the
simplex distribution e¥*), conditioned on the given values of 1, ...,x,_1, is given as follows for

/8 € [071 —Oé] and y/ = (yk+17"' 7yn):

l—a—xy l—a—zp——Tp_2
/ / / W) day g - day
(n— 1

ey1a1t -ty —10k—1

B
= Yk det(M (y', 1 — o — x) ) dwy,.
Hi<j()\j — )™M /; € et(M(y a — xy))dxy,

Recall the definition of M (y,~) from Definition 7.1. Since only the last row of M(y',1 — a — xy,)
depends on xy, the above integral can be passed to that row and computed explicitly when yi # N\;:

/ P (o moPlTTN ey [y (e = P — (1 —a)t
0 J! iy — N )i—i+1

1=0

If y, = N\, we have the simpler expression, e} {(1 O‘)Hl(;(rll)_!a_ﬁ)jﬂ}.

Proof: We have:

Fi(8 o T
( ) — eyrart / eVkThk / e / eYk+1Tk+17F dxn_1 - -depy
0 0 0

dzy,.
(n—1)! Tk

We compute the inner expression using the previous lemma and v = « + xg:

l—a— l—-a—xp——xp_ / — oy —
/ a—T . / a—T Tn—2 eyk+1xk+1+"'dxn_1 o dxk+1 _ det(M(y s 1 amik))
0 0 [Ticj(Aj = Ag)mim

This then implies:

Fk(ﬁ) ey1ait - typ—10k—1
(n =18 TLic;(Aj = Xp)mims

B
/ eY Tk det(M(y',1 — a — x1,))dxy.
0

Since only one row of M (y’,1—a—xy) depends on xj, we can compute the above integral entrywise
on that row by linearity (after multiplying that row by the e¥s®r factor). We now compute the
final expression of the result, removing subscripts to simplify notation. First we make the change
of variables t =1 — o — a:

l—a—xz)\ 11—« —«
/B eye (1-a- aj.)e( ) dr = ey(. ) /1 et A=Y qg,
0 J! J' Jica-p

If A\ = y, then we simply obtain e(!=®* {(1_a)j+1(]_.fl)_!a_ﬁ )Hl}. Otherwise, we use integration by

parts to obtain:

LD [ o g = - [Z (1—a—p)e <y-*>ﬂ—<1—a>i}
1

7! —a—8 illy — A)J i+1
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8 Computing maximum entropy measures

In this section we describe the entire algorithm for computing the optimum Y™* for the dual program
Dual,,(A), given some A € K = hull(2). The algorithm is essentially an application of the ellipsoid
algorithm, based on a bounding box and a strong counting/integration oracle. We first discuss this
algorithm in general, and then apply it to specific cases based on results from the previous sections.

Before moving on, we discuss how the linear equality constraints £(X) = B come into play
here. We want to restrict our search space to the vector space V, defined as the set of all X such
that £(X) = 0. The main reason for this is, since the constraints given by £(X) = B pick out an
affine space in which K is full dimensional, restricting the search space to V, causes the optimum
Y™ to be unique. Further, the bounding box results above apply specifically to this particular Y*.

Since we are given L effectively and explicitly, we assume for the ellipsoid algorithm that we
can project the gradient (given by the strong counting oracle) onto V. That said, we will from
now on assume Vy to be the domain in which we are optimizing.

8.1 The ellipsoid framework

Using the standard argument via Hoélder’s inequality, we have that the dual objective function is
convex:

Fa(Y) = (Y, A) + E,(Y) = (Y, A) +log ( /Q e_<Y’X>du(X)) .

With this, the main optimization tool we use to approximate the the dual optimum Y™* is the
ellipsoid algorithm. Recall the following from [36] Theorem 2.13, which was essentially taken from

[5].

Theorem 8.1 (Ellipsoid algorithm) Given any 8 > 0 and R > 0, there is an algorithm which,
given a strong first-order oracle for Fa, returns a Y° € Vp such that:

Fa(Y°) < inf FAY)+ 7 sup Fu(Y) — inf Fa(Y) |.
) YeVe,|Ylle<R @) YEVL,|Y]lw<R &) YeVe[Ylle<R )

The number of calls to the strong first-order oracle for Fy is bounded by a polynomial in d, log R,
and log(1/B). Here, d is the dimension of the ambient Hilbert space in which € lies.

We now prove the main theorem (Theorem 4.4) regarding the existence of an algorithm for approx-
imating the optimum to the dual objective.

Theorem 8.2 (Main algorithm, general case) Let p be a balanced measure on a domain Q0 C
R? contained in a ball of radius r. There exists an algorithm that, given a mazimal set of linearly
independent equalities L(X) = B, an A in the n-interior of K = hull(Q), an ¢ > 0, and a strong
counting/integration oracle for the exponential integral £,(Y), returns Y° € V. such that

FA(YO) < FA(Y*) + ¢,

where Fy is the objective function for the dual program Dual,(A), and Y* € V; is the optimum of
the dual program. The running time of the algorithm is polynomial in d, n=', log(¢~1), log(r), and
the number of bits needed to represent A, L, and B.
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Proof: To apply the ellipsoid algorithm, we need to choose the two parameters, 5 and R. Since
1 is balanced with some polynomial bound f, we choose for R the bounding box given for balanced
measures in Theorem 4.2:

R:=2n"t. f(2n71,d).
So, theset {Y e Ve : |[Y|| <R} C{Y €V, : |[Y]s < R} contains the optimal Y* for the dual
program. Next, we need to choose . Note that for |V, < R we have:

[Fa(Y)| <[{Y, A)] +

log/e‘<Y’X>d,u(X)‘ < [Vl + 7Y oo < 20VA||Y || < 20RVA.

13
4rRVd
€ €

< . .
4rRVd ~ subyev, v |w<r Fa(Y) — infyev, |v|o<r Fa(Y)
The ellipsoid algorithm then guarantees a Y° such that:

Fu(Y?) < inf FA(Y)+e=FsY") +e.
YeVe[[Y[eo<R

Therefore, choosing 3 := implies:

8=

The number of calls to the strong counting oracle is polynomial in d, log(R) = log(2n~! - f(2n™1))
and log(1/3) = log(4rRv/de™"). Given the bounding box, each oracle call (now including computing
(Y, A)) can be implemented in time polynomial in d, !, and the number of bits needed to represent
A. This completes the proof. [ |

8.2 Rank-k Projections

Next we apply the above result to the case of QQ = Py and u = g, i.e., the case of rank-k projections.
To do so we make a few tweaks to the proof of the theorem for the general algorithm given in the
previous section. In particular, even though our domain Py, lies in the space of Hermitian matrices,
our strong counting oracle for £ only applies to real diagonal matrices Y. That said, we now state
the theorem for rank-%k projections and discuss such issues in the proof.

Corollary 8.3 (Main algorithm, Pj, case) There exists an algorithm that, givenn € N, k € [n],
A in the n-interior of Py, and any € > 0, returns Hermitian Y° such that

FA(YO) < FA(Y*) + ¢,

where Fy is the objective function for the dual program Dualg(A), and Y* is an optimum of the
dual program. The running time of the algorithm is polynomial inn, n=', log(¢~1), and the number
of bits need to represent A.

Proof:  The result essentially follows from the general case, with a few details that need to be
dealt with. First, the maximal linear equalities for Pj boils down to something very simple within
the space of Hermitian matrices. It is simply given by Tr(X) = k. Thus, our search space V, then
becomes the set of traceless Hermitian matrices.

Next, by unitary invariance of p; we can assume A is diagonal by unitary conjugation. Once
we obtain an approximate optimum Y° for the diagonalized A, we can obtain an approximate
optimum for the original A via conjugation by this unitary. Next, by the Schur-Horn theorem (see
§B and the discussion at the start of §7) we can further assume that Y* is diagonal. That is, we
can assume A is real diagonal and restrict the domain of F4(Y) to real diagonal matrices Y.

Once we make this simplifying assumption, we have access to a strong counting/integration
oracle for £ (Y) by Theorem 4.5. The proof for the general case then goes through (using this
strong counting oracle and the bounding box result for rank-k projections), giving the desired
result. [
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9 The Goemans-Williamson measure

We discuss two main features of the pushforward through v — vv" of the Goemans-Williamson
measure which are relevant to this paper. We abuse notation in this section by letting pugw refer to
the pushforward measure on V;. First, we prove that this measure is a max-entropy measure with
respect to V;. Second, we demonstrate that this measure cannot be interpreted as a max-entropy
measure on Pq. This second point demonstrates the fundamental difference between mex entropy
measures on V; and Pj.

9.1 Goemans-Williamson measure on V; maximizes entropy

In this section, we demonstrate how the measure associated to the Goemans-Williamson SDP
rounding scheme can be interpreted as a max-entropy measure. We describe it formally as follows.

Definition 9.1 (Goemans-Williamson rounding scheme) Given annxn real symmetric pos-
itive definite matriz A, let V be a real n x n matriz such that VV'' = A. The Goemans- Williamson
rounding scheme proceeds as follows:

1. Sample a random standard Gaussian vector g from R"™.
2. Return the rank-1 PSD matriz (Vg)(Vg)'.

The measure associated to this sampling process we refer to as the Goemans-Williamson measure
and denote it paw. This measure is supported on the rank-1 real symmetric PSD matrices, which
1s the set of extreme points of the real symmetric PSD cone.

Now let m be the Lebesgue measure on R”, and let iz be the measure on the real symmetric PSD
cone which is the pushforward of m through the map ® : 2 +— 2z ". With this we can also give an
explicit description of the Goemans-Williamson measure.

Proposition 9.1 (Goemans-Williamson density function) The Goemans- Williamson mea-
sure on the set of rank-1 real symmetric PSD matrices is given by

ducw(X) oc e A au(x),

where  is the pushforward of Lebesque measure through x — x| .

Proof: Let 4 :2VVT as in the definition of pugw. Since a standard Gaussian g is distributed
according to e 2 gl dm(g), we can apply the change of variables formula to determine how z := Vg
is distributed. We have:

x ~ e 2lV7alP ~det(V™Ydm(z) = e~ (zA herT) \/det(A—)ydm(x).

Considering the pushforward of this measure through = — xzz ' gives the desired result. [ |

Note that strong duality then immediately implies pgw is a max-entropy measure with respect to
1, since its density function is of the correct form. To demonstrate this more concretely, we prove
this explicitly below via an explicit formula &,(Y"). First, the following observation tells us that it
is sufficient to restrict £,(Y") to positive definite Y.

Lemma 9.2 IfY is not PD, then [y, e~V X du(X) = 4oo0.
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Proof: Since X is PSD, we have that Y < Z implies —(Y, X) > —(Z, X). Hence, to prove the
result, we only need to show it for singular PSD matrices Y. Further, unitary invariance means we
can restrict to diagonal Y. So, assume Y = diag(0,y2,...,y,) for y; > 0. Now consider:

Vl R

R?’L
0 n
= / e~ Divs yi‘xi|2d(x2, ooy Tp)dxy
—00 Rnfl
)
= / Cda:l = +4o00.
—o0

Note that the inner integrand above does not depend on z1, and so the evaluation of the inner
integral yields some positive (possibly infinite) constant C' as written above. [ |

We now give an explicit formula for £,(Y") on positive definite Y.

Proposition 9.3 (Lebesgue evaluation formula) We have the following explicit expression for
Eu(Y) for n x n real symmetric positive definite Y :

1
EuY) = log/ e VX du(x) = glog(ﬂ) ~3 log det(Y).
Vi

Proof: Since p is the pushforward measure of m through z + za!, we have:
log/ e_<Y’X>d,u(X) = log/ e_<y’mT>dm(:E) = log (7?"/2 det(Y)_1/2) )
V1 R

The second equality is computed via the density function of the multivariate Guassian. [ |
This then leads to the main result of this section.

Corollary 9.4 (Max-entropy, SDP rounding) Given an n xn real symmetric positive definite
marginals matriz A, the Goemans-Williamson measure pucw is the maz-entropy measure with re-
spect to p, the pushforward through x — xx' of the Lebesque measure on R™. That is, pugw is the
optimal measure for Prim,(A).

Proof: Proposition 9.3 gives the following explicit expression for £,(Y") with n x n real symmetric
positive definite input Y:

1
EuY) = log/e_<Y’X>du(X) = glog(w) - glog det(Y).
By a standard computation, we then have the following:
1 1
VELY) = —§Vlogdet(Y) = —§Y‘1.

This implies the following regarding the gradient of the dual program objective Dual,,(A) for positive
definite A:

0= VEA(Y) = V((Y, A) + Eu(Y)) = A — %Y‘l —v- %A‘l.

That is, Y* = %A‘l is the optimum for the dual program. By strong duality /Slater condition for u
(see Proposition A.6) and the density function for pugw given in Proposition 9.1 above, this implies
the result. [ |
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9.2 Goemans-Williamson measure projected to the unit sphere does not max-
imize entropy

In this section we show that the Hermitian version of the measure ugw is not a max-entropy
measure for P;. We do not recompute the density function for pugw in the Hermitian case, but
only say that Proposition 9.1 can be adapted to show that in this case it is of the same form:
v(X) o e=A0X) for some positive definite Ay.

We want to “project” the (Hermitian) SDP rounding measure onto P;, and we want to compute
the density with respect to p1. To do this, we first project the Lebesgue measure onto the complex
unit sphere S¢ and then pushforward through x — z2*. We first state a few standard lemmas.

Lemma 9.5 Let f(z) be a Lebesque measurable function on C™. Then:
FEim(e) = s [ [T o drdpsy (o)
cn (n—1)! n Jo ¢

Proof: This is precisely the polar coordinates formula for Lebesgue measure in C* = R?”. The
constant W 7{), is the volume of the complex unit ball in C™. [ |

This shows that the projected density g can be computed from the Lebesgue density f as follows:

9(v) = —— n—l / flro)r =1y

We will now use the following lemma, which is standard.

Lemma 9.6 Forn € N and a > 0, we have:

/OO r2n—1e—ar2dr — (Tl B 1)' ]
0

2am™

With this, we compute the following for f(x) ~ e~ (A"

/ flro)r =Ly
n—l

~ (n27T"1)' /OO Tzn—le—r (A00%) g
A

n

g(v) =

™

:WO(<A,'U'U> .

That is, the projected density is proportional to (A4, vv*)~™ on the unit sphere. With this, we have
the following interesting fact.

Proposition 9.7 The “projection” of the (Hermitian) SDP rounding measure to Py is not a maz-
entropy measure with respect to 1 on Py.

Proof: By strong duality, max-entropy densities in both contexts take the form g(X) oc e (4X)
So, we just need to show that for all PD B we have:

(A,X>_n A €_<BX

This is straightforward, e.g. using the fact that the left-hand side is a rational function in
R(v;), S(v;) but the right-hand side is not. ]
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10 Generalization of the maximum entropy framework to Lie
groups

Recent work (e.g., [10, 8]) has demonstrated interesting connections between Lie theory and TCS,
and the max-entropy framework fits into this context as well. In what follows we will briefly discuss
the case of Q) = P, and p = ug, as well as how this can be generalized. However, a more detailed
investigation of the computational aspects of the max-entropy framework in this context is outside
the scope of this paper.

We first describe the case of 0 = P, and p = pj in a more general way. The unitary group
U(n) acts on the real vector space of n x n Hermitian matrices by conjugation. This group action
partitions the vector space into orbits, with X and Y being in the same orbit if and only if they
have the eigenvalues. Given any Hermitian matrix F', we denote the orbit corresponding to F' by
O(F).

Consider now the matrix Py := diag(1,...,1,0,...,0) where k denotes the number of 1s that
appear in the matrix. Then the orbit O(Py) is precisely the set of rank-k projections. That is,
O(P;) = Pk, and so the unitarily invariant measure p; on Py induces such a measure on O(Fy).
In fact such a unitarily invariant measure pup exists for any orbit O(F') allowing us to extend our
maximum entropy framework to such orbits of U(n).

This can be generalized beyond the group U(n), to the general setting of a Lie group G and its
corresponding Lie algebra g upon which G naturally acts. The primal and dual programs for this
generalized setting are the same as in the general case, with one exception. The element F' € g
is now an input, and any algorithm for approximating an optimum for Dual,, (A) will necessarily
depend on the complexity of F'. That said, strong duality holds in this case whenever A is in the
interior of K = hull(O(F')) C g, and so the bounding box and the strong counting oracle are the
two main results needed to obtain the polynomial-time ellipsoid-based algorithm described in this
paper. As an aside, in this case K = hull(O(F)) is called an orbitope (e.g., see [34, 4]).

Thus, the following optimization problem is a natural generalization of the (dual) maximum
entropy problem considered in this paper. The G-invariant inner product used in the exponent
here can be derived from the so-called Killing form of g when G is compact (e.g., see [29], Corollary
4.26).

inf Fu(Y) = inf Y,A+1/ ~VX) gy (X
inf a(Y) ’1/1169[< ) + log o pr(X)

Computability of this problem will be a subject of future work.
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A The dual formulation and strong duality

A.1 The dual formulation

The dual formulation Dual,(A) is given as follows, for A € K = hull(2) and Y in the ambient real
inner product space R%:

inf F4(Y) := inf {(Y, A) + log/ e_<Y’X>d,u(X)} .
Y Y Q

In Dual,(A) we also assume a linear constraint on Y: L(Y) = 0 where X € Q is such that
L(X) = B. We ignore this constraint for now, and deal with it in Lemma A.1 below.
To prove the form of the dual formulation given above, we write:

LY, 2) = — / V(X)) log (1(X)) du(X) + (Y, A) — / Y, X (X)du(X) + 2 — 2 / v (X)dp(X).

We now want to compute derivatives to connect this with the dual program. For any f € L?(u),
we compute:

0= 08),_o L(v+1f.Y,2)
= [ 100108 (X)) du(X) ~ [ FOOIO) ~ [V X)) d(X) ~ 2 [ F(X)dp(X)
= — [ 1) log (#(X)) + 1+ (¥, X) + 2] du(X)
=—(f,log(v(X))+1+ (Y, X) +2]).
This immediately implies (almost everywhere, and we will suppress this caveat from now on):
log (V(X)) + 1+ (Y, X) + 2 = 0.

This then gives
v(X)=exp(—1—-2z—(Y,X)).

and therefore:
= [ og (X)) + (V. X) + A v(X)d(X) = [w(X)au(X) = [ exp(~1 -z = (¥, X))dp(X).
Combining these observations:
LY, 2) = /eXp(—l o (Y, X)) dp(X) + (Y, A) + =
= (VA et / =X g (X),
Now, we compute:

0=0,L(v,Y,z) =1— e_l_z/e_<Y’X>du(X)

And finally
i%l/fL(l/, Y, z) = i?/f [(Y, A) + log (/ e_<Y’X>d,u(X)>] ,

where Y ranges over R,
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Lemma A.1 Let L(X) = B be a set of linear constraints satisfied by all X € Q. There exists
an optimal solution Y* to the dual program Dual,(A) if and only if there exists a solution Z* to
Dual,,(A) restricted to L(Z*) = 0.

Proof:  For any Y, consider the decomposition Y = Z + Z+ where £(Z) = 0 and (Z+,Y")
for all Y’ such that £(Y’) = 0. Note that A € Q implies £L(X — A) = 0 for all X € Q, and so
(Z+,X — A) = 0. Letting F4(Y) denote the dual objective, this implies:

Fa(Y) = log/e_<Y’X_A>d,u(X) = log/e_<Z’X_A>d,u(X) = Fu(Z2).
This completes the proof. [ |

A.2 Strong duality under Slater’s condition

We now prove a general result above obtaining strong duality from a Slater-type condition. In the
next section, we show that this Slater-type condition holds for the max-entropy program in general.
We also give more concrete proofs for py on P and g on Vp in the following section.

Proposition A.2 (Strong duality under Slater’s condition) Let V' be a real inner product
space such that Q@ C V. If for any A in the relative interior of KK = hull(Q) there exists v4 in
the relative interior of the constraints of Prim, (A), then we have strong duality for any A in the
relative interior of IC.

Proof: Without loss of generality, we may assume that 2 and A have been translated such that
K = hull(Q) is full dimensional within a subspace of V, and that A also lies in this subspace. We
will let W refer to this subspace, and now K has nonempty interior within W.

We now follow some standard proofs of strong duality. Fix A in the interior of K, and let
D := {v : supp(u) — R;}. Then we only have linear equality constraints, which we denote
collectively by:

E(v) = ( / Xv(X)dp(X) — A, / V(X)dp(X) — 1) €W xR.

We also negate the objective function, denoting this negated function by F', and p* denote its
optimal value. Note that p* is finite by the assumptions of the theorem. Now define:

W:={(B,y,t) : F(v)<tand E(v) = (B,y) forsome v € D} CW x R x R.

Note that this set is convex. Further, (0,0,p*) is either on the boundary of W or outside of
W by optimality. Hence, we can find a separating hyperplane, and therefore there exists some
0 # (Co, 20, 80) € W x R x R such that:

((Co, 20, 50), (B,y,t)) > s-p* for all (B,y,t) € V.

Note that sg > 0, or else we can pick ¢ very large to get a contradiction. We now demonstrate that
in fact so > 0. To get a contradiction, we suppose sg = 0 which gives:

<(O(],Z(]), (va)> >0 for all (Bayat) EW.

For any B = A+ Z where Z € B.(0) C W, we have an interior solution vp by assumption.
Therefore for all such Z:

(Co,Z) = (Co, Z) + 20 - 0 = ((Co, 20), (B, y)) = 0.
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This is only possible if Cy = 0. By scaling v4, we also see that zy = 0. This contradicts (Co, 29, So) #
0, and therefore sy > 0.
To finish the proof, we define Cf, := f—g and zj := 2. We can then write:

((Ch, 20, 1), (B, y,t)) > p* for all (B,y,t) € W.
Note that, for the dual objective function G(C, z) := inf,ep [F'(v) + ((C, 2), E(v))], we have:
0 = supG(C,2) > G(Ch ) = _inf_ {(Chy2h, 1), (Bryt)) >
Ciz

(By,t)eW
On the other hand, we have for all C,z and v4 satisfying constraints such that F'(v4) is near
optimal:

G(C,2) = nf [F(v) +((C, 2), E(v))] < F(va) +((C,2), E(va)) = p* + & +0.

veD

Applying sup to G(C, z) and letting ¢ — 0 implies d* < p*. [ |

A.3 Slater’s condition holds for general €2 and p

The dual formulation given in Section A.l implies a succinct representation of the optimal density
v, given that we have strong duality. Here we prove strong duality for general €2 and p by proving
Slater’s condition. The main thing needed for this is existence of an optimal Y* for Dual,(A),
given interiority of A. We prove this now.

Lemma A.3 (Existence of dual optimum) If A is in the interior of KK = hull(Q2), then there
exists Y* which optimizes the dual program Dual, (A).

Proof: By the previous lemma, we may assume that IC is of full dimension in its ambient inner
product space V. That said, note now that there is no closed half-space H C V such that A € H
and u(H NQ) = 0. Otherwise this would imply that A is not in the interior of K, since the interior
of H would not intersect €2, the support of u. Now suppose A is in the n-interior of K. Hence, for
any B € By (A) and any half-space H with B on the boundary, there is an ep i > 0 such that
,u(H N Q) = EB,H-

We now prove that ¢ := infep g > 0. If not, then there is some sequence (B;, H;) for which
ep;,u; — 0. By identifying half-spaces about a point with the unit sphere, we have that the set
of all possible (B, H) pairs is compact. Thus we can assume (B;, H;) is convergent, with limit
(Bo, Hp). Since every point X of the interior of Hy is eventually in the interior of H;, we have that
the measure in a small ball around any such X is 0. Therefore the interior of Hy does not intersect
), the support of . This implies By is not in the interior of K, a contradiction.

Therefore, € := infepy > 0. This in fact implies that A is in the (3,¢)-interior of u (see
Definition 6.2).

Using the arguments of Lemma 6.1, for any Y € V we have:

e<u{X eQ| (-, X - (A-(/2) Y/|Y])) =0}
=p({X e Q| (=Y, X = 4) > (n/2) - [[Y]]}).

This implies:

Hence, [|Y|| > R implies a lower bound on the dual objective F4(Y), which goes to infinity as
R — oo. Therefore F4 must be minimized at some bounded point Y* € V. [ |
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This lemma then implies Slater’s condition in general.

Theorem A.4 (Strong duality) Fiz any p with support Q in a real Hilbert space V. If A is in
the interior of I = hull(2), then strong duality holds for A. In particular, the optimum density v*
1s of the form:

V(X) ox e VX

Proof: Let Y* be an optimum for Dual,(A), by Lemma A.3. Then:

Xe= V"X au(X)
0=VEA(Y*) =V [(Y,A) +1 - Xq X} :A—f .
A( ) |:< bl >+ Og/G lu’( ) Y:Y* fe_(Y*7X>d/,L(X)

This precisely says that A is the marginals matrix of the measure v*(X) e~ Y X) " Therefore

strong duality holds, since v* is in the relative interior of the constraints of Prim,(A) for any A in
the interior of hull(£2). ]

A.4 Slater’s condition for P, and V;

We now give more concrete and direct arguments for Slater’s condition in the specific situations of
P and V; that we consider in this paper.

Proposition A.5 (Slater’s condition for Py) Let A be in the interior of hull(Py). Then there
is a density function on Py, which is in the interior of the constraints of Primy(A).

Proof: Define P := diag(1,...,1,0,...,0) € Py and P+ := 1 — P. Y = aP+ — 3P for some
a, 8 > 0 to be determined. Hence, Y is U(k) x U(n — k)-invariant, and therefore by the unitary
invariance of py we have the following for any U € U(k) x U(n — k):

B:= /Xe‘<Y’X>duk(X) = /UXU*e‘mUXU*)duk(X) =U (/ Xe‘<Y’X>duk(X)) U* = UBU*.

That is, B is U(k) x U(n — k)-invariant, and therefore B = yP+ + §P for some 7,0 € R.

By picking a,8 > 0 large with § < «, the mass of e‘<Y’X>d,uk(X) becomes concentrated at
X = P. If we also normalize by multiplying the density by e ¢U»X) for appropriate values of
c € R, we in fact have that B approaches P as «, 3 — oo. Combining this with the form that B
must take means that for every € > 0, there exist a. and . such that the corresponding measure
is normalized and the corresponding value of B is equal to (1 —¢)P + %In. We refer to this matrix
as B., and we refer to the corresponding Y matrix as Yz.

Note also that for any unitary U € U(n), the same argument holds for

k:s
UB.U*=(1—-¢)UPU" +

and UY.U*. This then proves the result for A = UB.U* for any ¢ > 0 and any U € U(n). For any
fixed € > 0, we further have:

hll({UB.U* : U e U(n)}) = (1 — ) hull(Py) + % = Phe.

Hence, for any A € Py., we can choose Uy,..., Uy, € U(n) such that A = % i, UiBU?.
Therefore:
1 & _wivor x) *
— d, U; B.U;
/¥ <mZ pu(X Z
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Since % S e Y USX) gy, (X) is a convex combination of measures in the interior of the con-
straints of Primy(A), this proves the result for all A € Py .. Letting e — 0 then proves the result
in full generality. [ |

Proposition A.6 (Slater’s condition for V;) Let A be in the interior of the PSD cone, and let
u be the pushforward of the Lebesque measure m though x — xx ' . Then there is a density function

on the set of rank-one real symmetric PSD matrices which is in the interior of the constraints of
Prim, (A).

Proof: Let vy(z)dm(z) be a Gaussian probability measure on R” with covariance matrix A. This
precisely means:

/:E:ETI/Q(:E)dm(l’) = A.

Let v(X)du(X) be the pushforward of vy(z)dm(z) through the map x + zx . Then:

/ Xv(X)du(X) = A.

This v(X) is the desired density function. ]

B The Schur-Horn theorem

We last discuss an idea that will useful to us in a number of parts of this paper. Generally, the
idea is that the unitary invariance of uy allows us to often restrict to looking at diagonal matrices
when considering the dual objective. The main observation is a corollary of the famous Schur-Horn
theorem [35, 23].

Proposition B.1 (Schur-Horn) If D is a real diagonal matriz and U is unitary, then the diag-
onal of UDU* is majorized by the diagonal of D.

Corollary B.2 Given two real diagonal n x n matrices D, D', we have the following:

inf (UDU*, D'y = inf (¢Do*, D').
UeU(n) o€Sh

Here, U(n) is the unitary group and Sy, is the subgroup of permutation matrices.

Proof: Let o¢ be the permutation matrix which minimizes (cDo*, D’) over all permutation
matrices. By majorization, for any U the diagonal of U DU* can be written as a convex combination
of the permutations of the diagonal of D. By linearity of (-, D’), the value of (UDU*, D’) must
then be at least the value of (cgDo(, D). ]

Corollary B.3 Let A be a diagonal trace-k PD matrixz. Then:

inf Fu(Y) = inf Fa(Y).

Y, Hermitian Y,real diagonal

Proof: Recall:
FA(Y) = (V. A) +1og [ 0¥ dju ().

To prove the result, we only need to show that for any fixed real diagonal matrix D we have:

Uen(}fén) FA(UDU ) = Crlensf:n FA(O'DO' )
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Since the integration part of F'4(Y') is unitarily invariant, this is then equivalent to:

inf (UDU*, A) = inf (¢ Do*, A).
UeU(n) oESn

Since A is diagonal, this follows from the previous corollary. [ |

C Closeness of the approximate distribution

Let p1 and pe two probability measures on ), given as density functions with respect to a base
measure . The KL divergence between py and o is defined as

p(X)
Dxr (|| p2) - / p1 (X ( dp(X).
2(X)
With this we follow the proof of Lemma A.4 in [36] to obtain the following.

Lemma C.1 Let Y™ be the optimal solution to the dual objective function
FA(Y) = (Y. 4) + log | o040,
Q

Further, let Y° be such that Fo(Y°) < FA(Y*)+e. If p* and p° are the probability distributions
associated to Y* and Y° respectively, then

Dir(p*||pn®) = Fa(Y®) = Fa(Y") < e
Proof: By assumption we have F4(Y°) — F4(Y™*) < &, which implies

(Y°O—Y* A) + log/ e VX gu(X) — log/ eV X au(X) <e
9) Q

The density functions of the distributions associated to Y* and Y° can be given as

o= (Y°.X) o~ (V. X)

°(X) = d (X) = .
(X Joe T Xdux) ™ w(X) T e X du(X)

Since Y* is the optimal solution (and hence A is proportional to [, Xe~"X)du(X)), we can
compute the KL divergence as

v e~ (YD) qu(z) R
fQG (¥=.X) |:10g <%) + <Y - Y*,X>:| d,u(X)
Q
Joe VX du(X)

o Jae N du(X) o v JoXeT VT Ndu(X)
‘1°g<f$e-<Y*»X>du<X>> <Y T e Y >>

= [ves ) 1o [ 0 0du00)] - (7 a) +1og [ W)
— Fu(Y®) — FA(Y*) <

Dy (p*||p°) =

As in Corollary A.5 of [36], we use the previous result to obtain bounds on the approximate optimal
distribution and on the marginals of this distribution.
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Corollary C.2 Let Y* be the optimal to the dual objective function Fs(Y') with domian Q and
measure (i as in the previous lemma, and let Y° be such that Fo(Y°) < FA(Y™*) +e. If p* and p°
are the probability distributions associated to Y* and Y° respectively, then

|l —pllrv < V2e.

Proof: The result follows from the previous lemma and the following well-known inequality (see
g. [12], Lemma 12.6.1, pp. 300-301) relating KL divergence and total variation distance:

" = pCllrv < /2 - Dko(p]|pe).
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